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ABSTRACT

Generating new crystal materials with desirable chemical properties has long been
a challenging task. Existing diffusion models operate in feature space, requiring
complex diffusion architectures to model the joint distribution of atom types, coor-
dinates, and lattice structures. This complexity increases the number of diffusion
steps, leading to higher training and sampling costs. In this work, we aim to gen-
erate novel crystal materials within a time- and resource-constrained setup, where
existing models are not well-suited. To address this, we propose CrysLDM, a
novel latent diffusion model for 3D crystal materials, which integrates a varia-
tional autoencoder (VAE) and a diffusion model. The VAE encoder maps 3D
crystal structures into a latent space, where the diffusion model operates. Since
CrysLDM leverages a smooth, lower-dimensional latent space, it simplifies the
generative process and accelerates both training and inference. Through extensive
experiments on benchmark datasets and tasks, we show that CrysLDM generates
stable and valid materials with quality comparable to state-of-the-art methods,
while being significantly more efficient in terms of computational resources and
time.

1 INTRODUCTION

Discovering novel 3D crystal materials with desired chemical properties remains a long-standing
challenge in the materials design community. These materials have been essential to major ad-
vancements, including the development of batteries, solar cells, and semiconductors. Butler et al.
(2018); Desiraju (2002). Unlike molecules, which are typically represented as graphs, crystal ma-
terials consist of a fundamental unit cell that repeats itself regularly on a 3D lattice Schütt et al.
(2014). Hence, the discovery of novel materials is highly challenging due to the vast search space
of 3D crystal structures, which encompasses the number of constituent atoms and all their possible
arrangements within 3D space. Historically, efforts to generate novel materials have relied highly
on Density Functional Theory (DFT) Kohn & Sham (1965), which is both resource-intensive and
time-consuming simulations. Most recent advancements in equivariant diffusion models Hooge-
boom et al. (2022); Bao et al. (2022), have opened up a promising trajectory for the generation of
novel three-dimensional periodic structures of crystal materials.

In this work, our aim is to generate novel crystal materials within a time- and resource-constrained
setup. Given limited computational power and time budget, we focus on optimizing model capacity
to maximize the generation of stable and valid materials. Existing diffusion models Xie et al. (2021);
Luo et al. (2023); Jiao et al. (2023); Zeni et al. (2023); Jiao et al. (2024); Yang et al. (2023) have
some fundamental limitations, making them suboptimal for the problem in this time- and resource-
constrained setup. Current diffusion models for generating new crystals operate in the feature space,
modeling the joint distribution of atom types, fractional coordinates, and lattice structures (unit
cells). However, this distribution is highly multimodal, with each component exhibiting an inde-
pendent structure and distinct modality. Atomic fractional coordinates, following a wrapped normal
transition distribution, are typically modeled using score matching Song et al. (2020). In contrast,
atom types, as discrete data, are modeled using discrete diffusion (D3PM)Austin et al. (2021), while
the lattice structure is modeled using denoising diffusion (DDPM)Ho et al. (2020). As a result, a
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complex diffusion architecture is employed to model such a multimodal joint distribution, typically
involving a higher number of diffusion steps to generate realistic crystal structures. Consequently,
these models require extensive training and more inference or sampling steps, making them compu-
tationally intensive and time-consuming.

In this work, we utilize a latent diffusion model to address the above limitations, enabling the rapid
generation of stable and valid materials, within a given time and resource budget. We propose
Crystal Latent Diffusion Model (CrysLDM), which consists of two modules: a Variational Auto
Encoder(VAE) and a Diffusion Model(DM) that operates in a smoother latent space. The Variational
Auto Encoder consists of an encoder and a decoder, where the encoder maps high-dimensional atom
types and lattice structures into a lower-dimensional latent or embedding space, and the decoder
reconstructs the original atom types and lattice structures from this latent representation. Addition-
ally, a diffusion model is applied to learn and model the distribution of the latent representation of
the crystal (encoded by the encoder), which is lower-dimensional and exhibits a much smoother
distribution. A key challenge in developing generative models for 3D crystal structures is ensuring
that the learned distribution satisfies periodic E(3) invariance, meaning it remains invariant to per-
mutation, translation, rotation, and periodic transformations. To ensure this, we employ a periodic
EGNN model as the encoder and decoder functions of the VAE, as well as the backbone denoising
network in the diffusion model to guide the denoising process.

Operating in the latent space, CrysLDM offers unique advantages in generative modeling complex-
ity over existing feature-domain diffusion models, making it more efficient in terms of time and
resource consumption. Firstly, mapping atom types and lattice structures into a regularized latent
space eliminates the need for separate diffusion processes to capture their distinct distributions. This
allows the diffusion model to learn a much smoother distribution, simplifying the overall diffusion
process and accelerating training. Moreover, mapping high dimensional atom type vectors into low
dimensional space enables CrysLDM to conduct training and sampling with a lower dimensional-
ity, which can also benefit the generative modeling complexity in terms of both time and resource
consumption.

To the best of our knowledge, we are the first to leverage latent diffusion models for generating
3D crystal materials. We compare our proposed CrysLDM against two widely used state-of-the-
art diffusion models for crystal material generation, using popular benchmark datasets. We find
that CrysLDM generates novel materials with comparable validity and stability to other methods
while being substantially faster during both training and inference. In specific, at sampling time,
CrysLDM is 32x and 11x faster than CDVAE and DiffCSP, respectively, on the Perov-5 dataset,
and 45x and 6x faster on the MP-20 dataset. These results make CrysLDM particularly well-suited
for generating stable materials in time- and resource-constrained settings. Furthermore, we observe
that the structures generated by CrysLDM are, on average, more stable than those produced by
CDVAE and comparable in stability to those generated by DiffCSP. We provide the code base in the
supplementary material.

2 RELATED WORK: CRYSTAL MATERIAL GENERATION

Earlier efforts in generating novel periodic materials primarily focused on atomic composition while
largely ignoring 3D structures. With advancements in generative models, researchers began using
VAEs and GANs to generate 3D periodic structures. However, these models either represented ma-
terials as voxel images (Court et al., 2020; Hoffmann et al., 2019; Long et al., 2021; Noh et al.,
2019) or encoded structures as embedding vectors (Kim et al., 2020; Ren et al., 2020; Zhao et al.,
2021), often neglecting stability and invariance to Euclidean and periodic transformations. Recent
advancements in equivariant diffusion models have opened up a promising trajectory for the gener-
ation of novel three-dimensional periodic structures of crystal materials. CDVAE (Xie et al., 2021)
was the first work that integrated a variational autoencoder (VAE) and powerful score-based decoder
network, work directly with the atomic coordinates of the structures, and uses an equivariant graph
neural network to ensure euclidean and periodic invariance. Subsequently, numerous studies (Luo
et al., 2023; Jiao et al., 2023; Zeni et al., 2023; Jiao et al., 2024; Yang et al., 2023) have utilized
diffusion models to learn the joint distribution of atom types, coordinates, and lattice structures,
enabling the generation of stable periodic structures for novel materials.

More related works are given in Appendix A.
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3 BACKGROUND

3.1 CRYSTAL STRUCTURE REPRESENTATION

The 3D structure of a crystal material can be modelled by a minimal Unit Cell, which gets repeated
infinite times in three-dimensional space on a regular lattice to form the periodic crystal structure.
Given a material with N number of atoms in its unit cell, we can describe the unit cell by two
matrices: Atom Type matrix A = [a1, a2, . . . , aN ]T ∈ RN×k, which denotes a set of atomic type
in one hot representation (k denotes maximum number of possible atom types), and Coordinate
Matrix X = [x1, x2, ..., xN ]T ∈ RN×3 denotes fractional coordinate positions of atoms, where
xi ∈ R3 corresponds to coordinates of ith atom in the unit cell. Further, there is an additional
Lattice Matrix L = [l1, l2, l3]T ∈ R3×3, which describes how a unit cell repeats itself in the 3D
space towards l1, l2 and l3 direction to form the periodic 3D structure of the material. Formally, a
given material can be defined as M = (A,X,L) and we can represent its infinite periodic structure
as X̂ = {x̂i|x̂i = xi +

∑3
j=1 kj lj}; Â = {âi|âi = ai} where k1, k2, k3, i ∈ Z, 1 ≤ i ≤ N .

3.2 INVARIANCES IN CRYSTAL STRUCTURE

The basic idea of using generative models for crystal generation is to learn the underlying data dis-
tribution of material structure f(M). Since crystal materials satisfy physical symmetry properties
Dresselhaus et al. (2007); Zee (2016), one of the major challenges here is the learned distribution
must satisfy periodic E(3) invariance i.e. invariance to permutation, translation, rotation, and peri-
odic transformations. 1) Permutation Invariance : If we permute the indices of constituent atoms
it will not change the material. 2) Translation Invariance : If we translate the atom coordinates by
a random vector it will not change the structure of the material. 3) Rotational Invariance : If we
rotate the atom coordinates and lattice matrix, the material remains unchanged. 4) Periodic Invari-
ance : Finally, since the atoms in the unit cell can periodically repeat itself infinite times along the
lattice vector, there can be many choices of unit cells and coordinate matrices representing the same
material. (More details in Appendix B)

3.3 PROBLEM FORMULATION

In this work, we consider generative modeling of 3D crystal geometries from scratch, to discover
new stable materials. Formally, given a dataset M = {Mi}, containing crystal structure Mi =
(Ai,Xi,Li), the goal is to capture the underlying data distribution f(M) via learning a generative
model pθ(M), where θ is a set of learnable parameters. While training, we need pθ to ensure that
the learned distribution is invariant to different symmetry transformations mentioned in Section 3.2.
Once trained, the learned generative model can sample a valid and stable structure of the material,
that is invariant to different symmetry transformations.

3.4 DIFFUSION MODELS FOR CRYSTAL MATERIALS

Diffusion models are popular generative models that are formulated using a T steps Markov Chain.
Given a data point d0, the forward diffusion process gradually corrupts the data point over T steps,
by adding a small amount of gaussian noise at each step:

q(dt|d0) = N (dt|
√
ᾱtd0, (1 − ᾱt)I) (1)

where, ᾱt =
∏t
k=1 αk, αt = 1 − βt and {βt ∈ (0, 1)}Tt=1 controls the variance of diffusion step

following certain noise scheduler. Further, the reverse denoising process, which is parameterized,
begins with a gaussian noise input dT ∼ N (0, I) and incrementally denoises the intermediate noisy
variables dT :1 to approximate the clean data d0 following the target data distribution:

pθ(dt−1|dt) = N
{
dt−1 ; µθ(dt−1, t), ρ

2
t I
}

(2)

where ρt is a predefined variance and mean µθ is typically modeled using some neural network
(U-Net for images). However, leveraging diffusion models to generate new crystal materials is
challenging due to the highly multi-modal nature of their joint distribution, where each component
has an independent structure and a distinct modality. On one hand, atom types are discrete, while
lattice parameters are continuous; additionally, atomic fractional coordinates are continuous but
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Figure 1: Model Architecture of our proposed CrysLDM.

exhibit periodicity. As a result, each variable necessitates a independent diffusion framework to
accommodate its unique structure.

Diffusion on Atom Type (A). Atom Type Matrix A ∈ RN×k can be considered as N discrete
variables belonging to k classes and discrete diffusion model (D3PM) (Austin et al., 2021) can be
leveraged for diffusion on A. In specific, with a as the one-hot representation of atom a, the transition
probability for the forward process is q(at|at−1) = Cat(at; p = at−1Qt), where Cat(a; p) is a
categorical distribution over a with probabilities p and Qt is the Markov transition matrix at time step
t, defined as [Qt]i,j = q(at = i|at−1 = j). Different choices of Qt and corresponding stationary
distributions are proposed by (Austin et al., 2021) which provides flexibility to control the data
corruption and denoising process.

Diffusion on Atom Coordinates (X). Coordinate Matrix X = [x1, x2, ..., xN ]T ∈ RN×3 contains
fractional coordinates of constituent atoms, that resides in quotient space RN×3/ZN×3 induced by
the crystal periodicity. Hence, it is not suitable to apply DDPM to model X, since the gaussian
distribution used in DDPM is unable to model the cyclical and bounded domain of X. Hence at each
step of forward diffusion, noise sampled from Wrapped Normal (WN) distribution (De Bortoli et al.,
2022) is added to X and during denoising Score Matching Network (Song & Ermon, 2019; 2020) is
leveraged to model underlying transition probability.

Diffusion on Lattice (L). Lattice Matrix L = [l1, l2, l3]
T ∈ R3×3 is a global feature of the material

which determines the shape and symmetry of the unit cell structure. Since L is in continuous space,
we leverage the idea of the Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) for
diffusion on L.

During the reverse denoising process, a key challenge is ensuring that the learned distribution of
material structures adheres to periodic E(3) invariance. To address this, existing works have uti-
lized variants of periodic-E(3)-equivariant GNN models, such as GemNet (Gasteiger et al., 2021),
DimeNet (Gasteiger et al., 2020), or CSPNet (Jiao et al., 2023), as backbone denoising networks
to guide the denoising process. Training the denoising network involves an aggregated objective
function that combines cross-entropy loss, score matching loss, and l2 for atom types, coordinates,
and lattice parameters, respectively: Due to the complexity of the diffusion architecture required to
model such a multimodal joint distribution, a higher number of diffusion steps is typically needed
to generate realistic crystal structures. As a result, these models demand substantial training ef-
fort and involve more inference or sampling steps, making them both computationally intensive and
time-consuming.
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4 METHODOLOGY

In this section, we provide a detailed overview of our proposed methodology, Crystal Latent
Diffusion Model (CrysLDM). The framework comprises two main components: a Variational Au-
toencoder (VAE) and a Diffusion Model (DM) that operates within a smoother latent space. We will
first describe the detailed architecture of both modules, followed by their respective training and
sampling processes.

4.1 VARIATIONAL AUTOENCODER (VAE)

Our first objective is to encode 3D crystal geometry into a lower-dimensional latent space that is
meaningful and preserves all the physical symmetries of the crystal structure. To achieve this, we
utilize a variational autoencoder framework comprising a GNN encoder, Eϕ, and a GNN decoder,
Dψ . The encoder takes the crystal material M = (A,X,L) as input and encodes the atomic types
and lattice structure into the latent space:

zh, zL = Eϕ(A,X,L) (3)

where zh and zL are latent representation of constituent nodes(atoms) and lattice structure respec-
tively. Note, we did not encode atomic fractional coordinates X into the latent space primarily for
two main reasons: first, atomic coordinates are inherently low-dimensional, and second, empirical
observations showed that encoding atomic coordinates into the latent space diminishes their physical
significance, adversely affecting the message-passing process of GNNs and subsequently degrading
the model’s performance. Further, the decoder Dψ is trained to reconstruct the atomic types and
lattice structure from the latent representations:

Ã, L̃ = Dψ(zh,X, zL) (4)

A key criterion in designing this variational autoencoder is that the learned latent space must preserve
the physical symmetries of the crystal structure and satisfy periodic E(3) invariance. To achieve this,
we propose incorporating equivariance into the autoencoder design by using 3D equivariant graph
neural networks (EGNNs) to implement both the encoder Eϕ and the decoder Dψ . The whole auto-
encoder network is trained end to end using a regularized reconstruction loss:

LV AE = LA
recon + LL

recon + λLreg
Lreg = dKL{qϕ(zh, zL|A,X,L) || p(zh, zL)}

(5)

Here, LA
recon and LL

recon represent the reconstruction losses for atom types and lattice structure,
respectively. By design, we use cross-entropy loss for A and l2 loss for L. Lreg denotes KL
divergence (Kullback–Leibler divergence) that measures how much the learned latent distribution
qϕ(zh, zL|A,X,L) differs from the prior distribution p(zh, zL) (commonly a standard gaussian dis-
tribution). This regularization term constrains the variance of latent embeddings, making them more
stable and suitable for learning latent diffusion models (LDMs).

4.2 LATENT DIFFUSION MODEL(LDM)

The encoder function Eϕ of the crystal autoencoder allows us to encode crystal materials into a
smoother and lower-dimensional latent space. Building on this, we leverage a latent diffusion model
to capture the distribution of crystal latent or embedding space. Given latent representation of a
crystal material as M0 = (zh,0,X0, zL,0), we define a forward diffusion process through a Markov
chain over T steps to diffuse zh, X, zL independently as follows :

q(zh,t,Xt, zL,t | zh,t−1,Xt−1, zL,t−1) =

q(zh,t | zh,t−1)q(Xt | Xt−1)q(zL,t | zL,t−1) t = 1, 2, ...T
(6)

Diffusion on zh and zL. Since both atom types and lattice structure are projected into smooth la-
tent space using The encoder function Eϕ, we don’t need separate sophisticated diffusion process
to model them. Rather, as both zh and zL are in continuous space, we can use Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020) to model them. Given zh,0 ∼ p(zh) and zL,0 ∼ p(zL),
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the forward diffusion process iteratively diffuses both over T timesteps through transition probabili-
ties q(zh,t|zh,0) and q(zL,t|zL,0) respectively. At each tth step, we can derive these probabilities as
follows :

q(zh,t | zh,0) = N (zh,t |
√
ᾱtzh,0, (1 − ᾱt)I)

q(zL,t | zL,0) = N (zL,t |
√
ᾱtzL,0, (1 − ᾱt)I)

(7)

where, ᾱt =
∏t
k=1 αk, αt = 1 − βt and {βt ∈ (0, 1)}Tt=1 controls the variance of diffusion step

following certain variance scheduler. By reparameterization, we can rewrite equation 7 as:

zh,t =
√
ᾱtzh,0 +

√
1− ᾱtϵzh

zL,t =
√
ᾱtzL,0 +

√
1− ᾱtϵzL

(8)

where, ϵzh , ϵzL ∼ N (0, I) are noises. After T such diffusion steps, noisy zh,T , zL,T is generated,
which follows prior noise distribution ∼ N (0, I).

In the reverse denoising process, given noisy zh,T , zL,T ∼ N (0, I) we reconstruct true latent repre-
sentation of atom and lattice zh,0, zL,0 thorough iterative denoising step via learning reverse condi-
tional distribution, which we formulate as follows :

p(zh,t−1|Mt) = N
{

zh,t−1 | µzh(Mt), ρ
2
t I
}

p(zL,t−1|Mt) = N
{

zL,t−1 | µzL(Mt), ρ
2
t I
} (9)

where µzh(Mt) =
1√
αt

(
zh,t − 1−αt√

1−ᾱt
ϵ̂zh(Mt, t)

)
, µzL(Mt) =

1√
αt

(
zL,t − 1−αt√

1−ᾱt
ϵ̂zL(Mt, t)

)
and

Mt = (zh,t,Xt, zL,t). Intuitively, ϵ̂zh , ϵ̂zL are the denoising terms that needs to be subtracted from
zh,t and zL,t to generate zh,t−1 and zL,t−1 respectively. We use a denoising network fθ(Mt, t) to
model these noise terms. Following the simplified training objective proposed by Ho et al. (2020),
we train the denoising network using following l2 losses :

Ltype = Eϵzh ,t∼U(1,T )∥ϵzh − ϵ̂zh∥
2
2

Llattice = EϵzL ,t∼U(1,T )∥ϵzL − ϵ̂zL∥
2
2

(10)

Diffusion on X. As discussed earlier in Section 4.1, atomic fractional coordinates are not being
projected into the latent space. Therefore, we will utilize the conventional feature space diffu-
sion process to model X. Atomic fractional coordinates in crystal material live in quotient space
RN×3/ZN×3 induced by the crystal periodicity. At each step of forward diffusion, we add noise
sample from Wrapped Normal (WN) distribution De Bortoli et al. (2022) to X and during back-
ward diffusion leverage Score Matching Diffusion Networks Song & Ermon (2019; 2020) to model
underlying transition probability:

q(Xt | X0) = NW (Xt | X0, σ
2
t I) (11)

In specific, at each tth step of diffusion, we derive Xt as : Xt = Γw(X0 + σtϵX) where, ϵX is a
noise, sampled from N (0, I), σt is the noise scale following exponential scheduler and Γw(.) is a
truncation function. Given a fractional coordinate matrix X, truncation function Γw(X) = (X−⌊X⌋)
returns the fractional part of each element of X. As argued in Jiao et al. (2023), q(Xt|X0) is periodic
translation equivariant, and approaches uniform distribution U(0, 1) for sufficiently large values of
σT . Hence during the backward denoising process, we first sample XT ∼ U(0, 1) and iteratively
denoise via score network for T steps to recover back the true fractional coordinates X0. We use the
denoising network fθ(Mt, t) to model the backward diffusion process, which is trained using the
following score-matching objective function :

Lcoord = EXt∼q(Xt|X0)
t∼U(1,T )

∥∇Xt logq(Xt|X0)− ϵ̂X(Mt, t)∥22 (12)

where ∇Xt logq(Xt|X0) ∝
∑

K∈ZN×3 exp(− ∥Xt−X0+K∥2
F

2σ2
t

) is the score function of transitional dis-
tribution and ϵ̂X(Mt, t) denoising term.

Denoising Network. The goal of the denoising network during the reverse denoising process is to
iteratively remove noise from the noisy crystal representation (sampled from gaussian noise), trans-
forming it into a realistic crystal latent representation. A crucial requirement for this process is that
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Dataset Method Steps Validity(%) ↑ Property ↓ Stability ↑ Cost ↓
Compositional Structural # Elements Density Rate (%) Steps / Stable

Perov
CDVAE 5000 98.59 100 0.0264 0.1258 2.5 200

DiffCSP 1000 98.85 100 0.0263 0.111 1.5 66.67

CrysLDM 100 97.81 100 0.045 1.21 1.6 6.25

MP-20
CDVAE 5000 86.7 100 0.2778 0.6875 33.2 15.06

DiffCSP 1000 83.25 100 0.1247 0.3502 47.6 2.1

CrysLDM 100 83.02 99.87 0.5149 0.3115 30.3 0.33

Table 1: Summary of results on Ab Initio Crystal Generation task of CrysLDM and different baseline
models on Perov-5 and MP-20 dataset. The best performances are highlighted in bold.

the learned distribution of material structures must adhere to periodic E(3) invariance. As established
in the literature Xu et al. (2022), the learned distribution p(M0) of the denoising model will satisfy
periodic E(3) invariance, provided the prior distribution p(MT ) is invariant and the neural network
parameterizing the transition probability q(Mt−1|Mt) is equivariant to permutation, translation, ro-
tation, and periodic transformations. To fulfill this requirement, we employed 3D equivariant graph
neural networks (EGNNs) to implement the denoising network. In practice, we extend the CSPNet
architecture Jiao et al. (2023), which was originally designed for the crystal structure prediction
(CSP) task. CSPNet is based on the EGNN and satisfies the periodic E(3) invariance condition for
periodic crystal structures(Details in Appendix C). The denoising network is trained using a com-
bined loss: LLDM = λLLlattice + λALtype + λXLcoord where, the hyperparameters λL, λA, and
λX control the relative weighting of these loss components.

Training and Sampling. Next, we outline the training and sampling process of CrysLDM. Fol-
lowing previous works on latent diffusion models in other domains (Sinha et al., 2021; Rombach
et al., 2022; Xu et al., 2023), we have adopted a two-stage training strategy. We first train the VAE
with a regularized reconstruction loss (5), followed by training the Latent Diffusion Model using the
combined diffusion loss LLDM .
During sampling, our setup first requires determining the number of constituent atoms (N ) in the
material. Following common practice in the literature (Jiao et al., 2023), we begin by estimating
the distribution of atom counts, p(N), across different materials in the training set. We then sample
N ∼ p(N) and generate atom latent features and coordinates of size N . Next, we generate atomic
fractional coordinates along with latent embeddings of atoms and lattices using the latent diffusion
models. These embeddings are then fed into the decoder Dψ of the VAE to generate 3D structure of
a realistic material. The training and sampling algorithms are given in Appendix D.

Advantage of CrysLDM. By design, operating a diffusion model in the latent space offers several
inherent advantages. First, since we utilize a variational autoencoder (VAE) trained with a regular-
ized reconstruction loss, the latent space becomes more compact and smooth, enhancing the training
efficiency of the diffusion model. Second, in feature space, atom types and lattice structures belong
to different modalities, requiring separate diffusion processes to accommodate their distinct distribu-
tions. However, in CrysLDM, both are encoded into a unified smooth latent space, simplifying the
overall diffusion process and accelerating training. Finally, mapping high-dimensional atom-type
vectors into a lower-dimensional space allows CrysLDM to perform training and sampling with
reduced dimensionality. This not only improves generative modeling efficiency but also reduces
computational costs in terms of both time and resource consumption.

5 EXPERIMENTS

Evaluation Metric. Following prior works, we evaluate the performance of CrysLDM and base-
line models in generating novel material structures using a diverse set of metrics, categorized under
Validity, Property Statistics, and Stability measure. Under Validity, in line with previous studies
Court et al. (2020); Xie et al. (2021), we assess both structural and compositional validity. Struc-
tural validity represents the percentage of generated crystals with valid periodic structures, while
compositional validity refers to the percentage of structures with correct atom types. A structure is
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Figure 2: Histogram of Ehull distribution for relaxed structures generated by different models.

considered valid if the shortest distance between any pair of atoms exceeds 0.5 Å, and its composi-
tion is deemed valid if the overall charge remains neutral, as determined by SMACT Davies et al.
(2019). Additionally, we evaluate the similarity between the generated materials and those in the
test set using various Property Statistics, where we compute the earth mover’s distance (EMD) be-
tween the distributions in element number (# Elem) and density (ρ, unit g/cm3). Finally, we evaluate
Stability of our generated materials, which is based on energy above hull (Ehull) calculations. To
evaluate the stability, we first sample 1000 materials and use M3GNet () to relax the structures of
the generated materials and approximate force, energy, and stress within the crystal unit. We then
classify final relaxed structures with a predicted energy above hull of less than 0.1 eV/atom as stable
materials. We report Stability Rate as % of stable materials out of 1000 samples.

Results. We present the material generation results for both datasets in Table (1). We observe that
across all metrics, CrysLDM demonstrates competitive performance compared to baseline models,
highlighting the strong generative capabilities of our proposed latent diffusion framework. Further-
more, given the time- and resource-constrained setup, our goal is to minimize the overall computa-
tional cost of material generation. To assess this, we report the Stability Cost, defined as the number
of integration steps per stability rate (# Integration Steps /# Stable Materials), which quantifies the
average number of sampling steps required to generate a stable material. We observe that, compared
to baseline models, CrysLDM requires fewer sampling steps, resulting in a significantly lower sam-
pling cost. Specifically, at inference time, CrysLDM is 32x and 11x more faster than CDVAE and
DiffCSP, respectively, on the Perov-5 dataset, and 45x and 6x more faster on the MP-20 dataset.
Overall, these results highlight the effectiveness of CrysLDM in time- and resource-constrained
scenarios. Like other baseline diffusion models, CrysLDM is capable of generating stable and valid
materials. However, by significantly reducing the sampling time per stable material, it enables users
to generate more stable materials within a limited time budget compared to other models.
To further investigate how well CrysLDM generates low-energy structures compared to baseline
models, we conducted an experiment using the MP-20 dataset. We plotted the histogram of the
computed Ehull distribution for relaxed structures across different methods in Figure 2. Our obser-
vations indicate that, on average, CrysLDM produces a higher proportion of low-energy structures
than CDVAE while being competitive with DiffCSP. Thus, the structures generated by CrysLDM
are, on average, more stable than those generated by CDVAE and comparable in stability to those
generated by DiffCSP.

6 CONCLUSION

In this work, we focus on generating stable crystal materials within a time- and resource-constrained
setup by exploring latent diffusion models. We introduce CrysLDM, a novel latent diffusion model
that operates in a lower-dimensional, smooth latent space, making it more efficient in terms of time
and resource consumption. Extensive experiments on benchmark generative tasks using two popular
datasets demonstrate that CrysLDM produces novel materials with comparable validity and stability
to existing methods while being significantly faster during both training and inference. Additionally,
CrysLDM generates a higher proportion of lower-energy structures compared to baseline models.
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APPENDIX

A MORE RELATED WORK

A.1 CRYSTAL REPRESENTATION LEARNING

In recent times, graph neural network (GNN) based approaches have emerged as a powerful model
in learning robust representation of crystal materials, which enhance fast and accurate property pre-
diction. CGCNN Xie & Grossman (2018) is the first proposed model, which represents a 3D crystal
structure as an undirected weighted multi-edge graph and builds a graph convolution neural network
directly on the graph. Following CGCNN, there are a lot of subsequent studies Chen et al. (2019);
Choudhary & DeCost (2021); Das et al. (2023a); Louis et al. (2020); Park & Wolverton (2020);
Schmidt et al. (2021), where authors proposed different variants of GNN architectures for effec-
tive crystal representation learning. Recently, graph transformer-based architecture Matformer Yan
et al. (2022) is proposed to learn the periodic graph representation of the material, which marginally
improves the performance, however, is much faster than the prior SOTA model. Moreover, scarcity
of labeled data makes these models difficult to train for all the properties, and recently, some key
studies Das et al. (2022; 2023b) have shown promising results to mitigate this issue using transfer
learning, pre-training, and knowledge distillation respectively.

A.2 DIFFUSION MODELS

The fundamental idea of the diffusion model, as initially proposed by (Sohl-Dickstein et al., 2015),
is to gradually corrupt data with diffusion noise and learn a neural model to recover back data
from noise. Idea of diffusion further developed in two broad categories - 1) Score Matching Net-
work (Song & Ermon, 2019; 2020) and 2) Denoising Diffusion Probabilistic Models (DDPM) (Ho
et al., 2020). In recent times diffusion models have emerged as a powerful new family of deep
generative models, achieving remarkable performance records across numerous applications such
as image synthesis (Dhariwal & Nichol, 2021), molecular conformer generation (Shi et al., 2021;
Xu et al., 2022), molecular graph generation (Liu et al., 2021), protein folding (Wu et al., 2021;
Luo et al., 2022) etc. Recently, several studies have successfully developed latent diffusion mod-
els (LDMs) with promising results across various applications, including image generation (Vahdat
et al., 2021), point clouds (Vahdat et al., 2022), and text generation (Li et al., 2022). One of the most
remarkable successes among them is the Stable Diffusion (Rombach et al., 2022) models, which
demonstrate surprisingly realistic text-guided image generation results.

A.3 CRYSTAL MATERIAL GENERATION

In the past, there were limited efforts in creating novel periodic materials, with researchers con-
centrating on generating the atomic composition of periodic materials while largely neglecting the
3D structure. With the advancement of generative models, the majority of the research focuses on
using popular generative models like VAEs or GANs to generate 3D periodic structures of materi-
als, however, they either represent materials as three-dimensional voxel images (Court et al., 2020;
Hoffmann et al., 2019; Long et al., 2021; Noh et al., 2019) and generate images to depict mate-
rial structures (atom types, coordinates, and lattices), or they directly encode material structures as
embedding vectors (Kim et al., 2020; Ren et al., 2020; Zhao et al., 2021). However, these mod-
els neither incorporate stability in the generated structure nor are invariant to any Euclidean and
periodic transformations. Recent advancements in equivariant diffusion models have opened up
a promising trajectory for the generation of novel three-dimensional periodic structures of crystal
materials. CDVAE (Xie et al., 2021) was the first work that integrated a variational autoencoder
(VAE) and powerful score-based decoder network, work directly with the atomic coordinates of the
structures and uses an equivariant graph neural network to ensure euclidean and periodic invariance.
Subsequently, numerous studies (Luo et al., 2023; Jiao et al., 2023; Zeni et al., 2023; Jiao et al.,
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2024; Yang et al., 2023) have utilized diffusion models to learn the joint distribution of atom types,
coordinates, and lattice structures, enabling the generation of stable periodic structures for novel
materials.

B INVARIANCES IN CRYSTAL STRUCTURE

The basic idea of using generative models for crystal generation is to learn the underlying data dis-
tribution of material structure p(M). Since crystal materials satisfy physical symmetry properties
Dresselhaus et al. (2007); Zee (2016), one of the major challenges here is the learned distribution
must satisfy periodic E(3) invariance i.e. invariance to permutation, translation, rotation, and peri-
odic transformations.

• Permutation Invariance : If we permute the indices of constituent atoms it will not change
the material. Formally, given any material M = (A,X,L), using any permutation matrix P
if we permute A and X as P(A) and P(X), then new material MP = (P(A),P(X),L) will
remains unchanged. Hence the underlying distribution is also the same i.e p(M) = p(MP).

• Translation Invariance : If we translate the atom coordinates by a random vector it will
not change the structure of the material. Formally, given any material M = (A,X,L), if
we translate X by an arbitrary translation vector u ∈ R3, new generated material MP =
(A,X + u1T ,L) will be the same as M. Hence p(M) = p(MT) must satisfy.

• Rotational Invariance : If we rotate the atom coordinates and lattice matrix, the mate-
rial remains unchanged. Formally, using any orthogonal rotational matrix Q ∈ R3×3

(satisfying QTQ = I), if we rotate X and L of any material M and generate new
MR = (A,QX,QL), then actually different representations of the same material. Hence
p(M) = p(MR) must satisfy.

• Periodic Invariance : Finally, since the atoms in the unit cell can periodically repeat itself
infinite times along the lattice vector, there can be many choices of unit cells and coordinate
matrices representing the same material. Formally, given coordinates X, after applying
periodic transformation using random matrix K ∈ Rn×3, new coordinates X′ = X + KL
are periodically equivalent. Hence M = (A,X,L) and M’ = (A,X′,L) are same material
and p(M) = p(M’) must hold.

C DENOISING NETWORK ARCHITECTURE: CSPNET

For the backbone network in the backward diffusion process of CrysLDM, we extend the CSPNet
architecture Jiao et al. (2023). CSPNet is based on EGNN Satorras et al. (2021), ensuring periodic
E(3) invariance for periodic crystal structures. At the kth layer of message passing, the Equivariant
Graph Convolutional Layer (EGCL) takes as input the atom embeddings hk = [hk1 ,h

k
2 , ...,h

k
N ], atom

coordinates xk = [xk1 , xk2 , ..., xkN ], and the lattice matrix L, and outputs a transformed set of atom
embeddings hk+1. Formally, the message passing operation at the kth layer is defined as follows:

mi,j = ρm{hki , hkj , LTL, ψFT (xki − xkj )}; (13)

hk+1
i = hki + ρh{hki ,mi} (14)

Where mi =
∑N
j=1 mi,j , ρm and ρh are multi-layer perceptrons, and ψFT is a Fourier Transfor-

mation function applied to the relative difference between fractional coordinates xki and xkj . The
Fourier Transformation is utilized as it remains invariant to periodic translation and captures vari-
ous frequency components of relative fractional distances, which are essential for accurate crystal
structure modeling. Input atom features h0 and coordinates x0 are fed through K layers of EGCL to
produce ϵ̂zL , ϵ̂zh and ϵ̂X as follows :

ϵ̂zL = LρL(
1

N

i=1∑
N

hK);

ϵ̂zh = ρA(hK);

ϵ̂X = ρX(hK)

(15)

where ρL, ρA, ρX are multi-layer perceptrons on the final layer embeddings.
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D TRAINING AND SAMPLING ALGORITHM FOR CRYSLDM

Algorithm 1 Training Algorithm of CrysLDM
1: Input: Crystal Material M = (A,X,L), Encoder Eψ , Decoder Dϕ, and Denosing Network fθ.
2: Stage-1: Training VAE
3: repeat
4: µh,µL ← Eϕ(A,X,L)
5: Sample ϵh, ϵL ∼ N(0, I)
6: zh ← µh + ϵh ⊙ σh
7: zL ← µL + ϵL ⊙ σL
8: Ã, L̃← Dψ(zh,X, zL)
9: LA

recon = CrossEntropyLoss(Ã,A)
10: LL

recon = ∥L̃ − L∥22
11: Minimize LV AE = LA

recon + LL
recon + λLreg and update parameters of Eψ and Dϕ

12: until Converged
13: Stage-2: Training LDM
14: repeat
15: Sample t ∼ U(0,T)
16: Sample Noise ϵX, ϵzh , ϵzL ∼ N(0, I)
17: zh,t =

√
ᾱtzh,0 +

√
1− ᾱtϵzh

18: zL,t =
√
ᾱtzL,0 +

√
1− ᾱtϵzL

19: Xt = fw(X0 + σtϵ
x)

20: ϵ̂zh , ϵ̂X, ϵ̂zL ← fθ(zh,t,Xt, zL,t, t)
21: Ltype = ∥ϵzh − ϵ̂zh∥

2
2

22: Llattice = ∥ϵzL − ϵ̂zL∥
2
2

23: Lcoord = ∥∇Xt logq(Xt|X0)− ϵ̂X∥22
24: Minimize LLDM = λLLlattice + λALtype + λXLcoord and update parameters of fθ
25: until Converged

Algorithm 2 Sampling Algorithm of CrysLDM
1: N ∼ p(N)
2: Sample zh,T , zL,T ∼ N (0, I),XT ∼ U(0, 1)
3: for t← T to 1 do
4: ϵzh , ϵX, ϵzL ∼ N(0, I)/ ∗ Sample ∗ /
5: ϵ̂zh , ϵ̂X, ϵ̂zL ← fθ(zh,t,Xt, zL,t, t)
6: zh,t−1 ← 1√

αt
(zh,t − βt√

1−ᾱt
ϵ̂zh) +

√
βt

1−ᾱt−1

1−ᾱt
ϵzh

7: zL,t−1 ← 1√
αt
(zL,t − βt√

1−ᾱt
ϵ̂zL) +

√
βt

1−ᾱt−1

1−ᾱt
ϵzL

8: Xt− 1
2
← w(Xt + (σ2

t − σ2
t−1)ϵ̂

X +
σt−1

√
σ2
t−σ2

t−1

σt
ϵX)

9: ,ϵ̂X ← fθ(zh,t,Xt− 1
2
, zL,t, t)

10: ηt ← step size ∗ σt−1

σt

11: Xt−1 ← w(Xt− 1
2
+ ηtϵ̂

X +
√
2ηtϵ

X)

12: end for
13: A,X,L = Dψ(zh,0,X0, zL,0)
14: return A,X,L
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