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Abstract

In reasoning about sequential events it is natural to pose probabilistic queries such
as “when will event A occur next” or “what is the probability of A occurring before
B," with applications in areas such as user modeling, language models, medicine,
and finance. These types of queries are complex to answer compared to next-event
prediction, particularly for neural autoregressive models such as recurrent neural
networks and transformers. This is in part due to the fact that future querying
involves marginalization over large path spaces, which is not straightforward to
do efficiently in such models. In this paper we introduce a general typology for
predictive queries in neural autoregressive sequence models and show that such
queries can be systematically represented by sets of elementary building blocks.
We leverage this typology to develop new query estimation methods based on
beam search, importance sampling, and hybrids. Across four large-scale sequence
datasets from different application domains, as well as for the GPT-2 language
model, we demonstrate the ability to make query answering tractable for arbitrary
queries in exponentially-large predictive path-spaces, and find clear differences in
cost-accuracy tradeoffs between search and sampling methods.

1 Introduction

One of the major successes in machine learning in recent years has been the development of neural
sequence models for categorical sequences, particularly in natural language applications but also in
other areas such as automatic code generation and program synthesis [Shin et al., 2019, Chen et al.,
2021], computer security [Brown et al., 2018], recommender systems [Wu et al., 2017], genomics
[Shin et al., 2021, Amin et al., 2021], and survival analysis [Lee et al., 2019]. Many of the models
(although not all) rely on autoregressive training and prediction, allowing for the sequential generation
of sequence completions in a recursive manner conditioned on sequence history.

A natural question in this context is how to compute answers to predictive queries that go beyond
traditional one-step-ahead predictions. Examples of such queries are “how likely is event A to occur
before event B?” and “how likely is event C to occur (once or more) within the next K steps of the
sequence?” These types of queries are very natural across a wide variety of application contexts, for
example, the probability that an individual will finish speaking or writing a sentence within the next
K words, or that a user will use one app before another. See Fig. 1 and Appendix G for examples.

In this paper we develop a general framework for answering such predictive queries in the context of
autoregressive (AR) neural sequence models. This amounts to computing conditional probabilities
of propositional statements about future events, conditioned on the history of the sequence as
summarized by the current hidden state representation. We focus in particular on how to perform near
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Figure 1: (top) Illustration of a query for the probability of a given sentence "In my opinion..." ending
in K steps. (bottom) GPT-2 query estimates across 4 prefixes with V = 50, 257,K ≤ 30. Importance
sampling query estimates maintain a 6x reduction in variance relative to naive model sampling for the
same computation budget. Open-ended prefixes (top-left) generally possess longer-tailed distributions
relative to simple prefixes. Additional details provided in Sections 4, 5, and Appendix H.5.

real-time computation of such queries, motivated by use-cases such as answering human-generated
queries and utilizing query estimates within the optimization loop of training a model. Somewhat
surprisingly, although there has been extensive prior work on multivariate probabilistic querying in
areas such as graphical models and database querying, as well as for restricted types of queries for
traditional sequence models such as Markov models, querying for neural sequence models appears
to be unexplored. One possible reason is that the problem is computationally intractable in the
general case (as we discuss later in Section 3), typically scaling as O

(
V K−1

)
or worse for predictions

K-steps ahead, given a sequence model with a V -ary alphabet (e.g. compared to O
(
KV 2

)
for

Markov chains).

Our contributions are three-fold:

1. We introduce and develop the problem of predictive querying in neural sequence models
by reducing complex queries to building blocks im the form of elementary queries. These
elementary queries define restricted path spaces over future event sequences.

2. We show that the underlying autoregressive model can always be constrained to the restricted
path space satisfying a given query. This gives rise to a novel proposal distribution that can be
used for importance sampling, beam search, or a new hybrid approach.

3. We evaluate these methods across three user behavior datasets and two language datasets. While
all three methods significantly improve over naive forward simulation, the hybrid approach
further improves over importance sampling and beam search. We furthermore explore how the
performance of all methods relates to the model entropy.

Code for this work is available at https://github.com/ajboyd2/prob_seq_queries.

2 Related Work

Research on efficient computation of probabilistic queries has a long history in machine learning
and AI, going back to work on exact inference in multivariate graphical models [Pearl, 1988, Koller
and Friedman, 2009]. Queries in this context are typically of two types. The first are conditional
probability queries, which are the focus of our attention here: computing probabilities defined for a
subset X of variables of interest, conditioned on a second subset Y = y of observed variable values,
and marginalizing over the set Z of all other variables. The second type of queries can broadly be
referred to as assignment queries, seeking the most likely (highest conditional probability) assignment
of values x for X , again conditioned on Y = y and marginalizing over the set Z. Assignment queries
are also referred to as most probable explanation (MPE) queries, or as maximum a posteriori (MAP)
queries when Z is the empty set [Koller et al., 2007].
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Figure 2: (left) Tree diagram of the complete sequence space for a vocabulary V = {a, b, c} and the
corresponding query space Q (right) for when the first appearance of a occurs on the third step (i.e.,
τ(a) = 3), defined as the set product of restricted domains listed below the figure.

For models that can be characterized with sparse Markov dependence structure, there is a significant
body of work on efficient inference algorithms that can leverage such structure [Koller and Friedman,
2009], in particular for sequential models where recursive computation can be effectively leveraged
[Bilmes, 2010]. However, autoregressive neural sequence models are inherently non-Markov since
the real-valued current hidden state is a function of the entire history of the sequence. Each hidden
state vector induces a tree containing V K unique future trajectories with state-dependent probabilities
for each path of length K. Techniques such as dynamic programming (used effectively in Markov-
structured sequence models) are not applicable in this context, and both assignment queries and
conditional probability queries are NP-hard in general Chen et al. [2018].

For assignment-type queries there has been considerable work in natural language processing with
neural sequence models, particularly for the MAP problem of generating high-quality/high-probability
sequences conditioned on sequence history or other conditioning information. A variety of heuristic
decoding methods have been developed and found to be useful in practice, including beam search
[Sutskever et al., 2014], best-first search [Xu and Durrett, 2021], sampling methods [Holtzman et al.,
2019], and hybrid variants [Shaham and Levy, 2022]. However, for conditional probability queries
with neural sequence models (the focus of this paper), there has been no prior work in general on
this problem to our knowledge. While decoding techniques such as beam search can also be useful
in the context of conditional probability queries, as we will see later in Section 4, such techniques
have significant limitations in this context, since by definition they produce lower-bounds on the
probabilities of interest and, hence, are biased estimators.

3 Probabilistic Queries

Notation Let X1:N := [X1, X2, . . . , XN ] be a sequence of random variables with arbitrary length
N . Additionally, let x1:N := [x1, x2, . . . , xN ] be their respective observed values where each xi

takes on values from a fixed vocabulary V := {1, . . . , V }. Examples of these sequences include
sentences where each letter or word is a single value, or streams of discrete events generated by some
process or user. We will refer to individual variable-value pairs in the sequence as events.

We consider an autoregressive model pθ(X1:N ) =
∏N

i=1 pθ(Xi|X1:i−1), parameterized by θ and
trained on a given dataset of M independent draws from a ground truth distribution P(X1:N ). We
assume that this model can be conditioned on a subsequence, termed the history H. We will remap
the indices of subsequent random variables to start at the first position2. We abbreviate conditioning
on a history by an asterisk ∗, i.e., P∗(·) := P(·|H) and p∗θ(·) := pθ(·|H).

Defining Probabilistic Queries Given a specific history of events H, there are a variety of different
questions one could ask about the future continuing where the history left off: (Q1) What event is
likely to happen next? (Q2) Which events are likely to occur K > 1 steps from now? (Q3) What is
the distribution of when the next instance of a ∈ V occurs? (Q4) How likely is it that we will see
event a ∈ V occur before b ∈ V? (Q5) How likely is it for a ∈ V to occur n times in the next K
steps?

2For example, if |H| = 3 then P(X4|H) is the distribution of the 7th value in a sequence after conditioning
on the first 3 values in the sequence.
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# Question Probabilistic Query Cost (K · |Q|)
Q1 Next event? p∗θ(X1) O(1)

Q2 Event K steps from now? p∗θ(XK) O
(
V K−1

)
Q3 Next instance of a? p∗θ(τ(a) = K) O

(
(V − 1)K−1

)
Q4 Will a happen before b? p∗θ(τ(a) < τ(b)) O

(
(V − 2)K

)†
Q5 How many instances of a in K steps? p∗θ(Na(K) = n) O

((
K
n

)
(V − 1)K−n

)
Table 1: List of example questions, corresponding probabilistic queries, and associated costs of exact
computation computation with an autoregressive model. The cost of accommodating a history H is
assumed to be an additive constant for all queries. While Q4 extends to infinite time, the cost reported
is for computing a lower bound up to K steps.

We define a common framework for such queries by defining probabilistic queries to be of the form
p∗θ(X1:K ∈ Q) with Q ⊂ VK . This can be extended to the infinite setting (i.e., p∗θ([Xk]k ∈ Q)
where Q ⊂ V∞). Exact computation of an arbitrary query is straightforward to represent:

p∗θ(X1:K ∈ Q) =
∑

x1:K∈Q
p∗θ(X1:K = x1:K) =

∑
x1:K∈Q

K∏
k=1

p∗θ(Xk = xk|X<k = x<k). (1)

Depending on |Q|, performing this calculation can quickly become intractable, motivating lower
bounds or approximations (developed in more detail in Section 4). In this context it is helpful to
impose structure on the query Q to make subsequent estimation easier, in particular by breaking Q
into the following structured partition:

Q = ∪iQ(i) where Q(i) ∩Q(j) = ∅ for i ̸= j (2)

and Q(i) = V(i)
1 × V(i)

2 × · · · × V(i)
K where V(i)

k ⊆ V for k = 1, . . . ,K. (3)

In words, this means a given query Q can be broken into a partition of simpler queries Q(i) which
take the form of a set cross product between restricted domains V(i)

k , one domain for each token Xk.3
An illustration of an example query set can be seen in Fig. 2. A natural consequence of this is that:

p∗θ(X1:K ∈ Q) =
∑
i

p∗θ
(
X1:K ∈ Q(i)

)
=
∑
i

p∗θ
(
∩K
k=1Xk ∈ V(i)

k

)
,

which lends itself to more easily estimating each term in the sum. This will be discussed in Section 4.

Queries of Interest All of the queries posed earlier in this section can be represented under the
framework detailed in Eq. (2) and Eq. (3), as illustrated in Table 1.

Q1 & Q2 The queries p∗θ(X1 = a) and p∗θ(XK = a) for some a ∈ V can be represented with
Q = {a} and Q = VK−1 × {a} respectively.

Q3 The probability of the next instance of a ∈ V occurring at some point in time K ≥ 1,
p∗θ(τ(a) = K) where τ(·) is the hitting time, can be represented as Q = (V \ {a})K−1 × {a}. This
can be adapted for a set A ⊂ V by replacing {a} in Q with A.

Q4 The probability of a ∈ V occurring before b ∈ V, p∗θ(τ(a) < τ(b)), is represented as
Q = ∪∞

i=1Q(i) where Q(i) = (V \ {a, b})i−1 × {a}. Lower bounds to this can be computed by
limiting i < i′. Like Q3, this can also be extended to disjoint sets A,B ⊂ V.

Q5 The probability of a ∈ V occurring n times in the next K steps, p∗θ(Na(K) = n), is represented
as Q = ∪C(K,n)

i=1 Q(i), where Na(K) is a random variable for the number of occurrences of events of
type a from steps 1 to K and Q(i)’s are defined to cover all unique permutations of orders of products
composed of: {a}n and (V \ {a})K−n. Like above, this can easily be extended for A ⊂ V.

3Ideally, the partitioning is chosen to have the smallest number of Q(i)’s needed.
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Query Complexity From Eq. (1), exact computation of a query involves computing K · |Q|
conditional distributions (e.g., p∗θ(Xk|X<k = x<k)) in an autoregressive manner. Under the struc-
tured representation, the number of conditional distributions needed is equivalently

∑
i

∏K
k=1 |V

(i)
k |.

Non-attention based neural sequence models often define p∗θ(Xk|X<k = x<k) := fθ(hk) where
hk = RNNθ(hk−1, xk−1). As such, the computation complexity for any individual conditional
distribution remains constant with respect to sequence length. We will refer to the complexity of this
atomic action as being O(1). Naturally, the actual complexity depends on the model architecture
and has a multiplicative scaling on the cost of computing a query. The number of atomic operations
needed to exactly compute Q1-Q5 for this class of models can be found in Table 1. Should pθ be
an attention-based model (e.g., a transformer [Vaswani et al., 2017]) then the time complexity of
computing a single one-step-ahead distribution becomes O(K), further exacerbating the exponential
growth of many queries. Note that with some particular parametric forms of pθ, query computation
can be more efficient, e.g., see Appendix C for a discussion on query complexity for Markov models.

4 Query Estimation Methods

Since exact query computation can scale exponentially in K it is natural to consider approximation
methods. In particular we focus on importance sampling, beam search, and a hybrid of both methods.
All methods will be based on a novel proposal distribution, discussed below.

4.1 Proposal Distribution

For various estimation methods which will be discussed later, it is beneficial to have a proposal
distribution q(X1:K = x1:K) whose domain matches that of the query Q. For importance sampling,
we will need this distribution as a proposal distribution, while we use it as our base model for
selecting high-probability sequences in beam search. We would like the proposal distribution to
resemble our original model while also respecting the query. One thought is to have q(X1:K =
x1:K) = p∗θ(X1:K = x1:K |X1:K ∈ Q). However, computing this probability involves normalizing
over p∗θ(X1:K ∈ Q) which is exactly what we are trying to estimate in the first place. Instead of
restricting the joint distribution to the query, we can instead restrict every conditional distribution to
the query’s restricted domain. To see this, we first partition Q = ∪iQ(i) and define an autoregressive
proposal distribution for each Q(i) =

∏K
k=1 V

(i)
k as follows:

q(i)(X1:K = x1:K) =

K∏
k=1

p∗θ
(
Xk = xk|X<k = x<k, Xk ∈ V(i)

k

)
(4)

=

K∏
k=1

p∗θ(Xk = xk|X<k = x<k)1
(
xk ∈ V(i)

k

)
∑

v∈V(i)
k

p∗θ(Xk = v|X<k = x<k)

where 1(·) is the indicator function. That is, we constrain the outcomes of each conditional prob-
ability to the restricted domains V(i)

k and renormalize them accordingly. To evaluate the proposal
distribution’s probability, we multiply all conditional probabilities according to the chain rule. Since
the entire distribution is computed for a single model call p∗θ(Xk|X<k = x<k), it is possible to both
sample a K-length sequence and compute its likelihood under q(i) with only K model calls. Thus,
we can efficiently sample sequences from a distribution that is both informed by the underlying model
pθ and that respects the given domain Q. As discussed in the next section, this proposal will be used
for importance sampling and for the base distribution on which beam search is conducted.

4.2 Estimation Techniques

Sampling One can naively sample any arbitrary probability value using Monte Carlo samples to
estimate p∗θ(X1:K ∈ Q) = Ep∗

θ
[1(X1:K ∈ Q)]; however, this typically will have high variance.

This can be substantially improved upon by exclusively drawing sequences from the query space Q.
Arbitrary queries can be written as a sum of probabilities of individual sequences, as seen in Eq. (1).
This summation can be equivalently written as an expected value,

p∗θ(X1:K ∈ Q) =
∑

x1:K∈Q
p∗θ(X1:K = x1:K) = |Q| Ex1:K∼U(Q) [p

∗
θ(X1:K = x1:K)] ,
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where U is a uniform distribution. It is common for p∗θ to concentrate most of the available probability
mass on a small subset of the total possible space VK . Should |Q| be large, then |Q| p∗θ(X1:K = x1:K)
will have very large variance for x1:K ∼ U(Q). One way to mitigate this is to use importance
sampling with our proposal distribution q (Section 4.1):

p∗θ(X1:K ∈ Q) = |Q| Ex1:K∼U(Q) [p
∗
θ(X1:K = x1:K)] = Ex1:K∼q

[
p∗θ(X1:K = x1:K)

q(X1:K = x1:K)

]

≈ 1

M

M∑
m=1

p∗θ

(
X1:K = x

(m)
1:K

)
q
(
X1:K = x

(m)
1:K

) for x(1)
1:K , . . . , x

(M)
1:K

iid∼ q.

It is worth noting that this estimator could be further improved by augmenting the sampling process
to produce samples without replacement from q (e.g., [Meister et al., 2021, Kool et al., 2019, Shi
et al., 2020]); in this paper we restrict the focus to sampling with replacement.

Search An alternative to estimating a query by sampling is to instead produce a lower bound,

p∗θ(X1:K ∈ Q) =
∑

x1:K∈Q
p∗θ(X1:K = x1:K) ≥

∑
x1:K∈B

p∗θ(X1:K = x1:K),

where B ⊂ Q. In many situations, only a small subset of sequences x1:K in Q have a non-negligible
probability of occurring due to the vastness of the total path space V K . As such, it is possible for
|B| ≪ |Q| while still having a minimal gap between the lower bound and the actual query value.

One way to produce a set B ⊂ Q is through beam search. To ensure that beam search only explores
the query space, instead of searching with pθ, we utilize q for ranking beams. Since beam search is a
greedy algorithm and for a given conditional q(Xk = a|X<k) ∝ p∗θ(Xk = a|X<k) for a ∈ Vk, the
rankings will both respect the domain and be otherwise identical to using pθ to rank. Typically, the
goal of beam search is to find the most likely completion of a sequence without having to explore
the entire space of possible sequences. This is accomplished by greedily selecting the top-B most
likely next step continuations, or beams, at each step into the future. Rather than finding a few
high-likelihood beams, we are more interested in accumulating a significant amount of probability
mass and less interested in the specific quantity of beams collected.

Traditional beam search has a fixed beam size B; however, this is not ideal for accumulating
probability mass. As an alternative we develop coverage-based beam search where at each step in a
sequence we restrict the set of beams being considered not to the top-B but rather to the smallest set
of beams that collectively exceed a predetermined probability mass α, referred to as the “coverage”.4
More specifically, let Bk ⊂ {x1:k|x1:K ∈ Q} be a set containing |Bk| beams for subsequences of
length k. For brevity, we will assume that Q = V1 × · · · × VK .5 Bk+1 is a subset of Bk × Vk+1

and is selected specifically to minimize |Bk+1| such that q(X1:k+1 ∈ Bk+1) ≥ α. It can be shown
that p∗θ(X1:K ∈ Q)− p∗θ(X1:K ∈ BK) ≤ 1− q(X1:K ∈ BK) (and is often significantly less). See
Appendix B for a proof.

There is one slight problem with having α be constant throughout the search. Since we are pruning
based on the joint probability of the entire sequence, any further continuations of Bk will reduce
the probability q(X1:k+1 ∈ Bk+1). This may lead to situations in which every possible candidate
sequence is kept in order to maintain minimal joint probability coverage. This can be avoided by
filtering by αk where α1 > · · · > αK = α, e.g., the geometric series αk = αk/K .

A Hybrid Approach Importance sampling produces an unbiased estimate, but can still expe-
rience large variance in spite of a good proposal distribution q when pθ is a heavy tailed distri-
bution. Conversely, the beam search lower bound can be seen as a biased estimate with zero
variance. We can remedy the limitations of both methods by recognizing that since p∗θ(X1:K ∈ Q) =∑

x1:K∈BK
p∗θ(X1:K = x1:K) +

∑
x1:K∈Q\BK

p∗θ(X1:K = x1:K), where BK is the set of sequences
resulting from beam search, we can use importance sampling on the latter summation. The only
caveat to this is that the proposal distribution must match the same domain of the summation: Q\BK .

4This is similar to the distinction between top-K and top-p / nucleus sampling commonly used for natural
language generation [Holtzman et al., 2019].

5If Q requires partitioning into multiple Q(i)’s, we apply beam search to each sub query p∗θ(X1:K ∈ Q(i)).
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The proposal distribution we use to accomplish this is q(X1:K = x1:K |X1:K /∈ BK) (see Eq. 4).
This is implemented by storing all intermediate distributions (both original pθ and proposal q) found
during beam search and arranging them into a tree structure. All leaf nodes that are associated
with x1:K ∈ BK have their transition probability zeroed out and then the effect of restriction and
normalization is propagated up the tree to their ancestor nodes (details provided in Appendix D and
E). Sampling from this new proposal distribution involves sampling from this normalized tree until
we reach either an existing K-depth leaf node, in which case we are done, or a < K-depth leaf node
in which case we complete the rest of the sequence by sampling from q in Eq. (4) as usual.

Lastly, since our ultimate goal is to sample from the long tail of pθ, targeting a specific coverage α
during beam search is no longer effective since achieving meaningfully large coverage bounds for
non-trivial path spaces is generally intractable. Instead, we propose tail-splitting beam search to better
match our goals. Let w(i)

k = p∗θ(X1:k+1 = x
(i)
1:k+1) for x(i)

1:k+1 ∈ Bk ×Vk+1 such that w(i)
k ≥ w

(j)
k if

i < j. In this regime, Bk+1 = {x(i)
1:k+1}Bi=1 where B = argminb σ(w

(1:b)
k ) + σ(w

(b+1:|Bk×Vk+1|)
k ).

σ(w
(u:v)
k ) is the empirical variance of w(i)

k for i = u, . . . , v. This can be seen as performing 2-means
clustering on the wk’s and taking the cluster with the higher cumulative probability.

4.3 Saving Computation on Multiple Queries

Should multiple queries need to be performed, such as p∗θ(τ(a) = k) for multiple values of k, then
there is potential to be more efficient in computing estimates for all of them. The feasibility of reusing
intermediate computations is dependent on the set of queries considered. For simplicity, we will
consider two base queries Q = V1 × · · · × VK and Q′ = V ′

1 × · · · × V ′
K′ where K < K ′. Due to

the autoregressive nature of pθ, if Vi = V ′
i for i = 1, . . . ,K − 1 then all of the distributions and

sequences needed for estimating p∗θ(X1:K ∈ Q) are guaranteed to be intermediate results found when
estimating p∗θ(X1:K′ ∈ Q′). To be explicit, when estimating the latter query with beam search the
intermediate BK is the same as what would be directly computed for the former query. Likewise, for
importance sampling if x1:K′ ∼ q(X1:K′) using Eq. (4) then the subsequence x1:K ∼ q(X1:K). This
does not apply when the sample path domain is further restricted, such as with the hybrid approach,
in which case we cannot directly use intermediate results to compute other queries for “free.”

5 Experiments and Results

Experimental Setting We investigate the quality of estimates of hitting time queries across various
datasets, comparing beam search, importance sampling, and the hybrid method. We find that hybrid
systematically outperforms both pure search and sampling given a comparable computation budget
across queries and datasets. We also investigate the dependence of all three methods on the model
entropy.

It is worth noting that we focus almost exclusively on hitting time queries in our primary experiments,
as more complex queries often decompose into operations over individual hitting times. For example.
consider the following decomposition of the “A before B” query (Q4):

p∗θ(τ(a) < τ(b)) =

∞∑
k=1

p∗θ(τ(a) = k, τ(b) > k) =

∞∑
k=1

p∗θ
(
Xk = a,X<k ∈ (V \ {a, b})k−1

)
Decompositions of other queries and their impact on approximation error are found in Appendix A.

Datasets We evaluate our query estimation methods on three user behavior and two language
sequence datasets. Reviews contains sequences of Amazon customer reviews for products belonging
to one of V = 29 categories [Ni et al., 2019]; Mobile Apps consists of app usage records over
V = 88 unique applications [Aliannejadi et al., 2021]; MOOCs consists of student interaction with
online course resources over V = 98 actions [Kumar et al., 2019]. We also use the works of William
Shakespeare [Shakespeare] by modeling the occurrence of V = 67 unique ASCII characters. Lastly,
we examine WikiText [Merity et al., 2017] to explore word-level sequence modeling applications
with GPT-2, a large-scale language model with a vocabulary of V = 50257 word-pieces [Radford
et al., 2019, Wu et al., 2016]. After preprocessing, none of the datasets contain personal identifiable
information.
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Figure 3: Median relative absolute error (RAE) between estimated probability and (surrogate) ground
truth for p∗θ(τ(·) = K) for importance sampling, beam search, and the hybrid method. As query
path space grows with K, beam search quickly fails to bound ground truth while sampling remains
robust, with the hybrid consistently outperforming all other methods, especially for large values of K.
Ground truth values used to determine error are exact for K ≤ 4 and approximated otherwise.

Base Models While our proposed methods are amenable to autoregressive models of arbitrary
structure, we focus our analysis specifically on recurrent neural networks. For all datasets except
WikiText, we train Long-short Term Memory (LSTM) networks until convergence. To explore
modern applications of sequence modeling with WikiText, we utilize GPT-2 with pre-trained weights
from HuggingFace [Wolf et al., 2020]. Model training and experimentation utilized roughly 200
NVIDIA GeForce 2080ti GPU hours. Please refer to Appendix F for additional details.

Experimental Methods We investigate computation-accuracy trade-offs between 3 estimation
methods (beam search, importance sampling, and the hybrid) across all datasets. Query histories H
are defined by randomly sampling N = 1000 sequences from the test split for all datasets except
WikiText, from which we sample only N = 100 sequences due to computational limitations. For
each query history and method, we compute the hitting time query estimate p∗θ(τ(a) = K) over
K = 3, . . . , 11, with a determined by the Kth symbol of the ground truth sequence.

To ensure an even comparison of query estimators, we fix the computation budget per query in terms
of model calls fθ(hk) to be equal across all 3 methods, repeating experiments for different budget
magnitudes roughly corresponding to O(10), O(102), O(103) model calls (see Appendix H for full
details). We intentionally select relatively small computation budgets per query to support systematic
large-scale experiments over multiple queries up to relatively large values of K. Results for queries
with GPT-2 are further restricted because of computational limits and are reported separately below.

To evaluate the accuracy of the estimates for each query and method, we compute the true probability
of K using exact computation for small values of K ≤ 4. For larger values of K, we run importance
sampling with a large number of samples S, where S is adapted per query to ensure the resulting
unbiased estimate has an empirical variance less than ϵ ≪ 1 (see Appendix F.3). This computationally-
expensive estimate is then used as a surrogate for ground truth in error calculations.

Coverage-based beam search is not included in our results: we found that it experiences exponential
growth with respect to K and does not scale efficiently due to its probability coverage guarantees.
Additional details are provided in Appendix H.3.

Results: Accuracy and Query Horizon Using the methodology described above, for each query,
we compute the relative absolute error (RAE) |p− p̂|/p, where p̂ is the estimated query probability
generated by a particular method and p is the ground truth probability or the surrogate estimate using
importance sampling. For each dataset, for each of the 3 levels of computation budget, for each value
of K, this yields N = 1000 errors for the N queries for each method.

Fig. 3 shows the median RAE of the N queries, per method, as a function of K, for each dataset, using
the medium computation budget in terms of model calls. Across the 4 datasets the error increases
systematically as K increases. However, beam search is significantly less robust than the other
methods for 3 of the 4 datasets: the error rate increases rapidly compared to importance sampling and
hybrid. Beam search is also the most variable across datasets relative to other methods. The hybrid
method systematically outperforms importance sampling along across all 4 datasets and for all values
of K. In Appendix H we provide additional results; for the lowest and highest levels of computational
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Figure 4: (left) RAE vs restricted entropy per query (with best linear fits), (right) Median RAE versus
model temperature T for Mobile App data. All errors computed using the same queries as in Fig. 3.
Beam search errors correlate highly with model entropy even with the low-entropy Mobile Apps
dataset, where increasing temperature T directly induces this failure mode.
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Figure 5: Median relative efficiency (over 1000 query histories and all vocabulary terms) of impor-
tance sampling estimation of the K-step marginal distributions for each dataset. The gray, dotted line
represents 100% relative efficiency defined by naive query estimation. Relative efficiency is docu-
mented for 4 ≤ K ≤ 15 to highlight the regime where ground truth cannot be tractably computed.

budget, for mean (instead of median) RAEs, and scatter plots for specific values of K with more
detailed error information. The qualitative conclusions are consistent across all experiments.

Results: The Effect of Model Entropy We conjecture that the entropy of the proposal distribution
q conditioned on a given history H∗

q (X1:K) = −Ex1:K∼q[log q(X1:K = x1:K)], which we refer to
as restricted entropy, is a major factor in the performance of the estimation methods. Fig. 4(a) shows
the RAE per query (with a linear fit) as a function of estimated restricted entropy for importance
sampling and beam search. The results clearly show that entropy is driving the query error in general
and that the performance of beam search is much more sensitive to entropy than sampling. The
difference in entropy characteristics across datasets explains the differences in errors we see in Fig. 3.
In particular, the Mobile Apps dataset is in a much lower entropy regime than the other three datasets.

To further investigate the effect of entropy, we alter each model by applying a temperature T > 0
to every conditional factor: pθ,T (Xk|X<k) ∝ pθ(Xk|X<k)

1/T , effectively changing the entropy
ranges for the models. Fig. 4(b) shows the median RAE, for query p∗θ,T (τ(·) = 4), as a function of
model temperature for the Mobile Apps data. As predicted from Fig. 4(a), the increase in T , and
corresponding increase in entropy, causes beam search’s error to converge to 1, while the sampling
error goes to 0. As T increases, each individual sequence will approach having 1/|Q| mass, thus
needing many more beams to have adequate coverage. Results for other queries and the other three
datasets (in Appendix H) further confirm the fundamental bifurcation of error between search and
sampling (that we see in Fig. 4(b)) as a function of entropy.

Results: Relative Efficiency of Proposal Distribution over Naive Query Estimation We also
examine the relative efficiency improvements of our proposal distribution against naive Monte Carlo
sampling:

p∗θ(X1:K ∈ Q) = Ex1:K∼p∗ [1(x1:K ∈ Q)]

9



Our relative efficiency calculations in Fig. 5 represent the variance ratio of naive query estimates and
estimates from our query proposal distribution. As shown, all datasets witness improvement over
naive sampling efficiency and often by a significant margin. We also observe that relative efficiency
is largest for shorter query horizons, approaching naive sampling efficiency as K increases.

Results: Queries with a Large Language Model We further explore entropy’s effect on query
estimation with GPT-2 and the WikiText dataset for N = 100, K = 3, 4, across 3 computation
budgets. With a vocabulary 500x larger than the other models, GPT-2 allows us to examine queries
relevant to NLP applications. The resulting high entropy causes beam search to fail to match surrogate
ground truth given the computation budgets (consistent with earlier experiments), with a median
RAE of 82% (for K = 4 and a budget of O(103)). By contrast, importance sampling’s median RAE
under the same setting is 13%, a 6x reduction. Additional results are in Appendix H.5.

6 Discussion

Future Directions: This work provides a starting point for multiple different research directions
beyond the scope of this paper. One such direction is exploring more powerful search and sampling
methods for query estimation. This includes methods for sampling without replacement, such as
the Gumbel-max method [Huijben et al., 2022, to appear], sampling importance-resampling (SIR)
[Skare et al., 2003], as well as new heuristics for automatically trading off search and sampling on a
per-query basis. Another direction for exploration is amortized methods, such as learning models
before queries are issued, that are specifically designed to help answer queries. Learning models that
include queries as part of regularization terms in objective functions can also build on this work, e.g.,
learning models that don’t only rely on one-step-ahead losses [Meister and Cotterell, 2021]. The
work in this paper has also recently been broadened to continuous-time models for marked temporal
point processes (requiring marginalization over time as well as event types) [Boyd et al., 2022].

Limitations: Our results rely on only four datasets with a single autoregressive neural sequence
model trained for each, naturally limiting the breadth of conclusions that we can draw. However,
given that the results are consistent and validated by algorithm-independent entropy and efficiency
analyses, we believe these findings have general validity and provide a useful starting point for others
interested in the problem of querying neural sequence models. Another potential limitation is that our
four datasets have relatively small vocabularies (V = O(102), small by NLP standards at least); this
choice was largely driven by computational limitations in terms of being able to conduct conclusive
experiments (e.g. averaging over many event histories). Our (limited) results with GPT-2 provide
clues on what may be achievable with much larger vocabularies: systematic analysis of querying for
such models is a natural target for future work. Our work also does not address the issue of model
inaccuracy: our results are entirely focused on computing query estimates in terms of a model’s
distribution instead of the data-generating process. Exploring the effect of miscalibration errors in
autoregressive models on k-step-ahead query estimates is a promising avenue for future work.

Potential Negative Societal Impacts: Since the focus of this work is making predictions with data
that is typically generated by individuals (language, online activity), there is naturally a potential for
abuse of such methods. For example, if the underlying model in a system is miscalibrated, decisions
could be made that negatively impact individuals, e.g., recommending a student be dropped from
an online course if the model incorrectly predicts they will not participate in future course modules.
Even if the underlying model is well-calibrated, predictive queries could potentially be used in a
proactive manner to bias decisions against individuals whose event sequences are atypical, e.g., in a
chatbot context, inaccurately predicting future language patterns for certain individuals, leading to
interruption and generation of an inappropriate response.
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