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ABSTRACT

Active learning improves training efficiency by selectively querying the most in-
formative samples for labeling. While it naturally fits classification tasks–where
informative samples tend to lie near the decision boundary–its application to re-
gression is less straightforward, as information is distributed across the entire
dataset. Distance-based sampling is commonly used to promote diversity but tends
to overemphasize peripheral regions while neglecting dense, informative interior
regions. To address this, we propose a Voronoi-based active learning framework
that leverages geometric structure for sample selection. Central to our method is
the Voronoi-based Least Disagree Metric (VLDM), which estimates a sample’s
proximity to Voronoi faces by measuring how often its cell assignment changes
under perturbations of the labeled sites. We further incorporate a distance-based
term to capture the periphery and a Voronoi-derived density score to reflect data
representativity. The resulting algorithm, TESSAR (TESsellation-based Sampling
for Active Regression), unifies interior coverage, peripheral exploration, and rep-
resentativity into a single acquisition score. Experiments on various benchmarks
demonstrate that TESSAR consistently achieves competitive or superior perfor-
mance compared to prior state-of-the-art baselines.

1 INTRODUCTION

Active learning aims to improve model performance while reducing labeling costs by selectively
querying the most informative data points (Cohn et al., 1996). This is particularly valuable in do-
mains where labeling is expensive or time-consuming. Most active learning research has focused
on classification tasks, where various strategies–such as uncertainty sampling (Lewis & Gale, 1994;
Balcan et al., 2007), expected error reduction (Yoo & Kweon, 2019), expected model change (Frey-
tag et al., 2014), query-by-committee (Beluch et al., 2018), and Bayesian active learning (Pinsler
et al., 2019)–have shown success. A common theme in uncertainty-based methods is to select sam-
ples where model predictions are most uncertain. For classification tasks, this often leads to the
prioritization of samples near the decision boundary, where uncertainty is typically highest (Kremer
et al., 2014; Ducoffe & Precioso, 2018; Cho et al., 2024).

In regression, however, this boundary-centric notion does not apply as all labeled samples contribute
to the model globally rather than through local decisions. Consequently, the notions of uncertainty
and informativeness must be redefined. Instead of focusing on boundary proximity, informative
samples in regression are those that best improve generalization across the entire input space (Wu
et al., 2019; Cardenas et al., 2023; Hübotter et al., 2024). Such samples are typically diverse and
representative of the data distribution. Thus, existing methods often address this by selecting sam-
ples that are far from labeled points (Wu et al., 2019; Ash et al., 2020). This distance-based strategy
encourages broad coverage and promotes diversity, but it often oversamples the periphery, while
overlooking dense and informative interior regions (illustrated in Figure 1a). While some meth-
ods introduce density-aware corrections (Wu, 2019; Holzmüller et al., 2023), they still offer limited
control over interior exploration.

To address this limitation, we consider Voronoi tessellation, which partitions the input space into
cells around each labeled point (Voronoi, 1908). In the context of Gaussian Process regression,
Voronoi tessellation has been used to model discontinuous or heterogeneous geospatial data (Kim
et al., 2005; Luo et al., 2021; Pope et al., 2021). Beyond its use in modeling, we propose that
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(a) (b) (c)

Figure 1: Examples of selected samples by distance-based sampling (a), Voronoi face-based sam-
pling (b), and their combination (c). The combination of both methods effectively captures both the
internal and external structure of the data distribution.

Voronoi tessellation serves as an effective surrogate for disagreement-based active classification (Se-
ung et al., 1992; Hanneke, 2014; Cho et al., 2024) in regression. The key intuition is that samples
near the boundaries between adjacent cells—known as Voronoi faces—often lie in interior regions
where the influence of multiple labeled points intersects and competes. Such samples are valuable
for enhancing sampling diversity in interior regions, as illustrated in Figure 1b. We further provide
theoretical support that samples near Voronoi faces tend to exhibit high prediction variance, indi-
cating greater model uncertainty and, thus, higher potential informativeness. To efficiently identify
these samples, we propose the Voronoi-based Least Disagree Metric (VLDM), which quantifies how
often a sample’s Voronoi cell assignment changes under perturbations of the labeled site, inspired
by Cho et al. (2024). To ensure full spatial coverage, we combine VLDM with a distance-based
sampling strategy, as illustrated in Figure 1c.

Finally, to complete the triad of effective active learning in regression–informativeness, diver-
sity, and representativity (Wu et al., 2019)–we incorporate a density-based weight derived from
Voronoi cell geometry (Holzmüller et al., 2023). Based on these insights, we introduce TESSAR
(TESsellation-based Sampling for Active Regression), a novel active learning algorithm for regres-
sion that combines VLDM, diversity, and representativity into a unified sampling strategy.

In detail, this paper makes the following key contributions:

• We introduce the use of Voronoi tessellation for active learning in regression, specifically
to target informative samples from interior regions of the input space. We theoretically
show that points near Voronoi faces—the boundaries between Voronoi cells—exhibit high
prediction variance, making them particularly valuable for improving model performance.

• To efficiently identify samples near Voronoi faces, we propose the Voronoi-based Least
Disagree Metric (VLDM), a geometric uncertainty measure that quantifies how often a
sample’s Voronoi cell assignment changes under perturbations of the labeled site.

• We develop TESsellation-based Sampling for Active Regression (TESSAR), a practical
active learning algorithm that combines VLDM with strategies for promoting spatial diver-
sity and representativity, balancing exploration of both interior and peripheral regions.

• Extensive experiments across various benchmarks demonstrate that TESSAR achieves
competitive or superior performance compared to prior state-of-the-art baselines.

2 THE VORONOI-BASED LEAST DISAGREE METRIC (VLDM) FOR
INFORMATIVE INTERIOR REGION SAMPLING

As discussed in Figure 1, a key limitation of previous distance-based sampling methods is their ten-
dency to undersample interior regions where the influence of neighboring labeled samples competes.
To effectively probe these often-neglected regions, we leverage Voronoi tessellations (illustrated in
Figure 2). A Voronoi tessellation partitions the input space into distinct cells, where each cell encom-
passes all points closest to a particular labeled sample (the site). Points situated on the boundaries
between these cells, known as Voronoi faces, are equidistant from two or more sites. Querying
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points near these faces allows model refinement precisely where the influence of multiple labeled
samples converges, enhancing sampling diversity within these interior regions.

2.1 PRELIMINARIES AND NOTATION

Figure 2: Illustrative Voronoi tessellation. La-
beled sites (dots) define cells. Points on faces
(lines) are equidistant from multiple sites.

Let X and Y be the feature and label spaces,
respectively, with X × Y ⊆ Rd × R. We con-
sider multivariate regression to learn a function
f : X → Y . We assume that there exists an un-
known ground-truth function f⋆ : X → Y that
governs the true relationship between inputs
and outputs. During active learning we main-
tain a labeled instances S = {x̃1, . . . , x̃|S|} ⊂
X , with noisy labels yk = f⋆(x̃k) + ηk, where
ηk is a random variable satisfying E[ηk] = 0
and ηk ⊥ x̃k. A useful geometric perspective
for analyzing and organizing the labeled data
points in S is through the concept of Voronoi
tessellation. In this context, each point x̃k in
S is referred to as a site, and these sites collec-
tively induce a partition of the instance space X into distinct regions as follows:

Vk :=
{
x ∈ X : ∥x− x̃k∥2 ≤ ∥x− x̃j∥2 for all j ̸= k

}
, k = 1, . . . , |S|. (1)

Each convex region Vk is the Voronoi cell of site x̃k and contains all points closer to that site than
to any other. Whenever two distinct cells Vi and Vj meet, their common boundary Fij = Vi ∩ Vj
for each i ̸= j is called a Voronoi face. Points on or near such faces are equidistant to at least two
sites, so no single labeled sample dominates their local geometry.

2.2 INFORMATIVENESS OF VORONOI FACES: A THEORETICAL PERSPECTIVE

Geometrically, selecting samples near Voronoi faces naturally promotes diversity by focusing on
regions between labeled sites. We now argue that these regions are also intrinsically informative
from the perspective of model uncertainty.

Formally, suppose both the trained predictor f̂ and the ground-truth function f⋆ are L-Lipschitz,
the observation noise ηi is zero-mean, and a “good” event holds with high probability such that
|f̂(x̃i) − f⋆(x̃i)| ≤ ϵ, for some ϵ = ϵ(|S|) > 0. This statistical error typically decays as |S|−β for
some β > 0, depending on the noise distribution and function class (Tsybakov, 2009), and can be
regarded as small.

For any unlabeled point x′ ∈ X and labeled site x̃i ∈ S, the triangle inequality gives∣∣f̂(x′)− f⋆(x
′)
∣∣ ≤ ∣∣f̂(x′)− f̂(x̃i)

∣∣+ ∣∣f̂(x̃i)− f⋆(x̃i)
∣∣+ ∣∣f⋆(x̃i)− f⋆(x

′)
∣∣

≤ 2L∥x′ − x̃i∥2 + ϵ,

where the second line uses Lipschitzness and the “good” event. Thus,

f⋆(x
′)−

(
2L∥x′ − x̃i∥2 + ϵ

)
≤ f̂(x′) ≤ f⋆(x

′) +
(
2L∥x′ − x̃i∥2 + ϵ

)
.

Under the “good” event, Popoviciu’s inequality (Popoviciu, 1935) then implies

Var[f̂(x′)] ≤
(
2L∥x′ − x̃i∥2 + ϵ

)2
.

As ϵ does not depend on i1, minimizing over i ∈ S shows that the predictive variance at x′ is
controlled by the squared distance to the nearest labeled site.

Since predictive variance is governed by the distance to labeled sites, it is natural to sample points
that maximize this distance relative to multiple sites—namely, those near Voronoi faces. Under
Lipschitzness, each Voronoi cell can be viewed as a region where labels differ only within a bounded

1While instance-dependent errors are possible, we disregard them here for simplicity.
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range, so points near faces are precisely those where this bounded variation is shared across sites.
Such points are unstable: small perturbations of the labeled sites can shift the Voronoi partition
and change the site to which they correspond. This instability parallels disagreement-based active
classification, where informative samples lie near decision boundaries because small changes in the
hypothesis flip their labels (Seung et al., 1992; Hanneke, 2014; Cho et al., 2024). While regression
lacks discrete boundaries, Voronoi faces play an analogous role, with samples near them forming
natural candidates for informative queries.

2.3 VORONOI-BASED LEAST DISAGREE METRIC (VLDM)

Selecting samples near Voronoi faces offers better coverage of the interior regions of the input space,
but computing the Voronoi diagram is computationally prohibitive in high-dimensional settings.
Specifically, constructing the diagram for S sites in Rd requires O

(
S logS + S⌊d/2⌋) time (Klee,

1980), which is infeasible for high dimensions. To overcome this challenge, we introduce an efficient
surrogate that estimates Voronoi face proximity without computing the diagram.

Let S ∈ N denote the number of sites, and let X be the instance space under consideration. Define(X
S

)
:= {S ⊂ X : |S| = S} as the collection of all possible site configurations of size S. We fix a

feature mapping z : x ∈ X 7→ zx ∈ Rd, e.g., the final-layer representation from a neural network.

To define Voronoi cells in feature space, we first assume a fixed but arbitrary ordering over the sites
within each S ∈

(X
S

)
. This does not affect the geometry of Voronoi partitions and is used solely to

make hS well-defined. We can then define the Voronoi hypothesis space H := {hS | S ∈
(X
S

)
},

where we associate each S = {x̃i}i∈[S] with a hypothesis over X , hS : X → [S], defined as

hS(x) := argmin
i∈[S]

{
dz(x, x̃i) ≜ ∥zx − zx̃i

∥2
}
. (2)

We refer to dz(·, ·) as the feature distance.

Permutation-invariant alignment. Since the label assigned by hS corresponds to the index of
the nearest site, the labels themselves are arbitrary up to permutation. For two Voronoi hypotheses
hS and hS′ , we define the optimal permutation that attains the maximal overlap between the two
Voronoi diagrams as πS,S′ := argminπ∈Sym(S) PX∼DX (hS(X) ̸= π ◦ hS′(X)), where Sym(S)

is the set of permutations over [S]. This is analogous to the common practice in clustering evaluation,
where accuracy is measured up to label permutations (Lu & Zhou, 2016).

In practice, if S ′ is a slight perturbation of S, then πS,S′ often corresponds to maintaining the
same label indices due to the geometric stability2 of Voronoi regions under small shifts (Reem,
2011). For instance, for S = {x̃i}i∈[S] and small perturbations {εi}i∈[S], we would have that
S ′ = {x̃′

i := x̃i + εi}i∈[S], i.e., the site labels do not change from S to S ′ and vice-versa. Thus,
from hereon and forth, we will simply drop the dependency on πS,S′ .

Voronoi-based Least Disagree Metric. Inspired by disagreement-based active classifica-
tion (Hanneke, 2014; Cho et al., 2024), we define the Voronoi-based Least Disagree Metric
(VLDM) to quantify how easily the Voronoi cell to which a sample belongs changes under slight
perturbations of the site configuration.

For each S ∈
(X
S

)
and x0 ∈ X , the VLDM is defined as follows:

L(hS ,x0) := inf
hS′∈HhS ,x0

{
ρ(hS′ , hS) ≜ PX∼DX (hS(X) ̸= hS′(X))

}
, (3)

where DX is the marginal distribution over X and HhS ,x0 := {hS′ ∈ H | hS(x0) ̸= hS′(x0)} is
the set of Voronoi hypotheses inHN that disagree with hS on x0. Again, recall that as long as S ′ is
obtained from a small perturbation of S, there is no need to explicitly compute πS,S′ .

2Precisely speaking, a small change of the sites yields a small change in the corresponding Voronoi cells
with respect to the Hausdorff distance (Reem, 2011, Theorem 5.1).
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Algorithm 1 Empirical Evaluation of VLDM

Input:
x: target sample
S(0): site configurations
M : number of samples for approximation
σ2, N : variance and number of perturbation

Lx = 1

D
(0)
x = minx̃∈S(0) dz(x, x̃), K

(0)
x = hS(0)(x) (for TESSAR)

for n = 1 to N do
Construct S(n) with zx̃′ ∼ N (zx̃, σ

2I), ∀x̃ ∈ S(0)
if hS(n)(x) ̸= hS(0)(x) then

Lx ← min{Lx, ρM
(hS(n) , hS(0))}

D
(n)
x = minx̃∈S(n) dz(x, x̃), K

(n)
x = hS(n)(x) (for TESSAR)

return: Lx (for VLDM), {D(n)
x }Nn=0, {K

(n)
x }Nn=0, {S(n)}Nn=0 (for TESSAR)

2.4 EMPIRICAL EVALUATION OF VLDM

We employ two approximation schemes to compute Eqn. 3 as in Cho et al. (2024). First, we replace
HhS ,x0 with a finite collection of N hypotheses, HhS ,x0

N , each hS′ ∈ HhS ,x0

N generated by 1)
perturbing S with Gaussian noise zx̃′

i
∼ N (zx̃, σ

2I) to obtain S ′ and 2) storing hS′ if hS′(x0) ̸=
hS(x0). Second, we replace ρ with Monte-Carlo approximation with M samples:

ρ
M
(hS′ , hS) :=

1

M

M∑
i=1

I
[
hS′(Xi) ̸= hS(Xi)

]
, Xi

i.i.d.∼ DX , (4)

where I[·] is the indicator function. Finally, we define the empirical VLDM as LN,M (hS ,x0) :=
inf

hS′∈HhS ,x0
N

ρM (hS′ , hS). Under certain regularity conditions, its asymptotic consistency is guar-
anteed (Cho et al., 2024, Theorem 1), which then implies that the ordering of empirically evaluated
VLDM values is preserved in probability (Cho et al., 2024, Corollary 1); see Figure 3 in Section 4
for an empirical demonstration of this claim.

Algorithm 1 summarizes the above discussions as a pseudocode for empirically evaluating the
VLDM of x for given S(0). Note that other than the computed empirical VLDM Lx, the algorithm
also outputs other values {D(n)

x }Nn=0, {K
(n)
x }Nn=0, {S(n)}Nn=0; these are used for VLDM-based ac-

tive learning to be described in Section 3.

3 TESSAR: VORONOI TESSELLATION-BASED ACTIVE REGRESSION

Acquisition Score. To enable balanced sampling across both the interior and periphery of the
input space, we combine three geometry-based criteria: a VLDM-based weight, a distance score,
and a density-aware representativity term. Each component contributes to covering different spatial
regions or properties of the input space. We first define a VLDM-based weight:

γx =
e−ηx∑

xj∈P e−ηxj
, where ηx =

(Lx − Lq)+
Lq

. (5)

Here, Lq denotes the qth smallest VLDM value in the pool data and (·)+ = max{0, ·}. This for-
mulation gives exponentially higher weight to samples with smaller VLDM values, encouraging
selection near Voronoi faces and thus improving coverage of interior regions. To complement this,
we use the sample’s shortest feature distance to the sites, referred to as ‘DIST’:

Dx = min
x̃∈S

dz(x, x̃), (6)

which captures how far the sample is from existing sites. This encourages exploration of under-
represented peripheral regions. Together, VLDM and DIST provide coverage across the full input

5
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Algorithm 2 Dynamic Update of VLDM
Input:
x: target sample
x̃new: newly selected site
Lx: VLDM of x
{S(n)}Nn=0: sets of sites
{D(n)

x }Nn=0: shortest distances of x to sites
{K(n)

x }Nn=0: index of Voronoi cells of x

S(0) ← S(0) ∪ {x̃new}
if dz(x, x̃new) < D

(0)
x then

D
(0)
x = dz(x, x̃new), K

(0)
x = |S(0)|

for n = 1 to N do
Sample x̃

(n)
new ∼ N (x̃new, σ

2I)

S(n) ← S(n) ∪ {x̃(n)
new}

if dz(x, x̃
(n)
new) < D

(n)
x then

D
(n)
x = dz(x, x̃

(n)
new), K

(n)
x = |S(n)|

if K(n)
x ̸= K

(0)
x then

Lx ← min{Lx, ρM (hS(n) , hS(0))}
return: Lx, {D(n)

x }Nn=0, {K
(n)
x }Nn=0, {S(n)}Nn=0

Algorithm 3 Active Learning with TESSAR
Input:
L0,U0 : Initial labeled and unlabeled samples
q : query size
T : number of acquisition steps

for t = 0 to T − 1 do
Train model using Lt

Set P = Ut
Set S(0) = {xi | (xi, yi) ∈ Lt}
Get Lx, {D(n)

x }Nn=0, {K
(n)
x }Nn=0 of x ∈ P and

{S(n)}Nn=0 using Algorithm 1
Q0 ← ∅
for j = 1 to q do

Compute γx, Sx using Eqn. 5 and 7
x̃new = argmaxx∈P γx ∗D(0)

x ∗ Sx

Qj ← Qj−1 ∪ {x̃new}
Update Lx, {D(n)

x }Nn=0, {K
(n)
x }Nn=0 of x∈P

and {S(n)}Nn=0 using Algorithm 2
Lt+1 ← Lt ∪ {(xi, yi) | xi ∈ Qq}
Ut+1 ← Ut \ Qq

domain and jointly contribute to both informativeness and diversity. However, they may overlook
the underlying data distribution. To account for sample density, we incorporate a representativity
score inspired by cluster-based sampling (Holzmüller et al., 2023), referred to as ‘BIN’:

Sx =
∑

x′∈P:hS(x′)=hS(x)

D2
x′ . (7)

This score is shared across all samples belonging to the same Voronoi cell and reflects the cell’s local
density based on intra-cell distances. It encourages sampling in more densely populated regions,
aligning the query strategy with the overall data distribution. Finally, the three criteria are combined
multiplicatively to score each candidate. This unified strategy ensures that selected samples are
informative, spatially diverse, and representative of the underlying distribution.

TESSAR (TESsellation-based Sampling for Active Regression). We now introduce TESSAR
(Algorithm 3), a Voronoi tessellation-based active regression algorithm. At each step t, the model is
trained on Lt to extract features for the pool data, where the pool is the set of all unlabeled samples,
P = Ut. The labeled inputs serve as sites, S(0) = {xi | (xi, yi) ∈ Lt}. For each x ∈ P , the
quantities Lx, {D(n)

x }Nn=0, {K
(n)
x }Nn=0 are computed, and {S(n)}Nn=0 is obtained via Algorithm 1.

The query setQ0 is initialized as ∅. For j = 1, . . . , q, γx and Sx are evaluated for each x ∈ P using
Eqn. 5 and Eqn. 7. The algorithm then selects x̃new ∈ P maximizing γx ∗D(0)

x ∗ Sx, which is our
acquisition score, and appends x̃new toQj . Afterwards, Lx, {D(n)

x }Nn=0, {K
(n)
x }Nn=0 for each x ∈ P

and {S(n)}Nn=0 are updated using Algorithm 2, described below. Finally, the algorithm queries the
labels yi for all xi ∈ Qq , and proceeds until t = T − 1.

Naı̈vely, one would recompute the VLDM from scratch after every selection within a batch, as each
newly selected sample alters the Voronoi structure, causing the Voronoi faces and hence the VLDM
values. This would require N · |P| · q · (|L| + (q + 1)/2) distance computations. To avoid this
inefficiency, TESSAR employs a dynamic updating strategy for computing VLDM (Algorithm 2). It
first computes distances between all pool samples and the initial labeled site once, then incrementally
updates only the distances involving newly selected samples. This reduces the total number of
computations to N · |P| · (|L|+ q), effectively shaving off a factor of q. Nevertheless, runtime still
scales with the perturbation budget N and pool size |P|, which may require further optimization
in large-scale settings (see Appendix C.1). Algorithm 2 implements this dynamic update: given
a newly selected site x̃new and Lx, {D(n)

x }Nn=0, {K
(n)
x }Nn=0, {S(n)}Nn=0, it computes the distances

from x̃new (and its perturbations) to the pool data, compares them with existing distances, updates
{D(n)

x }Nn=0, {K
(n)
x }Nn=0, and then updates the corresponding Lx values.
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(a) (b) (c)

Figure 3: Empirically evaluated VLDMs by Algorithm 1 with respect to the number of perturbations,
N , on Protein (a), Road (b), and Stock (c) datasets. Observe that the evaluated VLDM monotonically
decreases as N increases, and the rank order is well maintained.

(a) (b) (c)

Figure 4: The performance comparison based on the combinations of VLDM (γx), DIST (Dx), and
BIN (Sx) on Protein (a), Road (b), and Stock (c) datasets. The combination of three criteria achieves
the best performance.

4 EXPERIMENTS

This section presents the empirical evaluation of VLDM and TESSAR. We compare its performance
against various baseline algorithms on fourteen tabular datasets. We employ a 2-layer MLP with 512
hidden units. All results represent the average performance over 20 repetitions. Detailed descriptions
of datasets and experimental settings are provided in Appendix A.

4.1 CONSISTENCY OF VLDM

Figure 3 shows the empirically evaluated VLDMs with respect to N of the Protein, Road, and Stock
datasets. We denote xi as the ith sample ordered by the final evaluated VLDM. The empirically
evaluated VLDMs are monotonically decreasing while maintaining rank order as N increases.

4.2 EFFECT OF THE COMPONENTS IN TESSAR

We conduct a comprehensive performance comparison using various combinations of the three cri-
teria. Figure 4 shows the mean log of RMSE with respect to the number of labeled samples on the
Protein, Road, and Stock datasets. Individually, VLDM and DIST yield limited performance gains,
as each covers only a subset of the input space. However, combining them leads to a significant
performance improvement by jointly covering both the interior (via VLDM) and the periphery (via
DIST), highlighting their complementary nature. Adding BIN to this combination provides an ad-
ditional improvement. The inclusion of BIN enhances the sampling strategy by aligning it with the
underlying data distribution, particularly in dense regions. Based on these results, we adopt a unified
selection strategy that iteratively selects the sample that maximizes the product of the three scores.

4.3 COMPARING TESSAR TO BASELINE ALGORITHMS

We now compare the performance of the proposed TESSAR with various baselines.

7
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(a) (b)

Figure 5: The performance comparison across datasets. (a) The performance profile results. The
AUC value is expressed as a percentage. TESSAR consistently maintains the highest performance
across all considered δ values. (b) The penalty matrix results.

Baseline algorithms Each baseline algorithm is denoted as follows: ‘Rand’: random sampling,
‘Coreset’: core-set selection (Sener & Savarese, 2018), ‘BALD’: Bayesian active learning by dis-
agreement (Houlsby et al., 2011), ‘BatchBALD’: mutual information between a joint of multiple
data points and the model parameters (Kirsch et al., 2019), ‘BADGE’: batch active learning by
diverse gradient embeddings Ash et al. (2020), ‘BAIT’: batch active learning via information met-
rics (Ash et al., 2021), ‘ACS-FW’: active Bayesian coresets with Frank-Wolfe optimization (Pinsler
et al., 2019), and ‘LCMD’: largest cluster maximum distance (Holzmüller et al., 2023).

Performance comparison across datasets The performance profile (Dolan & Moré, 2002) and
penalty matrix (Ash et al., 2020) are utilized for comprehensive comparisons across all datasets.
The details of the performance profile and penalty matrix are described in Appendix B. Figure 5a
shows the performance profile for regression of all algorithms with respect to δ. TESSAR consis-
tently maintains the highest RA(δ) across all considered δ values. Notably, RTESSAR(0) = 41%,
significantly exceeding the values of other algorithms, including LCMD (29%). Figure 5b further
supports TESSAR’s superiority. In the first row, TESSAR outperforms all the other algorithms,
including LCMD (1.0). Similarly, the first column shows that most algorithms fail to outperform
TESSAR, with a maximum penalty of 0.3.

Performance comparison per dataset Table 1 presents the mean of performance differences
(RMSE relative to Random) averaged over repetitions and steps. The negative values indicate better
performance than Random. We observe that TESSAR consistently performs best or is comparable
to other algorithms across all datasets.

5 RELATED WORKS

In active learning for regression, a variety of sampling strategies have been developed, each bal-
ancing informativeness, diversity, and representativeness in different ways. Query-by-committee
(QBC) methods (Burbidge et al., 2007; Fazakis et al., 2020) select samples with the highest pre-
dictive disagreement among an ensemble of regressors. While they effectively capture uncertainty
in well-specified models, they suffer in the presence of noise or model misspecification and in-
cur high computational cost due to repeated model training. Model-change based algorithms (Cai
et al., 2017; Park & Kim, 2020) select samples that are expected to induce the greatest change
in model parameters, often approximated via gradient information. These methods directly target
model improvement but typically require ensemble estimation and suffer from high computational
complexity, particularly in batch settings. Black-box approaches (Kirsch, 2023) estimate predictive
uncertainty using covariance kernels derived from ensemble predictions. They are compatible with

8
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Table 1: The mean of the repetition-wise averaged performance (RMSE) differences, relative to
Random, over the entire steps. The negative value indicates higher performance than Random.
(bold+underlined: best performance, bold: second-best performance)

TESSAR Coreset BALD BatchBALD BADGE BAIT ACS-FW LCMD
CT slices -0.0679 -0.0504 0.0227 -0.0435 -0.0395 -0.0565 0.0028 -0.0679
Diamonds -0.0110 -0.0094 -0.0019 -0.0079 -0.0091 -0.0106 -0.0033 -0.0105
Friedman -0.0030 -0.0033 0.0031 -0.0026 -0.0011 -0.0049 -0.0017 -0.0026

KEGG undir -0.1615 -0.1435 0.0197 -0.0960 -0.1297 -0.1214 -0.0668 -0.1598
Methane -0.0520 -0.0346 0.0251 -0.0185 -0.0432 -0.0355 -0.0265 -0.0510

MLR kNN -0.1201 -0.0192 0.0906 -0.0580 -0.0925 -0.0872 0.0006 -0.1182
Online video -0.1183 -0.1000 -0.0655 -0.0943 -0.0991 -0.0946 -0.0718 -0.1130

Protein -0.0082 0.0110 0.0308 0.0207 -0.0075 0.0016 0.0065 -0.0054
Query -0.0047 0.0004 0.0262 0.0121 -0.0023 -0.0029 0.0023 -0.0054
Road 0.0001 0.0176 0.1337 0.0441 -0.0004 0.0109 0.0294 0.0036

SARCOS -0.0215 -0.0080 0.0139 -0.0016 -0.0133 -0.0149 -0.0093 -0.0188
SGEMM -0.0141 -0.0004 0.0817 0.0114 -0.0045 -0.0038 0.0129 -0.0121

Stock -0.0051 0.0046 0.0100 0.0075 -0.0036 -0.0001 0.0003 -0.0028
WEC Sydney -0.0001 0.0163 0.0229 0.0045 -0.0009 0.0004 0.0021 0.0010

non-differentiable models and achieve strong empirical performance, but rely on ensemble diversity,
which may degrade in low-variance models such as random forests or boosted ensembles. Inverse-
distance based methods (Bemporad, 2023) combine model uncertainty and spatial exploration using
inverse-distance weighting. These methods avoid model retraining and generalize to both pool- and
population-based settings, but their reliance on distance heuristics limits their effectiveness in high-
dimensional or discontinuous spaces. Greed sampling methods (Wu et al., 2019) select samples
that maximize diversity in the input or output space. These methods are model-aware and promote
label spread and representativity, but require model updates after each selection, increasing com-
putational overhead. Clustering-based methods (Wu, 2019; Holzmüller et al., 2023) select samples
based on coverage and diversity in feature space. Wu (2019) proposes a sequential representative-
diverse (RD) framework using k-means clustering, optionally combined with uncertainty measures.
Holzmüller et al. (2023) introduce LCMD, a modular batch-mode method that leverages neural tan-
gent kernels and clustering to balance core sampling principles. While effective, both methods may
suffer from high runtime due to repeated clustering or kernel computations.

6 CONCLUSION

This paper proposes TESSAR, a geometry-driven active learning framework for regression based on
Voronoi tessellation. At the core of TESSAR is the Voronoi-based Least Disagree Metric (VLDM),
which captures interior structure by identifying samples that lie near Voronoi faces. To ensure full
spatial coverage, TESSAR combines VLDM with a distance-based score that promotes exploration
of peripheral regions and a region-level representativity term that reflects local data density. This
unified strategy enables the model to acquire informative samples from both the interior and pe-
riphery while aligning with the overall data distribution. While classification-based methods like
LDM-S rely on label-defined decision boundaries and are inherently limited to supervised settings,
TESSAR selects samples purely based on geometric relationships among input instances. Empir-
ical evaluations across multiple regression benchmarks show that TESSAR consistently achieves
competitive or superior performance.

We conclude by highlighting several promising directions for future work. Although dynamically
updating the Voronoi structure in VLDM improves the efficiency of TESSAR, it remains computa-
tionally costly since each new sample perturbs the structure even within the same batch. Developing
a more scalable variant of TESSAR, or even a new algorithmic principle inspired by our Voronoi-
style intuition, is an important next step. Beyond active learning, one natural extension is to in-
vestigate how Voronoi-based sample acquisition can guide pseudo-labeling or cluster selection in
semi-supervised and unsupervised learning, where geometry rather than label information plays a
central role. Finally, while we implicitly assume homoskedasticity, it remains an intriguing open
question whether similar Voronoi-style principles can be extended to heteroskedastic settings.
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APPENDIX

A EXPERIMENTAL SETTINGS

Table 2: Overview of used datasets.

Short Name Citation Source Training size Test size # of features
CT slices (Graf et al., 2011) UCI 42,800 10,700 379
Diamonds OpenML 43,152 10,788 29
Friedman (Friedman, 1991) OpenML 32,615 8,153 10

KEGG under (Shannon et al., 2003) UCI 51,687 12,921 27
Methane (Ślezak et al., 2018) OpenML 200,000 300,000 33

MLR kNN OpenML 89,403 22,350 132
Online video (Deneke et al., 2014) UCI 55,028 13,756 26

Protein OpenML 36,584 9,146 9
Query (Anagnostopoulos et al., 2018) UCI 160,000 40,000 4
Road (Kaul et al., 2013) UCI 200,000 234,874 2

SARCOS (Vijayakumar & Schaal, 2000) GPML 35,588 8,896 21
SGEMM (Ballester-Ripoll et al., 2019) UCI 193,280 48,320 14

Stock OpenML 47,240 11,809 9
WEC Sydney (Neshat et al., 2018) UCI 57,600 14,400 48

The datasets, deep network architecture, and experimental setup follow the framework proposed
by Holzmüller et al. (2023). Table 2 presents an overview of datasets used. We selected 14 tabular
regression datasets from different sources. A fully connected neural network with two hidden lay-
ers, each comprising 512 neurons (L = 3, d1 = d2 = 512), is employed for all experiments. The
neural tangent parameterization is used in conjunction with the ReLU activation function. All biases
are initialized to zero, and weights are independently sampled from N (0, 1). Model training is per-
formed using the Adam optimizer with default hyperparameters β1 = 0.9, β2 = 0.999. The initial
learning rate is set to 0.375 and is decayed linearly to zero throughout training. A batch size of 256
and a total of 256 training epochs are used. After each epoch, the RMSE is evaluated on a validation
set of 1, 024 samples. For all datasets, the number of initial labeled samples is set to 256. At each
active learning step, 256 samples are queried, and the process is repeated for 16 steps, resulting in a
final labeled set of 4, 352 samples. In TESSAR, the number of perturbations N is set to 100, and σ is
increased in the order of {0.0002, 0.0004, 0.0006, 0.0008, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01},
with every 10 perturbations. All experiments are conducted on NVIDIA TITAN Xp GPUs with
12GB of memory. We use PyTorch 3.7 with CUDA 10.0.
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B PERFORMANCE PROFILE AND PENALTY MATRIX

B.1 PERFORMANCE PROFILE

Let errD,r,t
A denote the RMSE of alrogirhm A at step t ∈ TD, for dataset D and repetition r ∈ [R],

and define the performance gap as ∆D,r,t
A = errD,r,t

A − minA′(errD,r,t
A′ ). Here, TD is the number

of steps for dataset D, and R is the total number of repetitions. Then, the performance profile is
defined as:

RA(δ) :=
1

n
D

∑
D

[∑
r,t I(∆

D,r,t
A ≤ δ )

RTD

]
,

where n
D

is the number of datasets. Intuitively, RA(δ) is the fraction of cases where the performance
gap between algorithm A and the best competitor is less than δ. Specifically, when δ = 0, RA(0) is
the fraction of cases in which algorithm A performs the best.

B.2 PENALTY MATRIX

For each dataset, step, and each pair of algorithms (Ai, Aj), we collect R RMSE values {errri }Rr=1

and {errrj}Rr=1 respectively. We compute the t-score as t =
√
Rµ̄/σ̄ where µ̄ = 1

R

∑R
r=1(errri−errrj)

and σ̄ =
√

1
R−1

∑R
r=1(errri − errrj − µ̄)2. In this framework, Ai is said to beat Aj if t < −2.776,

and vice versa if t > 2.776. When Ai beats Aj , a penalty of 1/TD is accumulated to Pi,j , and
similarly for the reverse case. Summing the penalties across datasets yields the final penalty matrix.
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C ADDITIONAL RESULTS

C.1 RUNTIME COMPARISON per DATASET

Table 3: The mean of runtime (sec) for each algorithm and each dataset.

TESSAR Coreset BALD BatchBALD BADGE BAIT ACS-FW LCMD
CT slices 235.8 160.2 166.1 188.0 174.3 151.4 179.7 175.2
Diamonds 255.1 153.6 205.8 169.3 207.1 203.3 273.9 202.1
Friedman 287.7 155.6 202.7 169.9 207.4 201.3 264.1 200.0

KEGG undir 247.2 155.5 212.1 172.5 215.5 169.2 286.9 209.2
Methane 482.9 152.3 232.9 171.3 190.4 218.0 378.6 211.5

MLR kNN 367.3 153.4 213.4 167.7 216.5 198.3 306.5 197.7
Online video 254.7 153.3 214.9 170.3 216.8 169.5 295.9 209.6

Protein 286.1 155.3 206.7 170.4 208.3 205.1 279.4 204.9
Query 423.0 152.0 237.4 175.8 231.8 196.1 344.0 204.0
Road 547.8 152.3 236.5 174.5 214.1 194.7 378.4 213.4

SARCOS 249.9 156.9 207.2 168.2 208.8 204.1 276.9 204.1
SGEMM 487.8 156.6 234.5 179.7 226.9 182.5 373.0 206.8

Stock 313.1 155.5 211.9 172.4 212.4 207.1 285.2 207.4
WEC Sydney 269.6 161.6 207.9 174.5 204.4 194.3 286.7 191.3

Table 3 presents the mean runtime (in seconds) for each algorithm across datasets. For TESSAR,
the runtime remains comparable to other strong-performing algorithms such as BADGE, BAIT, and
LCMD on smaller datasets. However, as the dataset size increases, TESSAR’s runtime grows more
noticeably. Nonetheless, the difference typically remains within a few minutes and is negligible
relative to the overall time required for labeling. This additional computational cost arises from
TESSAR’s deliberate design to explore regions–particularly interior areas–that are often underrep-
resented by conventional sampling methods. Rather than a drawback, this represents a worthwhile
trade-off, as TESSAR consistently achieves superior performance in exchange for modest increases
in computation. Our results further demonstrate that sampling from interior regions yields meaning-
ful gains in regression tasks, underscoring the importance of this geometric perspective. We hope
this finding motivates future research toward more computationally efficient algorithms that retain
the benefits of interior-region-aware sampling.

C.2 ROBUSTNESS TO HYPERPARAMETER

In TESSAR, the primary hyperparameter is the number of perturbations, denoted by N . This hyper-
parameter controls the number of perturbed hypotheses sampled during the empirical evaluation of
the VLDM, directly affecting both the estimation accuracy of the metric and the overall computa-
tional cost. Figure 6 presents the mean log RMSE with respect to N ∈ {10, 50, 100, 500, 1000}, and
there is no significant performance difference. This suggests that TESSAR is robust to the choice of
N .

(a) (b) (c)

Figure 6: The mean log RMSE with respect to the number of perturbations on Protein (a), Road (b),
and Stock (c) datasets. There is no significant performance difference.
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D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLM to improve grammar and wording. The authors reviewed all edits and take full
responsibility for the content.
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