

000 001 002 003 004 005 006 007 008 009 010 TESSAR: GEOMETRY-AWARE ACTIVE REGRESSION VIA DYNAMIC VORONOI TESSELLATION

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Active learning improves training efficiency by selectively querying the most in-
012 formative samples for labeling. While it naturally fits classification tasks—where
013 informative samples tend to lie near the decision boundary—its application to re-
014 gression is less straightforward, as information is distributed across the entire
015 dataset. Distance-based sampling is commonly used to promote diversity but tends
016 to overemphasize peripheral regions while neglecting dense, informative interior
017 regions. To address this, we propose a Voronoi-based active learning framework
018 that leverages geometric structure for sample selection. Central to our method is
019 the Voronoi-based Least Disagree Metric (VLDM), which estimates a sample’s
020 proximity to Voronoi faces by measuring how often its cell assignment changes
021 under perturbations of the labeled sites. We further incorporate a distance-based
022 term to capture the periphery and a Voronoi-derived density score to reflect data
023 representativity. The resulting algorithm, *TESSAR* (TESsellation-based Sampling
024 for Active Regression), unifies interior coverage, peripheral exploration, and rep-
025 resentativity into a single acquisition score. Experiments on various benchmarks
026 demonstrate that TESSAR consistently achieves competitive or superior perfor-
027 mance compared to prior state-of-the-art baselines.

028 1 INTRODUCTION

030 Active learning aims to improve model performance while reducing labeling costs by selectively
031 querying the most informative data points (Cohn et al., 1996). This is particularly valuable in do-
032 mains where labeling is expensive or time-consuming. Most active learning research has focused
033 on classification tasks, where various strategies—such as uncertainty sampling (Lewis & Gale, 1994;
034 Balcan et al., 2007), expected error reduction (Yoo & Kweon, 2019), expected model change (Frey-
035 tag et al., 2014), query-by-committee (Beluch et al., 2018), and Bayesian active learning (Pinsler
036 et al., 2019)—have shown success. A common theme in uncertainty-based methods is to select sam-
037 ples where model predictions are most uncertain. For classification tasks, this often leads to the
038 prioritization of samples near the decision boundary, where uncertainty is typically highest (Kremer
039 et al., 2014; Ducoffe & Precioso, 2018; Cho et al., 2024).

040 In regression, however, this boundary-centric notion does not apply as all labeled samples contribute
041 to the model globally rather than through local decisions. Consequently, the notions of uncertainty
042 and informativeness must be redefined. Instead of focusing on boundary proximity, informative
043 samples in regression are those that best improve generalization across the entire input space (Wu
044 et al., 2019; Cardenas et al., 2023; Hübotter et al., 2024). Such samples are typically diverse and
045 representative of the data distribution. Thus, existing methods often address this by selecting sam-
046 ples that are far from labeled points (Wu et al., 2019; Ash et al., 2020). This distance-based strategy
047 encourages broad coverage and promotes diversity, but it often oversamples the *periphery*, while
048 overlooking dense and informative *interior regions* (illustrated in Figure 1a). While some meth-
049 ods introduce density-aware corrections (Wu, 2019; Holzmüller et al., 2023), they still offer limited
050 control over interior exploration.

051 To address this limitation, we consider *Voronoi tessellation*, which partitions the input space into
052 cells around each labeled point (Voronoi, 1908). In the context of Gaussian Process regression,
053 Voronoi tessellation has been used to model discontinuous or heterogeneous geospatial data (Kim
et al., 2005; Luo et al., 2021; Pope et al., 2021). Beyond its use in modeling, we propose that

Figure 1: Examples of selected samples by distance-based sampling (a), Voronoi face-based sampling (b), and their combination (c). The combination of both methods effectively captures both the internal and external structure of the data distribution.

Voronoi tessellation serves as an effective surrogate for disagreement-based active classification (Seung et al., 1992; Hanneke, 2014; Cho et al., 2024) in regression. The key intuition is that samples near the boundaries between adjacent cells—known as *Voronoi faces*—often lie in interior regions where the influence of multiple labeled points intersects and competes. Such samples are valuable for enhancing sampling diversity in interior regions, as illustrated in Figure 1b. We further provide theoretical support that samples near Voronoi faces tend to exhibit high prediction variance, indicating greater model uncertainty and, thus, higher potential informativeness. To efficiently identify these samples, we propose the *Voronoi-based Least Disagree Metric (VLDM)*, which quantifies how often a sample’s Voronoi cell assignment changes under perturbations of the labeled site, inspired by Cho et al. (2024). To ensure full spatial coverage, we combine VLDM with a distance-based sampling strategy, as illustrated in Figure 1c.

Finally, to complete the triad of effective active learning in regression— informativeness, diversity, and representativity (Wu et al., 2019)—we incorporate a density-based weight derived from Voronoi cell geometry (Holzmüller et al., 2023). Based on these insights, we introduce *TESSAR* (TESsellation-based Sampling for Active Regression), a novel active learning algorithm for regression that combines VLDM, diversity, and representativity into a unified sampling strategy.

In detail, this paper makes the following key contributions:

- We introduce the use of Voronoi tessellation for active learning in regression, specifically to target informative samples from interior regions of the input space. We theoretically show that points near Voronoi faces—the boundaries between Voronoi cells—exhibit high prediction variance, making them particularly valuable for improving model performance.
- To *efficiently* identify samples near Voronoi faces, we propose the **Voronoi-based Least Disagree Metric (VLDM)**, a geometric uncertainty measure that quantifies how often a sample’s Voronoi cell assignment changes under perturbations of the labeled site.
- We develop **TESsellation-based Sampling for Active Regression (TESSAR)**, a practical active learning algorithm that combines VLDM with strategies for promoting spatial diversity and representativity, balancing exploration of both interior and peripheral regions.
- Extensive experiments across various benchmarks demonstrate that TESSAR achieves competitive or superior performance compared to prior state-of-the-art baselines.

2 THE VORONOI-BASED LEAST DISAGREE METRIC (VLDM) FOR INFORMATIVE INTERIOR REGION SAMPLING

As discussed in Figure 1, a key limitation of previous distance-based sampling methods is their tendency to undersample interior regions where the influence of neighboring labeled samples competes. To effectively probe these often-neglected regions, we leverage **Voronoi tessellations** (illustrated in Figure 2). A Voronoi tessellation partitions the input space into distinct cells, where each cell encompasses all points closest to a particular labeled sample (the *site*). Points situated on the boundaries between these cells, known as *Voronoi faces*, are equidistant from two or more sites. Querying

108 points near these faces allows model refinement precisely where the influence of multiple labeled
 109 samples converges, enhancing sampling diversity within these interior regions.
 110

111 **2.1 PRELIMINARIES AND NOTATION**
 112

113 Let \mathcal{X} and \mathcal{Y} be the feature and label spaces,
 114 respectively, with $\mathcal{X} \times \mathcal{Y} \subseteq \mathbb{R}^d \times \mathbb{R}$. We con-
 115 sider multivariate regression to learn a function
 116 $f : \mathcal{X} \rightarrow \mathcal{Y}$. We assume that there exists an un-
 117 known ground-truth function $f_* : \mathcal{X} \rightarrow \mathcal{Y}$ that
 118 governs the true relationship between inputs
 119 and outputs. During active learning we main-
 120 tain a labeled *instances* $\mathcal{S} = \{\tilde{x}_1, \dots, \tilde{x}_{|\mathcal{S}|}\} \subset$
 121 \mathcal{X} , with noisy labels $y_k = f_*(\tilde{x}_k) + \eta_k$, where
 122 η_k is a random variable satisfying $\mathbb{E}[\eta_k] = 0$
 123 and $\eta_k \perp \tilde{x}_k$. A useful geometric perspective
 124 for analyzing and organizing the labeled data
 125 points in \mathcal{S} is through the concept of Voronoi
 126 tessellation. In this context, each point \tilde{x}_k in
 127 \mathcal{S} is referred to as a site, and these sites collec-
 128 tively induce a partition of the instance space \mathcal{X} into distinct regions as follows:
 129

$$\mathcal{V}_k := \{x \in \mathcal{X} : \|x - \tilde{x}_k\|_2 \leq \|x - \tilde{x}_j\|_2 \text{ for all } j \neq k\}, \quad k = 1, \dots, |\mathcal{S}|. \quad (1)$$

130 Each convex region \mathcal{V}_k is the *Voronoi cell* of site \tilde{x}_k and contains all points closer to that site than
 131 to any other. Whenever two distinct cells \mathcal{V}_j and \mathcal{V}_k meet, their common boundary $\mathcal{F}_{jk} = \mathcal{V}_j \cap \mathcal{V}_k$ for each $j \neq k$ is called a **Voronoi face**. Points on or near such faces are equidistant to at least two
 132 sites, so no single labeled sample dominates their local geometry.
 133

134 **2.2 INFORMATIVENESS OF VORONOI FACES: A THEORETICAL PERSPECTIVE**
 135

136 Geometrically, selecting samples near Voronoi faces naturally promotes diversity by focusing on
 137 regions between labeled sites. We now argue that these regions are also intrinsically informative
 138 from the perspective of model uncertainty.
 139

140 Formally, suppose both the trained predictor \hat{f} and the ground-truth function f_* are L -Lipschitz,
 141 the observation noise η_k is zero-mean, and a “good” event holds with high probability such that
 142 $|\hat{f}(\tilde{x}_k) - f_*(\tilde{x}_k)| \leq \epsilon$, for some $\epsilon = \epsilon(|\mathcal{S}|) > 0$. This statistical error typically decays as $|\mathcal{S}|^{-\beta}$ for
 143 some $\beta > 0$, depending on the noise distribution and function class (Tsybakov, 2009), and can be
 144 regarded as small.

145 For any unlabeled point $x' \in \mathcal{X}$ and labeled site $\tilde{x}_k \in \mathcal{S}$, the triangle inequality gives
 146

$$\begin{aligned} |\hat{f}(x') - f_*(x')| &\leq |\hat{f}(x') - \hat{f}(\tilde{x}_k)| + |\hat{f}(\tilde{x}_k) - f_*(\tilde{x}_k)| + |f_*(\tilde{x}_k) - f_*(x')| \\ &\leq 2L\|x' - \tilde{x}_k\|_2 + \epsilon, \end{aligned}$$

147 where the second line uses Lipschitzness and the “good” event. Thus,
 148

$$f_*(x') - (2L\|x' - \tilde{x}_k\|_2 + \epsilon) \leq \hat{f}(x') \leq f_*(x') + (2L\|x' - \tilde{x}_k\|_2 + \epsilon).$$

149 Under the “good” event, Popoviciu’s inequality (Popoviciu, 1935) then implies
 150

$$\text{Var}[\hat{f}(x')] \leq (2L\|x' - \tilde{x}_k\|_2 + \epsilon)^2.$$

151 As ϵ does not depend on k^1 , minimizing over $k \in \mathcal{S}$ shows that the predictive variance at x' is
 152 controlled by the squared distance to the nearest labeled site.
 153

154 Since predictive variance is governed by the distance to labeled sites, it is natural to sample points
 155 that maximize this distance relative to multiple sites—namely, those near Voronoi faces. Under
 156 Lipschitzness, each Voronoi cell can be viewed as a region where labels differ only within a bounded
 157

¹While instance-dependent errors are possible, we disregard them here for simplicity.

range, so points near faces are precisely those where this bounded variation is shared across sites. Such points are unstable: small perturbations of the labeled sites can shift the Voronoi partition and change the site to which they correspond. This instability parallels disagreement-based active classification, where informative samples lie near decision boundaries because small changes in the hypothesis flip their labels (Seung et al., 1992; Hanneke, 2014; Cho et al., 2024). While regression lacks discrete boundaries, Voronoi faces play an analogous role, with samples near them forming natural candidates for informative queries.

2.3 VORONOI-BASED LEAST DISAGREE METRIC (VLDM)

Selecting samples near Voronoi faces offers better coverage of the interior regions of the input space, but computing the Voronoi diagram is computationally prohibitive in high-dimensional settings. Specifically, constructing the diagram for S sites in \mathbb{R}^d requires $\mathcal{O}(S \log S + S^{\lfloor d/2 \rfloor})$ time (Klee, 1980), which is infeasible for high dimensions. To overcome this challenge, we introduce an efficient surrogate that estimates Voronoi face proximity without computing the diagram.

Let $S \in \mathbb{N}$ denote the number of sites, and let \mathcal{X} be the instance space under consideration. Define $\binom{\mathcal{X}}{S} := \{\mathcal{S} \subset \mathcal{X} : |\mathcal{S}| = S\}$ as the collection of all possible site configurations of size S . We fix a feature mapping $\mathbf{z} : \mathbf{x} \in \mathcal{X} \mapsto \mathbf{z}_{\mathbf{x}} \in \mathbb{R}^d$, e.g., the final-layer representation from a neural network.

To define Voronoi cells in feature space, we first assume a fixed but arbitrary ordering over the sites within each $\mathcal{S} \in \binom{\mathcal{X}}{S}$. This does not affect the geometry of Voronoi partitions and is used solely to make $h_{\mathcal{S}}$ well-defined. We can then define the Voronoi hypothesis space $\mathcal{H} := \{h_{\mathcal{S}} \mid \mathcal{S} \in \binom{\mathcal{X}}{S}\}$, where we associate each $\mathcal{S} = \{\tilde{\mathbf{x}}_i\}_{i \in [S]}$ with a hypothesis over \mathcal{X} , $h_{\mathcal{S}} : \mathcal{X} \rightarrow [S]$, defined as

$$h_{\mathcal{S}}(\mathbf{x}) := \arg \min_{k \in [S]} \left\{ d_z(\mathbf{x}, \tilde{\mathbf{x}}_k) \triangleq \|\mathbf{z}_{\mathbf{x}} - \mathbf{z}_{\tilde{\mathbf{x}}_k}\|_2 \right\}. \quad (2)$$

We refer to $d_z(\cdot, \cdot)$ as the *feature distance*.

Permutation-invariant alignment. Since the label assigned by $h_{\mathcal{S}}$ corresponds to the index of the nearest site, the labels themselves are arbitrary up to permutation. For two Voronoi hypotheses $h_{\mathcal{S}}$ and $h_{\mathcal{S}'}$, we define the optimal permutation that attains the maximal overlap between the two Voronoi diagrams as $\pi_{\mathcal{S}, \mathcal{S}'} := \arg \min_{\pi \in \text{Sym}(S)} \mathbb{P}_{X \sim \mathcal{D}_{\mathcal{X}}} (h_{\mathcal{S}}(X) \neq \pi \circ h_{\mathcal{S}'}(X))$, where $\text{Sym}(S)$ is the set of permutations over $[S]$. This is analogous to the common practice in clustering evaluation, where accuracy is measured up to label permutations (Lu & Zhou, 2016).

In practice, if \mathcal{S}' is a slight perturbation of \mathcal{S} , then $\pi_{\mathcal{S}, \mathcal{S}'}$ often corresponds to maintaining the same label indices due to the geometric stability² of Voronoi regions under small shifts (Reem, 2011). For instance, for $\mathcal{S} = \{\tilde{\mathbf{x}}_k\}_{k \in [S]}$ and small perturbations $\{\mathbf{\epsilon}_k\}_{k \in [S]}$, we would have that $\mathcal{S}' = \{\tilde{\mathbf{x}}'_k := \tilde{\mathbf{x}}_k + \mathbf{\epsilon}_k\}_{k \in [S]}$, i.e., the site labels do not change from \mathcal{S} to \mathcal{S}' and vice-versa. Thus, from hereon and forth, we will simply drop the dependency on $\pi_{\mathcal{S}, \mathcal{S}'}$.

Voronoi-based Least Disagree Metric. Inspired by disagreement-based active classification (Hanneke, 2014; Cho et al., 2024), we define the **Voronoi-based Least Disagree Metric (VLDM)** to quantify how easily the Voronoi cell to which a sample belongs changes under slight perturbations of the site configuration.

For each $\mathcal{S} \in \binom{\mathcal{X}}{S}$ and $\mathbf{x}_0 \in \mathcal{X}$, the **VLDM** is defined as follows:

$$L(h_{\mathcal{S}}, \mathbf{x}_0) := \inf_{h_{\mathcal{S}'} \in \mathcal{H}^{h_{\mathcal{S}}, \mathbf{x}_0}} \left\{ \rho(h_{\mathcal{S}'}, h_{\mathcal{S}}) \triangleq \mathbb{P}_{X \sim \mathcal{D}_{\mathcal{X}}} (h_{\mathcal{S}}(X) \neq h_{\mathcal{S}'}(X)) \right\}, \quad (3)$$

where $\mathcal{D}_{\mathcal{X}}$ is the marginal distribution over \mathcal{X} and $\mathcal{H}^{h_{\mathcal{S}}, \mathbf{x}_0} := \{h_{\mathcal{S}'} \in \mathcal{H} \mid h_{\mathcal{S}}(\mathbf{x}_0) \neq h_{\mathcal{S}'}(\mathbf{x}_0)\}$ is the set of Voronoi hypotheses in \mathcal{H}_N that *disagree* with $h_{\mathcal{S}}$ on \mathbf{x}_0 . Again, recall that as long as \mathcal{S}' is obtained from a small perturbation of \mathcal{S} , there is no need to explicitly compute $\pi_{\mathcal{S}, \mathcal{S}'}$.

²Precisely speaking, a small change of the sites yields a small change in the corresponding Voronoi cells with respect to the Hausdorff distance (Reem, 2011, Theorem 5.1).

216 **Algorithm 1** Empirical Evaluation of VLDM

217 **Input:**

218 \mathbf{x} : target sample

219 $\mathcal{S}^{(0)}$: site configurations

220 M : number of samples for approximation

221 $\{\sigma_v^2\}_{v=1}^V$, N : set of variance and number of perturbation

222

223 $L_{\mathbf{x}} = 1$

224 $D_{\mathbf{x}}^{(0)} = \min_{\tilde{\mathbf{x}} \in \mathcal{S}^{(0)}} d_{\mathbf{z}}(\mathbf{x}, \tilde{\mathbf{x}})$, $K_{\mathbf{x}}^{(0)} = h_{\mathcal{S}^{(0)}}(\mathbf{x})$ (for TESSAR)

225 **for** $v = 1$ to V **do**

226 **for** $n = 1 + (v-1)\lfloor N/V \rfloor$ to $v\lfloor N/V \rfloor$ **do**

227 Construct $\mathcal{S}^{(n)}$ with $\mathbf{z}_{\tilde{\mathbf{x}}'} \sim \mathcal{N}(\mathbf{z}_{\tilde{\mathbf{x}}}, \sigma_v^2 \mathbf{I})$, $\forall \tilde{\mathbf{x}} \in \mathcal{S}^{(0)}$

228 **if** $h_{\mathcal{S}^{(n)}}(\mathbf{x}) \neq h_{\mathcal{S}^{(0)}}(\mathbf{x})$ **then**

229 $L_{\mathbf{x}} \leftarrow \min\{L_{\mathbf{x}}, \rho_M(h_{\mathcal{S}^{(n)}}, h_{\mathcal{S}^{(0)}})\}$

230 $D_{\mathbf{x}}^{(n)} = \min_{\tilde{\mathbf{x}} \in \mathcal{S}^{(n)}} d_{\mathbf{z}}(\mathbf{x}, \tilde{\mathbf{x}})$, $K_{\mathbf{x}}^{(n)} = h_{\mathcal{S}^{(n)}}(\mathbf{x})$ (for TESSAR)

231 **return:** $L_{\mathbf{x}}$ (for VLDM), $\{D_{\mathbf{x}}^{(n)}, K_{\mathbf{x}}^{(n)}, \mathcal{S}^{(n)}\}_{n=0}^N$ (for TESSAR)

234 2.4 EMPIRICAL EVALUATION OF VLDM

235

236 We employ two approximation schemes to compute Eqn. 3 as in Cho et al. (2024). First, we replace

237 $\mathcal{H}^{h_{\mathcal{S}}, \mathbf{x}_0}$ with a finite collection of N hypotheses, $\mathcal{H}_N^{h_{\mathcal{S}}, \mathbf{x}_0}$. Each $h_{\mathcal{S}'} \in \mathcal{H}_N^{h_{\mathcal{S}}, \mathbf{x}_0}$ is generated by

238 perturbing \mathcal{S} using multiple Gaussian noise levels. Specifically, for each variance parameter σ_v^2

239 in the predefined set $\{\sigma_v^2\}_{v=1}^V$, we construct perturbed sites $\mathbf{z}_{\tilde{\mathbf{x}}'} \sim \mathcal{N}(\mathbf{z}_{\tilde{\mathbf{x}}}, \sigma_v^2 \mathbf{I})$ to obtain \mathcal{S}' . For

240 each resulting perturbed configuration \mathcal{S}' , we include the corresponding hypothesis $h_{\mathcal{S}'}$ in $\mathcal{H}_N^{h_{\mathcal{S}}, \mathbf{x}_0}$

241 whenever $h_{\mathcal{S}'}(\mathbf{x}_0) \neq h_{\mathcal{S}}(\mathbf{x}_0)$. The use of multiple variances enables VLDM to capture how easily

242 the Voronoi cell to which a sample belongs changes across a range of perturbation magnitudes.

243 Second, we replace ρ with Monte-Carlo approximation with M samples:

244

$$\rho_M(h_{\mathcal{S}'}, h_{\mathcal{S}}) := \frac{1}{M} \sum_{i=1}^M \mathbb{I}[h_{\mathcal{S}'}(X_i) \neq h_{\mathcal{S}}(X_i)], \quad X_i \stackrel{i.i.d.}{\sim} \mathcal{D}_{\mathcal{X}}, \quad (4)$$

245

246 where $\mathbb{I}[\cdot]$ is the indicator function. Finally, we define the empirical VLDM as $L_{N,M}(h_{\mathcal{S}}, \mathbf{x}_0) :=$

247 $\inf_{h_{\mathcal{S}'} \in \mathcal{H}_N^{h_{\mathcal{S}}, \mathbf{x}_0}} \rho_M(h_{\mathcal{S}'}, h_{\mathcal{S}})$. Under certain regularity conditions, its asymptotic consistency is guar-

248 anteed (Cho et al., 2024, Theorem 1), which then implies that the ordering of empirically evaluated

249 VLDM values is preserved in probability (Cho et al., 2024, Corollary 1); see Figure 3 in Section 4

250 for an empirical demonstration of this claim.

251 Algorithm 1 summarizes the above discussions as a pseudocode for empirically evaluating the

252 VLDM of \mathbf{x} for given $\mathcal{S}^{(0)}$. Note that other than the computed empirical VLDM $L_{\mathbf{x}}$, the algorithm

253 also outputs other values $\{D_{\mathbf{x}}^{(n)}, K_{\mathbf{x}}^{(n)}, \mathcal{S}^{(n)}\}_{n=0}^N$; these are used for VLDM-based active learning

254 to be described in Section 3.

255 3 TESSAR: VORONOI TESSELLATION-BASED ACTIVE REGRESSION

256 **Acquisition Score.** To enable balanced sampling across both the interior and periphery of the

257 input space, we combine three geometry-based criteria: a VLDM-based weight, a distance score,

258 and a density-aware representativity term. Each component contributes to covering different spatial

259 regions or properties of the input space. We first define a VLDM-based weight:

260

$$\gamma_{\mathbf{x}} = \frac{e^{-\eta_{\mathbf{x}}}}{\sum_{\mathbf{x}_j \in \mathcal{P}} e^{-\eta_{\mathbf{x}_j}}}, \quad \text{where} \quad \eta_{\mathbf{x}} = \frac{(L_{\mathbf{x}} - L_q)_+}{L_q}. \quad (5)$$

261

262 Here, L_q denotes the q^{th} smallest VLDM value in the pool data and $(\cdot)_+ = \max\{0, \cdot\}$. This

263 formulation gives exponentially higher weight to samples with smaller VLDM values, encouraging

264 selection near Voronoi faces and thus improving coverage of interior regions. To complement this,

270 **Algorithm 2** Active Learning with TESSAR

271 **Input:**

272 $\mathcal{L}_0, \mathcal{U}_0$: Initial labeled and unlabeled samples

273 q : query size

274 T : number of acquisition steps

275

276 **for** $t = 0$ **to** $T - 1$ **do**

277 Train model using \mathcal{L}_t

278 Set $\mathcal{P} \subseteq \mathcal{U}_t$ and $\mathcal{S}^{(0)} = \{\mathbf{x}_i \mid (\mathbf{x}_i, y_i) \in \mathcal{L}_t\}$

279 Get $L_{\mathbf{x}}$, $\{D_{\mathbf{x}}^{(n)}, K_{\mathbf{x}}^{(n)}\}_{n=0}^N$ of $\mathbf{x} \in \mathcal{P}$ and $\{\mathcal{S}^{(n)}\}_{n=0}^N$ using Algorithm 1

280 $\mathcal{Q}_0 \leftarrow \emptyset$

281 **for** $j = 1$ **to** q **do**

282 Compute $\gamma_{\mathbf{x}}$, $S_{\mathbf{x}}$ using Eqn. 5 and 7

283 $\tilde{\mathbf{x}}_{\text{new}} = \arg \max_{\mathbf{x} \in \mathcal{P}} \gamma_{\mathbf{x}} * D_{\mathbf{x}}^{(0)} * S_{\mathbf{x}}$

284 $\mathcal{Q}_j \leftarrow \mathcal{Q}_{j-1} \cup \{\tilde{\mathbf{x}}_{\text{new}}\}$

285 **for** $\mathbf{x} \in \mathcal{P}$ **do**

286 $L_{\mathbf{x}}, \{D_{\mathbf{x}}^{(n)}, K_{\mathbf{x}}^{(n)}, \mathcal{S}^{(n)}\}_{n=0}^N \leftarrow \text{UPDATEVLDM}(\mathbf{x}, \tilde{\mathbf{x}}_{\text{new}}, L_{\mathbf{x}}, \{D_{\mathbf{x}}^{(n)}, K_{\mathbf{x}}^{(n)}, \mathcal{S}^{(n)}\}_{n=0}^N)$

287 $\mathcal{L}_{t+1} \leftarrow \mathcal{L}_t \cup \{(\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathcal{Q}_q\}$, $\mathcal{U}_{t+1} \leftarrow \mathcal{U}_t \setminus \mathcal{Q}_q$

288 **subroutine** $\text{UPDATEVLDM}(\mathbf{x}, \tilde{\mathbf{x}}_{\text{new}}, L_{\mathbf{x}}, \{D_{\mathbf{x}}^{(n)}, K_{\mathbf{x}}^{(n)}, \mathcal{S}^{(n)}\}_{n=0}^N)$:

289 $\mathcal{S}^{(0)} \leftarrow \mathcal{S}^{(0)} \cup \{\tilde{\mathbf{x}}_{\text{new}}\}$

290 **if** $d_z(\mathbf{x}, \tilde{\mathbf{x}}_{\text{new}}) < D_{\mathbf{x}}^{(0)}$ **then**

291 $D_{\mathbf{x}}^{(0)} = d_z(\mathbf{x}, \tilde{\mathbf{x}}_{\text{new}})$, $K_{\mathbf{x}}^{(0)} = |\mathcal{S}^{(0)}|$

292 **for** $v = 1$ **to** V **do**

293 **for** $n = 1 + (v - 1)\lfloor N/V \rfloor$ **to** $v\lfloor N/V \rfloor$ **do**

294 Sample $\tilde{\mathbf{x}}_{\text{new}}^{(n)} \sim \mathcal{N}(\tilde{\mathbf{x}}_{\text{new}}, \sigma_v^2 \mathbf{I})$

295 $\mathcal{S}^{(n)} \leftarrow \mathcal{S}^{(n)} \cup \{\tilde{\mathbf{x}}_{\text{new}}^{(n)}\}$

296 **if** $d_z(\mathbf{x}, \tilde{\mathbf{x}}_{\text{new}}^{(n)}) < D_{\mathbf{x}}^{(n)}$ **then**

297 $D_{\mathbf{x}}^{(n)} = d_z(\mathbf{x}, \tilde{\mathbf{x}}_{\text{new}}^{(n)})$, $K_{\mathbf{x}}^{(n)} = |\mathcal{S}^{(n)}|$

298 **if** $K_{\mathbf{x}}^{(n)} \neq K_{\mathbf{x}}^{(0)}$ **then**

299 $L_{\mathbf{x}} \leftarrow \min\{L_{\mathbf{x}}, \rho_M(h_{\mathcal{S}^{(n)}}, h_{\mathcal{S}^{(0)}})\}$

300 **return:** $L_{\mathbf{x}}, \{D_{\mathbf{x}}^{(n)}, K_{\mathbf{x}}^{(n)}, \mathcal{S}^{(n)}\}_{n=0}^N$

301 we use the sample’s shortest feature distance to the sites, referred to as ‘DIST’:

$$D_{\mathbf{x}} = \min_{\tilde{\mathbf{x}} \in \mathcal{S}} d_z(\mathbf{x}, \tilde{\mathbf{x}}), \quad (6)$$

305 which captures how far the sample is from existing sites. This encourages exploration of under-
306 represented peripheral regions. Together, VLDM and DIST provide coverage across the full input
307 domain and jointly contribute to both informativeness and diversity. However, they may overlook
308 the underlying data distribution. To account for sample density, we incorporate a representativity
309 score inspired by cluster-based sampling (Holzmüller et al., 2023), referred to as ‘BIN’:

$$S_{\mathbf{x}} = \sum_{\mathbf{x}' \in \mathcal{P}: h_{\mathcal{S}}(\mathbf{x}') = h_{\mathcal{S}}(\mathbf{x})} D_{\mathbf{x}'}^2. \quad (7)$$

313 This score is shared across all samples belonging to the same Voronoi cell and reflects the cell’s local
314 density based on intra-cell distances. It encourages sampling in more densely populated regions,
315 aligning the query strategy with the overall data distribution. Finally, the three criteria are combined
316 multiplicatively to score each candidate. This unified strategy ensures that selected samples are
317 informative, spatially diverse, and representative of the underlying distribution.

318 **TESSAR (TEsellation-based Sampling for Active Regression).** We now introduce **TESSAR**
319 (Algorithm 2), a Voronoi tessellation-based active regression algorithm. At each step t , the model is
320 trained on \mathcal{L}_t to extract features for the pool data, where the pool is the set of all unlabeled samples,
321 $\mathcal{P} \subseteq \mathcal{U}_t$. The labeled inputs serve as sites, $\mathcal{S}^{(0)} = \{\mathbf{x}_i \mid (\mathbf{x}_i, y_i) \in \mathcal{L}_t\}$. For each $\mathbf{x} \in \mathcal{P}$, the
322 quantities $L_{\mathbf{x}}, \{D_{\mathbf{x}}^{(n)}, K_{\mathbf{x}}^{(n)}\}_{n=0}^N$ are computed, and $\{\mathcal{S}^{(n)}\}_{n=0}^N$ is obtained via Algorithm 1. The
323 query set \mathcal{Q}_0 is initialized as \emptyset . For $j = 1, \dots, q$, $\gamma_{\mathbf{x}}$ and $S_{\mathbf{x}}$ are evaluated for each $\mathbf{x} \in \mathcal{P}$ using

Figure 3: Empirically evaluated VLDMs by Algorithm 1 with respect to the number of perturbations, N , on Protein (a), Road (b), and Stock (c) datasets. Observe that the evaluated VLDM monotonically decreases as N increases, and the rank order is well maintained.

Figure 4: The performance comparison based on the combinations of VLDM (γ_x), DIST (D_x), and BIN (S_x) on Protein (a), Road (b), and Stock (c) datasets. The combination of three criteria achieves the best performance.

Eqn. 5 and Eqn. 7. The algorithm then selects $\tilde{x}_{\text{new}} \in \mathcal{P}$ maximizing $\gamma_x * D_x^{(0)} * S_x$, which is our acquisition score, and appends \tilde{x}_{new} to \mathcal{Q}_j . Afterwards, $L_x, \{D_x^{(n)}, K_x^{(n)}, S^{(n)}\}_{n=0}^N$ are updated using subroutine **UPDATEVLDM()**, described below. Finally, the algorithm queries the labels y_i for all $x_i \in \mathcal{Q}_q$, and proceeds until $t = T - 1$.

Naïvely, one would recompute the VLDM from scratch after every selection within a batch, as each newly selected sample alters the Voronoi structure, causing the Voronoi faces and hence the VLDM values. This would require $N \cdot |\mathcal{P}| \cdot q \cdot (|\mathcal{L}| + (q + 1)/2)$ distance computations. To avoid this inefficiency, TESSAR employs a dynamic update strategy to compute VLDM (subroutine **UPDAT-ELVLDM()**). It first computes distances between all pool samples and the initial labeled site once, then incrementally updates only the distances involving newly selected samples. This reduces the total number of computations to $N \cdot |\mathcal{P}| \cdot (|\mathcal{L}| + q)$, effectively shaving off a factor of q . Nevertheless, runtime still scales with the perturbation budget N and pool size $|\mathcal{P}|$, which may require further optimization in large-scale settings (see Appendix C.1). A simpler margin-based variant—where the margin is defined as the difference between the distances from a sample to its nearest and second-nearest Voronoi centers—avoids this dependence on N , but its performance is noticeably weaker than VLDM-based TESSAR (see Appendix C.2). The subroutine **UPDATEVLDM()** implements this dynamic update: given a newly selected site \tilde{x}_{new} and $L_x, \{D_x^{(n)}, K_x^{(n)}, S^{(n)}\}_{n=0}^N$, it computes the distances from \tilde{x}_{new} (and its perturbations) to the pool data, compares them with existing distances, updates $\{D_x^{(n)}, K_x^{(n)}\}_{n=0}^N$, and then updates the corresponding L_x values. Moreover, a comparison with a static VLDM variant shows that removing these dynamic updates leads to substantially degraded performance, highlighting the necessity of the dynamic strategy (see Appendix C.3).

4 EXPERIMENTS

This section presents the empirical evaluation of VLDM and TESSAR. We compare its performance against various baseline algorithms on fourteen tabular datasets. We employ a 2-layer MLP with 512

378 hidden units. All results represent the average performance over 20 repetitions. Detailed descriptions
 379 of datasets and experimental settings are provided in Appendix A.
 380

381 **4.1 CONSISTENCY OF VLDM**
 382

383 Figure 3 shows the empirically evaluated VLDMs with respect to N of the Protein, Road, and Stock
 384 datasets. We denote x_i as the i^{th} sample *ordered* by the final evaluated VLDM. The empirically
 385 evaluated VLDMs are monotonically decreasing while maintaining rank order as N increases.
 386

387 **4.2 EFFECT OF THE COMPONENTS IN TESSAR**
 388

389 We conduct a comprehensive performance comparison using various combinations of the three cri-
 390 teria. Figure 4 shows the mean log of RMSE with respect to the number of labeled samples on the
 391 Protein, Road, and Stock datasets. Individually, VLDM and DIST yield limited performance gains,
 392 as each covers only a subset of the input space. However, combining them leads to a significant
 393 performance improvement by jointly covering both the interior (via VLDM) and the periphery (via
 394 DIST), highlighting their complementary nature. Adding BIN to this combination provides an ad-
 395 ditional improvement. The inclusion of BIN enhances the sampling strategy by aligning it with the
 396 underlying data distribution, particularly in dense regions. Based on these results, we adopt a unified
 397 selection strategy that iteratively selects the sample that maximizes the product of the three scores.
 398

399 **4.3 COMPARING TESSAR TO BASELINE ALGORITHMS**

400 We now compare the performance of the proposed TESSAR with various baselines.

401 **Baseline algorithms** Each baseline algorithm is denoted as follows: ‘Rand’: random sampling,
 402 ‘Coreset’: core-set selection (Sener & Savarese, 2018), ‘**ProbCov**’: **maximizing probability cov-
 403 erage** (Yehuda et al., 2022), ‘BALD’: Bayesian active learning by disagreement (Houlsby et al., 2011),
 404 ‘BatchBALD’: mutual information between a joint of multiple data points and the model parame-
 405 ters (Kirsch et al., 2019), ‘BADGE’: batch active learning by diverse gradient embeddings Ash et al.
 406 (2020), ‘BAIT’: batch active learning via information metrics (Ash et al., 2021), ‘ACS-FW’: active
 407 Bayesian coresets with Frank-Wolfe optimization (Pinsler et al., 2019), and ‘LCMD’: largest cluster
 408 maximum distance (Holzmüller et al., 2023).

409 **Performance comparison across datasets** The performance profile (Dolan & Moré, 2002) and
 410 penalty matrix (Ash et al., 2020) are utilized for comprehensive comparisons across all datasets.
 411 The details of the performance profile and penalty matrix are described in Appendix B. Figure 5a
 412 shows the performance profile for regression of all algorithms with respect to δ . TESSAR consis-
 413 tently maintains the highest $R_A(\delta)$ across all considered δ values. Notably, $R_{\text{TESSAR}}(0) = 41\%$,
 414 significantly exceeding the values of other algorithms, including LCMD (29%). Figure 5b further
 415 supports TESSAR’s superiority. In the first row, TESSAR outperforms all the other algorithms,
 416 including LCMD (1.0). Similarly, the first column shows that most algorithms fail to outperform
 417 TESSAR, with a maximum penalty of 0.3.

418 **Performance comparison per dataset** Table 1 presents the mean of performance differences
 419 (RMSE relative to Random) averaged over repetitions and steps. The negative values indicate better
 420 performance than Random. We observe that TESSAR consistently performs best or is comparable
 421 to other algorithms across all datasets.

422 **5 RELATED WORKS**

425 In active learning for regression, a variety of sampling strategies have been developed, each bal-
 426 ancing informativeness, diversity, and representativeness in different ways. *Query by committee*
 427 (*QBC*) methods (Burbidge et al., 2007; Fazakis et al., 2020) select samples with the highest pre-
 428 dictive disagreement among an ensemble of regressors. While they effectively capture uncertainty
 429 in well-specified models, they suffer in the presence of noise or model misspecification and in-
 430 cur high computational cost due to repeated model training. *Model change*-based algorithms (Cai
 431 et al., 2017; Park & Kim, 2020) select samples that are expected to induce the greatest change
 in model parameters, often approximated via gradient information. These methods directly target

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

(a)

(b)

447
448
449 Figure 5: The performance comparison across datasets. (a) The performance profile results. The
450 AUC value is expressed as a percentage. TESSAR consistently maintains the highest performance
451 across all considered δ values. (b) The penalty matrix results.

452
453 Table 1: The mean of the repetition-wise averaged performance (RMSE) differences, relative to
454 Random, over the entire steps. The negative value indicates higher performance than Random.
(bold+underlined): best performance, **bold**: second-best performance)

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

	TESSAR	Coreset	ProbCov	BALD	BatchBALD	BADGE	BAIT	ACS-FW	LCMD
CT slices	-0.0679	-0.0504	-0.0040	0.0227	-0.0435	-0.0395	-0.0565	0.0028	-0.0679
Diamonds	-0.0110	-0.0094	0.0007	-0.0019	-0.0079	-0.0091	-0.0106	-0.0033	-0.0105
Friedman	-0.0030	-0.0033	0.0001	0.0031	-0.0026	-0.0011	-0.0049	-0.0017	-0.0026
KEGG undir	-0.1615	-0.1435	0.0088	0.0197	-0.0960	-0.1297	-0.1214	-0.0668	-0.1598
Methane	-0.0520	-0.0346	-0.0274	0.0251	-0.0185	-0.0432	-0.0355	-0.0265	-0.0510
MLR kNN	-0.1201	-0.0192	0.0031	0.0906	-0.0580	-0.0925	-0.0872	0.0006	-0.1182
Online video	-0.1183	-0.1000	-0.0001	-0.0655	-0.0943	-0.0991	-0.0946	-0.0718	-0.1130
Protein	-0.0082	0.0110	-0.0003	0.0308	0.0207	-0.0075	0.0016	0.0065	-0.0054
Query	-0.0047	0.0004	-0.0001	0.0262	0.0121	-0.0023	-0.0029	0.0023	-0.0054
Road	0.0001	0.0176	0.0000	0.1337	0.0441	-0.0004	0.0109	0.0294	0.0036
SARCOS	-0.0215	-0.0080	-0.0004	0.0139	-0.0016	-0.0133	-0.0149	-0.0093	-0.0188
SGEMM	-0.0141	-0.0004	-0.0015	0.0817	0.0114	-0.0045	-0.0038	0.0129	-0.0121
Stock	-0.0051	0.0046	-0.0003	0.0100	0.0075	-0.0036	-0.0001	0.0003	-0.0028
WEC Sydney	-0.0001	0.0163	0.0001	0.0229	0.0045	-0.0009	0.0004	0.0021	0.0010

472 model improvement but typically require ensemble estimation and suffer from high computational
473 complexity, particularly in batch settings. *Black box* approaches (Kirsch, 2023) estimate predictive
474 uncertainty using covariance kernels derived from ensemble predictions. They are compatible
475 with non-differentiable models and achieve strong empirical performance, but rely on ensemble
476 diversity, which may degrade in low-variance models such as random forests or boosted ensembles.
477 *Inverse distance*-based methods (Bemporad, 2023) combine model uncertainty and spatial explo-
478 ration using inverse-distance weighting. These methods avoid model retraining and generalize to
479 both pool- and population-based settings, but their reliance on distance heuristics limits their effec-
480 tiveness in high-dimensional or discontinuous spaces. *Greed sampling* methods (Wu et al., 2019)
481 select samples that maximize diversity in the input or output space. These methods are model-aware
482 and promote label spread and representativity, but require model updates after each selection, in-
483 creasing computational overhead. *Distribution/coverage*-based methods (Sener & Savarese, 2018;
484 Yehuda et al., 2022; Bae et al., 2024) formulate selection as covering the unlabeled distribution in
485 a learned feature space. Both are label-agnostic and transfer to regression by measuring distances
in task-relevant embeddings. However, performance hinges on the quality of the embedding/metric
and the choice of coverage radius, and the construction of the graph or mixed integer program (MIP)

486 can be costly for very large pools. Clustering-based methods (Wu, 2019; Holzmüller et al., 2023)
 487 select samples based on coverage and diversity in feature space. Wu (2019) proposes a sequential
 488 representative-diverse (RD) framework using k -means clustering, optionally combined with uncer-
 489 tainty measures. Holzmüller et al. (2023) introduce LCMD, a modular batch-mode method that
 490 leverages neural tangent kernels and clustering to balance core sampling principles. While effective,
 491 both methods may suffer from high runtime due to repeated clustering or kernel computations. **TES-
 492 SAR shares LCMD’s use of diversity- and density-oriented components, but fundamentally differs
 493 in its VLDM term, which targets samples near Voronoi faces rather than cluster peripheries. This
 494 geometric mechanism prevents selection of outer-boundary points—where no Voronoi faces form—and
 495 instead reliably guides sampling toward informative interior regions.**

496 6 CONCLUSION

499 This paper proposes TESSAR, a geometry-driven active learning framework for regression based on
 500 Voronoi tessellation. At the core of TESSAR is the Voronoi-based Least Disagree Metric (VLDM),
 501 which captures interior structure by identifying samples that lie near Voronoi faces. To ensure full
 502 spatial coverage, TESSAR combines VLDM with a distance-based score that promotes exploration
 503 of peripheral regions and a region-level representativity term that reflects local data density. This
 504 unified strategy enables the model to acquire informative samples from both the interior and pe-
 505 riphery while aligning with the overall data distribution. While classification-based methods like
 506 LDM-S rely on label-defined decision boundaries and are inherently limited to supervised settings,
 507 TESSAR selects samples purely based on geometric relationships among input instances. Empir-
 508 ical evaluations across multiple regression benchmarks show that TESSAR consistently achieves
 509 competitive or superior performance.

510 We conclude by highlighting several promising directions for future work. Although dynamically
 511 updating the Voronoi structure in VLDM improves the efficiency of TESSAR, it remains computa-
 512 tionally costly since each new sample perturbs the structure even within the same batch. Developing
 513 a more scalable variant of TESSAR, or even a new algorithmic principle inspired by our Voronoi-
 514 style intuition, is an important next step. Beyond active learning, one natural extension is to in-
 515 vestigate how Voronoi-based sample acquisition can guide pseudo-labeling or cluster selection in
 516 semi-supervised and unsupervised learning, where geometry rather than label information plays a
 517 central role. Finally, while we implicitly assume homoskedasticity, it remains an intriguing open
 518 question whether similar Voronoi-style principles can be extended to heteroskedastic settings.

519 REFERENCES

521 Christos Anagnostopoulos, Fotis Savva, and Peter Triantafillou. Scalable aggregation predictive
 522 analytics: a query-driven machine learning approach. *Applied Intelligence*, 48:2546–2567, 2018.

524 Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Gone Fishing: Neural Ac-
 525 tive Learning with Fisher Embeddings. In *Advances in Neural Information Processing Systems*,
 526 volume 34, pp. 8927–8939. Curran Associates, Inc., 2021.

528 Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
 529 Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds. In *International Confer-
 530 ence on Learning Representations*, 2020.

531 Wonho Bae, Junhyug Noh, and Danica J Sutherland. Generalized coverage for more robust low-
 532 budget active learning. In *European Conference on Computer Vision*, pp. 318–334. Springer,
 533 2024.

535 Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning. In Nader H.
 536 Bshouty and Claudio Gentile (eds.), *Learning Theory – COLT 2007*, pp. 35–50, Berlin, Heidel-
 537 berg, 2007. Springer Berlin Heidelberg.

538 Rafael Ballester-Ripoll, Enrique G Paredes, and Renato Pajarola. Sobol tensor trains for global
 539 sensitivity analysis. *Reliability Engineering & System Safety*, 183:311–322, 2019.

540 William H. Beluch, Tim Genewein, Andreas Nurnberger, and Jan M. Kohler. The Power of Ensem-
 541 bles for Active Learning in Image Classification. In *2018 IEEE/CVF Conference on Computer*
 542 *Vision and Pattern Recognition*, pp. 9368–9377, 2018.

543

544 Alberto Bemporad. Active learning for regression by inverse distance weighting. *Information Sci-
 545 ences*, 626:275–292, 2023.

546 Robert Burbidge, Jem J Rowland, and Ross D King. Active learning for regression based on query
 547 by committee. In *Intelligent Data Engineering and Automated Learning-IDEAL 2007: 8th In-
 548 ternational Conference, Birmingham, UK, December 16-19, 2007. Proceedings 8*, pp. 209–218.
 549 Springer, 2007.

550

551 Wenbin Cai, Muhan Zhang, and Ya Zhang. Batch Mode Active Learning for Regression With
 552 Expected Model Change. *IEEE Transactions on Neural Networks and Learning Systems*, 28(7):
 553 1668–1681, 2017. doi: 10.1109/TNNLS.2016.2542184.

554

555 Juan M Cardenas, Ben Adcock, and Nick Dexter. CS4ML: A general framework for active learning
 556 with arbitrary data based on Christoffel functions. *Advances in Neural Information Processing
 557 Systems*, 36:19990–20037, 2023.

558

559 Seong Jin Cho, Gwangsu Kim, Junghyun Lee, Jinwoo Shin, and Chang D. Yoo. Querying Easily
 560 Flip-flopped Samples for Deep Active Learning. In *The Twelfth International Conference on
 Learning Representations*, 2024.

561

562 David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active Learning with Statistical Mod-
 563 els. *Journal of Artificial Intelligence Research*, 4(1):129–145, Mar 1996.

564

565 Tewodors Deneke, Habtegebrel Haile, Sébastien Lafond, and Johan Lilius. Video transcoding time
 566 prediction for proactive load balancing. In *2014 IEEE International Conference on Multimedia
 and Expo (ICME)*, pp. 1–6. IEEE, 2014.

567

568 Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
 569 profiles. *Mathematical Programming*, 91(2):201–213, Jan 2002.

570

571 Melanie Ducoffe and Frederic Precioso. Adversarial Active Learning for Deep Networks: a Margin
 572 Based Approach. *arXiv preprint arXiv:1802.09841*, 2018.

573

574 Nikos Fazakis, Georgios Kostopoulos, Stamatis Karlos, Sotiris Kotsiantis, and Kyriakos Sgarbas.
 575 An active learning ensemble method for regression tasks. *Intelligent Data Analysis*, 24(3):607–
 623, 2020.

576

577 Alexander Freytag, Erik Rodner, and Joachim Denzler. Selecting Influential Examples: Active
 578 Learning with Expected Model Output Changes. In *Computer Vision – ECCV 2014*, pp. 562–
 579 577, Cham, 2014. Springer International Publishing.

580

581 Jerome H. Friedman. Multivariate Adaptive Regression Splines. *The Annals of Statistics*, 19(1):1 –
 67, 1991. doi: 10.1214/aos/1176347963.

582

583 Franz Graf, Hans-Peter Kriegel, Matthias Schubert, Sebastian Pölsterl, and Alexander Cavallaro. 2D
 584 Image Registration in CT Images Using Radial Image Descriptors. In *Medical Image Comput-
 585 ing and Computer-Assisted Intervention-MICCAI 2011: 14th International Conference, Toronto,
 586 Canada, September 18-22, 2011, Proceedings, Part II 14*, pp. 607–614. Springer, 2011.

587

588 Steve Hanneke. Theory of Disagreement-Based Active Learning. *Foundations and Trends® in
 Machine Learning*, 7(2-3):131–309, 2014.

589

590 David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A Framework and
 591 Benchmark for Deep Batch Active Learning for Regression. *Journal of Machine Learning Re-
 592 search*, 24(164):1–81, 2023.

593

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian Active Learning
 for Classification and Preference Learning. *arXiv preprint arXiv:1112.5745*, 2011.

594 Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, and Andreas Krause. Transductive Ac-
 595 tive Learning: Theory and Applications. In *Advances in Neural Information Processing Systems*,
 596 volume 37, pp. 124686–124755. Curran Associates, Inc., 2024.

597

598 Manohar Kaul, Bin Yang, and Christian S. Jensen. Building Accurate 3D Spatial Networks to Enable
 599 Next Generation Intelligent Transportation Systems. In *2013 IEEE 14th International Conference*
 600 *on Mobile Data Management*, volume 1, pp. 137–146, 2013. doi: 10.1109/MDM.2013.24.

601 Hyoung-Moon Kim, Bani K Mallick, and C. C Holmes. Analyzing Nonstationary Spatial Data
 602 Using Piecewise Gaussian Processes. *Journal of the American Statistical Association*, 100(470):
 603 653–668, 2005.

604

605 Andreas Kirsch. Black-box batch active learning for regression. *Transactions on Machine Learning*
 606 *Research*, 2023. ISSN 2835-8856. Expert Certification.

607

608 Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. BatchBALD: Efficient and Diverse Batch
 609 Acquisition for Deep Bayesian Active Learning. In *Advances in Neural Information Processing*
 610 *Systems*, volume 32. Curran Associates, Inc., 2019.

611 Victor Klee. On the complexity of d-dimensional voronoi diagrams. *Archiv der Mathematik*, 34:
 612 75–80, 1980.

613

614 Jan Kremer, Kim Steenstrup Pedersen, and Christian Igel. Active learning with support vector
 615 machines. *WIREs Data Mining and Knowledge Discovery*, 4(4):313–326, 2014.

616

617 David D. Lewis and William A. Gale. A Sequential Algorithm for Training Text Classifiers. In
 618 *SIGIR '94*, pp. 3–12, London, 1994. Springer London.

619

620 Yu Lu and Harrison H. Zhou. Statistical and Computational Guarantees of Lloyd’s Algorithm and
 621 its Variants. *arXiv preprint arXiv:1612.02099*, 2016.

622

623 Zhao Tang Luo, Huiyan Sang, and Bani Mallick. A Bayesian Contiguous Partitioning Method for
 624 Learning Clustered Latent Variables. *Journal of Machine Learning Research*, 22(37):1–52, 2021.

625

626 Mehdi Neshat, Bradley Alexander, Markus Wagner, and Yuanzhong Xia. A detailed comparison of
 627 meta-heuristic methods for optimising wave energy converter placements. In *Proceedings of the*
 628 *genetic and evolutionary computation conference*, pp. 1318–1325, 2018.

629

630 Sung Ho Park and Seoung Bum Kim. Robust expected model change for active learning in regres-
 631 *sion*. *Applied Intelligence*, 50:296–313, 2020.

632

633 Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and José Miguel Hernández-Lobato. Bayesian
 634 Batch Active Learning as Sparse Subset Approximation. In *Advances in Neural Information*
 635 *Processing Systems*, volume 32. Curran Associates, Inc., 2019.

636

637 Christopher A. Pope, John Paul Gosling, Stuart Barber, Jill S. Johnson, Takanobu Yamaguchi, Gra-
 638 ham Feingold, and Paul G. Blackwell. Gaussian Process Modeling of Heterogeneity and Discon-
 639 tinuities Using Voronoi Tessellations. *Technometrics*, 63(1):53–63, 2021.

640

641 Tiberiu Popoviciu. Sur les équations algébriques ayant toutes leurs racines réelles. *Mathematica*
 642 (*Cluj*), 9:129–145, 1935.

643

644 Daniel Reem. The geometric stability of voronoi diagrams with respect to small changes of the
 645 sites. In *Proceedings of the twenty-seventh annual symposium on Computational geometry*, pp.
 646 254–263, 2011.

647

648 Ozan Sener and Silvio Savarese. Active Learning for Convolutional Neural Networks: A Core-Set
 649 Approach. In *International Conference on Learning Representations*, 2018.

650

651 H. S. Seung, M. Opper, and H. Sompolinsky. Query by Committee. In *Proceedings of the Fifth*
 652 *Annual Workshop on Computational Learning Theory*, COLT '92, pp. 287–294, New York, NY,
 653 USA, 1992. Association for Computing Machinery.

648 Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang, Daniel Ramage,
 649 Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software environment for inte-
 650 grated models of biomolecular interaction networks. *Genome research*, 13(11):2498–2504, 2003.
 651

652 Alexandre B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer Series in Statistics.
 653 Springer New York, 2009.

654 Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regression: An $o(n)$ algorithm
 655 for incremental real time learning in high dimensional space. In *Proceedings of the seventeenth*
 656 *international conference on machine learning (ICML 2000)*, volume 1, pp. 288–293. Morgan
 657 Kaufmann Burlington, MA, 2000.

658 Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadra-
 659 tiques. deuxième mémoire. recherches sur les paralléloèdres primitifs. *Journal für die reine und*
 660 *angewandte Mathematik (Crelles Journal)*, 1908(134):198–287, 1908.

661

662 Dongrui Wu. Pool-Based Sequential Active Learning for Regression. *IEEE Transactions on Neural*
 663 *Networks and Learning Systems*, 30(5):1348–1359, 2019. doi: 10.1109/TNNLS.2018.2868649.

664 Dongrui Wu, Chin-Teng Lin, and Jian Huang. Active learning for regression using greedy sampling.
 665 *Information Sciences*, 474:90–105, 2019.

666

667 Ofer Yehuda, Avihu Dekel, Guy Hacohen, and Daphna Weinshall. Active Learning Through a
 668 Covering Lens. In *Advances in Neural Information Processing Systems*, volume 35. Curran As-
 669 sociates, Inc., 2022.

670 Donggeun Yoo and In So Kweon. Learning Loss for Active Learning. In *2019 IEEE/CVF Confer-
 671 ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 93–102, 2019.

672

673 Dominik Ślęzak, Marek Grzegorowski, Andrzej Janusz, Michał Kozielski, Sinh Hoa Nguyen, Marek
 674 Sikora, Sebastian Stawicki, and Łukasz Wróbel. A framework for learning and embedding multi-
 675 sensor forecasting models into a decision support system: A case study of methane concentration
 676 in coal mines. *Information Sciences*, 451:112–133, 2018.

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A EXPERIMENTAL SETTINGS

Table 2: Overview of used datasets.

Short Name	Citation	Source	Training size	Test size	# of features
CT slices	(Graf et al., 2011)	UCI	42,800	10,700	379
Diamonds		OpenML	43,152	10,788	29
Friedman	(Friedman, 1991)	OpenML	32,615	8,153	10
KEGG under	(Shannon et al., 2003)	UCI	51,687	12,921	27
Methane	(Ślęzak et al., 2018)	OpenML	200,000	300,000	33
MLR kNN		OpenML	89,403	22,350	132
Online video	(Deneke et al., 2014)	UCI	55,028	13,756	26
Protein		OpenML	36,584	9,146	9
Query	(Anagnostopoulos et al., 2018)	UCI	160,000	40,000	4
Road	(Kaul et al., 2013)	UCI	200,000	234,874	2
SARCOS	(Vijayakumar & Schaal, 2000)	GPML	35,588	8,896	21
SGEMM	(Ballester-Ripoll et al., 2019)	UCI	193,280	48,320	14
Stock		OpenML	47,240	11,809	9
WEC Sydney	(Neshat et al., 2018)	UCI	57,600	14,400	48

The datasets, deep network architecture, and experimental setup follow the framework proposed by Holzmüller et al. (2023). Table 2 presents an overview of datasets used. We selected 14 tabular regression datasets from different sources. A fully connected neural network with two hidden layers, each comprising 512 neurons ($L = 3, d_1 = d_2 = 512$), is employed for all experiments. The neural tangent parameterization is used in conjunction with the ReLU activation function. All biases are initialized to zero, and weights are independently sampled from $\mathcal{N}(0, 1)$. Model training is performed using the Adam optimizer with default hyperparameters $\beta_1 = 0.9, \beta_2 = 0.999$. The initial learning rate is set to 0.375 and is decayed linearly to zero throughout training. A batch size of 256 and a total of 256 training epochs are used. After each epoch, the RMSE is evaluated on a validation set of 1,024 samples. For all datasets, the number of initial labeled samples is set to 256. At each active learning step, 256 samples are queried, and the process is repeated for 16 steps, resulting in a final labeled set of 4,352 samples. In TESSAR, the number of perturbations N is set to 100, and σ is increased in the order of $\{0.0002, 0.0004, 0.0006, 0.0008, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01\}$, with every 10 perturbations. All experiments are conducted on NVIDIA TITAN Xp GPUs with 12GB of memory. We use PyTorch 3.7 with CUDA 10.0.

756 **B PERFORMANCE PROFILE AND PENALTY MATRIX**
757758 **B.1 PERFORMANCE PROFILE**
759760 Let $\text{err}_A^{D,r,t}$ denote the RMSE of alrogirhm A at step $t \in T_D$, for dataset D and repetition $r \in [R]$,
761 and define the performance gap as $\Delta_A^{D,r,t} = \text{err}_A^{D,r,t} - \min_{A'}(\text{err}_{A'}^{D,r,t})$. Here, T_D is the number
762 of steps for dataset D , and R is the total number of repetitions. Then, the performance profile is
763 defined as:

764
$$R_A(\delta) := \frac{1}{n_D} \sum_D \left[\frac{\sum_{r,t} \mathbb{I}(\Delta_A^{D,r,t} \leq \delta)}{RT_D} \right],$$

765
766

767 where n_D is the number of datasets. Intuitively, $R_A(\delta)$ is the fraction of cases where the performance
768 gap between algorithm A and the best competitor is less than δ . Specifically, when $\delta = 0$, $R_A(0)$ is
769 the fraction of cases in which algorithm A performs the best.770 **B.2 PENALTY MATRIX**
771772 For each dataset, step, and each pair of algorithms (A_i, A_j) , we collect R RMSE values $\{\text{err}_i^r\}_{r=1}^R$
773 and $\{\text{err}_j^r\}_{r=1}^R$ respectively. We compute the t -score as $t = \sqrt{R}\bar{\mu}/\bar{\sigma}$ where $\bar{\mu} = \frac{1}{R} \sum_{r=1}^R (\text{err}_i^r - \text{err}_j^r)$
774 and $\bar{\sigma} = \sqrt{\frac{1}{R-1} \sum_{r=1}^R (\text{err}_i^r - \text{err}_j^r - \bar{\mu})^2}$. In this framework, A_i is said to beat A_j if $t < -2.776$,
775 and vice versa if $t > 2.776$. When A_i beats A_j , a penalty of $1/T_D$ is accumulated to $P_{i,j}$, and
776 similarly for the reverse case. Summing the penalties across datasets yields the final penalty matrix.
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 C ADDITIONAL RESULTS
811812 C.1 RUNTIME COMPARISON *per* DATASET
813814
815 Table 3: The mean of runtime (sec) for each algorithm and each dataset.
816

	TESSAR	Coreset	ProbCov	BALD	BatchBALD	BADGE	BAIT	ACS-FW	LCMD
CT slices	235.8	166.1	3,412.1	188.0	174.3	151.4	179.7	175.2	168.7
Diamonds	255.1	205.8	4,033.6	169.3	207.1	203.3	273.9	202.1	207.0
Friedman	287.7	202.7	4,398.7	169.9	207.4	201.3	264.1	200.0	270.6
KEGG undir	247.2	212.1	4,297.9	172.5	215.5	169.2	286.9	209.2	273.9
Methane	482.9	232.9	4,518.1	171.3	190.4	218.0	378.6	211.5	245.3
MLR kNN	367.3	213.4	4,424.7	167.7	216.5	198.3	306.5	197.7	288.3
Online video	254.7	214.9	4,375.2	170.3	216.8	169.5	295.9	209.6	279.7
Protein	286.1	206.7	4,373.7	170.4	208.3	205.1	279.4	204.9	275.5
Query	423.0	237.4	4,396.2	175.8	231.8	196.1	344.0	204.0	264.2
Road	547.8	236.5	3,676.3	174.5	214.1	194.7	378.4	213.4	229.0
SARCOS	249.9	207.2	4,340.1	168.2	208.8	204.1	276.9	204.1	276.8
SGEMM	487.8	234.5	3,873.1	179.7	226.9	182.5	373.0	206.8	217.4
Stock	313.1	211.9	4,347.7	172.4	212.4	207.1	285.2	207.4	212.4
WEC Sydney	269.6	207.9	4,237.3	174.5	204.4	194.3	286.7	191.3	278.6

832 Table 3 presents the mean runtime (in seconds) for each algorithm across datasets. For TESSAR,
833 the runtime remains comparable to other strong-performing algorithms such as BADGE, BAIT, and
834 LCMD on smaller datasets. However, as the dataset size increases, TESSAR’s runtime grows more
835 noticeably. Nonetheless, the difference typically remains within a few minutes and is negligible
836 relative to the overall time required for labeling. This additional computational cost arises from
837 TESSAR’s deliberate design to explore regions—particularly interior areas—that are often underrep-
838 resented by conventional sampling methods. Rather than a drawback, this represents a worthwhile
839 trade-off, as TESSAR consistently achieves superior performance in exchange for modest increases
840 in computation. Our results further demonstrate that sampling from interior regions yields meaning-
841 ful gains in regression tasks, underscoring the importance of this geometric perspective. We hope
842 this finding motivates future research toward more computationally efficient algorithms that retain
843 the benefits of interior-region-aware sampling.

844 C.2 VLDM-BASED VS MARGIN-BASED TESSAR
845

846 To assess whether TESSAR’s performance gains derive from the VLDM formulation or could be
847 matched by simpler geometric uncertainty measures, we replaced VLDM with a margin-based
848 proxy. The margin is defined as the difference between the distances from a sample to its near-
849 est and second-nearest Voronoi centers—an inexpensive approximation of local geometric ambiguity.
850 We then ran TESSAR using this margin score in place of VLDM. Figure 6 shows that margin-based
851 TESSAR incurs notable performance degradation across datasets, despite its lower computational
852 cost. These results demonstrate that the improvements achieved by TESSAR cannot be reproduced
853 by a simple geometric heuristic, thereby validating the necessity of VLDM’s design.

854 C.3 EFFECT OF DYNAMIC VS. STATIC VORONOI UPDATES
855

856 To assess the impact of dynamic tessellation in TESSAR, we included static VLDM and static TES-
857 SAR baselines, in which Voronoi centers remain fixed after initial construction. This setting enables
858 a direct comparison between geometry-aware sampling with and without adaptive updates. Figure 7
859 shows that static VLDM fails to meaningfully reduce error across datasets, indicating that a fixed
860 Voronoi structure is insufficient for guiding informative selection. Static TESSAR performs rea-
861 sonably well due to its combined scoring components, but dynamic TESSAR consistently achieves
862 lower error on all datasets, demonstrating that updating Voronoi partitions throughout the acquisition
863 process provides a clear performance benefit.

Figure 6: Comparison of VLDM-based and margin-based TESSAR on Protein (a), Road (b), and Stock (c) datasets. The margin is defined as the difference between the distances from a sample to its nearest and second-nearest Voronoi centers. TESSAR using VLDM consistently outperforms its margin-based variant.

C.4 ROBUSTNESS TO HYPERPARAMETER

In TESSAR, the primary hyperparameter is the number of perturbations, denoted by N . This hyperparameter controls the number of perturbed hypotheses sampled during the empirical evaluation of the VLDM, directly affecting both the estimation accuracy of the metric and the overall computational cost. Figure 8 presents the mean log RMSE with respect to $N \in \{10, 50, 100, 500, 1000\}$, and there is no significant performance difference. This suggests that TESSAR is robust to the choice of N .

Figure 8: The mean log RMSE with respect to the number of perturbations on Protein (a), Road (b), and Stock (c) datasets. There is no significant performance difference.

918 C.5 SENSITIVITY OF TESSAR TO FEATURE MAPS
919

920 To evaluate TESSAR’s dependence on the choice of feature extractor, we compared four different
921 feature mappings: raw input features, last-layer neural embeddings, gradient-sketching features,
922 and Gaussian Process (GP) posterior features (Holzmüller et al., 2023). Across all three datasets,
923 Figure 9 shows that TESSAR’s performance is largely stable across different feature maps, with no
924 substantial difference except for the GP posterior. These findings indicate that TESSAR is robust to
925 the choice of feature mapping.

926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
Figure 9: Impact of different feature maps on TESSAR for Protein (a), Road (b), and Stock (c) datasets. TESSAR exhibits minimal performance variation across feature maps, except for a slight degradation when using GP posterior features, demonstrating overall robustness to the choice of feature extractor.

C.6 PRE-EVALUATION OF TESSAR’S EFFECTIVENESS

944 To examine whether TESSAR offers predictable gains over random sampling prior to running full
945 active learning steps, we followed the diagnostic proposed in LCMD (Holzmüller et al., 2023),
946 which showed that the ratio between initial RMSE and MAE strongly correlates with the improve-
947 ment achieved by LCMD. Using the same procedure, we evaluated TESSAR on the initial labeled
948 samples and measured the initial RMSE/MAE ratio. We then correlated this value with the sub-
949 sequent performance gain of TESSAR over random sampling at the end of the active learning process.
950 Figure 10 presents that TESSAR exhibits a clear and strong positive correlation (Pearson corre-
951 lation coefficient $R \approx 0.87$), similar to LCMD’s findings. Datasets with larger RMSE/MAE ratios at
952 initialization tend to benefit more substantially from TESSAR’s geometry-aware acquisition. This
953 indicates that a simple pre-evaluation metric can reliably forecast TESSAR’s expected advantage,
954 providing practitioners with a lightweight criterion for deciding when to deploy TESSAR.

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Figure 10: The correlation between the initial RMSE/MAE ratio and the final performance gain of
966 TESSAR over random sampling. The variation is measured as mean log RMSE - mean log MAE
967 on the initial training set ($N_{\text{train}} = 256$). Relative improvement in sample efficiency is measured
968 by $\frac{\text{mean log RMSE}(\text{TESSAR}) - \text{mean log RMSE}(\text{Random})}{\text{mean log RMSE}(\text{Random}) - (\text{mean log RMSE at } N_{\text{train}} = 256)}$. Similar to the LCMD diagnostic, TESSAR shows
969 a strong positive correlation ($R \approx 0.87$) across datasets, indicating that the RMSE/MAE ratio can
970 reliably predict when TESSAR will provide substantial sample-efficiency improvements.

972 **D THE USE OF LARGE LANGUAGE MODELS (LLMs)**
973

974 We used LLM to improve grammar and wording. The authors reviewed all edits and take full
975 responsibility for the content.
976

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025