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Abstract
Differentially private zeroth-order optimization methods have recently gained popularity in pri-
vate fine tuning of machine learning models due to their reduced memory requirements. Current
approaches for privatizing zeroth-order methods rely on adding Gaussian noise to the estimated
zeroth-order gradients. However, since the search direction in the zeroth-order methods is inher-
ently random, researchers including Tang et al. [44] and Zhang et al. [48] have raised an important
question: is the inherent noise in zeroth-order estimators sufficient to ensure the overall differential
privacy of the algorithm? This work settles this question for a class of oracle-based optimization
algorithms where the oracle returns zeroth-order gradient estimates. In particular, we show that for
a fixed initialization, there exist strongly convex objective functions such that running (Projected)
Zeroth-Order Gradient Descent (ZO-GD) is not differentially private. Furthermore, we show that
even with random initialization and without revealing intermediate iterates, the privacy loss in
ZO-GD can grow superlinearly with the number of iterations when minimizing convex objective
functions.

1. Introduction

The fine-tuning of pretrained large language models (LLMs) has demonstrated state-of-the-art per-
formance across a range of downstream applications. However, two main challenges hinder the
wide adoption of these models: the substantial memory requirements of gradient-based optimizers
used for fine-tuning and, the critical need to protect the privacy of domain-specific fine-tuning data.
As fine-tuning LLMs grows increasingly memory-intensive, a range of strategies has emerged to
address this issue. In particular, zeroth-order (ZO) optimization methods recently have gained trac-
tion due to their memory efficiency, as they do not require explicit gradient computations. Instead,
the zeroth-order gradients can be computed using forward step only, significantly reducing memory
use compared to gradient computation.

In a pioneering approach, Malladi et al. [36] introduced a memory-efficient technique for fine-
tuning LLMs using two-point Simultaneous Perturbation Stochastic Approximation (SPSA) esti-
mators [43], enabling large model fine-tuning on memory-limited devices. Since then, zeroth-order
methods have gained popularity in dealing with large machine learning models due to their mem-
ory efficiency and favorable upper bounds on gap from optimality under certain conditions on the
Hessian of the objective function [29, 48, 50].

Another major concern in training LLMs is privacy. As large parameterized models are increas-
ingly used in sensitive data applications, these models must protect sensitive information, especially
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given privacy regulations like the E.U. General Data Protection Regulation and the California Con-
sumer Privacy Act. This requirement led to significant research into differential privacy (DP), a
robust framework ensuring that machine learning models do not compromise the privacy of their
contributors [20]. As a result, there has been a growing focus on developing methods that fine-tune
LLMs while adhering to differential privacy standards, leading to numerous theoretical advance-
ments in private optimization [3, 4, 7–10, 12, 13, 15, 21, 23, 26–28, 35] and practical applications
in the industry [1, 17, 22, 40, 46]. Nevertheless, most existing work in this area has focused on
first-order optimization/training algorithms, highlighting the need to explore differentially private
zeroth-order optimization techniques to combine memory efficiency with privacy protection.

Motivated by the memory efficiency and empirical success of ZO methods in fine-tuning LLMs,
Tang et al. [44] and Zhang et al. [48] introduced differentially private and memory-efficient algo-
rithms based on ZO optimization techniques. Both noted that the inherent noise in zeroth-order
gradient estimates might contribute to privacy protection. As a result, they highlighted that the
inherent noise in the ZO estimators was not considered in their privacy analyses and posed the
following open question:

Open Problem: Is additive (Gaussian) noise necessary for ensuring privacy for ZO Pro-
jected Gradient Descent (PGD)?

In this work, we address this question through the following key contributions:

1. We propose a class of oracles that generalizes multiple point zeroth-order estimators and show
that any estimator in our class is not differentially private.

2. We show that for a generalized setting which subsumes the algorithms proposed in Tang et al.
[44] and Zhang et al. [48], the ZO method is not private on its own and the presence of additive
noise is necessary to preserve privacy of the algorithm. This answers the open problem posed
by [44] and Zhang et al. [48].

3. We further show that, even with random initialization and without disclosing intermediate
iterates, optimizing specific types of objectives using ZO-GD results in a superlinear increase
in privacy loss as the number of iterations grows. This finding suggests that, despite random
initialization and privacy amplification through iterations, the inherent randomness of zeroth-
order methods is insufficient to guarantee meaningful privacy in practice.

1.1. Related Work and Existing Results

ZO Optimization. The idea of minimizing functions based on function evaluations has origins
from control theory [43]. Such an approach is useful when obtaining gradients is either impossible
or too costly, making ZO methods favorable for minimizing non-smooth or even discontinuous
functions. For example, Nesterov and Spokoiny [38], Wibisono et al. [45] gave upper bounds on the
gap between the optimal solutions and returned solutions after a finite number of iterations in the
case of convex functions. They relied on gradient oracles based on the finite difference method and
show that these oracles estimate the gradient of the smoothed version of the function, as we discuss
in Section 2. To understand the fundamental limit on the performance of such algorithms, Shamir
[41] showed the existance of convex functions with a lower bound on the optimality gap for any ZO
algorithm that queries a single point per iteration. Duchi et al. [18] extended this result to algorithms

2



ON THE INHERENT PRIVACY OF TWO POINT ZEROTH ORDER PROJECTED GRADIENT DESCENT

that query multiple points per iteration. Recently Malladi et al. [36], Yue et al. [47] provided nearly-
dimension-independent upper bounds on the optimality gap for ZO algorithms, primarily depending
on a measure termed as the effective dimension of the problem which relates to some notion of a
local rank of the hessian of the function. However, in the worst case, this effective dimension is
equal to the actual dimension of the problem, restoring the lower bounds obtained for their specific
cases in Shamir [41] and Duchi et al. [18]. However, from an application perspective, the primary
reason ZO methods have gained traction is that many over-parameterized models, such as pretrained
Large Language Models (LLMs), are shown to have a low effective dimension [31]. Malladi et al.
[36], Zhang et al. [48] leverage this insight to justify the effectiveness of ZO algorithms in fine-
tuning LLMs.

Private Convex Optimization. On the other hand, optimization is the foundation of modern
large-scale machine learning, making it essential to understand private optimization to fully grasp
privacy in machine learning. Along this step, Bassily et al. [7] gave the first tight upper and lower
bounds for minimizing convex and strongly convex functions. Their idea for minimizing smooth
functions was making Stochastic Gradient Descent (SGD) differentially private by updating their
parameters with a noisy version of the gradient estimate. This algorithm achieves optimal excess
risk gap (upto logarithmic terms) in private empirical risk minimization (ERM) [7] and stochastic
convex optimization (SCO) for smooth objectives [8]. Moreover, a small (yet effective) modifica-
tion to this algorithm achieves optimal rates in just one pass over the entire data [23]. There have
been further works which have also solved the problem of differentially private convex optimization
under non-smooth conditions [8, 23, 32] and general norms [5, 28]. Other than private SGD, Bassily
et al. [7] proposed an exponential-mechanism-based algorithm which achieved optimal risk bounds
up to constant factors for ε-DP minimization. Gopi et al. [27] further extended the exponential
mechanism to (ε, δ) DP SCO and obtained upper bounds on the excess population loss. Recently,
Carmon et al. [10] proposed a new estimator specifically made for accelerated private optimization
giving improvements on the query complexity of private SCO.

Private ZO optimization is an area which is relatively new and there have been recent works
which give guarantees on private ZO optimization for smooth convex problems [36], smooth non-
convex problems [44, 48] and non-smooth non-convex problems [49].

On the other hand, the work on inherent privacy in zeroth-order optimization is relatively sparse.
Tang et al. [44] provided an empirical evaluation of the privacy of Projected ZO-SGD using a
privacy accounting technique based on membership-inference attacks on ML models [42]. They
empirically showed that ZO SGD without any additive noise gave almost the same privacy as regular
SGD with additive noise corresponding to ε = 10 and δ = 10−5, giving some experimental evidence
to conjecture the possible presence of the inherent privacy in ZO optimization. However, we prove
that there exist worst case objectives and datapoints where popular ZO optimization algorithms
(including the algorithm studied in Tang et al. [44]) are not private.

2. Problem Setting and Preliminaries

Notation. We use ∥·∥2 for the Euclidean L2 norm. We denote P[E] as the probability of any
event E. E[X] denotes the expectation of any random variable X . For any distribution D, supp(D)
represents the support of the distribution,N (0, σ2Id) is the isotropic normal distribution with mean
0 and covariance σ2Id. For any set S, Unif(S) is the uniform distribution over the set S. DBd =
{x ∈ Rd : ∥x∥2 ≤ D}. 0d, 1d, and ei represent d dimensional all zero, all one, and the ith standard
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basis vectors, respectively. For a vector v ∈ Rd, {v}i represents the ith coordinate of the vector;
[n] denotes the set of natural numbers less than or equal to n. ΠD(x) = argminu∈D ∥x− u∥2 is
used to denote the projection of x ∈ Rd onto the set D. For any function f , dom(f) represents the
domain of the function f .

Problem Setting. We consider the problem of minimizing the empirical loss function with respect
to the dataset D = {d1, d2, ..., dn} given a closed convex set C ⊆ Rd

min
w∈C

L(w;D)

where L(w; ·) : C → R is convex and L-Lipschitz. There can be additional assumptions on L(w; ·)
such as ∆ strong convexity. Recall that a function g is called L-Lipschitz if ∥g(x)− g(y)∥2 ≤
L ∥x− y∥2 for all x, y ∈ C and it is called µ-Strongly Convex when for all x, y ∈ C, f(x) ≥
f(y) + ⟨z, y − x⟩ + µ

2 ∥y − x∥22 where z is any subgradient of f . Next, we define the notion of
Differential Privacy.

Definition 1 (Differential Privacy [19]) Two datasets of the same size are neighbouring if |D∆D′|
= 2 where ∆ represents the symmetric set difference. Let ε ≥ 0, δ ∈ [0, 1). A randomized algorithm
A is (ε, δ)-differentially private (DP) if for all pairs of neighbouring data sets D,D′, we have

P(A(D) ∈ O) ≤ eεP(A(D′) ∈ O) + δ, (1)

for any measurable set O.

ZO Stochastic Gradient Descent. The algorithmic framework that we will be operating under is
the projected stochastic ZO descent as given in Algorithm 1. Algorithm 1 requires access to zeroth
order oracles to query the update direction at each step. We define such oracles below.

Definition 2 A zeroth order oracle O is an oracle which takes a function f : Rd → R, a single
point w ∈ Rd and returns a probability measure over a subset of Rd using only function evaluations
on different points depending on w.

Notably, ZO oracle may require multiple function evaluations, which may not necessarily de-
pend on the point w. In the design of ZO algorithms, these oracles are typically implemented using
well-established ZO estimators. Below, we provide examples of such estimators.

Example 1 Here we list three popular ZO estimators: Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) introduced by Spall [43], Finite Difference (FD) introduced by Nesterov and
Spokoiny [38], and Single Point (SP) estimator introduced by Flaxman et al. [24].

1. SPSAξ(f, w): Sample Z ∼ N (0, Id) and return ∇̂1fξ(w) :=
f(w+ξZ)−f(w−ξZ)

2ξ Z.

2. FDξ(f, w): Sample Z ∼ N (0, Id) and return ∇̂2fξ(w) :=
f(w+ξZ)−f(w)

ξ Z.

3. SPξ(f, w): Sample Z ∼ N (0, Id) and return ∇̂3fξ(w) :=
d
ξ f (w + ξZ)Z
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Algorithm 1 Projected Stochastic ZO Descent
Given number of steps T , initialization distributionRinit, ZO oracle O, and constraint set D
Sample w0 ∼ Rinit

for t← 1, ..., T do
Draw ∇̂L(wt−1;X ) from the distribution O(L(·;X ), wt−1)

wt ← ΠD

(
wt−1 − η∇̂L(wt−1;X )

)
end

The above mentioned estimators are widely used in various zeroth order optimization and con-
trol algorithms. They are unbiased estimators of the gradient of a smoothed version of the function
f , defined as fξ(x) = EZ∼N (0,Id) [f(x+ ξZ)]. In other words, E

[
∇̂fξ(w)

]
= ∇fξ(x) [37, 38].

Since the aforementioned estimators are randomized, several works, such as Zhang et al. [49],
Malladi et al. [36], and Duchi et al. [18], have focused on strategies to reduce the variance of the
updates obtained through these estimators, by taking the mean of different samples. Building on
these randomized estimators, multi-point estimators can be defined aggregate information across
multiple points. We provide an example of such aggregation below.

Example 2 For any randomized estimator E , the mean extension of the estimator ME
m(f, w) works

as follows: Sample i.i.d. U1, U2, ..., Um ∼ E(f, w) and return 1
m

∑m
i=1 Ui.

Example 3 Using the construction mentioned in Example 2, one can further define MSPSA
m [36,

49], MFD
m [18], and MSP

m .

1. M
SPSAξ
m (f, w): Sample i.i.d. Z1, ..., Zm ∼ N (0, Id) and return ∇̂m

1 fξ(w) :=
1
m

∑m
i=1

f(w+ξZi)−f(w−ξZi)
2ξ Zi.

2. M
FDξ
m (f, w): Sample i.i.d. Z1, ..., Zm ∼ N (0, Id) and return ∇̂m

2 fξ(w) :=
1
m

∑m
i=1

f(w+ξZi)−f(w)
ξ Zi.

3. M
SPξ
m (f, w): Sample i.i.d. Z1, Z2, ..., Zm ∼ N (0, Id) and return ∇̂m

3 fξ(w) :=
1
m

∑m
i=1

d
ξ f (w + ξZi)Zi.

It is important to note that most work in ZO convex optimization relies on these estimators.
Consequently, it becomes essential to define a subclass of randomized zeroth order oracles that
generalizes this family of estimators and also provides a clearer understanding of their privacy im-
plications. Understanding the properties of such oracles is crucial for analyzing the privacy aspects
of ZO methods that reveal their intermediate states.

3. Privacy of Randomized Zeroth-Order Oracles

In this section, we define and discuss a subclass of randomized zeroth-order oracles as defined in
Definition 2, and discuss privacy properties of this subclass. Let us start by defining zero-preserving
noisy oracles:
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Definition 3 An oracle O is a zero-preserving noisy oracle if for any f : Rd → R, it satisfies the
following properties,

1. O(f, w) returns 0d when f(w) = 0 for all w ∈ Rd i.e. if U ∼ O(0, w) then P[U = 0d] = 1.

2. For a > 0, if f(u) = a
2 ∥u∥

2
2, then O(f, w) is a continuous probability measure for w ̸= 0d

i.e. if U ∼ O(f, w) and w ̸= 0d then for all c ∈ Rd,P[U = c] = 0.

It is important to note that, a zero-preserving noisy oracle does not necessarily imply a zeroth
order oracle. For instance, consider the estimator: Sample Z ∼ N (0, Id) and return ∇̂f(u) =
(ZT∇f(u))Z. We see that this estimator satisfies the property of being a zero-preserving noisy or-
acle, even though it still uses first order information.

Nonetheless, zero-preserving noisy oracles capture many popular ZO estimators used in the
literature. In the following lemma, we show that several of the estimators discussed in Example 1
satisfy Definition 3.

Lemma 4 SPSA, FD, SP , MSPSA
m , MFD

m and MSP
m are zero-preserving noisy oracles.

We defer the proof to appendix B.1. We also give example of another estimator proposed in
Zhang et al. [48] and show that it is also a zero-preserving noisy oracle.

The following lemma shows that any zero-preserving noisy oracle is not differentially private.

Theorem 5 If O is a zero-preserving noisy oracle (as defined in Definition 3), then there exists an
L-Lipschitz strongly convex loss function over the set LBd and a pair of datasets such that O is not
(ε, δ)-differentially private for any ε <∞ and any δ < 1.

Proof Let X = {x1, x2, ..., xn} be the database with xi ∈ Rk and ∥xi∥2 ≤ 1, ∀i. Given this
database, consider the function

L(w;X ) = 1

n

n∑
i=1

∥xi∥2 ∥w∥
2
2 ,

with parameter w ∈ LBd. Consider the neighboring databases X = {x1, x2, ..., xn−1, xn} and
X ′ = {x1, x2, ..., xn−1, x

′
n} differing at the last entry (WLOG). Assigning x1, ..., xn−1 to be 0k.

For the last points take, xn = 0 and x′n = 1√
k
1k. With this construction, we have L(w;X ) = 0 and

L(w;X ′) = 1
n ∥w∥

2
2. Let RX ∼ O(L(·;X ), w) and RX ′ ∼ O(L(.;X ′), w). By the property of a

zero-preserving noisy oracle, we have P [RX = 0d] = 1, while RX ′ would be a continuous random
variable. Hence, for the singleton set S = {0s}, we have Pr[RX ∈ S] = 1 and Pr[RX ′ ∈ S] = 0
because RX ′ is a continuous random variable with unbounded support. Clearly, P[RX ∈ S] >
eεP[RX ′ ∈ S] + δ for any ε <∞ and δ < 1, contradicting (ε, δ)-differential privacy definition.

A few key observations about this result are

1. Abadi et al. [1], Charles et al. [11] showed that for GD and SGD algorithms to be differentially
private, each parameter update must be differentially private if the attacker has access to the all
the intermediate states. Thus, understanding the privacy preserving properties of distribution
of updates (e.g. ZO oracles) helps us in understanding the privacy of the algorithm itself.

6



ON THE INHERENT PRIVACY OF TWO POINT ZEROTH ORDER PROJECTED GRADIENT DESCENT

2. Theorem 5 demonstrates that algorithms involving the sharing of gradient estimates or pa-
rameter updates sampled from zero-preserving noisy oracles between parties are not private.
For instance, in many federated learning mechanisms [2, 25, 33, 34], gradients (estimates)
are shared from silos to a central server. In the absence of a trusted server, the lack of privacy
of the updates, from a particular silo, poses a significant risk to the confidentiality of the data
within the silo.

It is also important to note that Theorem 5 does not dismiss the privacy guarantee of zeroth order
estimators with independent additive noise as discussed in Zhang et al. [48] and Zhang et al. [49].
This is because gradient estimators with independent additive noise do not satisfy the first property
of Definition 3. Consider the gradient estimator with an additive noise to be ∇̂f(w) = ∇̂′f(w) + γ
where ∇̂′f(w) : Rd → Rd represents an arbitrary estimator and γ ∼ N (0, σ2Id) is an independent
noise for a σ which satisfies (ϵ, δ) DP (assuming that ∇̂′f(w) has bounded sensitivity). We see that
(in the worst case) when ∇̂′f(w) is a constant ∇̂f(w) is still a continuous distribution since γ is an
independent noise added.

4. Privacy of ZO SGD

At this point, we have given a partial answer to the question asked in Tang et al. [44], Zhang
et al. [48] with respect to privacy of their zeroth order oracles. However, this result does not
account for the fact when we have no knowledge about the intermediate states of the algorithm.
Altschuler and Talwar [3], Chourasia et al. [14] have proven that when one considers the case that
the attacker has no access to hidden states, then after a small burn-in period, Projected Noisy SGD
on strongly convex and convex functions incurs no additional loss in privacy as T increases. Thus,
it is possible for some iterates to not be private individually, but the noise due to the zeroth order
oracle “accumulates” over time and gives certain privacy guarantees for the final iterate. Therefore,
a natural question is as follows:

Is the inherent noise of ZO Projected Gradient Descent (PGD) with a constant initializa-
tion sufficient to preserve privacy given access to the final iterate only?

The following theorem answers this question.

Theorem 6 Consider running T steps of Algorithm 1 using a zero-preserving noisy oracle O, as
defined in Definition 3, with D > 0 and Rinit as a fixed constant w0 ∈ Rd such that ∥w0∥2 < D.
Assume that the algorithm only returns the final iterate. Then, there exists an L-Lipschitz linear
loss function over the set [−D,D]d ⊂ Rd such that for any T ≥ 1 the output of Algorithm 1 is not
(ε, δ)-differentially private for any ε <∞, δ < 1

Proof Consider the following function for a database X = {x1, x2, ..., xn} where for all i ∈ [n]
xi ∈ Rk such that ∥xi∥2 ≤ 1 with parameter w ∈ LBd

L(w;X ) = 1

n

n∑
i=1

∥xi∥2 ∥w∥
2
2 .

Consider the neighboring databases differing at the last entry (WLOG)X = {x1, x2, ..., xn−1, xn}
and X ′ = {x1, x2, ..., xn−1, x

′
n}. Assign x1, ..., xn−1 to be 0k. For the last points take, xn = 0 and
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x′n = 1√
k
1k. With the above construction, we have the following two functions under X and X ′,

L(w;X ) = 0 and L(w;X ′) = L
n ∥w∥

2
2.

Take the random variables for iterates corresponding to running Algorithm 1 on χ and χ′ to be
Wχ

t and Wχ′

t respectively. Since L(w;χ) = 0, then by the first property of O along with the fact
that O(f, w) = 0d for a constant f , we have that P [O(L(·, χ), w) = 0d] = 1. This implies that the
iterate would not change on each step and since w0 ∈ DBd, projection would be identity at each
step, which implies Wχ

t = w0.

On the other hand, Wχ′

t = ΠDBd

(
Wχ′

t−1 − η∇̂L(Wt−1;X ′)
)

. Since the minima of L(w;X ′)

lies strictly at w = 0, it implies that L(w0;X ′) ̸= 0 and since L(w;X ′) is not a constant, then
by the second property in Definition 3 it implies that ∇̂L(Wχ′

t−1, χ
′) is a continuous distribution,

which implies that Wχ′

t−1 − η∇̂L(Wt−1;X ′) is a continuous distribution. However, since we are
projecting into a ball at every iteration, then it implies that for w ∈ DBd such that ∥w∥2 < D,
P[Wχ′

t = w] = P[Wχ′

t−1 − η∇̂L(Wt−1;X ′) = w] = 0 while for ∥w∥2 = D, P[Wχ′

t = D] =

P[Wχ′

t−1 − η∇̂L(Wt−1;X ′) ≥ D]. Thus, if we consider the singleton set S = {w0}, then we would
get that Pr[Wχ

T ∈ S] = 1 and Pr[Wχ′

T ∈ S] = 0 because ∥w0∥2 is strictly less than D. Hence,
P[Wχ

T ∈ S] > eεP[Wχ
T ∈ S] + δ for any ε <∞ and δ < 1.

This result answers the open question proposed by Tang et al. [44] and Zhang et al. [48] on the
privacy of zeroth order (S)GD with a fixed initialization. Thus, it dismisses the promise of privacy
of (S)GD under such oracles. It is important to note that our framework does not capture certain
algorithms like Stochastic Zeroth Order Conditional Gradient Descent [6] or Mirror Descent [18].
It would be interesting to see if such a result can be generalized for other classes of optimization
algorithms discussed in Duchi et al. [18] or Balasubramanian and Ghadimi [6].

Notably, in modern machine learning tasks, model parameters are initialized randomly [30].
Thus, if we consider the optimization of the functions corresponding to two neighbouring datasets as
defined in Definition 1, then we cannot comment about the distribution of the final iterate. Therefore,
a natural extension to our previous question emerges as follows:

Is the inherent noise of ZO Projected Gradient Descent (PGD) with random initialization
sufficient to preserve privacy given access to the final iterate only?

It is important to note that the distribution of the initial iterate is continuous. Thus, by proof
of Theorem 6, the continuity of the zero-preserving noisy oracle is no longer sufficient to ensure
privacy. We define a new class of oracles below for which we analyse privacy.

Definition 7 An update oracle O is Cs-anti-concenterated (AC) if there exists an index i∗ ∈ [d]
such that if we consider the function class F = {⟨gei∗ , w⟩ : −L ≤ g ≤ 0}, then for any h ∈ F and
w ∈ Rd, if U ∼ O(h,w) then,

1. {∇h(w)}i∗ = 0 implies U = 0d w.p. 1 i.e. P [U = 0d] = 1

2. {∇h(w)}i∗ ̸= 0 implies P [{U}i∗ < 0] = 1

3. E [{U}i∗ ] ≤ {∇h(w)}i∗

4. For any set of {w1, w2, ..., wN} ⊂ Rd, let Uj ∼ O(h,wj) independently for all j ∈ [N ].

Then E
[(∑N

j=1{Uj}i∗
)2]
≤ CsE

[∑N
j=1{Uj}i∗

]2
8
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This oracle roughly gives us a stronger guarantee (than zero-preserving noisy oracles) that up-
dates for a certain class of functions (with non-zero gradients) would be strictly increasing while
ensuring a zero-preserving property (like zero-preserving noisy oracles) on functions which are
zero over Rd. Further its distributional properties, like the condition on expectation and variance,
are necessary for ensuring an “anti-concenteration” phenomena over the updates (hence the name).
This suggests that the updates from AC oracles would shift the iterates away from the initial point
with a good probability, even when it is randomized.

Similar to the definition of zero-preserving noisy oracles, this seemingly specific oracle class is
able to capture the two point oracles we have discussed so far. Specifically, we show that the SPSA
and FD estimators are 3-AC oracles.

Lemma 8 SPSA and FD are 3-AC.

Proof We defer the complete proof to Appendix D. (Sketch) The proof comes from fixing i∗ = 1
and analyzing the output of the estimator for any function in the function class (F) corresponding
to i∗ as specified in Definition 7. Due to the difference form of the estimators, the distribution of
the first index of the outputs of these estimators turns out to be a chi-squared random variable with
the degree of freedom 1 scaled by the parameter g defined in Definition 7. Hence, this distribution
satisfies all the properties mentioned in Definition 7, thus completing the proof.

We further prove that the two-point oracle proposed by Duchi et al. [18] is also 3-AC. Moreover,
the property of being an AC oracle is preserved under the mean extension, as shown by the following
lemma.

Lemma 9 If an oracle E is Cs-AC then ME
m is Cs-AC.

Proof We defer the complete proof to Appendix D. (Sketch) The argument here is, we are taking
mean of i.i.d. random variables U

(f,wj)
i ∼ E(f, wj) for all i ∈ [m] for E which are Cs anti-

concentrated. Hence, the “strict” properties (namely zero-preserving property and the strict nega-
tivity under non-zero gradient of AC oracles) of samples of E(f, wj) also comply to the mean of
i.i.d. samples from distribution satisfying property 1 and property 2. Due to linearity of expectation,
the same upper bound on the expectation holds for the mean satisfying property 3. Due to reordering
of RV and Young’s inequality, property 4 also complies to the mean.

This lemma directly implies that MFD
m and MSPSA

m are 3-AC.
If we restrict ourselves to the class of zeroth order oracles, then we make an interesting ob-

servation: All the estimators discussed above that use at least two function evaluations satisfy the
properties mentioned in Definition 7. On the other hand, for the SP estimator defined in Exam-
ple 1, we observe that it does not satisfy the third property of Definition 7. Thus, restricted to zeroth
order oracles, the idea of an AC oracle roughly captures an important distinction between popular
single-point and two-point estimator(s).

Using the definition of an AC oracle, we show that even with unknown (but random) initializa-
tion, the model loses privacy for a large enough diameter of the constraint set.

Theorem 10 Consider running T steps of Algorithm 1 using a Cs-AC oracle O, as defined in
Definition 7, with D > ηL

2n andRinit isN (0, σ2I). Assume that the algorithm only returns the final

9
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iterate. Then, there exists an L-Lipschitz linear loss function over the set [−D,D]d ⊂ Rd such that
for any T ≥ 1 the output of Algorithm 1 is not (ε, δ)-differentially private for any ε, δ satisfying
δ ≤ 1

16Cs
max

{
1

T 2/3 ,
ηL
2nD

}
and

ε ≤ min

{
η2L2T 4/3

8n2σ2
,
D2

2σ2

}
+ ln

(√
2πLη

64Csnσ

)
.

We defer the proof to Appendix C.1. If, we take the values of n ∈ [100, 1000], η ∈ [0.001, 0.01],
Cs = 3, L = 100, and σ = 1

1020 , we see that for a large enough D
(
≥ T 2/3

200

)
this result gives us

that privacy is not possible (roughly) for ϵ ≤ 896 · T 4/3 and δ ≤ 1
96T 2/3 . Notably, we get the same

flavor of result as obtained in the lower bound construction of Altschuler and Talwar [3]. Hence, it
would be interesting to see if a matching upper bound is attainable for Projected ZO-GD.

5. Conclusion and Open Problems

In this work, we demonstrated that projected (stochastic) ZO-gradient descent cannot ensure differ-
ential privacy without incorporating additional (additive) noise. While our findings apply to a broad
class of zeroth-order oracles, the algorithmic framework we used is limited to the class of projected
SGD. Potential future directions for this problem include:

1. Can we prove Theorem 10 for other function classes (e.g., strongly convex loss functions)?

2. Can we extend our (lower-bound) analysis beyond projected (stochastic) ZO-GD?

3. Although zeroth-order estimators do not offer inherent privacy on their own, can they amplify
the privacy of other (additive) noisy methods?

The answer to any of these questions will help understand the limitations and potential of zeroth-
order optimization for private optimization.
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Appendix A. Useful Inequalities

Lemma 11 (Gaussian Concentration [16]) Let W be a random variable (RV) distributed nor-
mally with mean 0 and variance σ2. Then, for any w > 0,

P [W ≥ w] ≤ σe−w2/2σ2

w
√
2π

.

Lemma 12 ([39]) Let Z be a non-negative random variable (RV) and let α ∈ [0, 1], then

P [Z ≥ αE [Z]] ≥ (1− α)2
(E [Z])2

E [Z2]
.

Appendix B. Proofs and Discussions of Section 3

B.1. Proof of Lemma 4

Proof By the definition of SPSA estimator for f(w), µ > 0 and Z ∼ N (0, Id), we have

SPSA(f, w) =
f(w + µZ)− f(w − µZ)

2µ
Z.

If f(w) = 0 for all w ∈ Rd, then SPSA(f, w) = 0d satisfying property 1. Moreover, for the
function f(w) = a

2 ∥w∥
2
2 for a > 0, we have:

SPSA(f, w) =
a

2

∥w + µZ∥22 − ∥w − µZ∥22
2µ

Z

=
a

2

(
∥w∥22 + ∥µZ∥

2
2 + 2µwTZ

)
−
(
∥w∥22 + ∥µZ∥

2
2 − 2µwTZ

)
2µ

Z

= aZZTw.

Then for any c ∈ Rd, consider its first index {c}1, then the event aZZTw = c implies that
{aZZTw}1 = {c}1 i.e. P

[
aZZTw = c

]
≤ P

[
{aZZTw}1 = {c}1

]
. Now, we can write {aZZTw}1

= aw1{Z}21 + a
∑d

i=2wi{Z}i{Z}1. Since Z ∼ N (0, Id), it implies that {aZZTw}1 is a non-
constant polynomial in {Z}1, ..., {Z}d which means that {aZZTw}1 is continuous, implying that
P
[
{aZZTw}1 = {c}1

]
= 0 for any {c}1 ∈ R, implying that P

[
aZZTw = c

]
= 0. Hence,

SPSA(f, w) is a continuous RV satisfying property 2.
Similarly, by definition of the FD estimator for f(w), µ > 0 and Z ∼ N (0, Id), we get that

FD(f, w) =
f(w + µZ)− f(w)

2µ
Z

If f(w) = 0 for all w ∈ Rd, then FD(f, w) = 0d satisfying property 1. If f(w) = a
2 ∥w∥

2
2 for

a > 0, we have that:

FD(f, w) =
a

2

∥w + µZ∥22 − ∥w∥
2
2

µ
Z

=
a

2

(
∥w∥22 + ∥µZ∥

2
2 + 2µwTZ

)
− ∥w∥22

µ
Z

=
a

2

(
µ ∥Z∥22 + 2wTZ

)
Z.
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Considering a similar argument as the SPSA estimator, we evaluate {FD(f, w)}1, which is equal
to aµ

2 {Z}
3
1 + aµ

2

∑d
i=2{Z}2i {Z}1 + aw1{Z}21 + a

∑d
i=2wi{Z}i{Z}1. Since {FD(f, w)}1 is a

non-constant polynomial in {Z}1, ..., {Z}d, {FD(f, w)}1 is continuous. Hence, FD(f, w) is a
continuous RV satisfying property 2.

Similarly, by definition of the SP estimator for f(w), µ > 0 and Z ∼ N (0, Id), we get that

SP (f, w) =
d

µ
f(w + µZ)Z

If f(w) = 0 for all w ∈ Rd, then FD(f, w) = 0d satisfying property 1. If f(w) = a
2 ∥w∥

2
2 for

a > 0, we have that:

SP (f, w) =
d

µ
f(w + µZ)Z

=
ad

2µ
∥w + µZ∥22 Z

=
a

2

(
∥w∥22 + µ2 ∥Z∥22 + 2wTZ

)
Z.

Considering similar arguments as the SPSA and FD estimator, we see that {SP (f, w)}1 is a non-
constant polynomial in {Z}1, ..., {Z}d which implies that {SP (f, w)}1 is continuous. Hence,
SP (f, w) is a continuous RV satisfying property 2.

For the mean extensions of the given oracles, we use the definition of the mean oracle

ME(f, w,m) =
1

m

m∑
i=1

Ui,

where Ui drawn i.i.d. from E(f, w). Each Ui is 0d when f(w) = 0 for all w ∈ Rd. Then, we get
that for f(w) = 0 for all w ∈ Rd, ME(f, w,m) = 0d, satisfying property 1. In the other case,
since Ei(f, w) is continuous for all i ∈ [m]. We utilize the fact that if multiple continuous and
independent random variables are added then their resultant addition is also a continuous random
variable. Thus, the results extend for MSPSA, MFD, and MSP .

B.2. Further Discussion on Zeroth Order Estimators

Consider the estimator given by Duchi et al. [18] for minimization of non-smooth functions.

Definition 13 (Duchi et al. [18]) If Z1, Z1 ∼ N (0, Id), then the estimator is given by

Gµ1,µ2(f, w) =
f(w + µ1Z1 + µ2Z2)− f(w + µ1Z1)

µ2
Z2.

Lemma 14 The oracle defined in Definition 13 is a zero-preserving noisy oracle.

17
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Proof Using identical arguments from the proof of Theorem 4, we see that with f(w) = 0 for all
w ∈ Rd, Gµ1,µ2(f, w) = 0d. Calculating for f(w) = A

2 ∥w∥
2
2, we get that

Gµ1,µ2(f, w) = =
A

2

∥w + µ1Z1 + µ2Z2∥22 − ∥w + µ1Z1∥22
µ2

Z2

=
A

2

(
∥w∥22 + ∥µ1Z1 + µ2Z2∥22 + 2wT (µ1Z1 + µ2Z2)

)
− ∥w∥22

µ2
Z2

=
A

2µ2

(
∥µ1Z1 + µ2Z2∥22 + 2wT (µ1Z1 + µ2Z2)

)
Z2.

Thus, using arguments similar to the proof of Lemma 4 Gµ1,µ2(f, w) would have a continuous
distribution, proving our claim.

The above lemma also implies that MGµ1,µ2 would also be a continuous distribution. It is
evident that almost every zeroth order estimator used in the literature (yet) satisfies the properties of
zero-preserving noisy oracles.

Appendix C. Proofs of Section 4

C.1. Proof of Theorem 10

Definition 15 (Restated Definition 7) An update oracle O is Cs-anti-concenterated if there exists
an index i∗ ∈ [d] such that if we consider the function class F = {⟨gei∗ , w⟩ : −L ≤ g ≤ 0}, then
for any h ∈ F and w ∈ Rd, if U ∼ O(h,w) then,

1. {∇h(w)}i∗ = 0 implies U = 0d w.p. 1 i.e. P [U = 0d] = 1

2. {∇h(w)}i∗ ̸= 0 implies P [{U}i∗ < 0] = 1

3. E [{U}i∗ ] ≤ {∇h(w)}i∗

4. For any set of {w1, w2, ..., wN} ⊂ Rd, let Uj ∼ O(h,wj) independently for all j ∈ [N ].

Then E
[(∑N

j=1{Uj}i∗
)2]
≤ CsE

[∑N
j=1{Uj}i∗

]2
Theorem 16 (Restated Theorem 10) Consider running T steps of Algorithm 1 using a Cs-AC oracle
O, as defined in Definition 7, with D > ηL

2n and Rinit is N (0, σ2I). Assume that the algorithm
only returns the final iterate. Then, there exists an L-Lipschitz linear loss function over the set
[−D,D]d ⊂ Rd such that for any T ≥ 1 the output of Algorithm 1 is not (ε, δ)-differentially private
for any ε, δ satisfying δ ≤ 1

16Cs
max

{
1

T 2/3 ,
ηL
2nD

}
and

ε ≤ min

{
η2L2T 4/3

8n2σ2
,
D2

2σ2

}
+ ln

(√
2πLη

64Csnσ

)
.

Proof Consider the following loss function for a database X = {x1, x2, ..., xn}

L(w;X ) = −1
n

〈
w,

n∑
i=1

xi

〉
,

18



ON THE INHERENT PRIVACY OF TWO POINT ZEROTH ORDER PROJECTED GRADIENT DESCENT

where ∥xi∥2 ≤ L for all i ∈ [n] and xi ∈ Rd with w ∈ [−D,D]d. Consider the neighbouring
databases χ = {x1, x2, ..., xn−1, xn} and χ′ = {x1, x2, ..., xn−1, x

′
n} differing only at the last

entry. Let x1, ..., xn−1, xn to be 0d. Given the index i∗ defined in Defintion 7 for Cs-AC oracles, let
x′n = Lei∗ . With this construction, we have L(w;X ) = 0 and L(w;X ′) = −L

n ⟨w, ei∗⟩. Let WX
t

and WX ′
t be the tth iterate of Algorithm 1 is run on L(·,X ) and L(·,X ′), respectively.

To show that the algorithm is differentially private, we need to define a measurable set S so that
Definition 1 fails. Let

S =

{
w ∈ Rd : {w}i∗ ≥ min

{
ηL

2n
T 2/3, D

}}
.

We will show that for this set S, P
[
WX ′

T ∈ S
]
≥ eε0P

[
WX

T ∈ S
]
+ δ0 for some ε0 and δ0.

Note: The loss functions have been designed in a manner such that
Based on our definition of S, we divide our analysis into two cases:

• Case 1: T ≤
(
2nD
ηL

)3/2
or equivalently ηL

2nT
2/3 ≤ D

Computing P
[
WX ′

T ∈ S
]

Since we have assumed the constraint space to be a hypercube,
projection corresponds to coordinate wise clipping. Hence, it would suffice to analyze the
setting for one coordinate without affecting the other coordinates and vice versa. Due to
the second property in Definition 7, we have that {WX ′

t }i∗ is monotonic, i.e. {WX ′
t−1}i∗ ≤

{WX ′
t }i∗ for t ≥ 2. Notice that if WX ′

T /∈ S then {WX ′
T }i∗ < D which implies that no

projection occurred in the i∗th coordinate on the right side of the interval [−D,D] in T

iterations. Hence, {WX ′
T }i∗ = max

{
−D, {WX ′

0 }i∗ − η{UX ′
1 }i∗

}
−η

∑T
j=2{UX ′

j }i∗ where

UX ′
j ∼ O

(
L(·;X ′),WX ′

j−1

)
. Hence,

P
[
WX ′

T ∈ S
]
= 1− P

max
{
−D, {WX ′

0 }i∗ − η{UX ′
1 }i∗

}
− η

T∑
j=2

{UX ′
j }i∗ <

ηL

2n
T 2/3


≥ 1− P

{WX ′
0 }i∗ − η

T∑
j=1

{UX ′
j }i∗ <

ηL

2n
T 2/3


= P

{WX ′
0 }i∗ − η

T∑
j=1

{UX ′
j }i∗ ≥

ηL

2n
T 2/3

 , (a)

where the inequality is due to the fact {WX ′
T }i∗ ≥ {WX ′

0 }i∗−η
∑T

j=1{UX ′
j }i∗ . Next, we ob-

tain a lower bound on P
[
{WX ′

0 }i∗ − η
∑T

j=1{UX ′
j }i∗ ≥

ηL
2nT

2/3
]
. Take Z = −

∑T
j=1{UX ′

j }i∗ .
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We have

P
[
{WX ′

0 }i∗ + ηZ ≥ ηL

2n
T 2/3

]
≥ P

[
ηZ ≥ ηL

2n
T 2/3 − {WX ′

0 }i∗
∣∣∣∣{WX ′

0 }i∗ ≥ 0

]
P
[
{WX ′

0 }i∗ ≥ 0
]

≥ 1

2
P
[
Z ≥ L

2n
T 2/3

]
≥ 1

2
P
[
Z ≥ 1

2T 1/3

LT

n

]
≥ 1

2
P
[
Z ≥ 1

2T 1/3
E [Z]

]
. (1)

In the first inequality, we used the fact that {WX ′
0 }i∗ ∼ N (0, σ2) and therefore P

[
{WX ′

0 }i∗ ≥ 0
]
=

1
2 . In the fourth inequality, we used the third property of the Cs-AC oracle in Definition 7

which (with linearity of expectation) implies that E [Z] = E
[
−
∑T

j=1{Uj}i∗
]
≤ −

∑T
j=1{∇L(W

χ′

j ;χ′)}i∗
and the fact that {∇L(w;χ′)}i∗ = −L

n for all w ∈ Rd, by our construction.

Using, the second property of Cs-AC oracle, we have Z = −
∑T

j=1{Uj}i∗ ≥ 0. Thus,
applying Paley-Zygmund (Lemma 12) on random variable Z for α = 1

2T 1/3 , we get

P
[
Z ≥ 1

2T 1/3
E [Z]

]
≥
(
1− 1

2T 1/3

)2 (E [Z])2

E [Z2]

≥ 1

4CsT 2/3
. (2)

In the second inequality, we use the fourth property of Cs-AC oracles as defined in Defi-

nition 7 to get E
[(∑N

j=1{Uj}i∗
)2]
≤ CsE

[∑N
j=1{Uj}i∗

]2
which implies that E

[
Z2
]
≤

Cs(E [Z])2 and T ≥ 1. Combining inequalities 1 and 2, we get that,

P

{WX ′
0 }i∗ − η

T∑
j=1

{UX ′
j }i∗ ≥

ηL

2n
T 2/3

 ≥ 1

8CsT 2/3
. (b)

Combining inequalities (a) and (b), we get

P
[
WX ′

T ∈ S
]
≥ 1

8CsT 2/3
. (C1)

So far, we computed a lower bound on P
[
WX ′

T ∈ S
]
. Next, we compute an upper bound on

P
[
WX

T ∈ S
]
.

Computing P
[
WX

T ∈ S
]

Using the first property of the Cs-AC oracle in Definition 7, we
have that WX

T = W0 ∼ N (0, Id). Since the projection operator simply projects any value

20
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outside the interval to the edge, it does not change the inverse CDF on points which are within
the interval. Then, we get that

P
[
WX

T ∈ S
]
= P

[
{w0}i∗ ≥

ηL

2n
T 2/3

]
≤ 2nσ√

2πηLT 2/3
e−

η2L2T4/3

8n2σ2 , (C2)

where the inequality is due to Gaussian Concenteration (Lemma 11) . Using inequalities (C1)
and (C2), we get that

P
[
WX ′

t ∈ S
]
− 1

16CsT 2/3

P
[
WX

T ∈ S
] ≥

√
2πηL

32nσCs
e

η2L2T4/3

8n2σ2 .

Therefore,

P
[
WX ′

t ∈ S
]
≥ e

η2L2T4/3

8n2σ2 +ln
( √

2πLη
32Csnσ

)
P
[
WX

T ∈ S
]
+

1

16CsT 2/3
.

• Case 2: T ≥
(
2nD
ηL

)3/2
or equivalently ηL

2nT
2/3 ≥ D

The approach to this case is the same Case 1. It only differs in the computation of the constants
and dependence on the respective variables.

Computing P
[
WX ′

T ∈ S
]

Using the same argument as that in case 1, we get that

P
[
WX ′

T ∈ S
]
≥ P

{WX ′
0 }i∗ − η

T∑
j=1

{UX ′
j }i∗ ≥ D

 (d)

Now, to obtain the lower bound on P
[
{WX ′

0 }i∗ − η
∑T

j=1{UX ′
j }i∗ ≥ D

]
, we use the same

series of steps as those in Case 1.

P

{WX ′
0 }i∗ − η

T∑
j=1

{UX ′
j }i∗ ≥ D

 ≥ 1

2
P

− T∑
j=1

{UX ′
j }i∗ ≥

D

η


≥ 1

2
P

− T∑
j=1

{UX ′
j }i∗ ≥

Dn

ηLT

LT

n


≥ 1

2
P

− T∑
j=1

{UX ′
j }i∗ ≥

Dn

ηLT
E

− T∑
j=1

{UX ′
j }i∗


≥ 1

2

(
1− Dn

ηLT

)2 1

Cs

≥ 1

2

(
1− 1

2

√
ηL

2Dn

)2
1

Cs

≥ 1

16

ηL

Dn

1

Cs
. (e)
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In the first equality, we simply used the fact that {WX ′
0 }i∗ ∼ N (0, σ2) and therefore

P
[
{WX ′

0 }i∗ ≥ 0
]
= 1

2 . In the third inequality, we used the third property of the Cs-AC oracle

where {∇L(·;χ′)}i∗T ≥ E
[∑T

j=1{Uj}i∗
]

and {∇L(·;χ′)}i∗ = −L
n , by our construction. In

the fourth inequality, using the second property of the Cs-AC oracle, we get−
∑T

j=1{Uj}i∗ ≥
0, T ≥ 1. Hence, we apply Paley-Zygmund on −

∑N
j=1{Uj}i∗ and then use the fourth

property of the Cs-AC oracle implying that E
[(∑N

j=1{Uj}i∗
)2]
≤ CsE

[∑N
j=1{Uj}i∗

]2
.

In the fifth inequality, we use the fact that T ≥
(
2nD
ηL

)3/2
and in the sixth inequality, we use

the fact that 1
2

√
ηL
2Dn ≤

1
2 . Thus, combining inequalities (d) and (e), we get that

P
[
WX ′

t /∈ S
]
≥ 1

16

ηL

Dn

1

Cs
(F1)

Computing P
[
WX

T ∈ S
]

This argument follows exactly from the first case. We get that

P
[
WX

T ∈ S
]
= P [{w0}i∗ ≥ D] ≤ σ√

2πD
e−

D2

2σ2 (F1)

Hence, using inequalities F1 and F2, we get

P
[
WX ′

t ∈ S
]
− ηL

32CsDn

P
[
WX

T ∈ S
] ≥

√
2πηL

32Csnσ
e

D2

2σ2

Therefore,

P
[
WX ′

t ∈ S
]
≥ e

D2

2σ2+ln
( √

2πηL
32Csnσ

)
P
[
WX

T ∈ S
]
+

Dn

32CsηL

Combining the above two cases proves our claim.

Appendix D. Discussion of Oracles

Lemma 17 SPSA, FD, and estimator defined in Definition 13 are 3 AC.

Proof Take i∗ = 1. Consider any f ∈ F . Then, the expression of f = ⟨ge1, w⟩, which means that
|{∇f}i∗ | = g. Then, for ZSPSA, ZFD, ZG1ZG2 ∼ N (0, Id),

SPSA(f, w) =
⟨ge1, w + µZSPSA⟩ − ⟨ge1, w − µZSPSA⟩

2µ
ZSPSA

= g{ZSPSA}1ZSPSA

FD(f, w) =
⟨ge1, w + µZFD⟩ − ⟨ge1, w⟩

µ
ZFD

= g{ZFD}1ZFD

Gµ1,µ2(f, w) =
⟨ge1, w + µ1ZG1 + µ2ZG2⟩ − ⟨ge1, w + µ1ZG1⟩

µ2
ZG2

= g{ZG2}1ZG2
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Since ZSPSA, ZFD, ZG2 are i.i.d. random variables, it implies that the given estimators follow
the same distribution. Take E to be any one of the oracles, and for Z ∼ N (0, Id), we have that
E(f, w) = g{Z}1Z. Thus, we have that {E(f, w)}1 = g{Z}21 and {Z}21 ∼ χ2(1). {U (f)}1 = gV
where V ∼ χ2(1). Now, we verify the properties

1. Observe that when |{∇f}i∗ | = g = 0 which implies that E(f, w) = 0d, satisfying property
1.

2. For the second property, V ≥ 0 which implies that gV ≤ 0 for all .

3. E [V ] = 1 which implies that E
[
{U (f)}i∗

]
= gE [V ] = g = |{∇f}i∗ |.

4. R =
∑N

j=1 Vj ∼ χ2(N). Hence, we know that E [R] = N and V ar[R] = 2N , which implies

that E
[
R2
]
= N2 +2N . We also have that

∑N
j=1{U

(f)
j }i∗ = g

∑N
j=1 Vj , which implies that

E
[(∑N

j=1{U
(f)
j }i∗

)2]
= g2(N2+2N) and E

[(∑N
j=1{U

(f)
j }i∗

)]2
= g2N2. Using N ≥ 1

gives the value of Cs = 3 proving our given claim.

Lemma 18 (Restated) If an oracle E is Cs-AC then ME
m is Cs-AC.

Proof If E is Cs-AC, then there exists an i∗ ∈ [N ] which satisfies the properties mentioned in
Definition 7. Using definition of mean extensions of estimators, we have that for f ∈ F (as defined
in Definition 7)

ME
m(f, w) =

1

m

m∑
j=1

U
(f,w)
j ,

where U
(f,w)
j is drawn i.i.d. from E(f, w).

Using property 1 of E , |{∇f}i∗ | = 0 implies U
(f,w)
j = 0d for all j ∈ [m]. Thus, we get

{ME
m(f, w)}i∗ = 1

m

∑m
j=1{U

(f,w)
j }i∗ < 0, satisfying property 2.

Similarly, for property 2, |{∇f}i∗ | ̸= 0 implies that {U (f,w)
j }i∗ < 0 for all j ∈ [m]. Thus, we

get {ME
m(f, w)}i∗ = 1

m

∑m
j=1{U

(f,w)
j }i∗ < 0, satisfying property 2.

For the third property, consider E
[
{ME

m(f, w)}i∗
]
. Using linearity of expectation, we get

E

 1

m

m∑
j=1

{U (f,w)
j }i∗

 =
1

m

m∑
j=1

E
[
{U (f,w)

j }i∗
]

≤ {∇h}i∗ .

Hence, ME
m satisfies property 3.

Consider the set {wc}Nc=1. By the definition of ME
m, we have

E

 1

m

N∑
k=1

m∑
j=1

{U (f,wk)
j }i∗

2 = E

 1

m

m∑
j=1

N∑
k=1

{U (f,wk)
j }i∗

2
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Let Sj =
∑N

k=1{U
(f,wk)
j }i. Since U

(f,wk)
j are sampled i.i.d. from E(f, wk) for all j ∈ [m], it

implies that Sj =
∑N

k=1{U
(f,wk)
j }i∗ is identically distributed for all j ∈ [m]. Thus, we can take

E [Su] = Kf , and E
[
S2
u

]
= Ks for all u ∈ [m]. Applying Young’s inequality, we get that

E

( 1

m

m∑
u=1

Su

)2
 ≤ E

[
1

m

m∑
u=1

S2
u

]
= Ks

Using property 4 of E , we have Ks ≤ CsK
2
f . Thus, substituting the original terms, we have

E

 1

m

N∑
k=1

m∑
j=1

{U (f,wk)
j }i∗

2 ≤ CsE

[
N∑
k=1

{U (f,wk)
u }i∗

]2
(g)

Thus, using the fact that U (f,wk)
j is sampled i.i.d. for a k ∈ [N ], we see that E

[∑N
k=1{U

(f,wk)
u }i∗

]
=

E
[

1
m

∑m
j=1

∑N
k=1{U

(f,wk)
j }i∗

]
. Substituting this in the RHS of (g), we get that ME

m satisfies the
final property.
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