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ABSTRACT

Active learning improves training efficiency by selectively querying the most in-
formative samples for labeling. While it naturally fits classification tasks—where
informative samples tend to lie near the decision boundary—its application to re-
gression is less straightforward, as information is distributed across the entire
dataset. Distance-based sampling is commonly used to promote diversity but tends
to overemphasize peripheral regions while neglecting dense, informative interior
regions. To address this, we propose a Voronoi-based active learning framework
that leverages geometric structure for sample selection. Central to our method is
the Voronoi-based Least Disagree Metric (VLDM), which estimates a sample’s
proximity to Voronoi faces by measuring how often its cell assignment changes
under perturbations of the labeled sites. We further incorporate a distance-based
term to capture the periphery and a Voronoi-derived density score to reflect data
representativity. The resulting algorithm, TESSAR (TESsellation-based Sampling
for Active Regression), unifies interior coverage, peripheral exploration, and rep-
resentativity into a single acquisition score. Experiments on various benchmarks
demonstrate that TESSAR consistently achieves competitive or superior perfor-
mance compared to prior state-of-the-art baselines.

1 INTRODUCTION

Active learning aims to improve model performance while reducing labeling costs by selectively
querying the most informative data points (Cohn et al.l |1996). This is particularly valuable in do-
mains where labeling is expensive or time-consuming. Most active learning research has focused
on classification tasks, where various strategies—such as uncertainty sampling (Lewis & Gale} |[1994;
Balcan et al., [2007), expected error reduction (Yoo & Kweon, |2019)), expected model change (Frey-
tag et al., 2014), query-by-committee (Beluch et al., 2018)), and Bayesian active learning (Pinsler
et al.,[2019)-have shown success. A common theme in uncertainty-based methods is to select sam-
ples where model predictions are most uncertain. For classification tasks, this often leads to the
prioritization of samples near the decision boundary, where uncertainty is typically highest (Kremer
et al.l [2014; Ducoffe & Precioso, 2018}, |Cho et al., [2024)).

In regression, however, this boundary-centric notion does not apply as all labeled samples contribute
to the model globally rather than through local decisions. Consequently, the notions of uncertainty
and informativeness must be redefined. Instead of focusing on boundary proximity, informative
samples in regression are those that best improve generalization across the entire input space (Wu
et al., |2019; |Cardenas et al., 2023} [Hiibotter et al., 2024)). Such samples are typically diverse and
representative of the data distribution. Thus, existing methods often address this by selecting sam-
ples that are far from labeled points (Wu et al.| [2019;|Ash et al., |2020). This distance-based strategy
encourages broad coverage and promotes diversity, but it often oversamples the periphery, while
overlooking dense and informative interior regions (illustrated in Figure [Ta). While some meth-
ods introduce density-aware corrections (Wul 20195 Holzmiiller et al.l|2023), they still offer limited
control over interior exploration.

To address this limitation, we consider Voronoi tessellation, which partitions the input space into
cells around each labeled point (Voronoi, |1908). In the context of Gaussian Process regression,
Voronoi tessellation has been used to model discontinuous or heterogeneous geospatial data (Kim
et al., |2005; |Luo et al.l 2021} Pope et al., 2021). Beyond its use in modeling, we propose that



Under review as a conference paper at ICLR 2026

Distance-based sampling Voronoi face-based sampling Combination of both sampling

pool data poo! data pool data
o labeled data o labeled data o labeled data
e selected data e selected data e selected data

(a) (b) ()

Figure 1: Examples of selected samples by distance-based sampling (a), Voronoi face-based sam-
pling (b), and their combination (c). The combination of both methods effectively captures both the
internal and external structure of the data distribution.

Voronoi tessellation serves as an effective surrogate for disagreement-based active classification (Se-
ung et al.| [1992; Hannekel 2014; (Cho et al., 2024) in regression. The key intuition is that samples
near the boundaries between adjacent cells—known as Voronoi faces—often lie in interior regions
where the influence of multiple labeled points intersects and competes. Such samples are valuable
for enhancing sampling diversity in interior regions, as illustrated in Figure [[b] We further provide
theoretical support that samples near Voronoi faces tend to exhibit high prediction variance, indi-
cating greater model uncertainty and, thus, higher potential informativeness. To efficiently identify
these samples, we propose the Voronoi-based Least Disagree Metric (VLDM), which quantifies how
often a sample’s Voronoi cell assignment changes under perturbations of the labeled site, inspired
by |(Cho et al.| (2024). To ensure full spatial coverage, we combine VLDM with a distance-based
sampling strategy, as illustrated in Figure[Ic|

Finally, to complete the triad of effective active learning in regression—informativeness, diver-
sity, and representativity (Wu et al., 2019)-we incorporate a density-based weight derived from
Voronoi cell geometry (Holzmiiller et al.l 2023). Based on these insights, we introduce TESSAR
(TESsellation-based Sampling for Active Regression), a novel active learning algorithm for regres-
sion that combines VLDM, diversity, and representativity into a unified sampling strategy.

In detail, this paper makes the following key contributions:

* We introduce the use of Voronoi tessellation for active learning in regression, specifically
to target informative samples from interior regions of the input space. We theoretically
show that points near Voronoi faces—the boundaries between Voronoi cells—exhibit high
prediction variance, making them particularly valuable for improving model performance.

* To efficiently identify samples near Voronoi faces, we propose the Voronoi-based Least
Disagree Metric (VLDM), a geometric uncertainty measure that quantifies how often a
sample’s Voronoi cell assignment changes under perturbations of the labeled site.

* We develop TESsellation-based Sampling for Active Regression (TESSAR), a practical
active learning algorithm that combines VLDM with strategies for promoting spatial diver-
sity and representativity, balancing exploration of both interior and peripheral regions.

» Extensive experiments across various benchmarks demonstrate that TESSAR achieves
competitive or superior performance compared to prior state-of-the-art baselines.

2 THE VORONOI-BASED LEAST DISAGREE METRIC (VLDM) FOR
INFORMATIVE INTERIOR REGION SAMPLING

As discussed in Figure[I] a key limitation of previous distance-based sampling methods is their ten-
dency to undersample interior regions where the influence of neighboring labeled samples competes.
To effectively probe these often-neglected regions, we leverage Voronoi tessellations (illustrated in
Figure[2)). A Voronoi tessellation partitions the input space into distinct cells, where each cell encom-
passes all points closest to a particular labeled sample (the site). Points situated on the boundaries
between these cells, known as Voronoi faces, are equidistant from two or more sites. Querying
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points near these faces allows model refinement precisely where the influence of multiple labeled
samples converges, enhancing sampling diversity within these interior regions.

2.1 PRELIMINARIES AND NOTATION

Let X and ) be the feature and label spaces,
respectively, with X x J) € R¢ x R. We con- ® Iabeled samples

sider multivariate regression to learn a function niebeles samples
f: X = ). We assume that there exists an un-
known ground-truth function f, : X — ) that Vs
governs the true relationship between inputs
and outputs. During active learning we main-
tain a labeled instances S = {Z1,..., &5} C
X, with noisy labels y;, = f.(Zx) + i, where
7Nk is a random variable satisfying E[ng] = 0
and 1 L @g. A useful geometric perspective
for analyzing and organizing the labeled data
points in S is through the concept of Voronoi
tessellation. In this context, each point j in
S is referred to as a site, and these sites collec-
tively induce a partition of the instance space X into distinct regions as follows:

Vei={xeX:|x—ak|2 <@ —aj|l2forall j £k}, k=1,...,[S| (1)

]:14

Voronoi face

F34 Fas

Figure 2: Illustrative Voronoi tessellation. La-
beled sites (dots) define cells. Points on faces
(lines) are equidistant from multiple sites.

Each convex region V), is the Voronoi cell of site & and contains all points closer to that site than
to any other. Whenever two distinct cells V; and V;, meet, their common boundary Fj;, = V; NV,
for each j # k is called a Voronoi face. Points on or near such faces are equidistant to at least two
sites, so no single labeled sample dominates their local geometry.

2.2 INFORMATIVENESS OF VORONOI FACES: A THEORETICAL PERSPECTIVE

Geometrically, selecting samples near Voronoi faces naturally promotes diversity by focusing on
regions between labeled sites. We now argue that these regions are also intrinsically informative
from the perspective of model uncertainty.

Formally, suppose both the trained predictor f and the ground-truth function f, are L-Lipschitz,
the observation noise 7 is zero-mean, and a “good” event holds with high probability such that
|f(&1) — fo(21)| < €, for some € = €(|S|) > 0. This statistical error typically decays as |S|~? for
some /3 > 0, depending on the noise distribution and function class (Tsybakov}, [2009), and can be
regarded as small.

For any unlabeled point ' € X and labeled site &, € S, the triangle inequality gives
[f(a') = fu(@)| < [f(') = f(@x)| + [f(@n) = ful@n)| + | fo(@n) — ful2)]
<2Lf|x" — @2 + e,
where the second line uses Lipschitzness and the “good” event. Thus,
fu@) = QL&' = &l +¢) < f@) < ful@) + L] — @2 + ).
Under the “good” event, Popoviciu’s inequality (Popoviciul [1935)) then implies
Var[f(z')] < (2L||x" — &2 + 6)2.

As € does not depend on /4]_-], minimizing over k € S shows that the predictive variance at «’ is
controlled by the squared distance to the nearest labeled site.

Since predictive variance is governed by the distance to labeled sites, it is natural to sample points
that maximize this distance relative to multiple sites—namely, those near Voronoi faces. Under
Lipschitzness, each Voronoi cell can be viewed as a region where labels differ only within a bounded

"While instance-dependent errors are possible, we disregard them here for simplicity.
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range, so points near faces are precisely those where this bounded variation is shared across sites.
Such points are unstable: small perturbations of the labeled sites can shift the Voronoi partition
and change the site to which they correspond. This instability parallels disagreement-based active
classification, where informative samples lie near decision boundaries because small changes in the
hypothesis flip their labels (Seung et al.l [1992; [Hanneke} 2014} |Cho et al., [2024)). While regression
lacks discrete boundaries, Voronoi faces play an analogous role, with samples near them forming
natural candidates for informative queries.

2.3  VORONOI-BASED LEAST DISAGREE METRIC (VLDM)

Selecting samples near Voronoi faces offers better coverage of the interior regions of the input space,
but computing the Voronoi diagram is computationally prohibitive in high-dimensional settings.
Specifically, constructing the diagram for S sites in R? requires O (Slog S + S'%/2)) time (Kleel
1980), which is infeasible for high dimensions. To overcome this challenge, we introduce an efficient
surrogate that estimates Voronoi face proximity without computing the diagram.

Let S € N denote the number of sites, and let X’ be the instance space under consideration. Define
(i’;) = {S C X : |S| = S} as the collection of all possible site configurations of size S. We fix a
feature mapping z : © € X > z, € R, e.g., the final-layer representation from a neural network.

To define Voronoi cells in feature space, we first assume a fixed but arbitrary ordering over the sites
within each S € ()S() This does not affect the geometry of Voronoi partitions and is used solely to
make hs well-defined. We can then define the Voronoi hypothesis space H := {hs | S € ()S()},
where we associate each S = {Z; };¢[s) with a hypothesis over X', hs : & — [S], defined as

hs(x) := arg min {dz(m,:ik) 2 ||zg — 2z, ||2} . (2)
kel[S]

We refer to d, (-, -) as the feature distance.

Permutation-invariant alignment. Since the label assigned by hgs corresponds to the index of
the nearest site, the labels themselves are arbitrary up to permutation. For two Voronoi hypotheses
hs and hg/, we define the optimal permutation that attains the maximal overlap between the two
Voronoi diagrams as 7s,s/ := argmin,ecgyms)y Px~py (hs(X) # 7o hs (X)), where Sym(S)
is the set of permutations over [S]. This is analogous to the common practice in clustering evaluation,
where accuracy is measured up to label permutations (Lu & Zhou, 2016)).

In practice, if S’ is a slight perturbation of S, then mg s/ often corresponds to maintaining the
same label indices due to the geometric stabilityE] of Voronoi regions under small shifts (Reem)
2011). For instance, for S = {Z}1e[s) and small perturbations {€;}xe[s), we would have that
S" = {&}, := & + er}re[s), i-€., the site labels do not change from S to S and vice-versa. Thus,
from hereon and forth, we will simply drop the dependency on 7s s-.

Voronoi-based Least Disagree Metric. Inspired by disagreement-based active classifica-
tion (Hanneke, 2014; (Cho et al) [2024), we define the Voronoi-based Least Disagree Metric
(VLDM) to quantify how easily the Voronoi cell to which a sample belongs changes under slight
perturbations of the site configuration.

Foreach S € (“;) and xg € X, the VLDM is defined as follows:

Lihs,@o) = inf L plhsr,hs) £ Py (hs(X) # hsi (X))} 3)

hgr eHIs =0

where Dy is the marginal distribution over X and H"s®0 := {hgs € H | hs(xo) # hs' (o)} is
the set of Voronoi hypotheses in H y that disagree with hs on x(. Again, recall that as long as S’ is
obtained from a small perturbation of S, there is no need to explicitly compute 7s s-.

?Precisely speaking, a small change of the sites yields a small change in the corresponding Voronoi cells
with respect to the Hausdorff distance (Reem, [2011} Theorem 5.1).
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Algorithm 1 Empirical Evaluation of VLDM

Input:

x: target sample

S site configurations

M : number of samples for approximation

{02}V_,, N: set of variance and number of perturbation

Ly=1
DY = ming g dy(z, ), K = hgo (z) (for TESSAR)
forv =1to V do
forn=1+(v—1)|N/V]tov|N/V| do
Construct S(™ with zz ~ N (2zz,0°I), V& € S©)
if hgn (.’I)) # hso (:13) then
Lm “— min{Lm P (hs(n) s hs(o) )}

DY = ming g dy (@, &), K5 = hgw (x)  (for TESSAR)

return: Lo, (for VLDM), {DS" K\ SN (for TESSAR)

2.4 EMPIRICAL EVALUATION OF VLDM

We employ two approximation schemes to compute Eqn.[3]as in[Cho et al| (2024). First, we replace
HPs®o with a finite collection of N hypotheses, ’H}]i,s’z“. Each hg € ”H,ﬁ,s’w“ is generated by
perturbing S using multiple Gaussian noise levels. Specifically, for each variance parameter o>
in the predefined set {o7}}_,, we construct perturbed sites 2z ~ N(23,0.1) to obtain S’. For

each resulting perturbed configuration S’, we include the corresponding hypothesis hs: in 7—[;7\fwO

whenever hg/(xg) # hs(xo). The use of multiple variances enables VLDM to capture how easily
the Voronoi cell to which a sample belongs changes across a range of perturbation magnitudes.
Second, we replace p with Monte-Carlo approximation with M samples:

M
1 iid.

Par(hss hs) = i 2_1 H[hS’(Xi) # hS(Xi)]a X; ~ D, “4)
where I[-] is the indicator function. Finally, we define the empirical VLDM as Ly s (hs, o) =
inf, culs =0 PM (hs, hs). Under certain regularity conditions, its asymptotic consistency is guar-

s’ N

anteed (Cho et al., 2024, Theorem 1), which then implies that the ordering of empirically evaluated
VLDM values is preserved in probability (Cho et al., 2024, Corollary 1); see Figure [3]in Section 4]
for an empirical demonstration of this claim.

Algorithm [I] summarizes the above discussions as a pseudocode for empirically evaluating the
VLDM of « for given S(°). Note that other than the computed empirical VLDM L, the algorithm

also outputs other values { DY KU S }N_ - these are used for VLDM-based active learning
to be described in Section[3

3 TESSAR: VORONOI TESSELLATION-BASED ACTIVE REGRESSION

Acquisition Score. To enable balanced sampling across both the interior and periphery of the
input space, we combine three geometry-based criteria: a VLDM-based weight, a distance score,
and a density-aware representativity term. Each component contributes to covering different spatial
regions or properties of the input space. We first define a VLDM-based weight:

e Le—L
eiw’ where 7 = M_
Z&:j eP e i Lq
Here, L, denotes the ¢™ smallest VLDM value in the pool data and (-); = max{0,-}. This for-

mulation gives exponentially higher weight to samples with smaller VLDM values, encouraging
selection near Voronoi faces and thus improving coverage of interior regions. To complement this,

Ve = &)
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Algorithm 2 Active Learning with TESSAR

Input:
Lo, Uo : Initial labeled and unlabeled samples
q : query size

T : number of acquisition steps

fort=0to 7 — 1do

Train model using £
Set P C Uy and SO = {a; | (xs,y:) € Li}
Get Ly, {DY, KV of & € P and {SM}N_ using Algorithm
Qo+ 0
for j = 1togdo

Compute 7z, Sz using Eqn.[5]and[7]

Tnew = ArGMAX ¢ p Vo * Dm0 * Sp

Qj — ijl U {i’new}

for x € P do

Lz, {DSV, KW, SN« UPDATEVLDM (&, &new, La, { DS, K&, SMIN_ )

Liv1  LeU{(mi,y5) | i € Qq}y, Upi1 + U \ Qq

subroutine UPDATEVLDM(T, &new, L, { DY, K&V, SMIN_):
SO SO U {@pen}
if (@, Tnew) < DY then
DY) = d,(x, #new), K =15
forv =1to V do
forn=1+ (v—1)|N/V|tov|N/V| do
Sample %) ~ N (&new, o21)
8™ MU {&in)}
if d,(x, 240)) < DS then
Dy = dy(x, &), Ki” = |5
it K + K then
Ly <+ min{Lw, Par (hs("> , hs(o) )}
return: Lo, {DUY, KUY S0

we use the sample’s shortest feature distance to the sites, referred to as ‘DIST’:

D, = glelgdz(waw)a (6)

which captures how far the sample is from existing sites. This encourages exploration of under-
represented peripheral regions. Together, VLDM and DIST provide coverage across the full input
domain and jointly contribute to both informativeness and diversity. However, they may overlook
the underlying data distribution. To account for sample density, we incorporate a representativity
score inspired by cluster-based sampling (Holzmiiller et al.| [2023)), referred to as ‘BIN’:

Sy = > DZ,. (7)

x’€P:hs(x’)=hs(x)

This score is shared across all samples belonging to the same Voronoi cell and reflects the cell’s local
density based on intra-cell distances. It encourages sampling in more densely populated regions,
aligning the query strategy with the overall data distribution. Finally, the three criteria are combined
multiplicatively to score each candidate. This unified strategy ensures that selected samples are
informative, spatially diverse, and representative of the underlying distribution.

TESSAR (TESsellation-based Sampling for Active Regression). We now introduce TESSAR
(Algorithm 2, a Voronoi tessellation-based active regression algorithm. At each step ¢, the model is
trained on L, to extract features for the pool data, where the pool is the set of all unlabeled samples,
P C U,. The labeled inputs serve as sites, S = {x; | (z;,y;) € L;}. For each x € P, the

quantities Lo, {DS", K"}V, are computed, and {S™}N_ is obtained via Algorithm |1} The

n=_(
query set Qy is initialized as (). For j = 1,...,q, 7z and S, are evaluated for each © € P using
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Figure 3: Empirically evaluated VLDMs by Algorithmwith respect to the number of perturbations,
N, on Protein (a), Road (b), and Stock (c) datasets. Observe that the evaluated VLDM monotonically
decreases as IV increases, and the rank order is well maintained.
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Figure 4: The performance comparison based on the combinations of VLDM (v, ), DIST (D), and
BIN (S;) on Protein (a), Road (b), and Stock (c) datasets. The combination of three criteria achieves
the best performance.

Eqn. |5/ and Eqn. The algorithm then selects Tpey € P maximizing 7y, * D;O) * Sz, which is
our acquisition score, and appends Zpey to Q;. Afterwards, L, {D;(,,n)., K sm) MV, are updated
using subroutine UPDATEVLDM(), described below. Finally, the algorithm queries the labels y; for
all x; € Qg, and proceeds until ¢t =7 — 1.

Naively, one would recompute the VLDM from scratch after every selection within a batch, as each
newly selected sample alters the Voronoi structure, causing the Voronoi faces and hence the VLDM
values. This would require N - |P| - ¢ - (|£| 4+ (¢ + 1)/2) distance computations. To avoid this
inefficiency, TESSAR employs a dynamic update strategy to compute VLDM (subroutine UPDAT-
EVLDM()). It first computes distances between all pool samples and the initial labeled site once,
then incrementally updates only the distances involving newly selected samples. This reduces the
total number of computations to N - |P| - (|£] + ¢), effectively shaving off a factor of ¢. Neverthe-
less, runtime still scales with the perturbation budget N and pool size | P|, which may require further
optimization in large-scale settings (see Appendix [C.I). A simpler margin-based variant—where the
margin is defined as the difference between the distances from a sample to its nearest and second-
nearest Voronoi centers—avoids this dependence on [V, but its performance is noticeably weaker than
VLDM-based TESSAR (see Appendix [C.2} The subroutine UPDATEVLDM)() implements this dy-

namic update: given a newly selected site @ney and Ly, { DY, KUY SN it computes the
distances from @,y (and its perturbations) to the pool data, compares them with existing distances,
updates { D;(L.n), Ké") N, and then updates the corresponding L, values. Moreover, a compari-
son with a static VLDM variant shows that removing these dynamic updates leads to substantially
degraded performance, highlighting the necessity of the dynamic strategy (see Appendix [C.3).

4 EXPERIMENTS

This section presents the empirical evaluation of VLDM and TESSAR. We compare its performance
against various baseline algorithms on fourteen tabular datasets. We employ a 2-layer MLP with 512
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hidden units. All results represent the average performance over 20 repetitions. Detailed descriptions
of datasets and experimental settings are provided in Appendix [A]

4.1 CONSISTENCY OF VLDM

Figure [3|shows the empirically evaluated VLDMs with respect to IV of the Protein, Road, and Stock
datasets. We denote x; as the i sample ordered by the final evaluated VLDM. The empirically
evaluated VLDM:s are monotonically decreasing while maintaining rank order as IV increases.

4.2 EFFECT OF THE COMPONENTS IN TESSAR

We conduct a comprehensive performance comparison using various combinations of the three cri-
teria. Figure 4] shows the mean log of RMSE with respect to the number of labeled samples on the
Protein, Road, and Stock datasets. Individually, VLDM and DIST yield limited performance gains,
as each covers only a subset of the input space. However, combining them leads to a significant
performance improvement by jointly covering both the interior (via VLDM) and the periphery (via
DIST), highlighting their complementary nature. Adding BIN to this combination provides an ad-
ditional improvement. The inclusion of BIN enhances the sampling strategy by aligning it with the
underlying data distribution, particularly in dense regions. Based on these results, we adopt a unified
selection strategy that iteratively selects the sample that maximizes the product of the three scores.

4.3 COMPARING TESSAR TO BASELINE ALGORITHMS

We now compare the performance of the proposed TESSAR with various baselines.

Baseline algorithms Each baseline algorithm is denoted as follows: ‘Rand’: random sampling,
‘Coreset’: core-set selection (Sener & Savarese, |2018)), ‘ProbCov’: maximizing probability cover-
age (Yehuda et al.|[2022), ‘BALD’: Bayesian active learning by disagreement (Houlsby et al., | 2011)),
‘BatchBALD’: mutual information between a joint of multiple data points and the model parame-
ters (Kirsch et al.,2019), ‘BADGE’: batch active learning by diverse gradient embeddings |Ash et al.
(2020), ‘BAIT’: batch active learning via information metrics (Ash et al.,2021)), ‘ACS-FW’: active
Bayesian coresets with Frank-Wolfe optimization (Pinsler et al.|[2019)), and ‘LCMD’: largest cluster
maximum distance (Holzmiiller et al ., |2023)).

Performance comparison across datasets The performance profile (Dolan & Mor¢, 2002) and
penalty matrix (Ash et al., [2020) are utilized for comprehensive comparisons across all datasets.
The details of the performance profile and penalty matrix are described in Appendix [B] Figure 53]
shows the performance profile for regression of all algorithms with respect to . TESSAR consis-
tently maintains the highest R (d) across all considered ¢ values. Notably, Rrgssar(0) = 41%,
significantly exceeding the values of other algorithms, including LCMD (29%). Figure [5b| further
supports TESSAR’s superiority. In the first row, TESSAR outperforms all the other algorithms,
including LCMD (1.0). Similarly, the first column shows that most algorithms fail to outperform
TESSAR, with a maximum penalty of 0.3.

Performance comparison per dataset Table |l| presents the mean of performance differences
(RMSE relative to Random) averaged over repetitions and steps. The negative values indicate better
performance than Random. We observe that TESSAR consistently performs best or is comparable
to other algorithms across all datasets.

5 RELATED WORKS

In active learning for regression, a variety of sampling strategies have been developed, each bal-
ancing informativeness, diversity, and representativeness in different ways. Query by committee
(OBC) methods (Burbidge et al.l 2007; |[Fazakis et al., [2020) select samples with the highest pre-
dictive disagreement among an ensemble of regressors. While they effectively capture uncertainty
in well-specified models, they suffer in the presence of noise or model misspecification and in-
cur high computational cost due to repeated model training. Model change-based algorithms (Cai
et al.| 2017; |Park & Kim), [2020) select samples that are expected to induce the greatest change
in model parameters, often approximated via gradient information. These methods directly target
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Figure 5: The performance comparison across datasets. (a) The performance profile results. The
AUC value is expressed as a percentage. TESSAR consistently maintains the highest performance
across all considered ¢ values. (b) The penalty matrix results.

Table 1: The mean of the repetition-wise averaged performance (RMSE) differences, relative to
Random, over the entire steps. The negative value indicates higher performance than Random.
(bold+underlined: best performance, bold: second-best performance)

TESSAR | Coreset | ProbCov | BALD | BatchBALD | BADGE | BAIT | ACS-FW | LCMD
CT slices -0.0679 | -0.0504 | -0.0040 | 0.0227 -0.0435 -0.0395 | -0.0565 | 0.0028 | -0.0679
Diamonds -0.0110 | -0.0094 | 0.0007 |-0.0019 -0.0079 -0.0091 | -0.0106 | -0.0033 | -0.0105
Friedman -0.0030 | -0.0033 | 0.0001 | 0.0031 -0.0026 -0.0011 | -0.0049 | -0.0017 | -0.0026
KEGG undir | -0.1615 | -0.1435| 0.0088 | 0.0197 -0.0960 -0.1297 | -0.1214 | -0.0668 | -0.1598
Methane -0.0520 | -0.0346 | -0.0274 | 0.0251 -0.0185 -0.0432 | -0.0355 | -0.0265 | -0.0510
MLR kNN | -0.1201 |-0.0192 | 0.0031 | 0.0906 -0.0580 -0.0925 | -0.0872 | 0.0006 | -0.1182
Online video | -0.1183 | -0.1000 | -0.0001 | -0.0655 -0.0943 -0.0991 | -0.0946 | -0.0718 | -0.1130

Protein -0.0082 | 0.0110 | -0.0003 | 0.0308 0.0207 -0.0075 | 0.0016 | 0.0065 |-0.0054
Query -0.0047 | 0.0004 | -0.0001 | 0.0262 0.0121 -0.0023 | -0.0029 | 0.0023 | -0.0054
Road 0.0001 | 0.0176 | 0.0000 | 0.1337 0.0441 -0.0004 | 0.0109 | 0.0294 | 0.0036

SARCOS -0.0215 | -0.0080 | -0.0004 | 0.0139 -0.0016 -0.0133 | -0.0149 | -0.0093 | -0.0188
SGEMM -0.0141 | -0.0004 | -0.0015 | 0.0817 0.0114 -0.0045 | -0.0038 | 0.0129 | -0.0121
Stock -0.0051 | 0.0046 | -0.0003 | 0.0100 0.0075 -0.0036 | -0.0001 | 0.0003 |-0.0028
WEC Sydney | -0.0001 | 0.0163 | 0.0001 | 0.0229 0.0045 -0.0009 | 0.0004 | 0.0021 | 0.0010

model improvement but typically require ensemble estimation and suffer from high computational
complexity, particularly in batch settings. Black box approaches estimate predic-
tive uncertainty using covariance kernels derived from ensemble predictions. They are compatible
with non-differentiable models and achieve strong empirical performance, but rely on ensemble di-
versity, which may degrade in low-variance models such as random forests or boosted ensembles.
Inverse distance-based methods 2023) combine model uncertainty and spatial explo-
ration using inverse-distance weighting. These methods avoid model retraining and generalize to
both pool- and population-based settings, but their reliance on distance heuristics limits their effec-
tiveness in high-dimensional or discontinuous spaces. Greed sampling methods 2019)
select samples that maximize diversity in the input or output space. These methods are model-aware
and promote label spread and representativity, but require model updates after each selection, in-
creasing computational overhead. Distribution/coverage-based methods (Sener & Savaresel 2018}
[Yehuda et al] 2022} [Bae et al [2024) formulate selection as covering the unlabeled distribution in
a learned feature space. Both are label-agnostic and transfer to regression by measuring distances
in task-relevant embeddings. However, performance hinges on the quality of the embedding/metric
and the choice of coverage radius, and the construction of the graph or mixed integer program (MIP)
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can be costly for very large pools. Clustering-based methods (Wu, 2019; Holzmiiller et al., [2023])
select samples based on coverage and diversity in feature space. [Wu| (2019) proposes a sequential
representative-diverse (RD) framework using k-means clustering, optionally combined with uncer-
tainty measures. [Holzmiiller et al| (2023) introduce LCMD, a modular batch-mode method that
leverages neural tangent kernels and clustering to balance core sampling principles. While effective,
both methods may suffer from high runtime due to repeated clustering or kernel computations. TES-
SAR shares LCMD’s use of diversity- and density-oriented components, but fundamentally differs
in its VLDM term, which targets samples near Voronoi faces rather than cluster peripheries. This ge-
ometric mechanism prevents selection of outer-boundary points—where no Voronoi faces form—and
instead reliably guides sampling toward informative interior regions.

6 CONCLUSION

This paper proposes TESSAR, a geometry-driven active learning framework for regression based on
Voronoi tessellation. At the core of TESSAR is the Voronoi-based Least Disagree Metric (VLDM),
which captures interior structure by identifying samples that lie near Voronoi faces. To ensure full
spatial coverage, TESSAR combines VLDM with a distance-based score that promotes exploration
of peripheral regions and a region-level representativity term that reflects local data density. This
unified strategy enables the model to acquire informative samples from both the interior and pe-
riphery while aligning with the overall data distribution. While classification-based methods like
LDMS-S rely on label-defined decision boundaries and are inherently limited to supervised settings,
TESSAR selects samples purely based on geometric relationships among input instances. Empir-
ical evaluations across multiple regression benchmarks show that TESSAR consistently achieves
competitive or superior performance.

We conclude by highlighting several promising directions for future work. Although dynamically
updating the Voronoi structure in VLDM improves the efficiency of TESSAR, it remains computa-
tionally costly since each new sample perturbs the structure even within the same batch. Developing
a more scalable variant of TESSAR, or even a new algorithmic principle inspired by our Voronoi-
style intuition, is an important next step. Beyond active learning, one natural extension is to in-
vestigate how Voronoi-based sample acquisition can guide pseudo-labeling or cluster selection in
semi-supervised and unsupervised learning, where geometry rather than label information plays a
central role. Finally, while we implicitly assume homoskedasticity, it remains an intriguing open
question whether similar Voronoi-style principles can be extended to heteroskedastic settings.
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APPENDIX

A  EXPERIMENTAL SETTINGS

Table 2: Overview of used datasets.

Short Name Citation Source  Training size Test size # of features
CT slices (Graf et al.,7201 1) UCI 42,800 10,700 379
Diamonds OpenML 43,152 10,788 29
Friedman (Friedman,, |1991})) OpenML 32,615 8,153 10
KEGG under (Shannon et al., 2003) UcClI 51,687 12,921 27
Methane (Slezak et al.,[2018) OpenML 200,000 300,000 33
MLR kNN OpenML 89,403 22,350 132
Online video (Deneke et al.| 2014) UCI 55,028 13,756 26
Protein OpenML 36,584 9,146 9
Query (Anagnostopoulos et al.,|2018)  UCI 160,000 40,000 4
Road (Kaul et al.,[2013) UCI 200,000 234,874 2
SARCOS  (Vijayakumar & Schaal, 20000 GPML 35,588 8,896 21
SGEMM (Ballester-Ripoll et al., [2019) ucCl 193,280 48,320 14
Stock OpenML 47,240 11,809 9
WEC Sydney (Neshat et al.,|2018) ucCI 57,600 14,400 48

The datasets, deep network architecture, and experimental setup follow the framework proposed
by [Holzmiiller et al.| (2023)). Table 2] presents an overview of datasets used. We selected 14 tabular
regression datasets from different sources. A fully connected neural network with two hidden lay-
ers, each comprising 512 neurons (L. = 3,d; = dy = 512), is employed for all experiments. The
neural tangent parameterization is used in conjunction with the ReLU activation function. All biases
are initialized to zero, and weights are independently sampled from A (0, 1). Model training is per-
formed using the Adam optimizer with default hyperparameters 81 = 0.9, 82 = 0.999. The initial
learning rate is set to 0.375 and is decayed linearly to zero throughout training. A batch size of 256
and a total of 256 training epochs are used. After each epoch, the RMSE is evaluated on a validation
set of 1,024 samples. For all datasets, the number of initial labeled samples is set to 256. At each
active learning step, 256 samples are queried, and the process is repeated for 16 steps, resulting in a
final labeled set of 4, 352 samples. In TESSAR, the number of perturbations NN is set to 100, and o is
increased in the order of {0.0002,0.0004,0.0006, 0.0008, 0.001, 0.002, 0.004, 0.006, 0.008,0.01},
with every 10 perturbations. All experiments are conducted on NVIDIA TITAN Xp GPUs with
12GB of memory. We use PyTorch 3.7 with CUDA 10.0.
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B PERFORMANCE PROFILE AND PENALTY MATRIX

B.1 PERFORMANCE PROFILE

Let errg’r’t denote the RMSE of alrogirhm A at step ¢t € T, for dataset D and repetition r € [R],
and define the performance gap as Ag’r’t = errg’r’t — min 4/ (errgir’t). Here, Tp is the number

of steps for dataset D, and R is the total number of repetitions. Then, the performance profile is

defined as: Dot
1 S AT <0)
6) = — g :
Ra(0) n, o RTp ’

where 7, is the number of datasets. Intuitively, R 4 (9) is the fraction of cases where the performance
gap between algorithm A and the best competitor is less than 0. Specifically, when § = 0, R 4(0) is
the fraction of cases in which algorithm A performs the best.

B.2 PENALTY MATRIX

For each dataset, step, and each pair of algorithms (A4;, A;), we collect R RMSE values {err? } 2

and {err’ } L respectively. We compute the t-score as ¢ = VR[i/5 where i = % Zle (err; —err})

and & = \/ﬁ Zle(err;" — e, — j1)2. In this framework, A; is said to beat A; if ¢ < —2.776,

and vice versa if t > 2.776. When A; beats A;, a penalty of 1 /Tp is accumulated to P;, j» and
similarly for the reverse case. Summing the penalties across datasets yields the final penalty matrix.

15
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C ADDITIONAL RESULTS

C.1 RUNTIME COMPARISON per DATASET

Table 3: The mean of runtime (sec) for each algorithm and each dataset.

TESSAR | Coreset | ProbCov | BALD | BatchBALD | BADGE | BAIT | ACS-FW | LCMD

CT slices 235.8 166.1 | 3,412.1 188.0 174.3 151.4 | 179.7 175.2 168.7
Diamonds 255.1 205.8 | 4,033.6 169.3 207.1 2033 | 273.9 202.1 207.0
Friedman 287.7| 202.7| 4.398.7 169.9 207.4 201.3 | 264.1 200.0 270.6
KEGG undir 2472 2121 | 42979 172.5 215.5 169.2 | 286.9 209.2 273.9
Methane 4829 | 2329| 4,518.1 171.3 190.4 218.0 | 378.6 211.5 2453
MLR kNN 367.3 | 2134 44247 167.7 216.5 198.3 | 306.5 197.7 288.3
Online video 2547 | 2149 | 43752 170.3 216.8 169.5 | 2959 209.6 279.7
Protein 286.1 206.7 | 4,373.7 170.4 208.3 205.1 | 2794 204.9 275.5
Query 423.0| 237.4| 4.396.2 175.8 231.8 196.1 | 344.0 204.0 264.2
Road 547.8 | 236.5| 3.676.3 1745 214.1 194.7 | 378.4 213.4 229.0
SARCOS 2499 | 207.2| 4.340.1 168.2 208.8 204.1 | 276.9 204.1 276.8
SGEMM 487.8 | 2345 | 3,873.1 179.7 226.9 182.5 | 373.0 206.8 217.4
Stock 313.1 211.9 | 4.347.7 172.4 212.4 207.1 | 285.2 207.4 212.4
WEC Sydney 269.6 | 2079 | 4.237.3 174.5 204.4 1943 | 286.7 191.3 278.6

Table |3|presents the mean runtime (in seconds) for each algorithm across datasets. For TESSAR,
the runtime remains comparable to other strong-performing algorithms such as BADGE, BAIT, and
LCMD on smaller datasets. However, as the dataset size increases, TESSAR’s runtime grows more
noticeably. Nonetheless, the difference typically remains within a few minutes and is negligible
relative to the overall time required for labeling. This additional computational cost arises from
TESSAR’s deliberate design to explore regions—particularly interior areas—that are often underrep-
resented by conventional sampling methods. Rather than a drawback, this represents a worthwhile
trade-off, as TESSAR consistently achieves superior performance in exchange for modest increases
in computation. Our results further demonstrate that sampling from interior regions yields meaning-
ful gains in regression tasks, underscoring the importance of this geometric perspective. We hope
this finding motivates future research toward more computationally efficient algorithms that retain
the benefits of interior-region-aware sampling.

C.2 VLDM-BASED VS MARGIN-BASED TESSAR

To assess whether TESSAR’s performance gains derive from the VLDM formulation or could be
matched by simpler geometric uncertainty measures, we replaced VLDM with a margin-based
proxy. The margin is defined as the difference between the distances from a sample to its near-
est and second-nearest Voronoi centers—an inexpensive approximation of local geometric ambiguity.
We then ran TESSAR using this margin score in place of VLDM. Figure[f]shows that margin-based
TESSAR incurs notable performance degradation across datasets, despite its lower computational
cost. These results demonstrate that the improvements achieved by TESSAR cannot be reproduced
by a simple geometric heuristic, thereby validating the necessity of VLDM’s design.

C.3 EFFECT OF DYNAMIC VS. STATIC VORONOI UPDATES

To assess the impact of dynamic tessellation in TESSAR, we included static VLDM and static TES-
SAR baselines, in which Voronoi centers remain fixed after initial construction. This setting enables
a direct comparison between geometry-aware sampling with and without adaptive updates. Figure[7]
shows that static VLDM fails to meaningfully reduce error across datasets, indicating that a fixed
Voronoi structure is insufficient for guiding informative selection. Static TESSAR performs rea-
sonably well due to its combined scoring components, but dynamic TESSAR consistently achieves
lower error on all datasets, demonstrating that updating Voronoi partitions throghout the acquisition
process provides a clear performance benefit.
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Figure 6: Comparison of VLDM-based and margin-based TESSAR on Protein (a), Road (b), and
Stock (c) datasets. The margin is defined as the difference between the distances from a sample to
its nearest and second-nearest Voronoi centers. TESSAR using VLDM consistently outperforms its
margin-based variant.
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Figure 7: Comparison of dynamic and static VLDM on Protein (a), Road (b), and Stock (c) datasets.
While dynamic VLDM shows gradual improvement as more samples are labeled, static VLDM fails
to improve across all datasets. Dynamic TESSAR also shows improved performance compared to
its static counterpart, validating the importance of adaptive geometry-aware sampling strategies.

C.4 ROBUSTNESS TO HYPERPARAMETER

In TESSAR, the primary hyperparameter is the number of perturbations, denoted by N. This hyper-
parameter controls the number of perturbed hypotheses sampled during the empirical evaluation of
the VLDM, directly affecting both the estimation accuracy of the metric and the overall computa-
tional cost. Figurepresents the mean log RMSE with respect to N € {10, 50, 100, 500, 1000}, and
there is no significant performance difference. This suggests that TESSAR is robust to the choice of
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Figure 8: The mean log RMSE with respect to the number of perturbations on Protein (a), Road (b),
and Stock (c) datasets. There is no significant performance difference.
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C.5 SENSITIVITY OF TESSAR TO FEATURE MAPS

To evaluate TESSAR’s dependence on the choice of feature extractor, we compared four different
feature mappings: raw input features, last-layer neural embeddings, gradient-sketching features,
and Gaussian Process (GP) posterior features (Holzmiiller et al} [2023)). Across all three datasets,
Figure ] shows that TESSAR’s performance is largely stable across different feature maps, with no
substantial difference except for the GP posterior. These findings indicate that TESSAR is robust to
the choice of feature mapping.
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Figure 9: Impact of different feature maps on TESSAR for Protein (a), Road (b), and Stock (c)
datasets. TESSAR exhibits minimal performance variation across feature maps, except for a slight
degradation when using GP posterior features, demonstrating overall robustness to the choice of
feature extractor.

C.6 PRE-EVALUATION OF TESSAR’S EFFECTIVENESS

To examine whether TESSAR offers predictable gains over random sampling prior to running full
active learning steps, we followed the diagnostic proposed in LCMD (Holzmiiller et all [2023)),
which showed that the ratio between initial RMSE and MAE strongly correlates with the improve-
ment achieved by LCMD. Using the same procedure, we evaluated TESSAR on the initial labeled
samples and measured the initial RMSE/MAE ratio. We then correlated this value with the subse-
quent performance gain of TESSAR over random sampling at the end of the active learning process.
Figure [T0] presents that TESSAR exhibits a clear and strong positive correlation (Pearson correla-
tion coefficient R ~ 0.87), similar to LCMD’s findings. Datasets with larger RMSE/MAE ratios at
initialization tend to benefit more substantially from TESSAR’s geometry-aware acquisition. This
indicates that a simple pre-evaluation metric can reliably forecast TESSAR’s expected advantage,
providing practitioners with a lightweight criterion for deciding when to deploy TESSAR.
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Figure 10: The correlation between the initial RMSE/MAE ratio and the final performance gain of
TESSAR over random sampling. The variation is measured as mean log RMSE - mean log MAE
on the initial training set (Ny.in = 256). Relative improvement in sample efficiency is measured

mean log RMSE(TESSAR) - mean log RMSE(Random) P . .
Y hean Tog RMSE(Random) - (mean log RMSE at Nygn =256) ° Similar to the LCMD diagnostic, TESSAR shows

a strong positive correlation (R ~ 0.87) across datasets, indicating that the RMSE/MAE ratio can
reliably predict when TESSAR will provide substantial sample-efficiency improvements.
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D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLM to improve grammar and wording. The authors reviewed all edits and take full
responsibility for the content.
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