
Reciprocal Learning

Julian Rodemann
Department of Statistics

LMU Munich
j.rodemann@lmu.de

Christoph Jansen
Computing & Communications
Lancaster University Leipzig
c.jansen@lancaster.ac.uk

Georg Schollmeyer
Department of Statistics

LMU Munich
g.schollmeyer@lmu.de

Abstract

We demonstrate that numerous machine learning algorithms are specific instances
of one single paradigm: reciprocal learning. These instances range from active
learning over multi-armed bandits to self-training. We show that all these algo-
rithms not only learn parameters from data but also vice versa: They iteratively
alter training data in a way that depends on the current model fit. We introduce
reciprocal learning as a generalization of these algorithms using the language of
decision theory. This allows us to study under what conditions they converge.
The key is to guarantee that reciprocal learning contracts such that the Banach
fixed-point theorem applies. In this way, we find that reciprocal learning converges
at linear rates to an approximately optimal model under some assumptions on the
loss function, if their predictions are probabilistic and the sample adaption is both
non-greedy and either randomized or regularized. We interpret these findings and
provide corollaries that relate them to active learning, self-training, and bandits.

1 Introduction

The era of data abundance is drawing to a close. While GPT-3 [9] still had to make do with 300 billion
tokens, Llama 3 [102] was trained on 15 trillion. With the stock of high-quality data growing at a
much smaller rate [67], adequate training data might run out within this decade [58, 107]. Generally
and beyond language models, machine learning is threatened by degrading data quality and quantity
[60]. Apparently, learning ever more parameters from ever more data is not the exclusive route to
success. Models also have to learn from which data to learn. This has sparked a lot of interest in
sample efficiency [70, 92, 111, 7, 46, 27, 105], subsampling [47, 101, 71], coresets [62, 76, 86], data
subset selection [55, 113, 13, 82], and data pruning [32, 118, 57, 5] in recent years.

Instead of proposing yet another method along these lines, we demonstrate that a broad spectrum of
well-established machine learning algorithms already exhibits a reciprocal relationship between data
and parameters. That is, parameters are not only learned from data, but data is also iteratively chosen
based on currently optimal parameters with the aim of increasing sample efficiency. For instance,
consider self-training algorithms in semi-supervised learning [106, 12, 103, 87], see section 2.1.
They iteratively add pseudo-labeled variants of unlabeled data to the labeled training data. The
pseudo-labels are predicted by the current model, and thus depend on the parameters learned by
the model from the labeled data in the first place. Other examples comprise active learning [93],
Bayesian optimization [63, 64, 98], superset learning [35, 34, 85, 36], and multi-armed bandits [3,
81], see Appendix A for details.

In this paper, we develop a unifying framework, called reciprocal learning, that allows for a principled
analysis of all these methods. After an initial model fit to the training data, reciprocal learning
algorithms alter the latter in a way that depends on the fit. This dependence can have various facets,
ranging from predicting labels (self-training) over taking actions (bandits) to querying an oracle
(active learning), all based on the current model fit. It can entail both adding and removing data.
Figure 7 illustrates this oscillating procedure and compares it to a well-known illustration of classical

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

(a) Classical machine learning (b) Reciprocal learning

Figure 1: (A) Classical machine learning fits a model from the model space (restricted by red curve)
to a realized sample from the sample space (blue-grey); figure replicated from "The Elements of
Statistical Learning" [31, Figure 7.2]. (B) In reciprocal learning, the realized sample is no longer
static, but changes in response to the model fit. Grey ellipse indicates restriction of sample space
in 𝑡 = 2 through realization in 𝑡 = 1. Sample in 𝑡 thus depends on model in 𝑡 − 1 and sample in 𝑡 − 1.

machine learning. A pressing question naturally arises: Given the additional degrees of freedom
these algorithms enjoy through data selection, can they at all reach a stable point; that is, can they
converge? Convergence is well-understood for classical empirical risk minimization (ERM), where it
refers to the sequence of model parameters. In reciprocal learning, however, we need to extend the
notion of convergence to the sequence of both parameters and data. It is self-evident that convergence
is a desirable property of any learning algorithm. Only if an algorithm converges to a unique solution,
we can identify a unique model and use it for deployment or assessment on test data. Practically
speaking, convergence of a training procedure means that subsequent iterations will no longer change
the model, giving rise to stopping criteria. Generally speaking, convergence is a prerequisite for any
further theoretical or empirical assessment of such methods. In the literature on reciprocal learning
algorithms like active learning, self-training, or multi-armed bandits, there is no consensus on when to
stop them. And while a myriad of stopping criteria exist [109, 121, 48, 110, 28, 22, 11, 79, 96], only
some come with generalization error bounds [41, 40, 88], but none – to the best of our knowledge –
comes with rigorous guarantees of convergence. We address this research gap by proving convergence
of all these methods under a set of sufficient conditions.

Our strategy will be to take a decision-theoretic perspective on both the parameter and the data
selection problem. While the former is well studied, in particular its ubiquitous solution strategy
ERM, little attention is commonly paid to a formal treatment of the other side of the coin: data
selection. We particularly study the hidden interaction between parameter and data selection. We
identify a sample adaption function 𝑓 which maps from the sample and the empirical risk minimizer
in iteration 𝑡 to the sample in 𝑡 + 1. Bounding the change of the sample in 𝑡 + 1 by the change in the
sample and the change in the model in 𝑡 (i.e., 𝑓 being Lipschitz-continuous with a sufficiently small
constant) will turn out to guarantee convergence of reciprocal learning algorithms. In response to
this key finding, we study which algorithms fulfill this restriction on 𝑓 . We prove that the sample
adaption is sufficiently Lipschitz for reciprocal learning to converge, if (1) it is non-greedy, i.e.,
it adds and removes data, (2) predictions are probabilistic and (3) the selection of data is either
randomized or regularized. Conclusively, we transfer these results to common practices in active
learning, self-training, and bandits, showing which algorithms converge and which do not.

2 Reciprocal learning

Machine learning deals with two pivotal objects: data and parameters. Typically, parameters are
learned from data through ERM. In various branches of machine learning, however, the relationship
between data and parameters is in fact reciprocal, as argued above. In what follows, we show that this
reciprocity corresponds to two interdependent decision problems and explicitly study how learned
parameters affect the subsequent training data. We emphasize that our analysis focuses on reciprocity

2

between parameters and training data only. The population and test data thereof are assumed to be
fixed, i.e., our inference goal is static. Specifically, we call a machine learning algorithm reciprocal if
it performs iterative ERM on training data that depends on the previous ERM, see definition 1. This
dependence can be induced by any kind of data collection, removal, or generation that is affected by
the model fit. In particular, it can be stochastic (think of Thompson-sampling in multi-armed bandits)
as well as deterministic in nature (think of maximizing a confidence score in self-training).
Definition 1 (Reciprocal Learning, informal). An algorithm that iteratively outputs 𝜃𝑡 =

arg min𝜃 E(𝑌,𝑋)∼P𝑡 ℓ(𝑌, 𝑋, 𝜃) shall be called reciprocal learning algorithm if
P𝑡 = 𝑓 (𝜃𝑡−1, P𝑡−1, 𝑛𝑡−1),

where P𝑡 ∈ P are empirical distributions – from a space of probability distributions P – of 𝑌, 𝑋
of size 𝑛𝑡 in iteration 𝑡 ∈ {1, . . . , 𝑇}. Let ℓ(𝑌, 𝑋, 𝜃) = ℓ(𝑌, 𝑝(𝑋, 𝜃)) denote a loss function with
𝑝(𝑋, 𝜃) a prediction function that maps to the image of 𝑌 . Further denote by 𝑌, 𝑋 random variables
describing the training data, and 𝜃𝑡 ∈ Θ a parameter vector of the model in 𝑡.

In principle, the above definition needs no restriction on the nestedness between data in 𝑡 and 𝑡 − 1.
In practice, however, most algorithms iteratively either only add training data or both add and remove
instances, see extensive list of examples in appendix A. That is, data in 𝑡 is either a superset of data
in 𝑡 − 1 or a distinct set. We will address these two cases in the remainder of the paper, referring to
the former as greedy (only adding data) and to the latter as non-greedy (adding and removing data).
For classification problems, i.e., discrete image of 𝑌 , we typically have 𝑝(𝑋, 𝜃) = 𝜎(𝑔(𝑋, 𝜃)) with
𝜎 : R→ [0, 1] a sigmoid function and 𝑔 : X × Θ→ R. For regression problems, we simply have
𝑝 : X × Θ→ R. The notation P𝑡 = 𝑓 (𝜃𝑡−1, P𝑡−1, 𝑛𝑡−1) shall be understood as a mere indication of
the distribution’s dependence on ERM in the previous iteration. We will be more specific soon.

2.1 An illustrating running example: self-training

In appendix A, we demonstrate at length that several well-established machine learning procedures
turn out to be special cases of reciprocal learning as specified in definition 1 and more formally in
definitions 6 and 7 below. Here, we seek to illustrate the principles of reciprocal learning by the
simple running example of self-training in a semi-supervised learning (SSL) setup. The aim of SSL
is to learn a predictive classification function �̂�(𝑥, 𝜃) parameterized by 𝜃 utilizing both labeled and
unlabeled data. Self-training is a popular algorithm class within SSL. Algorithms of that class start by
fitting a model on labeled data by ERM and then exploit this model to predict labels for the unlabeled
data. In a second step, some instances of the unlabeled data are selected (according to a “confidence
score”, a measure of predictive uncertainty, see [2, 49, 80, 83, 53, 84, 18] for examples) to be added
to the training data together with the predicted labels. In other words, self-training algorithms label
unlabeled data themselves and ultimately learn from these “pseudo-labels” by iteratively adding
pseudo-labeled variants of unlabeled data to the labeled training data. The pseudo-labels are predicted
by the current model, and thus depend on the parameters learned by the model from the labeled data
in the first place. This latter dependence constitutes the sample adaption function in definition 1. The
sample of labeled and pseudo-labeled data in 𝑡 depends on the sample and the model (through its
predicted pseudo-labels) in 𝑡 − 1. For a more comprehensive and formal introduction of self-training,
we refer the curious reader to appendix A.1.

2.2 A decision-theoretic perspective

On a high level, reciprocal learning can be viewed as sequential decision-making. First, a parameter 𝜃𝑡
is fitted through ERM, which corresponds to solving a decision problem characterized by the triple
(Θ,A,L) with Θ the unknown set of states of nature, the action space A = Θ of potential parameter
fits (estimates), and a loss function L : A × Θ → R, analogous to classical statistical decision
theory [6]. Secondly, features 𝑥𝑡 ∈ X are chosen and data points (𝑥𝑡 , 𝑦𝑡) are added to or removed
from the training data inducing a new empirical distribution P𝑡+1, where 𝑦𝑡 is predicted (self-training),
queried (active learning) or observed (bandits). These features 𝑥𝑡 are found by solving another
decision problem (Θ,A,L𝜃𝑡), where – crucially – the loss function L𝜃𝑡 depends on the previous
decision problem’s solution 𝜃𝑡 . This time, the action space corresponds to the feature space A = X.
Illustration 1. Think of reciprocal learning as a sequential decision-making problem:
𝑡 = 1: 𝜃1 solves decision problem (Θ,Θ,L)

𝑎1 solves decision problem (Θ,A,L𝜃1)

𝑡 = 2: 𝜃2 solves decision problem (Θ,Θ,L𝑎1 (𝜃1))

𝑎2 solves decision problem (Θ,A,L𝜃2)

3

Loosely speaking, the data is judged in light of the parameters here. Excitingly, such an approach is
symmetrical to any type of classical machine learning, where parameters are judged in light of the data.
This twist in perspective will later pave the way for another type of regularization – that of data, not
of parameters. As the decision problem (Θ,Θ,L) is well-known through its solution strategy ERM,
see definition 1, we want to be more specific about (Θ,A,L𝜃𝑡) with A = X. In particular, we need a
solution strategy for all of the loss functions in the family L𝜃 : X × Θ→ R; (𝑥, 𝜃) ↦→ L𝜃𝑡 (𝜃, 𝑥) in
iteration 𝑡. Definition 2 does the job. The family L𝜃 describes all potential loss functions in the data
selection problem arising from respective solutions of the parameter selection problem.1 Redefining
this family of functions as a single one L̃ : X × Θ × Θ→ R makes it clear that we can retrieve the
decision criterion 𝑐 : X × Θ → R from it, which is a generalization of classical decision criteria
𝑐 : X → R retrieved from classical losses L : X × Θ→ R, see [6] for instance.

Definition 2 (Data Selection). Let 𝑐 : X×Θ→ R be a criterion for the decision problem (Θ,A,L𝜃𝑡)
with boundedA = X of selecting features to be added to the sample in iteration 𝑡. Define 𝑐 : X×Θ→
[0, 1]; (𝑥, 𝜃𝑡) ↦→ exp(𝑐 (𝑥, 𝜃𝑡))∫

𝑥′ exp(𝑐 (𝑥′ , 𝜃𝑡))𝑑𝜇 (𝑥)
as standardized version thereof with 𝜇 the Lebesgue measure

on X. For a model 𝜃𝑡 in iteration 𝑡, it assigns to each feature vector 𝑥 a value between 0 and 1
that can be used as drawing probabilities. Drawing 𝑥 ∈ X according to 𝑐(𝑥, 𝜃𝑡) shall be called
stochastic data selection 𝑥𝑠 (𝜃𝑡).2 The function 𝑥𝑑 : Θ → X; 𝜃𝑡 ↦→ arg max𝑥∈X 𝑐(𝑥, 𝜃𝑡) shall be
called deterministic data selection function.

Figure 2: Data regularization is symmetrical to classical
regularization, see illustration in "The Elements of Statis-
tical Learning" [31, Figure 7.2].

The data selection function can be un-
derstood as the workhorse of reciprocal
learning: It describes the non-trivial part
of the sample adaption function 𝑓 , see
definition 1. For any model 𝜃𝑡 in 𝑡, a
data selection function chooses a feature
vector to be added to the training data in
𝑡 + 1, based on a criterion 𝑐. This hap-
pens either stochastically through 𝑥𝑠 by
drawing from X according to 𝑐 or deter-
ministically through 𝑥𝑑 . Examples for
𝑐 comprise confidence measures in self-
training, acquisition functions in active
learning, or policies in multi-armed ban-
dits. For an example of stochastic data
selection, consider 𝑐 to be the classical Bayes criterion [6] in (Θ,A,L𝜃𝑡). In this case, drawing from
X as prescribed by 𝑥𝑠 corresponds to well-known Thompson sampling [12, 90]. As already hinted at,
we will need some regularization (definition 3) of the data selection. Intuitively, the regularization
term smoothes out the criterion 𝑐(·, 𝜃). In other words, the higher the constant 1

𝐿𝑠
, the less the

selection of data is affected by small changes of 𝜃 for given R (·). This is completely symmetrical to
classical statistical regularization in ERM, where the regularization terms smoothes out the effect of
the data on parameter selection, see also figure 2.

Definition 3 (Data Regularization). Consider 𝑐 : X × Θ→ R a criterion for the decision problem
(Θ,A,L𝜃𝑡) with 𝑐 as in definition 2. Define the following regularized (deterministic) data selection
function:

𝑥𝑑,R : Θ→X; 𝜃 ↦→ argmax
𝒙∈X

{
𝑐(𝒙, 𝜃) + 1

𝐿𝑠
R (𝒙)

}
,

where R (·) is a 𝜅-strongly convex regularizer. In complete analogy to definition 2, we can define a
stochastic regularized data selection function as 𝑥𝑠,R (𝜃) by drawing 𝑥 ∈ X according to a normalized
version of 𝑐(𝒙, 𝜃) + 1

𝐿𝑠
R (𝒙).

1Like most other sequential decision-making problems, solving these decision problems by extensive search
computationally explodes, both in the normal and extensive form [37, 38]. Reciprocal learning thus corresponds
to a one-step look-ahead approximation. As such, it is a method that aims at subtree solutions in the extensive
form. Reciprocal learning can be understood as a compromise between the sub-optimal greedy strategy and
infeasible extensive search.

2An alternative to stochastic data selection via direct randomization of actions is discussed in appendix D.

4

We will denote a generic data selection function as ש ∈ {𝑥𝑑 , 𝑥𝑠 , 𝑥𝑑,R , 𝑥𝑠,R} in what follows. For the
non-greedy variant of reciprocal learning, where data is both added and removed, we need to define
data removal as well. A straightforward strategy is to randomly remove data points with uniform
removal probabilities. The following function −ש describes the effect of this procedure in expectation.
Definition 4 (Data Removal Function). Given an empirical distribution P(𝑌, 𝑋) of a sample, the
function −ש : P→X; P(𝑌, 𝑋) ↦→

∫
𝑋𝑑P(𝑋) shall be called data removal function.

2.3 Formal definition and desirable properties

In order to study reciprocal learning in a meaningful way, we need to be a bit more specific about
how P𝑡 depends on empirical risk minimization in 𝑡 − 1, and specifically on 𝜃𝑡−1. The following
definition 5 of the sample adaption function allows for this. It will be the pivotal object in this work.
The function describes in a general way and for any 𝑡 how empirical distributions of training data in 𝑡
are affected by the model, the empirical distribution of training data, and its size in 𝑡 − 1, respectively.
Definition 5 (Sample Adaption). Denote by Θ a parameter space, by P a space of probability
distributions of 𝑋 and 𝑌 , and N the natural numbers. The function 𝑓 : Θ × P × N → P shall be
called the greedy and the function 𝑓𝑛 : Θ ×P→ P the non-greedy sample adaption function.

A greedy sample adaption function outputs a distribution P′ (𝑌, 𝑋) ∈ P in the iteration after 𝜃 ∈ Θ
solved ERM on a sample of size 𝑛 ∈ N described by P(𝑌, 𝑋) ∈ P, which led to an enhancement
of the training data that changed P(𝑌, 𝑋) to P′ (𝑌, 𝑋). It will come in different flavors for different
types of algorithms, see examples in section A. Generally, we have 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) = P′ (𝑌, 𝑋), with
P′ (𝑌, 𝑋) being induced by

P′ (𝑌 = 1, 𝑋 = 𝑥) =
∫ ∫

1(𝑥 = ((𝜃)ש · ,(𝜃)ש)צ 𝜃) + 𝑛 P(𝑌 = 1, 𝑋 = 𝑥)
𝑛 + 1

�̃�צ 𝑑𝑦 �̃�ש 𝑑𝑥, (1)

in case of Y = {0, 1}, where צ : X × Θ→ {0, 1} is any function that assigns a label 𝑦, potentially
based on the model 𝜃, to selected 𝑥, and ש any function that selects features 𝑥 given a model 𝜃, for
example, 𝑥𝑑 , 𝑥𝑠 , 𝑥𝑑,R , or 𝑥𝑠,R as defined above. They give rise to �̃�צ and �̃�ש, respectively. We can be
so specific about the sample adaption function due to 𝑃(𝑌 = 1, 𝑋 = 𝑥) = 𝑃(𝑋 = 𝑥) −𝑃(𝑌 = 0, 𝑋 = 𝑥)
in binary classification problems. We can analogously define the non-greedy variant 𝑓𝑛 (𝜃, P(𝑌, 𝑋)),
where one instance is removed by −ש and one instance is added by ש per iteration. To this end, define
P′ (𝑌 = 1, 𝑋 = 𝑥) by replacing the integrand in equation (1) by

1(𝑥 = ((𝜃)ש · ,(𝜃)ש)צ 𝜃) + 𝑛0 P(𝑌 = 1, 𝑋 = 𝑥) − 1(𝑥 = −ש (P(𝑌, 𝑋))) · −ש)צ (P(𝑌, 𝑋)), 𝜃)
𝑛0

, (2)

where 𝑛0 is the size of the initial training data set. Notably, we observe that both sample adaption
functions entail a reflexive effect of the model on subsequent data akin to performative prediction
[29], see section 5 for a discussion.

We can now define reciprocal learning (definition 1) more formally given the sample adaption function
as follows, both in greedy and non-greedy flavors.
Definition 6 (Greedy Reciprocal Learning). With Θ, P, 𝑋 , 𝑌 , and N as above, we define

𝑅 :
{
Θ ×P × N → Θ ×P × N;
(𝜃, P(𝑌, 𝑋), 𝑛) ↦→ (𝜃′, P′ (𝑌, 𝑋), 𝑛′)

as reciprocal learning, where 𝜃′ = arg min𝜃 E(𝑌,𝑋)∼P′ (𝑌,𝑋)ℓ(𝑌, 𝑋, 𝜃) and P′ (𝑌, 𝑋) =

𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) as well as 𝑛′ = 𝑛 + 1, with 𝑓 a sample adaption function, see definition 5. Note the
equivalence to the informal recursive definition 1 with 𝑓 (𝜃𝑡−1, P(𝑌, 𝑋)𝑡−1, 𝑛𝑡−1) = P(𝑌, 𝑋)𝑡 .
Definition 7 (Non-Greedy Reciprocal Learning). With Θ, P, 𝑋 , and 𝑌 as above, we define

𝑅𝑛 :
{
Θ ×P → Θ ×P;
(𝜃, P(𝑌, 𝑋)) ↦→ (𝜃′, P′ (𝑌, 𝑋))

as reciprocal learning, where P′ (𝑌, 𝑋) = 𝑓𝑛 (𝜃, P(𝑌, 𝑋)) and 𝜃′ = arg min𝜃 E(𝑌,𝑋)∼P′ (𝑌,𝑋) ℓ(𝑌, 𝑋, 𝜃)
with 𝑓𝑛 a non-greedy sample adaption function, see definition 5.

5

We introduce two desirable properties of reciprocal learning. First, we define convergence as a state
in which the model stops changing in response to newly added data. This kind of stability allows to
stop the process in good faith: Hypothetical subsequent iterations would not have changed the model.
Definition 8 offers a straightforward way of formalizing this, implying standard Cauchy convergence.
Definition 8 (Convergence of Reciprocal Learning). Let 𝑔 : N→ R be a strictly monotone decreasing
function and 𝑅 (𝑅𝑛) any (non-greedy) reciprocal learning algorithm (definitions 6 and 7) outputting
𝑅𝑡 (𝑅𝑛,𝑡) in iteration 𝑡. Then 𝜚 ∈ {𝑅, 𝑅𝑛} is said to converge if | |𝜚𝑘 , 𝜚 𝑗 | | ≤ 𝑔(𝑡) for all 𝑘, 𝑗 ≥ 𝑡, and
lim𝑡→∞ 𝑔(𝑡) = 0, where | | · | | is a norm on the codomains of 𝑅 and 𝑅𝑛, respectively. In this case,
define 𝜚𝑐 ∈ {𝑅𝑐, 𝑅𝑛,𝑐} as the limit of this convergent sequence 𝜚.

Contrary to classical ERM, convergence of reciprocal learning implies stability of both data and
parameters. Technically, it refers to all components of the functions 𝑅 and 𝑅𝑛, respectively, see
definition 8. It guarantees that 𝜃𝑡−1 solves ERM on the sample induced by it in 𝑡. However, this
does not say much about its optimality in general. What if the algorithm had outputted a different
𝜃𝑡−1 in the first place? The empirical risk could have been lower on the sample in 𝑡 induced by it.
The following definition describes such a look-ahead optimality. It can be interpreted as the optimal
data-parameter combination.
Definition 9 (Optimal Data-Parameter Combination). Consider (non-greedy) reciprocal learning
𝑅 (𝑅𝑛), see definitions 6 and 7. Define 𝑅∗ and 𝑅∗𝑛 as optimal data-parameter combination in
reciprocal learning if 𝑅∗𝑛 = (𝜃∗𝑛, P∗𝑛) = arg min𝜃,P E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃,P) ℓ(𝑌, 𝑋, 𝜃), and 𝑅∗ = (𝜃∗, P∗, 𝑛∗) =
arg min𝜃,P,𝑛 E(𝑌,𝑋)∼ 𝑓 (𝜃,P,𝑛) ℓ(𝑌, 𝑋, 𝜃), respectively.

An optimal 𝜃∗ (or 𝜃∗𝑛, analogously) not only solves ERM on the sample it induces, but is also the best
ERM-solution among all possible 𝜃 (𝜃𝑛) that could have led to optimality on the respectively induced
sample. In other words, 𝜃∗ (𝜃∗𝑛) is found by minimizing the empirical risk with respect to whole 𝑅 (𝑅𝑛).
That is, it is found by minimizing the empirical risk with respect to 𝜃 given a sample (characterized
by P and 𝑛) and steering this very sample through 𝜃 simultaneously given only the initial sample.
Technically, optimality (definition 9) is a bivariate arg min-condition on E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃,P) ℓ(𝑌, 𝑋, 𝜃)
and E(𝑌,𝑋)∼ 𝑓 (𝜃,P,𝑛) ℓ(𝑌, 𝑋, 𝜃), respectively. In contrast, convergence (definition 8) translates to a
fixed-point condition on the arg min viewed as a function Θ ×P × N→ Θ ×P × N in case of 𝑅 and
as Θ ×P→ Θ ×P in case of 𝑅𝑛, see section 3.

2.4 Self-training is an instance of reciprocal learning

Let us get back to our running example of self-training. It is easy to see that self-training is
a special case of reciprocal learning with the sample adaption function 𝑓𝑆𝑆𝐿 : Θ × P × N →
P; (𝜃, P(𝑌, 𝑋), 𝑛) ↦→ P′ (𝑌, 𝑋) defined through P′ (𝑌, 𝑋) being induced by

P′ (𝑌 = 1, 𝑋 = 𝑥) =
∫ ∫

1(𝑥 = 𝑥(𝜃)) · �̂�(𝑥𝑑 (𝜃), 𝜃) + 𝑛 P(𝑌 = 1, 𝑋 = 𝑥)
𝑛 + 1

�̃�𝑌 |𝑋 𝑑𝑦 �̃�𝑋 𝑑𝑥 (3)

where 𝑥𝑑 (𝜃) (definition 2) selects data with highest “confidence score” [2, 49, 80, 83, 53, 84,
18], see section 2.1, according to the model 𝜃, and gives rise to �̃�𝑋. The prediction function
�̂� : X × Θ→ {0, 1} returns the predicted “pseudo-label” of the selected 𝑥𝑑 (𝜃) based on the learned
model 𝜃 and gives rise to �̃�𝑌 |𝑋. Moreover, we still assume binary target variables, i.e., the image
of 𝑌 is {0, 1}, real-valued features 𝑋 , and only consider cases where the sample changes through
the addition of one instance per iteration.3 The averaging with respect to �̃�𝑋 and �̃�𝑌 |𝑋 accounts
for the fact that we allow stochastic inclusion of 𝑋 in the sample through randomized actions and
for probabilistic predictions of 𝑌 | 𝑋 , respectively. For now, however, it suffices to think of the
special case of degenerate distributions �̃�𝑋 and �̃�𝑌 |𝑋 putting point mass 1 on data with hard labels
in the sample and 0 elsewhere.4 Through averaging with respect to �̃�𝑌 |𝑋 we can describe the joint
distribution of hard labels (𝑦1, 𝑥1), . . . , (𝑦𝑛, 𝑥𝑛) and predicted soft labels �̃� = 𝑝(𝑌 = 1 | 𝑥, 𝜃) ∈ [0, 1]
of (�̃�𝑛+1, 𝑥𝑛+1), . . . , (�̃�𝑛+𝑡 , 𝑥𝑛+𝑡). Summing up, both deterministic data selection and non-probabilistic
(i.e., hard labels) predictions are well-defined special cases of the above with �̃�𝑌 |𝑋 and �̃�𝑋 collapsing
to trivial Dirac measures, respectively.

3In case more than one instance is added per iteration, the sample adaption function can be defined as a
composite function of the used sample adaption functions.

4In this case, P(𝑌 = 1, 𝑋 = 𝑥) = 1(𝑥=𝑥 (𝜃)) · �̂� (𝑥𝑑 (𝜃) , 𝜃) + 𝑛 P(𝑌=1, 𝑋=𝑥)
𝑛+1 .

6

3 Convergence of reciprocal learning: Lipschitz is all you need

After having generalized several widely adopted machine learning algorithms to reciprocal learning,
we will study their convergence (definition 8) and optimality (definition 9). Our general aim is to
identify sufficient conditions for any reciprocal learning algorithm to converge and then show that
such a convergent solution is sufficiently close to the optimal one. This will not only allow to assess
convergence and optimality of examples 1 through 3 (self-training, active learning, multi-armed
bandits, see appendix A) but of any other reciprocal learning algorithm. Besides further existing
examples not detailed in this paper like superset learning [35] or Bayesian optimization [63], we
are especially aiming at potential future – yet to be proposed – algorithms. On this background, our
conditions for convergence and optimality can be understood as design principles. Before turning to
these concrete conditions on reciprocal learning algorithms, we need some general assumptions on
the loss function for the remainder of the paper. Assumptions 1 and 2 can be considered quite mild
and are fulfilled by a broad class of loss functions, see [95, Chapter 12] or [14]. For instance, the
L2-regularized (ridge) logistic loss has Lipschitz-continuous gradients both with respect to features
and parameters. For a discussion of assumption 3, we refer to appendix E.2.
Assumption 1 (Continuous Differentiability in Features). A loss function ℓ(𝑌, 𝑋, 𝜃) is said to
be continuously differentiable with respect to features if the gradient ∇𝑋ℓ(𝑌, 𝑋, 𝜃) exists and is
𝛼-Lipschitz continuous in 𝜃, 𝑥, and 𝑦 with respect to the L2-norm on domain and codomain.
Assumption 2 (Continuous Differentiability in Parameters). A loss function ℓ(𝑌, 𝑋, 𝜃) is continuously
differentiable with respect to parameters if the gradient ∇𝜃ℓ(𝑌, 𝑋, 𝜃) exists and is 𝛽-Lipschitz
continuous in 𝜃, 𝑥, and 𝑦 with respect to the L2-norm on domain and codomain.
Assumption 3 (Strong Convexity). Loss ℓ(𝑌, 𝑋, 𝜃) is said to be 𝛾-strongly convex if ℓ(𝑦, 𝑥, 𝜃) ≥
ℓ (𝑦, 𝑥, 𝜃′) + ∇𝜃ℓ (𝑦, 𝑥, 𝜃′)⊤ (𝜃 − 𝜃′) + 𝛾

2 ∥𝜃 − 𝜃
′∥22 , for all 𝜃, 𝜃′, 𝑦, 𝑥. Observe convexity for 𝛾 = 0.

Let us now turn to specific and more constructive conditions on reciprocal learning’s workhorse,
the data selection problem (Θ,X,L𝜃). At the heart of these conditions lies a common goal: We
want to establish some continuity in how the data changes from 𝑡 − 1 to 𝑡 in response to 𝜃𝑡−1 and
P𝑡−1. It is self-evident that without any such continuity, convergence seems out of reach. As it
will turn out, bounding the change of the data in 𝑡 by the change of what happens in 𝑡 − 1 will be
sufficient for convergence, see figure 3. We thus need the sample adaption function (definition 5) to
be Lipschitz-continuous. Theorem 1 will deliver this for subsets of conditions 1 through 5 in case
of binary classification problems. The reason for the latter restriction is that we need an explicit
definition of 𝑓 to constructively prove its Lipschitz-continuity.
Condition 1 (Data Regularization). Data selection is regularized as per definition 3.
Condition 2 (Soft Labels Prediction). The prediction function �̂� : X × Θ→ {0, 1} on bounded X
gives rise to a non-degenerate distribution of 𝑌 | 𝑋 for any 𝜃 such that we can consider soft label
predictions 𝑝 : X × Θ→ [0, 1] with 𝑝(𝑥, 𝜃) = 𝜎(𝑔(𝑋, 𝜃)) with 𝜎 : R→ [0, 1] a sigmoid function.
Further, assume that the loss is jointly smooth in these predictions. That is, ∇𝑝ℓ(𝑦, 𝑝(𝑥, 𝜃)) exists
and is Lipschitz-continuous in 𝑥 and 𝜃.
Condition 3 (Stochastic Data Selection). Data is selected stochastically according to 𝑥𝑠 by drawing
from a normalized criterion exp(𝑐 (𝑥, 𝜃𝑡))∫

𝑥′ exp(𝑐 (𝑥′ , 𝜃𝑡))𝑑𝜇 (𝑥)
, see definition 2.

Condition 4 (Continuous Selection Criterion). It holds for the decision criterion 𝑐 : X × Θ→ R in
the decision problem (Θ,A,L𝜃𝑡) of selecting features to be added to the sample that ∇𝑥𝑐(𝑥, 𝜃) and
∇𝜃𝑐(𝑥, 𝜃) are bounded from above.
Condition 5 (Linear Selection Criterion). The decision criterion 𝑐 : X × Θ→ R in (Θ,A,L𝜃𝑡) is
linear in 𝑥 and Lipschitz-continuous in 𝜃 with a Lipschitz constant 𝐿𝑐 that is independent from 𝑥.

We can interpret 𝑝 as 𝑃𝜃 (𝑌 | 𝑋 = 𝑥) in condition 2, see also definition 1. In other words, soft labels
in the form of probability distributions are available. Adding observations with soft labels to the data
can be implemented either through randomization, i.e., by adding 𝑥 with label 1 with probability 𝑝
and vice versa, or through weighted retraining. Note that condition 4 implies condition 5 through
characterization of Lipschitz-continuity by bounded gradients. We need two implications of these
conditions to establish Lipschitz-continuity of the sample adaption in reciprocal learning. First, it
can be shown that regularized data selection (condition 1) is Lipschitz-continuous in the model, see
lemma 1. Second, the soft label prediction function (condition 2) is Lipschitz in both data and model,
if the data selection, in turn, is Lipschitz-continuous in the model, see lemma 2.

7

Lemma 1 (Regularized Data Selection is Lipschitz). Regularized Data Selection

𝑥𝑑,R : Θ→X; 𝜃 ↦→ argmax
𝒙∈X

{
𝑐(𝒙, 𝜃) + 1

𝐿𝑠
R (𝒙)

}
with 𝜅-strongly convex regularizer, see definition 3 and condition 1, is 𝐿𝑠 ·𝐿𝑐

𝜅
-Lipschitz continuous,

if 𝑐 is linear in 𝑥 (condition 5) and Lipschitz-continuous in 𝜃 with a Lipschitz constant 𝐿𝑐 that is
independent of 𝑥.
Lemma 2 (Soft Label Prediction is Lipschitz). The soft label prediction function (condition 2)

𝑝 : X × Θ→ [0, 1]; 𝑝(ש(𝜃), 𝜃) =
∫ ∫

�̂�(ש(𝜃), 𝜃)𝑝 𝑑𝑦 �̃�ש𝑑ש

is Lipschitz-continuous in both 𝑥 ∈ X and 𝜃 ∈ Θ and (𝑥, 𝜃) ∈ X × Θ if
∫

ש𝑑ש�̃�(𝜃)ש is Lipschitz-
continuous.

Proofs of all results in this paper can be found in appendix F. With the help of lemma 1 and 2, we are
now able to state two key results. They tell us under which conditions the sample adaption functions
in both greedy and non-greedy reciprocal learning are Lipschitz-continuous, which will turn out to be
sufficient for convergence.
Theorem 1 (Regularization Makes Sample Adaption Lipschitz-Continuous). If predictions are soft
(condition 2) and the data selection is regularized (conditions 1 and 5), both greedy and non-greedy
sample adaption functions 𝑓 and 𝑓𝑛 (see definition 5) in reciprocal learning with Y = {0, 1} are
Lipschitz-continuous with respect to the L2-norm on Θ and N, and the Wasserstein-1-distance on P.
Theorem 2 (Randomization Makes Sample Adaption Lipschitz-Continuous). If predictions are soft
(condition 2) and the data selection is randomized (conditions 3 and 4), greedy and non-greedy
sample adaption functions are Lipschitz-continuous in the sense of theorem 1.

The general idea for both proofs is to show Lipschitz-continuity component-wise and then infer that
𝑓 and 𝑓𝑛 are Lipschitz with the supremum of all component-wise Lipschitz-constants. We can now
leverage these theorems to state our main result. It tells us (via theorems 1 and 2 and conditions 1 - 5)
which types of reciprocal learning algorithms converge. Recall that convergence (definition 8) in
reciprocal learning implies a convergent model and a convergent data set.
Theorem 3 (Convergence of Non-Greedy Reciprocal Learning). If the non-greedy sample adaption
𝑓𝑛 is Lipschitz-continuous with 𝐿 ≤ (1 + 𝛽

𝛾
)−1, the iterates 𝑅𝑛,𝑡 = (𝜃𝑡 , P𝑡) of non-greedy reciprocal

learning 𝑅𝑛 (definition 7) converge to 𝑅𝑛,𝑐 = (𝜃𝑐, P𝑐) at a linear rate.

Figure 3: Reciprocal learning converges if the
change in sample (purple) is bounded by the
change in model (yellow) and previous sample.

The proof idea is as follows. We relate the
Lipschitz-continuity of 𝑓𝑛 to the Lipschitz-
continuity of 𝑅𝑛 via the dual characterization
of the Wasserstein metric [43]. If 𝑓𝑛 is Lip-
schitz with 𝐿 ≤ (1 + 𝛽

𝛾
)−1, we further show

that 𝑅𝑛 is a bivariate contraction. The Banach
fixed-point theorem [4, 72, 17] then directly
delivers uniqueness and existence of (𝜃𝑐, P𝑐)
as convergent fixed point, which means that it
holds 𝜃𝑐 = arg min𝜃 E(𝑌,𝑋)∼ 𝑓 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃).
A complete proof can be found in appendix F.5.
Building on earlier work on performatively op-
timal predictions [73], we can further relate this
convergent training solution to the global so-
lution of reciprocal learning, i.e., the optimal
data-parameter fit, see definition 9. The follow-
ing theorem 4 states that our convergent solution
is close to the optimal one. It tells us that we did
not enforce a trivial or even degenerate form of
convergence (e.g., constant 𝜃𝑡) by regularization and randomization. Theorem 4 only refers to the
convergent parameter solution, not to the data. Note that the parameter solution is the crucial part of
reciprocal learning for later deployment and assessment on test data.

8

Theorem 4 (Optimality of Convergent Solution). If non-greedy reciprocal learning converges in the
sense of theorem 3, it holds | |𝜃𝑐 − 𝜃∗ | |2 ≤ 2𝐿ℓ𝐿

𝛾
for 𝜃𝑐 and 𝜃∗ from the convergent data-parameter

tuple 𝑅𝑛,𝑐 = (𝜃𝑐, P𝑐) and the optimal one 𝑅∗𝑛 = (𝜃∗, P∗) if the loss is 𝐿ℓ-Lipschitz in 𝑋 and 𝑌 .

While theorem 1 and 2 guarantee that both greedy 𝑓 and non-greedy 𝑓𝑛 are Lipschitz, theorem 3 and
thus also theorem 4 only hold for non-greedy reciprocal learning. The question immediately comes
to mind whether we can say anything about the asymptotic behavior of the greedy variant, too. The
following theorem 5 gives an affirmative answer. Intuitively, there is no fixed point in Θ ×P × N if
data is constantly being added and not removed such that 𝑛→∞.
Theorem 5. Greedy Reciprocal Learning does not converge in the sense of definition 8.

We conclude this section with another negative result. It states that theorem 3 is tight in theorem 1
and 2. Summing things up, Lipschitz-continuity is all you need for non-greedy reciprocal learning to
converge.
Theorem 6. If the sample adaption 𝑓𝑛 is not Lipschitz, non-greedy reciprocal learning can diverge.

4 Which reciprocal learning algorithms converge?

We briefly relate the above results to specific algorithms in active learning, bandits, and our running
example of self-training. Assume a binary target variable and 𝐿 ≤ (1 + 𝛽

𝛾
)−1 with 𝛾 and 𝛽 in the

sense of assumption 1-3 throughout. First observe that any greedy (definition 6) algorithm that only
adds data without removal does not converge in the sense of defintion 8 with respect to 𝜃, P, and 𝑛,
see theorem 5. This provides a strong case for non-greedy self-training algorithms, often referred
to as amending strategies [103] or self-training with editing [52] and noise filters [104], that add
and remove data, as opposed to greedy ones like incremental or batch-wise self-training [103], see
example 1, that only add pseudo-labeled data without removing any data. For detailed explanation
and comparison of the two, please refer to Appendix A.1.1.
Corollary 1 (Self-Training). Amending self-training algorithms converge in the sense of definition 8,
if predicted pseudo-labels are soft (condition 2) and data selection is regularized (condition 1) or
randomized (condition 3).

Furthermore, we shed some light on the debate [97, 120] in the literature on multi-armed bandits
about whether to use deterministic strategies like upper confidence bound [10, 100, 42] or stochastic
ones like epsilon-greedy [45, 54] search or Thompson sampling [89, 90], see example 3. Note,
however, that this insight relates to in-sample convergence only, see definition 8.
Corollary 2 (Bandits). Non-greedy multi-armed bandits with Thompson sampling and epsilon-greedy
strategies converge in the sense of definition 8 under additional condition 2, while bandits with upper
confidence bound (UCB) are not guaranteed to converge.

What is more, condition 2 allows us to distinguish between active learning from weak and strong
oracles, see [59, 93, 78] for literature surveys. The former posits the availability of probabilistic or
noisy oracle feedback through soft labels [59, 114, 117]; the latter assumes the oracle to have access
to an undeniable ground truth via hard labels [26, 19, 20].
Corollary 3 (Active Learning). Active Learning from a strong oracle (i.e., providing hard labels) is
not guaranteed to converge, while active learning from a weak oracle (soft labels) converges in the
sense of definition 8 under additional condition 1 or 3.

5 Related work

Convergence of active learning, self-training, and other special cases of reciprocal learning has been
touched upon in the context of stopping criteria [109, 121, 48, 110, 28, 22, 83, 11, 79, 96]. We refer
to section 1 for a discussion and relate reciprocal learning to other fields in what follows.

Continual Learning: While reciprocity through, e.g., gradient-based data selection is a known
phenomenon in continual learning [1, 112, 15], the inference goal is not static as in reciprocal
learning. Continual learning rather aims at excelling at new tasks (that is, new populations), while
reciprocal learning can simply be seen as a greedy approximation of extended ERM, see section 2.

9

Online Learning: In online learning and online convex optimization, the task is to predict 𝑦 by
�̂� from iteratively receiving 𝑥. After each prediction, the true 𝑦 and corresponding loss ℓ(𝑦, �̂�) is
observed, see [94] for an introduction and appendix B.2 for an illustration. Reciprocal learning can
thus be considered a special online learning framework. Typically, online learning assumes incoming
data to be randomly drawn or even selected by an adversarial player, while being selected by the
algorithm itself in reciprocal learning. The majority of the online learning literature is concerned
with how to update a model in light of new data, while we focus on how data is selected based on the
current model fit. Loosely speaking, online learning deals with only one side of the coin explicitly,
while we take a reciprocal point of view: We study both how to learn parameters from data and how
to select data in light of fitted parameters.

Coresets: The aim of coreset construction is to find subsamples that lead to parameter fits close to
the originally learned parameters [62, 76, 69, 24, 68, 33]. It can be seen as a post hoc approach, while
reciprocal learning algorithms directly learn a “parameter-efficient” sample on the go.

Performative Prediction: The sample adaption functions in reciprocal learning are reminiscent
of performative prediction, where today’s predictions change tomorrow’s population [74, 29, 61],
and, more generally, of the “reflexivity problem” in social sciences [99, 66]. We identify analogous
reflexive effects on the sample level in reciprocal learning via the sample adaption function 𝑓 (or
𝑓𝑛), see section 2. Contrary to performative prediction, however, 𝑓 (𝑓𝑛) describes an in-sample
(performative prediction: population) reflexive effect of both data and parameters (performative
prediction: only parameters). Moreover, reciprocal learning describes specific and implementable
algorithms, which allows for an explicit study of these reflexive effects. While we rely on similar
techniques as in [74, 61], namely Lipschitz-continuity and Wasserstein-distance, our work is thus
conceptually different. For an illustration of these differences, see appendix B.1.

Safe Active Learning: Safe active learning explores the feature space by optimizing an acquisition
criterion under a safety constraint [122, 51, 91]. While this can be viewed as regularization akin
to the one we propose in definition 3, both aim and structure are different: We want to enforce
Lipschitz-continuity explicitly via a penalty term in data selection; safe active learning optimizes a
selection criterion without penalty terms under constraints that are motivated by domain knowledge.

6 Discussion

Summary: We have embedded a wide range of established machine learning algorithms into a
unifying framework, called reciprocal learning. This gave rise to a rigorous analysis of (1) under
which conditions and (2) how fast these algorithms converge to an approximately optimal model. We
further applied these results to common practices in self-training, active learning, and bandits.

Limitations: While our results guarantee the convergence of reciprocal learning algorithms, the
opposite does generally not hold. That is, if our conditions are violated, we cannot rule out the
possibility of (potentially weaker notions) of convergence. Furthermore, our analysis requires
assumptions on the loss functions, as detailed in section 3 and appendix E. In particular, it needs to
be 𝛾-strongly convex and have 𝛽-Lipschitz gradients, such that 𝐿 ≤ (1 + 𝛽

𝛾
)−1 with 𝐿 the Lipschitz-

constant of the sample adaption. This limits our results’ applicability. From another perspective,
however, this is a feature rather than a bug, since the described restrictions can serve as design
principles for self-training, active learning, or bandit algorithms that shall converge, see below.

Future Work: This article identifies sufficient conditions for convergence of reciprocal learning.
These restrictions pave the way for a theory-informed design of novel algorithms. In particular, our
results emphasize the importance of regularization of both parameters and data for convergence.
While the former is needed to control 𝛾 and 𝛽, see appendix E.2 for the example of Tikhonov-
regularization, the latter guarantees Lipschitz-continuity of the sample adaption through theorem 1.
Parameter regularization is well-studied and has been heavily applied. We conjecture that the concept
of data regularization might bear similar practical potential. Another line of future research would
be to address the question whether reciprocal learning algorithms are stable with respect to slight
changes in the initial training data. In this sense, [8, 30] might serve as a bridge to future research.

10

Acknowledgements

We sincerely thank Thomas Augustin, James Bailie, and Lea Höhler for helpful comments on earlier
versions of this manuscript. We also thank all four anonymous reviewers for their assessment of
our paper. Moreover, we are indebted to several participants of the 2024 Workshop on Machine
Learning under Weakly Structured Information in Munich for critically assessing preliminary ideas
and conjectures regarding reciprocal learning presented at the workshop.

Julian Rodemann acknowledges support by the Federal Statistical Office of Germany within the
co-operation project “Machine Learning in Official Statistics”, the Bavarian Academy of Sciences
(BAS) through the Bavarian Institute for Digital Transformation (bidt), and the LMU mentoring
program of the Faculty of Mathematics, Informatics, and Statistics.

References
[1] Rahaf Aljundi et al. “Gradient based sample selection for online continual learning”. In:

Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran
Associates, Inc., 2019.

[2] Eric Arazo et al. “Pseudo-labeling and confirmation bias in deep semi-supervised learning”.
In: 2020 International Joint Conference on Neural Networks. IEEE. 2020, pp. 1–8.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the multiarmed
bandit problem”. In: Machine learning 47 (2002), pp. 235–256.

[4] Stefan Banach. “Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales”. In: Fundamenta mathematicae 3.1 (1922), pp. 133–181.

[5] Emanuel Ben-Baruch et al. “Distilling the Knowledge in Data Pruning”. In: arXiv preprint
arXiv:2403.07854 (2024).

[6] James O. Berger. Statistical decision theory and Bayesian analysis. 2nd. Springer, 1985.
[7] Surojit Biswas et al. “Low-N protein engineering with data-efficient deep learning”. In:

Nature methods 18.4 (2021), pp. 389–396.
[8] Olivier Bousquet and André Elisseeff. “Stability and generalization”. In: The Journal of

Machine Learning Research 2 (2002), pp. 499–526.
[9] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural informa-

tion processing systems 33 (2020), pp. 1877–1901.
[10] Alexandra Carpentier et al. “Upper-confidence-bound algorithms for active learning in multi-

armed bandits”. In: International Conference on Algorithmic Learning Theory. Springer.
2011, pp. 189–203.

[11] Deepayan Chakrabarti et al. “Mortal multi-armed bandits”. In: Advances in neural information
processing systems 21 (2008).

[12] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-supervised learning. Adap-
tive computation and machine learning series. MIT Press, 2006.

[13] Anshuman Chhabra et al. “What data benefits my classifier? Enhancing model performance
and interpretability through influence-based data selection”. In: International Conference on
Learning Representations. 2024.

[14] Geoffrey Chinot, Guillaume Lecué, and Matthieu Lerasle. “Robust statistical learning with
Lipschitz and convex loss functions”. In: Probability Theory and related fields 176.3 (2020),
pp. 897–940.

[15] Aristotelis Chrysakis and Marie-Francine Moens. “Online Continual Learning from Imbal-
anced Data”. In: Proceedings of the 37th International Conference on Machine Learning.
Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research.
PMLR, 13–18 Jul 2020, pp. 1952–1961.

[16] David A Cohn, Les Atlas, and Richard Ladner. “Improving generalization with active learn-
ing”. In: Machine Learning 15.2 (1994), pp. 201–221.

[17] Patrick L Combettes and Jean-Christophe Pesquet. “Fixed point strategies in data science”.
In: IEEE Transactions on Signal Processing 69 (2021), pp. 3878–3905.

[18] Stefan Dietrich, Julian Rodemann, and Christoph Jansen. “Semi-Supervised Learning guided
by the Generalized Bayes Rule under Soft Revision”. In: arXiv preprint arXiv:2405.15294
(2024).

11

https://christophjansen0.wixsite.com/machine-learning-und
https://christophjansen0.wixsite.com/machine-learning-und

[19] Shi Dong. “Multi class SVM algorithm with active learning for network traffic classification”.
In: Expert Systems with Applications 176 (2021), p. 114885.

[20] Liat Ein Dor et al. “Active learning for BERT: an empirical study”. In: Proceedings of the
2020 conference on empirical methods in natural language processing (EMNLP). 2020,
pp. 7949–7962.

[21] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. http://archive.ics.
uci.edu/ml. 2017.

[22] Eyal Even-Dar et al. “Action elimination and stopping conditions for the multi-armed bandit
and reinforcement learning problems.” In: Journal of machine learning research 7.6 (2006).

[23] Gabriele Farina et al. “Stable-predictive optimistic counterfactual regret minimization”. In:
International conference on machine learning. PMLR. 2019, pp. 1853–1862.

[24] Susanne Frick, Amer Krivosija, and Alexander Munteanu. “Scalable Learning of Item Re-
sponse Theory Models”. In: Proceedings of The 27th International Conference on Artifi-
cial Intelligence and Statistics. Ed. by Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li.
Vol. 238. Proceedings of Machine Learning Research. PMLR, Feb. 2024, pp. 1234–1242.

[25] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. “Deep bayesian active learning with
image data”. In: International conference on machine learning. PMLR. 2017, pp. 1183–1192.

[26] Mingfei Gao et al. “Consistency-based semi-supervised active learning: Towards minimizing
labeling cost”. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part X 16. Springer. 2020, pp. 510–526.

[27] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. “Amnesiac machine learning”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 13. 2021, pp. 11516–
11524.

[28] Edita Grolman et al. “How and when to stop the co-training process”. In: Expert Systems
with Applications 187 (2022), p. 115841.

[29] Moritz Hardt and Celestine Mendler-Dünner. “Performative Prediction: Past and Future”. In:
arXiv preprint arXiv:2310.16608 (2023).

[30] Moritz Hardt, Ben Recht, and Yoram Singer. “Train faster, generalize better: Stability of
stochastic gradient descent”. In: Proceedings of The 33rd International Conference on Ma-
chine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings
of Machine Learning Research. New York, New York, USA: PMLR, 20–22 Jun 2016,
pp. 1225–1234.

[31] Trevor Hastie et al. The elements of statistical learning: data mining, inference, and prediction.
Vol. 2. Springer, 2009.

[32] Shuo He et al. “Candidate Label Set Pruning: A Data-centric Perspective for Deep Partial-
label Learning”. In: The Twelfth International Conference on Learning Representations.
2023.

[33] Jonathan Huggins, Trevor Campbell, and Tamara Broderick. “Coresets for scalable Bayesian
logistic regression”. In: Advances in neural information processing systems 29 (2016).

[34] Eyke Hüllermeier. “Learning from imprecise and fuzzy observations: Data disambiguation
through generalized loss minimization”. In: International Journal of Approximate Reasoning
55 (2014), pp. 1519–1534.

[35] Eyke Hüllermeier and Weiwei Cheng. “Superset learning based on generalized loss mini-
mization”. In: Joint European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer. 2015, pp. 260–275.

[36] Eyke Hüllermeier, Sébastien Destercke, and Ines Couso. “Learning from imprecise data:
adjustments of optimistic and pessimistic variants”. In: International Conference on Scalable
Uncertainty Management. Springer, 2019, pp. 266–279.

[37] Nathan Huntley and Matthias Troffaes. “Subtree perfectness, backward induction, and normal-
extensive form equivalence for single agent sequential decision making under arbitrary choice
functions”. In: arXiv preprint arXiv:1109.3607 (2011).

[38] Nathan Huntley and Matthias CM Troffaes. “Normal form backward induction for decision
trees with coherent lower previsions”. In: Annals of Operations Research 195.1 (2012),
pp. 111–134.

[39] Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical
sciences. Cambridge university press, 2015.

12

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[40] Hideaki Ishibashi and Hideitsu Hino. “Stopping criterion for active learning based on deter-
ministic generalization bounds”. In: International Conference on Artificial Intelligence and
Statistics. PMLR. 2020, pp. 386–397.

[41] Hideaki Ishibashi and Hideitsu Hino. “Stopping criterion for active learning based on error
stability”. In: arXiv preprint arXiv:2104.01836 (2021).

[42] Anand Kalvit and Assaf Zeevi. “A closer look at the worst-case behavior of multi-armed
bandit algorithms”. In: Advances in Neural Information Processing Systems 34 (2021),
pp. 8807–8819.

[43] Leonid Vasilevich Kantorovich and SG Rubinshtein. “On a space of totally additive functions”.
In: Vestnik of the St. Petersburg University: Mathematics 13.7 (1958), pp. 52–59.

[44] William Karush. “Minima of functions of several variables with inequalities as side con-
straints”. In: M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago (1939).

[45] Volodymyr Kuleshov and Doina Precup. “Algorithms for multi-armed bandit problems”. In:
arXiv preprint arXiv:1402.6028 (2014).

[46] Yongchan Kwon et al. “Datainf: Efficiently estimating data influence in lora-tuned llms and
diffusion models”. In: arXiv preprint arXiv:2310.00902 (2023).

[47] Hunter Lang, Aravindan Vijayaraghavan, and David Sontag. “Training subset selection
for weak supervision”. In: Advances in Neural Information Processing Systems 35 (2022),
pp. 16023–16036.

[48] Florian Laws and Hinrich Schütze. “Stopping criteria for active learning of named entity
recognition”. In: Proceedings of the 22nd International Conference on Computational Lin-
guistics (Coling 2008). 2008, pp. 465–472.

[49] Dong-Hyun Lee et al. “Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks”. In: Workshop on challenges in representation learning,
International Conference on Machine Learning. Vol. 3. 2013, p. 896.

[50] David D Lewis and William A Gale. “A sequential algorithm for training text classifiers”. In:
SIGIR ’94: Proceedings of the 17th annual international ACM SIGIR conference on Research
and development in information retrieval. Springer. 1994, pp. 3–12.

[51] Cen-You Li, Barbara Rakitsch, and Christoph Zimmer. “Safe active learning for multi-output
gaussian processes”. In: International Conference on Artificial Intelligence and Statistics.
PMLR. 2022, pp. 4512–4551.

[52] Ming Li and Zhi-Hua Zhou. “SETRED: Self-training with editing”. In: Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining. Springer. 2005, pp. 611–621.

[53] Shuangshuang Li et al. “Pseudo-label selection for deep semi-supervised learning”. In: 2020
IEEE International Conference on Progress in Informatics and Computing (PIC). IEEE.
2020, pp. 1–5.

[54] Tian Lin, Jian Li, and Wei Chen. “Stochastic online greedy learning with semi-bandit feed-
backs”. In: Advances in Neural Information Processing Systems 28 (2015).

[55] Wei Liu et al. “What makes good data for alignment? a comprehensive study of automatic
data selection in instruction tuning”. In: arXiv preprint arXiv:2312.15685 (2023).

[56] Debmalya Mandal, Stelios Triantafyllou, and Goran Radanovic. “Performative reinforcement
learning”. In: International Conference on Machine Learning. PMLR. 2023, pp. 23642–
23680.

[57] Max Marion et al. “When less is more: Investigating data pruning for pretraining llms at
scale”. In: arXiv preprint arXiv:2309.04564 (2023).

[58] Nestor Maslej et al. “Artificial intelligence index report 2023”. In: arXiv preprint
arXiv:2310.03715 (2023).

[59] Björn Mattsson. “Active learning of neural network from weak and strong oracles”. In:
(2017).

[60] Lara Mauri and Ernesto Damiani. “Estimating degradation of machine learning data assets”.
In: ACM Journal of Data and Information Quality (JDIQ) 14.2 (2021), pp. 1–15.

[61] John P Miller, Juan C Perdomo, and Tijana Zrnic. “Outside the echo chamber: Optimizing
the performative risk”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 7710–7720.

13

[62] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. “Coresets for data-efficient training
of machine learning models”. In: International Conference on Machine Learning. PMLR.
2020, pp. 6950–6960.

[63] Jonas Močkus. “On Bayesian methods for seeking the extremum”. In: Optimization Tech-
niques IFIP Technical Conference: Novosibirsk, July 1–7, 1974. Springer. 1975, pp. 400–
404.

[64] Jonas Močkus, Vytautas Tiesis, and Antanas Zilinskas. “The application of Bayesian methods
for seeking the extremum”. In: Towards global optimization 2.117-129 (1978), p. 2.

[65] Robert Munro Monarch. Human-in-the-Loop Machine Learning: Active learning and annota-
tion for human-centered AI. Simon and Schuster, 2021.

[66] O Morgenstern. “Wirtschaftsprognose: Eine Untersuchung ihrer Voraussetzungen und
Möglichkeiten, Wien 1928, cited after: G. Betz (2004), Empirische und aprioristische Gren-
zen von Wirtschaftsprognosen: Oskar Morgenstern nach 70 Jahren”. In: Wissenschaftstheorie
in Ökonomie und Wirtschaftsinformatik, Deutscher Universitäts-Verlag, Wiesbaden (1928),
pp. 171–190.

[67] Niklas Muennighoff et al. “Scaling data-constrained language models”. In: Advances in
Neural Information Processing Systems 36 (2024).

[68] Alexander Munteanu and Chris Schwiegelshohn. “Coresets-Methods and History: A Theo-
reticians Design Pattern for Approximation and Streaming Algorithms”. In: KI - Künstliche
Intelligenz 32.1 (Feb. 2018), pp. 37–53. ISSN: 1610-1987.

[69] Alexander Munteanu et al. “On Coresets for Logistic Regression”. In: Advances in Neural
Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc.,
2018.

[70] Ofir Nachum et al. “Data-efficient hierarchical reinforcement learning”. In: Advances in
neural information processing systems 31 (2018).

[71] Malte Nalenz, Julian Rodemann, and Thomas Augustin. “Learning de-biased regression trees
and forests from complex samples”. In: Machine Learning (2024), pp. 1–20.

[72] Vittorino Pata et al. Fixed point theorems and applications. Vol. 116. Springer, 2019.
[73] Juan Perdomo. “Performative Prediction: Theory and Practice”. PhD thesis. UC Berkeley,

2023.
[74] Juan Perdomo et al. “Performative prediction”. In: International Conference on Machine

Learning. PMLR. 2020, pp. 7599–7609.
[75] Nitin Namdeo Pise and Parag Kulkarni. “A survey of semi-supervised learning methods”.

In: 2008 International conference on computational intelligence and security. Vol. 2. IEEE.
2008, pp. 30–34.

[76] Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. “Adaptive second order
coresets for data-efficient machine learning”. In: International Conference on Machine
Learning. PMLR. 2022, pp. 17848–17869.

[77] Daniel Reker. “Practical considerations for active machine learning in drug discovery”. In:
Drug Discovery Today: Technologies 32 (2019), pp. 73–79.

[78] Pengzhen Ren et al. “A survey of deep active learning”. In: ACM computing surveys (CSUR)
54.9 (2021), pp. 1–40.

[79] Paul Reverdy, Vaibhav Srivastava, and Naomi Ehrich Leonard. “Satisficing in multi-armed
bandit problems”. In: IEEE Transactions on Automatic Control 62.8 (2016), pp. 3788–3803.

[80] Mamshad Nayeem Rizve et al. “In Defense of Pseudo-Labeling: An Uncertainty-Aware
Pseudo-label Selection Framework for Semi-Supervised Learning”. In: International Confer-
ence on Learning Representations, 2020. 2020.

[81] Herbert Robbins. “Some aspects of the sequential design of experiments”. In: Bulletin of the
American Mathematical Society 58.5 (1952), pp. 527–535.

[82] Julian Rodemann. “Bayesian Data Selection”. In: arXiv preprint arXiv:2406.12560 (2024).
5th Workshop on Data-Centric Machine Learning Research (DMLR) at ICML 2024.

[83] Julian Rodemann et al. “Approximately Bayes-optimal pseudo-label selection”. In: Proceed-
ings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI). Vol. 216.
Proceedings of Machine Learning Research. PMLR, 2023, pp. 1762–1773.

14

[84] Julian Rodemann et al. “In all likelihoods: Robust selection of pseudo-labeled data”. In:
International Symposium on Imprecise Probability: Theories and Applications. PMLR. 2023,
pp. 412–425.

[85] Julian Rodemann et al. “Levelwise Data Disambiguation by Cautious Superset Classification”.
In: International Conference on Scalable Uncertainty Management. Springer. 2022, pp. 263–
276.

[86] Julian Rodemann et al. “Not All Data Are Created Equal: Lessons From Sampling Theory For
Adaptive Machine Learning”. In: International Conference on Statistics and Data Science
(ICSDS) by the Institute of Mathematical Statistics (IMS). 2022.

[87] Chuck Rosenberg, Martial Hebert, and Henry Schneiderman. “Semi-Supervised Self-Training
of Object Detection Models”. In: 2005 Seventh IEEE Workshops on Applications of Computer
Vision (WACV/MOTION’05)-Volume 1. Vol. 1. IEEE. 2005, pp. 29–36.

[88] Jean-Francis Roy, Mario Marchand, and François Laviolette. “A column generation bound
minimization approach with PAC-Bayesian generalization guarantees”. In: Artificial Intelli-
gence and Statistics. PMLR. 2016, pp. 1241–1249.

[89] Daniel J Russo and Benjamin Van Roy. “An information-theoretic analysis of thompson
sampling”. In: Journal of Machine Learning Research 17.68 (2016), pp. 1–30.

[90] Daniel J Russo et al. “A tutorial on thompson sampling”. In: Foundations and Trends® in
Machine Learning 11.1 (2018), pp. 1–96.

[91] Jens Schreiter et al. “Safe exploration for active learning with Gaussian processes”. In:
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part III 15. Springer. 2015,
pp. 133–149.

[92] Max Schwarzer et al. “Pretraining representations for data-efficient reinforcement learning”.
In: Advances in Neural Information Processing Systems 34 (2021), pp. 12686–12699.

[93] Burr Settles. Active Learning Literature Survey. Tech. rep. Computer Sciences Technical
Report 1648. University of Wisconsin–Madison, 2010.

[94] Shai Shalev-Shwartz et al. “Online learning and online convex optimization”. In: Foundations
and Trends® in Machine Learning 4.2 (2012), pp. 107–194.

[95] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[96] Jaehyeok Shin, Aaditya Ramdas, and Alessandro Rinaldo. “On Conditional Versus Marginal
Bias in Multi-Armed Bandits”. In: Proceedings of the 37th International Conference on
Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine
Learning Research. PMLR, 13–18 Jul 2020, pp. 8852–8861.

[97] Aleksandrs Slivkins et al. “Introduction to multi-armed bandits”. In: Foundations and Trends®
in Machine Learning 12.1-2 (2019), pp. 1–286.

[98] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian optimization of
machine learning algorithms”. In: Advances in neural information processing systems 25
(2012).

[99] George Soros. The alchemy of finance. John Wiley & Sons, 2015.
[100] Niranjan Srinivas et al. “Information-theoretic regret bounds for gaussian process optimization

in the bandit setting”. In: IEEE transactions on information theory 58.5 (2012), pp. 3250–
3265.

[101] Bernadette J Stolz. “Outlier-robust subsampling techniques for persistent homology”. In:
Journal of Machine Learning Research 24.90 (2023), pp. 1–35.

[102] Hugo Touvron et al. “Llama: Open and efficient foundation language models”. In: arXiv
preprint arXiv:2302.13971 (2023).

[103] Isaac Triguero, Salvador García, and Francisco Herrera. “Self-labeled techniques for semi-
supervised learning: taxonomy, software and empirical study”. In: Knowledge and Informa-
tion systems 42.2 (2015), pp. 245–284.

[104] Isaac Triguero et al. “On the characterization of noise filters for self-training semi-supervised
in nearest neighbor classification”. In: Neurocomputing 132 (2014), pp. 30–41.

[105] Vishaal Udandarao et al. “No" zero-shot" without exponential data: Pretraining concept
frequency determines multimodal model performance”. In: arXiv preprint arXiv:2404.04125
(2024).

15

[106] Jesper E Van Engelen and Holger H Hoos. “A survey on semi-supervised learning”. In:
Machine Learning 109.2 (2020), pp. 373–440.

[107] Pablo Villalobos et al. “Will we run out of data? an analysis of the limits of scaling datasets
in machine learning”. In: arXiv preprint arXiv:2211.04325 (2022).

[108] Cédric Villani et al. Optimal transport: old and new. Vol. 338. Springer, 2009.
[109] Andreas Vlachos. “A stopping criterion for active learning”. In: Computer Speech & Lan-

guage 22.3 (2008), pp. 295–312.
[110] Wenquan Wang, Wenbin Cai, and Ya Zhang. “Stability-based stopping criterion for active

learning”. In: 2014 IEEE International Conference on Data Mining. IEEE. 2014, pp. 1019–
1024.

[111] Ximei Wang et al. “Self-tuning for data-efficient deep learning”. In: International Conference
on Machine Learning. PMLR. 2021, pp. 10738–10748.

[112] Felix Wiewel and Bin Yang. “Entropy-based Sample Selection for Online Continual Learn-
ing”. In: 2020 28th European Signal Processing Conference (EUSIPCO). 2021, pp. 1477–
1481.

[113] Zimo Yin et al. “Embrace sustainable AI: Dynamic data subset selection for image classifica-
tion”. In: Pattern Recognition (2024), p. 110392.

[114] Taraneh Younesian et al. “Qactor: Active learning on noisy labels”. In: Asian Conference on
Machine Learning. PMLR. 2021, pp. 548–563.

[115] Kelly Zhang, Lucas Janson, and Susan Murphy. “Statistical inference with m-estimators on
adaptively collected data”. In: Advances in neural information processing systems 34 (2021),
pp. 7460–7471.

[116] Lijun Zhang, Tie-Yan Liu, and Zhi-Hua Zhou. “Adaptive regret of convex and smooth
functions”. In: International Conference on Machine Learning. PMLR. 2019, pp. 7414–7423.

[117] Wentao Zhang et al. “Information gain propagation: a new way to graph active learning with
soft labels”. In: arXiv preprint arXiv:2203.01093 (2022).

[118] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. “Dataset Condensation with Gradient
Matching”. In: International Conference on Learning Representations. 2020.

[119] Peng Zhao et al. “Dynamic regret of convex and smooth functions”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 12510–12520.

[120] Li Zhou. “A survey on contextual multi-armed bandits”. In: arXiv preprint arXiv:1508.03326
(2015).

[121] Jingbo Zhu et al. “Confidence-based stopping criteria for active learning for data annotation”.
In: ACM Transactions on Speech and Language Processing (TSLP) 6.3 (2010), pp. 1–24.

[122] Christoph Zimmer, Mona Meister, and Duy Nguyen-Tuong. “Safe active learning for time-
series modeling with Gaussian processes”. In: Advances in Neural Information Processing
Systems 31 (2018).

16

A Familiar examples of reciprocal learning

We will demonstrate that well-established machine learning procedures are special cases of reciprocal
learning. We start by illustrating reciprocal learning by self-training in semi-supervised learning
(SSL), see section 2.1, and then turn to active learning and multi-armed bandits.

A.1 Self-Training

For ease of exposition, we will start by focusing on binary target variables, i.e., the image of 𝑌 is
{0, 1}, with real-valued features 𝑋 . Moreover, we will only consider cases where the sample changes
through the addition of one instance per iteration.5 Leaning on [106, 12, 103], we describe SSL as
follows. Consider labeled data

D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 ∈ (X ×Y)
𝑛 (4)

and unlabeled data 𝑥 ∈ X. The aim of SSL is to learn a predictive classification function �̂�(𝑥, 𝜃)
parameterized by 𝜃 utilizing both labeled and unlabeled data. According to [75] and [106], SSL can
be broadly categorized into self-training and co-training. We will focus on the former. Self-training
involves fitting a model on D by ERM and then exploiting this model to predict labels for X. In a
second step, some instances {𝑥𝑖}𝑚𝑖=𝑛+1 ∈ X are selected to be added to the training data together with
the predicted label, typically the ones with the highest confidence according to some criterion, see [2,
49, 80, 83, 53, 84, 18] for examples.

Example 1 (Self-Training). Self-training is an instance of reciprocal learning with the sample
adaption function (see definition 5) 𝑓𝑆𝑆𝐿 : Θ × P × N → P; (𝜃, P(𝑌, 𝑋), 𝑛) ↦→ P′ (𝑌, 𝑋) with
P′ (𝑌, 𝑋) induced by

P′ (𝑌 = 1, 𝑋 = 𝑥) =
∫ ∫

1(𝑥 = 𝑥(𝜃)) · �̂�(𝑥𝑑 (𝜃), 𝜃) + 𝑛 P(𝑌 = 1, 𝑋 = 𝑥)
𝑛 + 1

�̃�𝑌 |𝑋 𝑑𝑦 �̃�𝑋 𝑑𝑥

where 𝑥𝑑 (𝜃) (definition 2) selects data with highest confidence score, see [2, 80, 53], according to
the model 𝜃, and gives rise to �̃�𝑋. The prediction function �̂� : X × Θ→ {0, 1} returns the predicted
label of the selected 𝑥𝑑 (𝜃) based on the learned model 𝜃 and gives rise to �̃�𝑌 |𝑋.

The averaging with respect to �̃�𝑋 and �̃�𝑌 |𝑋 accounts for the fact that we allow stochastic inclusion of
𝑋 in the sample through randomized actions and for probabilistic predictions of 𝑌 | 𝑋 , respectively.
For now, however, it suffices to think of the special case of degenerate distributions �̃�𝑋 and �̃�𝑌 |𝑋
putting point mass 1 on data with hard labels in the sample and 0 elsewhere.6 Through averaging
with respect to �̃�𝑌 |𝑋 we can describe the joint distribution of hard labels (𝑦1, 𝑥1), . . . , (𝑦𝑛, 𝑥𝑛) and
predicted soft labels �̃� = 𝑝(𝑌 = 1 | 𝑥, 𝜃) ∈ [0, 1] of (�̃�𝑛+1, 𝑥𝑛+1), . . . , (�̃�𝑛+𝑡 , 𝑥𝑛+𝑡). Summing up,
both deterministic data selection and non-probabilistic (i.e., hard labels) predictions are well-defined
special cases of the above with �̃�𝑌 |𝑋 and �̃�𝑋 collapsing to trivial Dirac measures, respectively.

A.1.1 Implications of convergence results

Our corollaries in section 4 shed some light on the convergence of self-training methods in a semi-
supervised learning regime. Recall from above that the aim of these methods is to learn a predictive
classification function �̂�(𝑥, 𝜃) parameterized by 𝜃 utilizing both labeled data D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 ∈
(X ×Y)𝑛 and unlabeled data U = {(𝑥𝑖 ,Y)}𝑚𝑖=𝑛+1 ∈

(
X × 2Y

)𝑚−𝑛 from the same data generation
process. Self-training involves fitting a model identified with parameters 𝜃 on D by ERM and then
exploiting this model to predict labels for U. In incremental self-training, some instances from U
are selected to be added to the training data (together with the predicted label) according to some
regularized data selection criterion 𝑐𝑟 (𝑥, 𝜃) = 𝑐(𝑥, 𝜃) + 1

𝐿𝑠
R (𝑥), see example 1 and pseudo code

below. Amending self-training does the same, but additionally removes instances from U, see below.

5In case more than one instance is added per iteration, the sample adaption function can be defined as a
composite function of the used sample adaption functions.

6In this case, P(𝑌 = 1, 𝑋 = 𝑥) = 1(𝑥=𝑥 (𝜃)) · �̂� (𝑥𝑑 (𝜃) , 𝜃) + 𝑛 P(𝑌=1, 𝑋=𝑥)
𝑛+1 .

17

The key insight from our analysis is that the sequence of 𝜃 converges at a linear rate in case of
amending self-training and regularized data selection.

Algorithm 1: Incremental Self-Training in Semi-Supervised learning
Data: Labeled data D, unlabeled data U
Result: Updated D, fitted model 𝜃
while stopping criterion not met do

fit model 𝜃 on labeled data D
for 𝑖 ∈ {1, . . . , |U |} do

compute 𝑐𝑟 (𝑥𝑖 ,𝜃)
end
obtain 𝑖∗ = arg max𝑖 𝑐𝑟 (𝑥𝑖 ,𝜃)
predict Y ∋ �̂�𝑖∗ = �̂�(𝑥𝑖∗ , 𝜃)
update D ← D ∪ {(𝑥𝑖∗ , �̂�𝑖∗)}
update U← U \ {(𝑥𝑖∗ ,Y)𝑖∗ }

end

Algorithm 2: Amending Self-Training in Semi-Supervised learning
Data: Labeled data D, unlabeled data U
Result: Updated D, fitted model 𝜃
while stopping criterion not met do

fit model 𝜃 on labeled data
for 𝑖 ∈ {1, . . . , |U |} do

compute 𝑐𝑟 (𝑥𝑖 ,𝜃)
end
obtain 𝑖∗ = arg max𝑖 𝑐𝑟 (𝑥𝑖 ,𝜃)
predict Y ∋ �̂�𝑖∗ = �̂�(𝑥𝑖∗ , 𝜃)
for 𝑗 ∈ {1, . . . , |U |} do

compute 𝑐(𝑥 𝑗 ,𝜃)
end
obtain 𝑗† = arg min 𝑗 𝑐𝑟 (𝑥 𝑗 ,𝜃)
update D ← D ∪ {(𝑥𝑖∗ , �̂�𝑖∗)} \ {(𝑥 𝑗† , 𝑦 𝑗†)}
update U← U \ {(𝑥𝑖∗ ,Y)𝑖∗ }

end

A.2 Active learning

Active learning is a machine learning paradigm where the learning algorithm iteratively asks an oracle
to provide true labels for training data [50, 16, 93]. The goal is to improve the sample efficiency of
the learning process by asking queries that are expected to provide the most information. Let X be
the input space and Y the set of possible labels. Consider training data

D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 ∈ (X ×Y)
𝑛 (5)

as above. The active learning cycle is as follows. First, train a model on the currently labeled
dataset D. Next, select the most informative sample 𝑥∗ ∈ X based on an acquisition function
(criterion) such as uncertainty, representativeness, or expected model change and obtain the label
𝑦∗ for the selected instance 𝑥∗ from an oracle (e.g., human expert). Finally, update the training data
D ← D ∪ {(𝑥∗, 𝑦∗)} and refit the model. This cycle is repeated until a stopping criterion is met (e.g.,
performance threshold).
Example 2 (Active Learning). Active Learning is an instance of reciprocal learning with the following
sample adaption function (see definition 5) 𝑓𝐴𝐿 : Θ ×P ×N→ P; (𝜃, P(𝑌, 𝑋), 𝑛) ↦→ P′ (𝑌, 𝑋) with
P′ (𝑌, 𝑋) induced by

P′ (𝑌 = 1, 𝑋 = 𝑥) =
∫ ∫ 1(𝑥 = 𝑥(𝜃)) · 𝑞𝑦 (𝑥𝑠 (𝜃)) + 𝑛 P(𝑌 = 1, 𝑋 = 𝑥)

𝑛 + 1
�̃�𝑌 |𝑋 𝑑𝑦 �̃�𝑋 𝑑𝑥

where 𝑥𝑠 (𝜃) is a data selection function, see definition 2. Its induced distribution on X is �̃�𝑋. The
query function 𝑞𝑦 : X → [0, 1] returns the true class (probability) for the selected 𝑥𝑠 (𝜃) and gives

18

rise to �̃�𝑌 |𝑋. In contrast to self-training (example 1), the queried labels 𝑞𝑦 (𝑥𝑠 (𝜃)) do not directly
depend on the model 𝜃, only indirectly through 𝑥𝑠 (𝜃).

Again, both deterministic data selection through 𝑥𝑑 (𝑠) and non-probabilistic (i.e., hard labels) queries
through 𝑞𝑦 : X×Θ→ {0, 1} are well defined special cases of the above with �̃�𝑌 |𝑋 and �̃�𝑋 collapsing
to trivial Dirac measures, respectively. As far as we can oversee the active learning literature, hard
label queries [77, 25, 65] are more common than probabilistic or soft queries [114].

A.3 Multi-armed bandits

The multi-armed bandit problem is one of the most general setups for evaluating decision-making
strategies when facing uncertain outcomes. It is named after the analogy of a gambler at a row of
slot machines, where each machine provides a different, unknown reward distribution. The gambler
must develop a strategy to maximize their rewards over a series of spins, balancing the exploration of
machines to learn more about their rewards versus exploiting known information to maximize returns.
Typically, a contextual bandit algorithm is comprised of contexts {𝑋𝑡 }𝑇𝑡=1, actions {𝐴𝑡 }𝑇𝑡=1, and
primary outcomes {𝑌𝑡 }𝑇𝑡=1, again with binary image of 𝑌𝑡 for simplicity, denoted by Y = {0, 1}. We
assume that rewards are a deterministic function of the primary outcomes, i.e., 𝑅𝑡 = 𝑓 (𝑌𝑡) for some
known function 𝑓 . Following [115], we use potential outcome notation [39] and let {𝑌 (𝑎) : 𝑎 ∈ A}
denote the potential outcomes of the primary outcome and let 𝑌𝑡 := 𝑌 (𝐴𝑡) be the observed outcome.
Define these quantities analogously for 𝑋 (𝑎) and call

H𝑡 := {𝑋𝑡 ′ , 𝐴𝑡 ′ , 𝑌𝑡 ′ }𝑡𝑡 ′=1 (6)

the history for 𝑡 ≥ 1 and H0 := ∅ as in [115]. The fixed and (time-independent) potential joint
distributions of 𝑋𝑡 and 𝑌𝑡 shall be denoted by

{𝑋𝑡 , 𝑌𝑡 (𝑎) : 𝑎 ∈ A} ∼ P(𝑋,𝑌) ∈ P for 𝑡 ∈ {1, . . . , 𝑇}. (7)

Further assume that we learn a model of P(𝑋,𝑌, 𝐴) or P(𝑌 | 𝑋, 𝐴), which can be parameterized by
𝜃𝑡 ∈ Θ. Note that for a specific reward function and A = X, active learning could be formulated as a
multi-armed bandit problem. The following embedding into reciprocal learning, however, is much
more general. It only requires that the probability of playing an action P (𝐴𝑡 | H𝑡−1) is informed by
our model 𝜃, i.e.,

P (𝐴𝑡 | H𝑡−1) = P (𝐴𝑡 | 𝜃 (H𝑡−1)) , (8)

which is a very mild assumption given that the latter is the whole point of 𝜃 in multi-armed contextual
bandit problems.
Example 3 (Multi-Armed Bandits). Multi-Armed Bandits are instances of reciprocal learning with
the following sample adaption function (see definition 5) 𝑓𝑀𝐴𝐵 : Θ×P×N→ P; (𝜃, P(𝑌, 𝑋), 𝑛) ↦→
P′ (𝑌, 𝑋) with P′ (𝑌, 𝑋) induced by

P′ (𝑌 = 1, 𝑋 = 𝑥) =
∫

1(𝑥 = 𝑥(𝑎(𝜃))) · 𝑌 (𝑎(𝜃)) + 𝑛 P(𝑌 = 1, 𝑋 = 𝑥)
𝑛 + 1

P (𝐴𝑡 | 𝜃 (H𝑡−1)) 𝑑𝑎

where 𝑎(𝜃) : Θ→A is an action selection function7, also referred to as policy function in the bandit
literature that induces the well-known action selection probabilities P (𝐴 | 𝜃 (H𝑡−1)), often called
policies and denoted by 𝜋 := {𝜋𝑡 }𝑡≥1. Further note that the indicator function takes an argument
that depends on 𝜃 only through 𝑎, contrary to active and semi-supervised learning.

Several strategies exist to solve multi-armed bandit problems, including upper confidence bound
(deterministic), epsilon-greedy (stochastic) and already mentioned Thompson sampling (stochastic).
Deterministic strategies like upper confidence bound can be embedded into the above general
stochastic formulation through degenerate policies P (𝐴 | 𝜃 (H𝑡−1)) putting point mass 1 on the
deterministically optimal action.

7It is usually directly defined in terms of action selection probabilities P (𝐴𝑡 | H𝑡−1), see [115] for instance.

19

B Additional Illustrations

B.1 Difference between reciprocal learning and performative prediction

(a) Reciprocal Learning (b) Performative Prediction

Figure 4: (A) Reciprocal learning fits a model from the model space (restricted by red curve) to a realized sample
from the sample space (blue-grey) that depends on the previous model fit, see Figure 1b. (B) In performative
prediction, the population, not the sample, changes in response to the model fit. In other words, reciprocal
learning algorithms have a static inference goal, while performative prediction is concerned with moving targets.

B.2 Reciprocal learning compared to general online learning

(a) One-Shot Learning (b) Reciprocal Learning (c) Online Learning

Figure 5: (A) Classical one-shot machine learning fits a model from the model space (restricted by red curve)
to a realized sample from the sample space (blue-grey), see [31, Figure 7.2]. (B) Reciprocal learning fits a
model from the model space (restricted by red curve) to a realized sample from the sample space (blue-grey) that
depends on the previous model fit, see Figure 1b. (C) In the general online learning setup, there is no interaction
between sample in 𝑡 and model in 𝑡 − 1.

C Illustrative experiments on data regularization

We run two simple experiments to illustrate the effect of data regularization (definition 3) on stability
of parameters 𝜃𝑡 in reciprocal learning by the example of self-training in semi-supervised learning,
see sections 2.1, A.1 and example 1. Code to reproduce findings can be found in

20

https://github.com/rodemann/simulations-self-training-reciprocal-learning.

Specifically, we deploy incremental self-training with soft labels on a real world datasets (banknote
data) with 90%, 80%, and 70% unlabeled data, see figures 7a, 7b and 7c. The task is to predict the
authenticity of a banknote based on labeled and unlabeled data. We use a generalized additive model
and multiple selection criteria from the literature ([83, 35, 80, 103]), one of which is regularized
according to section 3. We want to compare the stability of the parameter vector 𝜃𝑡 of self-training
with regularized data selection to self-training with unregularized data selection criteria. Specifically,
we are interested in comparing the regularized Bayesian selection criterion (gold) to its unregularized
counterpart (red). The goal is not to study convergence under all conditions 1 to 5, but merely to
illustrate the stabilizing effect ot the novel concept of data regularization (condition 1) on the sequence
of learned parameters. To do so, we compute the L2-norm of the parameter vector 𝜃𝑡 at each iteration
𝑡, see figures 7a, 7b and 7c. It becomes evident that self-training with regularized data selection is
more stable than with unregularized data selection. Note that this setup analyzes variation (or rather,
the absence thereof) within an experiment. We also assess the variations of 𝜃𝑡 between experiments.
In order to do so, we restart the experiment 40 times and average the L2-norm of 𝜃𝑡 over these 40
restarts of the experiment and compute 95%-confidence intervals to assess the variation between
experiments. We observe that the regularized selection criterion has much higher variation than its
unregularized counterpart. Interestingly, the lower in-experiment variation due to data regularization
seems to come at the cost of higher between-experiment variation.

D Alternative stochastic data selection

Definition 10 (Data Selection alternative). Let 𝑐 : X×Θ→ R be a criterion for the decision problem
(Θ,A,L𝜃𝑡) of selecting features to be added to the sample in iteration 𝑡. Let D (X) denote a suitable
set of probability measures on the measurable space (X, 𝜎(X)). Define

𝑐 :
{
D (X) × Θ → R
(𝜆, 𝜃𝑡) ↦→ E𝜆 (𝑐(·, 𝜃𝑡))

Each 𝜆 ∈ D (X) is interpreted as a randomized feature selection strategy. The function 𝑐 evalu-
ates randomized feature selection strategies based on the expectation of the criterion 𝑐 under the
randomization weights.

E Discussion of assumptions on loss

E.1 General discussion of assumption 1, 2, and 3

Assumptions 2 and 3 address the loss function ℓ in standard ERM, i.e., the first decision problem,
as detailed in section 2. These are general assumptions often needed in a wide array of repeated
(empirical) risk minimization setups, see [56, 116, 119] and particularly [74] as well as [95] for an
overview. Assumption 1 will be needed in both decision problems of data selection and parameter
selection, but is still fairly general and mild.

E.2 Discussion of assumption 3: Strong convexity of loss function

Assumption 3 is typically required for fast convergence of repeated ERM solution strategies. Here, it is
needed for reciprocal learning to converge at all. Thus, it can be considered a stronger assumption than
assumptions 1 and 2. It is easy to see that common loss functions like the linear loss ℓ(𝑦, 𝑥, 𝜃) = 𝜃𝑥𝑦
are convex, but not strongly convex. The same even holds for the logistic loss ℓ(𝑦, 𝑥, 𝜃) = log(1 +
exp(𝜃𝑥𝑦)). To see this, consider its second partial derivative ∇2

𝜃
ℓ (𝑦, 𝑥, 𝜃). It is

∇2
𝜃ℓ (𝑦, 𝑥, 𝜃) =

𝑦2𝑥2 exp(𝜃𝑦𝑥)
(1 + exp(𝜃𝑦𝑥))2

.

It becomes evident that lim𝑥→∞ lim𝑦→∞ ∇2
𝜃
ℓ (𝑦, 𝑥, 𝜃′) = 0 Hence, there is no 𝐾 > 0 that can

bound ∇2
𝜃
ℓ (𝑦, 𝑥, 𝜃) from below. However, a Tikhonov-regularized version thereof ℓ𝑟 (𝑦, 𝑥, 𝜃) =

log(1 + exp(𝜃𝑥𝑦)) + 𝛾

2 | |𝜃 | |2 is 𝛾-strongly convex, which follows from analogous reasoning. This
sheds some light on the nature of our sufficient conditions for convergence, see also section 6. In

21

https://github.com/rodemann/simulations-self-training-reciprocal-learning

(a) Self-training on banknote data with 90% unlabeled data.

(b) Self-training on banknote data with 80% unlabeled data.

(c) Self-training on banknote data with 70% unlabeled data.

Figure 6: Self-training with soft labels and varying selection criteria 𝑐(𝑥, 𝜃), one of which (Bayes-crit-reg) is
regularized, on banknote data [21] with 70% (a) and 80% (b) unlabeled data; y-axis shows L2-Norm of 𝜃𝑡 at
iteration 𝑡. Iterations vary between (a), (b), and (c) due to varying size of unlabeled data. Model: Generalized
additive regression. Data source: Public UCI Machine Learning Repository [21]. References for other selection
criteria: Bayes-crit: Rodemann, J., et al. "Approximately Bayes-optimal pseudo-label selection." [83]. Likeli-
hood: Hüllermeier, E., Cheng, W. "Superset learning based on generalized loss minimization." [35] Predictive
Var: Rizve, M, N., et al. "In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection
Framework for Semi-Supervised Learning." [80]. Probability Score: Triguero, I., García, S., Herrera, F. (2015).
"Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study." [103]. For
details, see https://github.com/rodemann/simulations-self-training-reciprocal-learning.

22

https://github.com/rodemann/simulations-self-training-reciprocal-learning

(a) Self-training on banknote data with 90% unlabeled data.; distribution of L2-norms over 40 restarts.

(b) Self-training on banknote data with 80% unlabeled data; distribution of L2-norms over 40 restarts.

(c) Self-training on banknote data with 70% unlabeled data; distribution of L2-norms over 40 restarts.

Figure 7: Self-training with soft labels and varying selection criteria 𝑐(𝑥, 𝜃), one of which (Bayes-crit-reg)
is regularized, on banknote data [21] with 70% (a) and 80% (b) unlabeled data; y-axis shows L2-Norm of 𝜃𝑡
averaged over 40 restarts. Shaded area indicates 95%-confidence region.

23

fact, we require regularization of parameters to obtain strong convexity of the loss function and of
data to obtain Lipschitz-continuity of the sample adaptions, see theorem 1. This paves the way for
theory-informed design of regularized reciprocal learning algorithms that are guaranteed to converge.

F Proofs

F.1 Proof of Lemma 1

Proof. Recall definition 2 of 𝑐 : X ×Θ→ R as a criterion for the decision problem (Θ,A,L𝜃𝑡). We
will prove the Lipschitz-continuity of regularized data selection:

𝑥𝑑,R : Θ→X; 𝜃 ↦→ argmax
𝒙∈X

{
𝑐(𝒙, 𝜃) + 1

𝐿𝑠
R (𝒙)

}
, (9)

where R (·) is a 𝜅-strongly convex regularizer. The variational inequality for the optimality of
argmax
𝒙∈X

{
𝑐(𝒙, 𝜃) + 1

𝐿𝑠
R (𝒙)

}
=: 𝑠(𝜃) implies(

∇𝑥𝑐(𝑠(𝜃), 𝜃) +
1
𝐿𝑠
∇𝑥R (𝑠(𝜃))

)
(𝑠(𝜃′) − 𝑠(𝜃)) ≥ 0. (10)

Symmetrically for 𝑠 (𝜃′)(
∇𝑥𝑐(𝑠(𝜃′), 𝜃′) +

1
𝐿𝑠
∇𝑥R (𝑠(𝜃′))

)
(𝑠(𝜃) − 𝑠(𝜃′)) ≥ 0. (11)

Summing the above two inequalities yields

(
∇𝑥𝑐(𝑠(𝜃), 𝜃) +

1
𝐿𝑠
∇𝑥R (𝑠(𝜃))

)
(𝑠(𝜃′) − 𝑠(𝜃))+

(
∇𝑥𝑐(𝑠(𝜃′), 𝜃′) +

1
𝐿𝑠
∇𝑥R (𝑠(𝜃′))

)
(𝑠(𝜃) − 𝑠(𝜃′)) ≥ 0.

(12)

Rearranging terms,

1
𝐿𝑠
(∇𝑥R (𝑠(𝜃)) − ∇𝑥𝑅 (𝑠 (𝜃′))) (𝑠(𝜃) − 𝑠 (𝜃′)) ≤ (∇𝑥𝑐(𝑠(𝜃′), 𝜃′) − ∇𝑥𝑐(𝑠(𝜃), 𝜃)) (𝑠(𝜃) − 𝑠(𝜃′)) .

(13)

It is a known fact that for any 𝜅-strongly convex function R it holds that (∇R (𝑥) −∇R (𝑦))𝑇 (𝑥− 𝑦) ≥
𝜅∥𝑥 − 𝑦∥2, ∀𝑥, 𝑦. This allows lower-bounding the left-hand side by 𝜅

𝐿𝑠
∥𝑠(𝜃) − 𝑠 (𝜃′)∥2.

If 𝑐 is linear in 𝑥 we have 𝑐(𝑥, 𝜃) = 𝑥 · 𝑔(𝜃) for some appropriate function 𝑔. Thus, ∇𝑥𝑐(𝑥, 𝜃) = 𝑔(𝜃)
and | |∇𝑥𝑐(𝑠(𝜃′), 𝜃′) − ∇𝑥𝑐(𝑠(𝜃), 𝜃) | | ≤ 𝐿𝑐 | |𝜃′ − 𝜃 | | and we can also upper bound the right-hand side
using the generalized Cauchy-Schwarz inequality, see also [23, Appendix A.1].

𝜅

𝐿𝑠
∥𝑠(𝜃) − 𝑠 (𝜃′)∥2 ≤ 𝐿𝑐 · ∥𝑠(𝜃) − 𝑠 (𝜃′)∥ ∥𝜃 − 𝜃′∥ . (14)

Equivalently,

∥𝑠(𝜃) − 𝑠 (𝜃′)∥ ≤ 𝐿𝑠 · 𝐿𝑐
𝜅
∥𝜃 − 𝜃′∥ , (15)

which was to be shown. □

F.2 Proof of Lemma 2

Proof. By Fubini,
∫ ∫

�̂�(ש(𝜃), 𝜃)𝑝 𝑑𝑦𝑑 �̃�ש =
∫ ∫

�̂�(ש(𝜃), 𝜃)𝑝 𝑑�̃�ש 𝑑𝑦. For brevity, set (𝜃)ש̃ =∫
.ש𝑑ש�̃�(𝜃)ש To prove that 𝑝(̃ש(𝜃), 𝜃) is Lipschitz-continuos, we will proceed as follows. First, we

will show that 𝑝(̃ש(𝜃), ·) is Lipschitz-continuous. Second, we will show that 𝑝(·, 𝜃) is Lipschitz-
continuous. Third, we will show that the Lipschitz-continuity of 𝑝(̃ש(𝜃), 𝜃) follows from the first and
second result.

24

1. To show that 𝑝(̃ש(𝜃), ·) is Lipschitz-continuous with Lipschitz-constant 𝐿̃ש𝐿𝑝 , first observe
that this holds if (𝜃)ש̃ and 𝑝(̃ש, ·) are both Lipschitz-continuous with Lipschitz-constants 𝐿̃ש
and 𝐿𝑝 , respectively, since

| |𝑝(̃ש(𝜃), ·) − 𝑝(̃ש(𝜃′), ·) | |2 ≤ 𝐿𝑝 | (𝜃)ש̃| − (′𝜃)ש̃ | |2 ≤ 𝐿𝑝𝐿̃ש | |𝜃 − 𝜃′ | |2. (16)

The first premise of the above statement holds per assumption. Let us now show that the
second premise for the above statement holds.

To show that 𝑝(̃ש, ·) is Lipschitz-continuous, first recall condition 2, by which we have that
𝑝(̃ש, ·) = 𝑝(𝑥, 𝜃) = 𝜎(𝑔(𝑥, 𝜃)) with 𝜎 : R → [0, 1] a sigmoid function. Further recall
that the prediction function of a classifier 𝑝(𝑥, 𝜃) is implicitly given by a loss function
ℓ(𝑦, 𝑝(𝑥, 𝜃)) as per definition 1. By assumption 1 we inter alia have that ∇𝑥ℓ(𝑦, 𝑝(𝑥, 𝜃)) is
Lipschitz-continuous in 𝑥 for all 𝑦 and 𝜃. By chain rule,

∇𝑥ℓ(𝑦, 𝑝(𝑥, 𝜃)) = ∇𝑝ℓ(𝑦, 𝑝(𝑥, 𝜃))∇𝑥 𝑝(𝑥, 𝜃). (17)

Now note that we also have by condition 2 that ∇𝑝ℓ(𝑦, 𝑝(𝑥, 𝜃)) is Lipschitz-continuous
in 𝑥. The Lipschitz-continuity of ∇𝑥ℓ(𝑦, 𝑝(𝑥, 𝜃)) in 𝑥 per assumption 1 thus implies the
Lipschitz-continuity of ∇𝑥 𝑝(𝑥, 𝜃) in 𝑥, because the first is a product of the second and
another function that is Lipschitz-continuous in x. Recall that X is bounded (Definition 2
and Condition 2). It is a known fact that any Lipschitz-continuous function is bounded on a
bounded domain. We thus concluded that ∇𝑥 𝑝(𝑥, 𝜃) is bounded on the whole domain X.
Any differentiable function is Lipschitz-continuous if and only if its gradient is bounded.
See [95], for instance. We can thus conclude that 𝑝(𝑥, 𝜃) is Lipschitz-continuous in 𝑥 for all
𝑦 ∈ Y and 𝜃 ∈ Θ.

2. Let us now show that 𝑝(·, 𝜃) is Lipschitz-continuous, too. By assumption 2, we have that
∇𝜃ℓ(𝑌, 𝑝(𝑥, 𝜃)) is Lipschitz-continuous in 𝜃. With reasoning analogous to 1 (b), it follows
that 𝑝(𝑥, 𝜃) is Lipschitz-continuous in 𝜃 for all 𝑦 ∈ Y and all 𝑥 ∈ X.

3. It remains to be proven that the Lipschitz-continuity of 𝑝(̃ש(𝜃), 𝜃) : X×Θ→ [0, 1] follows
from those of 𝑝(𝑥, ·) : X → [0, 1] and 𝑝(·, 𝜃) : Θ → [0, 1]. To do so, denote by 𝐿𝑥 the
Lipschitz-constant of 𝑝(𝑥, ·) and by 𝐿 𝜃 the Lipschitz-constant of 𝑝(·, 𝜃).
First note ∀𝜃, 𝜃 ∈ Θ; ∀𝑥, 𝑥 ∈ X:

| |𝑝(𝜃, 𝑥) − 𝑝(𝜃, 𝑥) | |2 ≤ ||𝑝(𝜃, 𝑥) − 𝑝(𝜃, 𝑥) + 𝑝(𝜃, 𝑥) − 𝑝(𝜃, 𝑥) | |2 (18)

By triangle inequality, we get

| |𝑝(𝜃, 𝑥) − 𝑝(𝜃, 𝑥) | |2 ≤ ||𝑝(𝜃, 𝑥) − 𝑝(𝜃, 𝑥) | |2 + ||𝑝(𝜃, 𝑥) − 𝑝(𝜃, 𝑥) | |2. (19)

Exploiting the Lipschitz-continuity of 𝑝(𝑥, ·) and 𝑝(·, 𝜃) allows us to upper bound this
expression by

𝐿 𝜃 | |𝑥 − 𝑥 | |2 + 𝐿𝑥 | |𝜃 − 𝜃 | |2, (20)

which eventually delivers

| |𝑝(𝜃, 𝑥) − 𝑝(𝜃, 𝑥) | |2 ≤ sup{𝐿 𝜃 , 𝐿𝑥}(| |𝑥 − 𝑥 | |2 + ||𝜃 − 𝜃 | |2). (21)

We conclude that 𝑝(𝑥, 𝜃) is Lipschitz-continuous with Lipschitz-constant sup{𝐿 𝜃 , 𝐿𝑥} if
𝑝(𝑥, ·) and 𝑝(·, 𝜃) are Lipschitz-continuous with Lipschitz constants 𝐿 𝜃 and 𝐿𝑥 , respectively.

The assertion follows from 1., 2., and 3. □

25

F.3 Proof of Theorem 1

Proof. We will first prove the Lipschitz-continuity of the greedy sample adaption 𝑓 : Θ×P×N→ P.
The strategy of the proof is as follows. We first show that 1. 𝑓 (𝜃, ·, ·), 2. 𝑓 (·, P(𝑌, 𝑋), ·), and
3. 𝑓 (·, ·, 𝑛) are Lipschitz-continuos with Lipschitz constants 𝐿 𝜃 , 𝐿P, and 𝐿𝑛, respectively. We
then show in 4. that the Lipschitz-continuity of 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) follows with Lipschitz constant
𝐿 = max{𝐿 𝜃 , 𝐿P, 𝐿𝑛}.

1. We prove the Lipschitz-continuity of 𝑓 (𝜃, ·, ·) given conditions 1, 2, and 5.

To show that 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) is Lipschitz-continuous in 𝜃, it is sufficient to show that

𝑓 ,(𝜃)ש) 𝜃) =
∫ ∫

1(𝑥 = ((𝜃)ש · ,(𝜃)ש)צ 𝜃) 𝑝 𝑑𝑦 �̃�ש 𝑑𝑥 (22)

is Lipschitz-continuous in 𝜃. First note that by Conditions 1 and 4 we can directly infer that
(𝜃)ש is Lipschitz-continuous through lemma 1. In the remainder of the proof, the strategy
is as follows. We first show that 𝑓 ,ש) ·) is Lipschitz-continuos and then demonstrate the
Lipschitz-continuity of 𝑓 ,(𝜃)ש) 𝜃) in 𝜃. With reasoning analogous to argument (3.) in the
proof of lemma 2, it then follows that 𝑓 ,(𝜃)ש) 𝜃) is Lipschitz-conitnuous on Θ × Θ.

(a) We start by showing that the function

𝑓 ,ש) ·) =
∫ ∫

1(𝑥 = (ש · ,ש)צ 𝜃) 𝑝 𝑑𝑦 �̃�ש 𝑑𝑥 (23)

is Lipschitz-continuous in .ש Apply Fubini to get

𝑓 ,ש) ·) =
∫ ∫

1(𝑥 = (ש · ,ש)צ 𝜃) �̃�ש 𝑑𝑥 𝑝 𝑑𝑦 . (24)

Condition 3 implies that features are drawn according to

𝑐 :

{
X × Θ → [0, 1]
(𝑥, 𝜃) ↦→ exp(𝑐 (𝑥, 𝜃))∫

𝑥′ exp(𝑐 (𝑥′ , 𝜃))𝑑𝜇 (𝑥) ,

see definition 2. That is,
∫

1(𝑥 = (ש · ,ש)צ 𝜃) �̃�ש 𝑑𝑥 = 𝑐(ש, 𝜃) · ,ש)𝑐)צ 𝜃), 𝜃). Per
condition 5, 𝑐(𝑥, 𝜃) is linear in 𝑥 and thus Lipschitz-continuous in 𝑥. Further note that
the mapping 𝑐 → 𝑐 is a softmax function, which is continuosly differentiable and thus
Lipschitz-continuous. We thus conclude with the argument (1.) in the proof of lemma 2,
see equation 16, that 𝑐(𝑥, 𝜃) is Lipschitz-continuous in 𝑥, since it is a composition of
two Lipschitz-continuous functions.
Now recall that by Conditions 1 and 5 we can infer that (𝜃)ש is Lipschitz-continuous
through lemma 1. This and Condition 2 imply that we can apply lemma 2, which
delivers that

𝑓 (ש) =
∫

𝑐(ש, 𝜃) · ,ש)𝑐)צ 𝜃), 𝜃)𝑝 𝑑𝑦 = 𝑐(ש, 𝜃)
∫

�̂�(ש(𝜃), 𝜃)𝑝 𝑑𝑦 = 𝑐(ש, 𝜃)𝑝(ש, 𝜃)
(25)

and that 𝑝(ש, 𝜃) is Lipschitz-continuous in both arguments. Now note that both 𝑐 :
X × Θ→ [0, 1] and 𝑝 : X × Θ→ [0, 1] are both bounded from above by 1. We thus
conclude by triangle inquality that 𝑓 (ש) is Lipschitz-continuous in .ש Explicitly,

| | 𝑓 (ש) − 𝑓 (′ש) | |2
= | |𝑐(ש, 𝜃)𝑝(ש, 𝜃) − 𝑐(ש′, 𝜃)𝑝(ש′, 𝜃) | |2
≤ ||𝑐(ש, 𝜃)𝑝(ש, 𝜃) − 𝑐(ש, 𝜃)𝑝(ש′, 𝜃) | |2 + ||𝑐(ש, 𝜃)𝑝(ש′, 𝜃) − 𝑐(ש′, 𝜃)𝑝(ש′, 𝜃) | |2
= | |𝑐(ש, 𝜃)

[
𝑝(ש, 𝜃) − 𝑝(ש′, 𝜃)

]
| |2 + ||𝑝(ש′, 𝜃)

[
𝑐(ש, 𝜃) − 𝑝(ש′, 𝜃)

]
| |2

≤ ||𝑝(ש, 𝜃) − 𝑝(ש′, 𝜃) | |2 + ||𝑐(ש, 𝜃) − 𝑝(ש′, 𝜃) | |2
≤ 𝐿𝑝 | ש| − ′ש | |2 + 𝐿 �̃� | ש| − ′ש | |2
≤ (𝐿𝑝 + 𝐿 �̃�) | ש| − ′ש | |2,

(26)
where 𝐿𝑝 and 𝐿 �̃� denote the Lipschitz constants of 𝑐 and 𝑝, respectively.

26

(b) To show the Lipschitz-continuity of 𝑓 ,(𝜃)ש) 𝜃) in 𝜃, first note the Lipschitz-continuity
𝑓 ,(𝜃)ש) ·) in 𝜃 directly follows from the facts that 1) (𝜃)ש is Lipschitz-continuous, 2)
𝑓 ,ש) ·) is Lipschitz-continuous in ,ש and 3) any composition of Lipschitz-continuous
functions is Lipschitz-continuous. We have proven 1) and 2) right above. For a proof
of 3), see equation 16 in the proof of lemma 2.
What remains to be shown is the Lipschitz-continuity of 𝑓 (·, 𝜃), which translates to the
Lipschitz-continuity of ∫

1(𝑥 = (ש
∫

,ש)צ 𝜃) 𝑝 𝑑𝑦 �̃�ש 𝑑𝑥. (27)

in 𝜃, which in turn translates to the Lipschitz-continuity of the inner integral. Condi-
tion 2 and lemma 2 deliver∫

,ש)צ 𝜃) 𝑝 𝑑𝑦 =
∫

�̂�(ש(𝜃), 𝜃)𝑝 𝑑𝑦 = 𝑝(ש, 𝜃) (28)

with 𝑝(ש, 𝜃) being Lipschitz-continuous in 𝜃.
(c) It remains to be shown that 𝑓 ,(𝜃)ש) 𝜃) is Lipschitz-continuous on Θ × Θ. This follows

from reasoning analogous to the proof of lemma 2, resulting in

| | 𝑓 ,(𝜃)ש) 𝜃) − 𝑓 ,(𝜃)ש̃) 𝜃) | |2 ≤ sup{𝐿 𝜃 , 𝐿ש(𝜃) }(| |𝜃 − 𝜃 | |2 + (𝜃)ש|| − (𝜃)ש̃ | |2), (29)

with 𝐿 𝜃 and 𝐿ש(𝜃) being the Lipschitz-constants of 𝜃 and ,(𝜃)ש respectively.
This concludes the proof that 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) is Lipschitz-continuous in 𝜃.

2. To see that 𝑓 (·, P(𝑌, 𝑋), ·) is Lipschitz-continuous with respect to Wasserstein-1-distance
on both domain P and codomain P, recall the definition of Wasserstein-p-distancees [108].
Let (X, 𝑑) be a metric space, and let 𝑝 ∈ [1,∞). For any two probability measures 𝜇, 𝜈 on
X, the Wasserstein distance of order 𝑝 between 𝜇 and 𝜈 is defined by

𝑊𝑝 (𝜇, 𝜈) =
(

inf
𝜋∈Π (𝜇,𝜈)

∫
X

𝑑 (𝑥, 𝑦) 𝑝𝑑𝜋(𝑥, 𝑦)
)1/𝑝

. (30)

Π(𝜇, 𝜈) denotes the set of all joint measures on X ×X with marginals 𝜇 and 𝜈. For 𝑝 = 1
and empirical distributions P(𝑍) and P′ (𝑍 ′) this translates to

𝑊1
(
P(𝑍), P′ (𝑍 ′)

)
= min

{∑︁
𝑖, 𝑗

𝜋𝑖, 𝑗 𝑑 (𝑧𝑖 , 𝑧′𝑗) : 𝜋𝑖, 𝑗 ≥ 0,
∑︁
𝑖

𝜋𝑖, 𝑗 = 𝛽 𝑗 ,
∑︁
𝑗

𝜋𝑖, 𝑗 = 𝛼𝑖

}
(31)

with 𝜋𝑖, 𝑗 a joint measure on 𝑍 and 𝑍 ′ and 𝛼𝑖 and 𝛽 𝑗 corresponding to marginal measures of
𝑍 and 𝑍 ′, respectively.

It becomes evident that any marginal change in 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) caused by a change P(𝑌, 𝑋)
is essentially 𝑛

𝑛+1 .

That is,

𝛿 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛)
𝛿P(𝑌, 𝑋) =

𝑛

𝑛 + 1
, (32)

which analytically follows from

𝑓 (𝜃, P(𝑌, 𝑋), 𝑛)
=
∫ ∫ 1(𝑥=ש(𝜃)) 𝜃)ש)צ·) , 𝜃) + 𝑛 P(𝑌=1, 𝑋=𝑥)

𝑛+1 𝑝 𝑑𝑦 �̃�ש 𝑑𝑥

=
∫ ∫ 1(𝑥=ש(𝜃)) 𝜃)ש)צ·) , 𝜃)

𝑛+1 𝑝 𝑑𝑦 �̃�ש 𝑑𝑥 + 𝑛 P(𝑌=1, 𝑋=𝑥)
𝑛+1

(33)

The partial derivative in equation 32 is trivially upper-bounded by 1. It is a known fact
that differentiable functions are Lipschitz-continuous if and only if the gradient is upper
bounded, see [95, page 161], for instance.

27

3. Choose 𝑛, 𝑛′ ∈ N such that 𝑛 ≠ 𝑛′ arbitrarily. It is self-evident that for fixed 𝑥

1(𝑥 = ((𝜃)ש · ,(𝜃)ש)צ 𝜃) + 𝑛 P(𝑌 = 1, 𝑋 = 𝑥)
𝑛 + 1

−1(𝑥 = ((𝜃)ש · ,(𝜃)ש)צ 𝜃) + 𝑛 P(𝑌 = 1, 𝑋 = 𝑥)
𝑛 + 1

≤ 1.
(34)

And thus also for any 𝑥

𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) − 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛′) ≤ 1. (35)

Since supp(𝑍) = supp(𝑍 ′) with 𝑍 ∼ 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) and 𝑍 ′ ∼ 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛′), we have

𝑊1 (𝑓 (𝜃, P(𝑌, 𝑋), 𝑛), 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛′)) ≤ 1 (36)

as well as |𝑛−𝑛′ | ≥ 1, from which the assertion that 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) is Lipschitz-continuous
in 𝑛 directly follows.

4. With reasoning analogous to (3.) in the proof of lemma 2, we have that the Lipschitz-
continuity of 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) follows from the Lipschitz-continuity of 1. 𝑓 (𝜃, ·, ·), 2.
𝑓 (·, P(𝑌, 𝑋), ·), and 3. 𝑓 (·, ·, 𝑛). That is,

𝑊1 (𝑓 (𝜃, P, 𝑛), 𝑓 (𝜃′, P′, 𝑛′)) ≤ max{𝐿 𝜃 , 𝐿P, 𝐿𝑛} · (| |𝜃−𝜃′ | |2+𝑊1 (P, P′) + | |𝑛−𝑛′ | |2), (37)

from which the assertion follows with 𝑝 = 1 for the 𝑝-norm.

What remains to be proven is the Lipschitz-continuity of the non-greedy sample adaption function
𝑓𝑛 : Θ ×P→ P with 𝑓𝑛 (𝜃, P(𝑌, 𝑋)) = P′ (𝑌, 𝑋) induced by

P′ (𝑌 = 1, 𝑋 = 𝑥)

=

∫ ∫
1(𝑥 = ((𝜃)ש · ,(𝜃)ש)צ 𝜃) + 𝑛0 P(𝑌 = 1, 𝑋 = 𝑥) − 1(𝑥 = −ש (P(𝑌, 𝑋))) · −ש)צ (P(𝑌, 𝑋)), 𝜃)

𝑛0
�̃�צ 𝑑𝑦 �̃�ש 𝑑𝑥.

The reasoning is completely analogous to the greedy sample adaption function 𝑓 , see 4. above. In
particular, we can directly transfer the proof of 1. 𝑓 (𝜃, ·, ·) being Lipschitz-continuous. What remains
to be shown is that the Lipschitz-continuity in P ∈ P also holds for 𝑓𝑛. This translates to showing
that −ש is Lipschitz-continuous in P, since we have the Lipschitz-continuity of 𝑛0 · P(𝑋,𝑌) with
analogous reasoning as in 2. above. However, note that the Lipschitz-constant is not necessarily the
same, since the partial derivative of 𝑓𝑛 also includes the indirect effect through −ש and .צ

To see that −ש is Lipschitz-continuous, note that for two arbitrary P, P′ ∈ P we have that

| −ש| (P) − −ש (P′) | |2 = | |
∫

𝑋𝑑P −
∫

𝑋 ′𝑑P′ | |2 =

∫
(𝑥 − 𝑥′)𝑑𝜌(𝑥, 𝑥′) ≤

∫
|𝑥 − 𝑥′ |𝑑𝜌(𝑥, 𝑥′), (38)

where 𝜌(𝑥, 𝑥′) is any joint probability measure on X×X. Now recall that the Wasserstein-1-distance
is defined as the infimum of

∫
|𝑥 − 𝑥′ |𝑑𝜌(𝑥, 𝑥′) with respect to 𝜌(𝑥, 𝑥′). We conclude that

| −ש| (P) − −ש (P′) | |2 ≤ 𝐿ש− ·𝑊1 (P, P′) (39)
with 𝐿ש− a constant.

The Lipschitz-continuity of 𝑓𝑛 then follows from the Lipschitz-continuity of 𝑓𝑛 in 𝜃 and the Lipschitz-
continuity in P with the argument in 4.

□

F.4 Proof of Theorem 2

Proof. The structure of the proof is analogous to the proof of theorem 1. We show that 1. 𝑓 (𝜃, ·, ·),
2. 𝑓 (·, P(𝑌, 𝑋), ·), and 3. 𝑓 (·, ·, 𝑛) are Lipschitz-continuos with Lipschitz constants 𝐿 𝜃 , 𝐿P, and

28

𝐿𝑛, respectively. We then show in 4. that the Lipschitz-continuity of 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) follows with
Lipschitz constant 𝐿 = max{𝐿 𝜃 , 𝐿P, 𝐿𝑛}. Since none of conditions 1 through 5 were required to show
1., 2., and 4., in the proof of theorem 1, we only need to show that 1. also holds under conditions 2, 3,
and 4.

To show that 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) is Lipschitz-continuous in 𝜃, it is sufficient to show that

𝑓 ,(𝜃)ש) 𝜃) =
∫ ∫

1(𝑥 = ((𝜃)ש · ,(𝜃)ש)צ 𝜃) 𝑝 𝑑𝑦 �̃�ש 𝑑𝑥 (40)

is Lipschitz-continuous in 𝜃.

In the remainder of the proof, the strategy is as follows. We first show that 𝑓 ,ש) ·) is Lipschitz-
continuos and then demonstrate the Lipschitz-continuity of 𝑓 ,(𝜃)ש) 𝜃) in 𝜃. With reasoning analogous
to argument (3.) in the proof of lemma 2, it then follows that 𝑓 ,(𝜃)ש) 𝜃) is Lipschitz-conitnuous on
Θ × Θ.

We start by showing that the function

𝑓 ,ש) ·) =
∫ ∫

1(𝑥 = (ש · ,ש)צ 𝜃) 𝑝 𝑑𝑦 �̃�ש 𝑑𝑥 (41)

is Lipschitz-continuous in .ש Apply Fubini to get

𝑓 ,ש) ·) =
∫ ∫

1(𝑥 = (ש · ,ש)צ 𝜃) �̃�ש 𝑑𝑥 𝑝 𝑑𝑦 . (42)

Condition 3 implies that features are drawn according to

𝑐 :

{
X × Θ → [0, 1]
(𝑥, 𝜃) ↦→ exp(𝑐 (𝑥, 𝜃))∫

𝑥′ exp(𝑐 (𝑥′ , 𝜃))𝑑𝜇 (𝑥) ,
(43)

see definition 2. That is,
∫

1(𝑥 = (ש · ,ש)צ 𝜃) �̃�ש 𝑑𝑥 = 𝑐(ש, 𝜃) · ,ש)𝑐)צ 𝜃), 𝜃). Per condition 4, 𝑐(𝑥, 𝜃)
has bounded gradients with respect to 𝑥, which implies that 𝑐(𝑥, 𝜃) is Lipschitz-continuous in 𝑥.
Further note that the mapping 𝑐 → 𝑐 is a softmax function, which is continuosly differentiable and
thus Lipschitz-continuous. We thus conclude with the argument (1.) in the proof of lemma 2, see
equation 16, that 𝑐(𝑥, 𝜃) is Lipschitz-continuous in 𝑥, since it is a composition of two Lipschitz-
continuous functions.

We now need to verify that
∫

ש𝑑ש�̃�(𝜃)ש is Lipschitz such that we can apply lemma 2. By condition 3
we have that

∫
ש𝑑ש�̃�(𝜃)ש = 𝑐(𝑥, 𝜃), which is Lipschitz-continuous in 𝜃 per condition 4.

Condition 2 and lemma 2 then directly deliver that

𝑓 (ש) =
∫

𝑐(ש, 𝜃) · ,ש)𝑐)צ 𝜃), 𝜃)𝑝 𝑑𝑦 = 𝑐(ש, 𝜃)
∫

�̂�(ש(𝜃), 𝜃)𝑝 𝑑𝑦 = 𝑐(ש, 𝜃)𝑝(ש, 𝜃) (44)

with 𝑝(ש, 𝜃) Lipschitz continuous in both arguments. Now note that both 𝑐 : X × Θ→ [0, 1] and
𝑝 : X × Θ→ [0, 1] are both bounded from above by 1. We thus conclude by triangle inquality that
𝑓 (ש) is Lipschitz-continuous in ,ש analogous to the proof of theorem 1. Explicitly,

| | 𝑓 (ש) − 𝑓 (′ש) | |2
= | |𝑐(ש, 𝜃)𝑝(ש, 𝜃) − 𝑐(ש′, 𝜃)𝑝(ש′, 𝜃) | |2
≤ ||𝑐(ש, 𝜃)𝑝(ש, 𝜃) − 𝑐(ש, 𝜃)𝑝(ש′, 𝜃) | |2 + ||𝑐(ש, 𝜃)𝑝(ש′, 𝜃) − 𝑐(ש′, 𝜃)𝑝(ש′, 𝜃) | |2
= | |𝑐(ש, 𝜃)

[
𝑝(ש, 𝜃) − 𝑝(ש′, 𝜃)

]
| |2 + ||𝑝(ש′, 𝜃)

[
𝑐(ש, 𝜃) − 𝑝(ש′, 𝜃)

]
| |2

≤ ||𝑝(ש, 𝜃) − 𝑝(ש′, 𝜃) | |2 + ||𝑐(ש, 𝜃) − 𝑝(ש′, 𝜃) | |2
≤ 𝐿𝑝 | ש| − ′ש | |2 + 𝐿 �̃� | ש| − ′ש | |2
≤ (𝐿𝑝 + 𝐿 �̃�) | ש| − ′ש | |2,

(45)

where 𝐿𝑝 and 𝐿 �̃� denote the Lipschitz constants of 𝑐 and 𝑝, respectively.

To show the Lipschitz-continuity of 𝑓 ,(𝜃)ש) 𝜃) in 𝜃, first note the Lipschitz-continuity 𝑓 ,(𝜃)ש) ·) in 𝜃
directly follows from the facts that 1) (𝜃)ש is Lipschitz-continuous, 2) 𝑓 ,ש) ·) is Lipschitz-continuous

29

in ,ש and 3) any composition of Lipschitz-continuous functions is Lipschitz-continuous. We have
proven 1) and 2) right above. For a proof of 3), see equation 16 in the proof of lemma 2.

What remains to be shown is the Lipschitz-continuity of 𝑓 (·, 𝜃), which translates to the Lipschitz-
continuity of ∫

1(𝑥 = (ש
∫

,ש)צ 𝜃) 𝑝 𝑑𝑦 �̃�ש 𝑑𝑥. (46)

in 𝜃, which in turn translates to the Lipschitz-continuity of the inner integral. Condition 2 and
lemma 2 (which we can apply, since

∫
ש𝑑ש�̃�(𝜃)ש is Lipschitz, see above) deliver∫

,ש)צ 𝜃) 𝑝 𝑑𝑦 =
∫

�̂�(ש(𝜃), 𝜃)𝑝 𝑑𝑦 = 𝑝(ש, 𝜃) (47)

with 𝑝(ש, 𝜃) being Lipschitz-continuous in 𝜃.

It remains to be shown that 𝑓 ,(𝜃)ש) 𝜃) is Lipschitz-continuous on Θ×Θ. This follows from reasoning
analogous to the proof of lemma 2, resulting in

| | 𝑓 ,(𝜃)ש) 𝜃) − 𝑓 ,(𝜃)ש̃) 𝜃) | |2 ≤ sup{𝐿 𝜃 , 𝐿ש(𝜃) }(| |𝜃 − 𝜃 | |2 + (𝜃)ש|| − (𝜃)ש̃ | |2), (48)
with 𝐿 𝜃 and 𝐿ש(𝜃) being the Lipschitz-constants of 𝜃 and ,(𝜃)ש respectively.

This concludes the proof that 𝑓 (𝜃, P(𝑌, 𝑋), 𝑛) is Lipschitz-continuous in 𝜃. The Lipschitz-continuity
of 𝑓𝑛 (𝜃, P(𝑌, 𝑋)) directly follows, since the Lipschitz-continuity of −ש (P) has been shown in the
proof of theorem 1.

□

F.5 Proof of Theorem 3

Proof. Choose (𝜃, P), (𝜃′, P′) ∈ Θ × P arbitrarily. Set 𝐹 (𝜂) := E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃,P) ℓ(𝑌, 𝑋, 𝜂) and
𝐹′ (𝜂) := E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃 ′ ,P′) ℓ(𝑌, 𝑋, 𝜂). As integrals over 𝛾-strongly convex functions, both 𝐹 and 𝐹′
are 𝛾-strongly convex themselves.

Let 𝑅1 := 𝑅1 (𝜃, P) and 𝑅′1 := 𝑅1 (𝜃′, P′) be first components of 𝑅𝑛 (𝜃, P) and 𝑅𝑛 (𝜃′, P′), respectively.
Since, by construction, we know that 𝑅1 is the unique minimizer of 𝐹 and that 𝑅′1 is the unique
minimizer of 𝐹′, we can conclude that:

𝐹 (𝑅1) − 𝐹 (𝑅′1) ≥ (𝑅1 − 𝑅′1)
𝑇∇𝐹 (𝑅′1) +

𝛾

2
𝑅1 − 𝑅′1

2
2 (49)

𝐹 (𝑅′1) − 𝐹 (𝑅1) ≥ 𝛾

2
𝑅1 − 𝑅′1

2
2 (50)

Adding the above inequalities yields

−𝛾
𝑅1 − 𝑅′1

2
2 ≥ (𝑅1 − 𝑅′1)

𝑇∇𝐹 (𝑅′1) (51)

Now, consider the function 𝑇 (𝑥, 𝑦) := (𝑅1 − 𝑅′1)
𝑇∇ℓ(𝑦, 𝑥, 𝑅′1). Due to Cauchy-Schwarz inequality,

we have that

∥𝑇 (𝑥, 𝑦) − 𝑇 (𝑥′, 𝑦′)∥2 ≤
𝑅1 − 𝑅′1

2

∇ℓ(𝑦, 𝑥, 𝑅′1) − ℓ(𝑦′, 𝑥′, 𝑅′1)2 (52)

As ℓ is 𝛽-jointly smooth, we have that∇ℓ(𝑦, 𝑥, 𝑅′1) − ℓ(𝑦′, 𝑥′, 𝑅′1)2 ≤ 𝛽 ∥(𝑥, 𝑦) − (𝑥
′, 𝑦′)∥2 (53)

Thus, together, the latter two inequalities imply

∥𝑇 (𝑥, 𝑦) − 𝑇 (𝑥′, 𝑦′)∥2 ≤
𝑅1 − 𝑅′1

2 𝛽 ∥(𝑥, 𝑦) − (𝑥

′, 𝑦′)∥2 (54)

showing that 𝑇 is
𝑅1 − 𝑅′1

2 𝛽-Lipschitz. This implies that

𝑇 := (
𝑅1 − 𝑅′1

2 𝛽)

−1𝑇 (55)

30

is 1-Lipschitz. As, due to theorem 1, the non-greedy sample adaption function 𝑓𝑛 is Lipschitz with
respect to𝑊1 and ∥ · ∥ 𝑝 for some constant 𝐿, we can use the dual characterization of the Wasserstein
metric, i.e. the Kantorovich-Rubinstein lemma [43], to obtain

|E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃,P) (𝑇 (𝑌, 𝑋)) − E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃 ′ ,P′) (𝑇 (𝑌, 𝑋)) | ≤ 𝐿 (| |𝜃 − 𝜃′ | |2 +𝑊1 (P, P′)) (56)

We compute:

E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃,P) (𝑇 (𝑌, 𝑋)) =
E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃,P) (𝑇 (𝑌, 𝑋))𝑅1 − 𝑅′1

2 𝛽

=
(𝑅1 − 𝑅′1)

𝑇𝑅1 − 𝑅′1

2 𝛽
∇𝐹 (𝑅′1) (57)

Here, we used that (𝑅1 − 𝑅′1)
𝑇 is a constant with respect to the measure 𝑓𝑛 (𝜃, P) and that the order of

integration and differentiation can be exchanged according to Lebesgue’s dominated convergence
theorem. Analogously, we obtain

E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃 ′ ,P′) (𝑇 (𝑌, 𝑋)) =
E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃 ′ ,P′) (𝑇 (𝑌, 𝑋))𝑅1 − 𝑅′1

2 𝛽

=
(𝑅1 − 𝑅′1)

𝑇𝑅1 − 𝑅′1

2 𝛽
∇𝐹′ (𝑅′1) (58)

Together, this yields

(𝑅1 − 𝑅′1)
𝑇∇𝐹 (𝑅′1) − (𝑅1 − 𝑅′1)

𝑇∇𝐹′ (𝑅′1) ≥ −𝐿𝛽
𝑅1 − 𝑅′1

2 (| |𝜃 − 𝜃

′ | |2 +𝑊1 (P, P′)) (59)

As 𝑅′1 is the unique minimizer of 𝐹′, we conclude that the second product on the left-hand side of
this inequality is larger or equal to 0. Thus, the inequality reduces to

(𝑅1 − 𝑅′1)
𝑇∇𝐹 (𝑅′1) ≥ −𝐿𝛽

𝑅1 − 𝑅′1

2 (| |𝜃 − 𝜃
′ | |2 +𝑊1 (P, P′)) (60)

which, together with Equation (51), yields

−𝛾
𝑅1 − 𝑅′1

2
2 ≥ −𝐿𝛽

𝑅1 − 𝑅′1

2 (| |𝜃 − 𝜃
′ | |2 +𝑊1 (P, P′)) (61)

which proves – after some rearranging – that 𝑅1 : Θ × P → Θ is Lipschitz-continuous with
Lipschitz-constant 𝐿 𝛽

𝛾
. Precisely, we get

𝑅1 − 𝑅′1

2 ≤ 𝐿
𝛽

𝛾
(| |𝜃 − 𝜃′ | |2 +𝑊1 (P, P′). (62)

We further have per theorems 1 and 2 that 𝑓𝑛 : Θ ×P→ P is Lipschitz-continuous with constant
𝐿, as used above. It can easily be verified (see definitions 7 and 5) that the second component
𝑅2 := 𝑅2 (𝜃, P) of 𝑅(𝜃, P) equates 𝑓𝑛. Thus,

∥𝑅2 − 𝑅′2∥ ≤ 𝐿 (| |𝜃 − 𝜃
′ | |2 +𝑊1 (P, P′) (63)

with 𝑅′2 := 𝑅2 (𝜃′, P′) and arbitrary 𝜃, 𝜃′ ∈ Θ and arbitrary P, P′ ∈ P. We can conclude that 𝑅𝑛 is
Lipschitz-continuous with Lipschitz-constant ≤ 𝐿 (1 + 𝛽

𝛾
) and the sum-metric on Θ ×P by adding

the two Lipschitz-inequalities, yielding

𝑅1 − 𝑅′1

2 +
𝑅2 − 𝑅′2

2 ≤ 𝐿

𝛽

𝛾
(| |𝜃 − 𝜃′ | |2 +𝑊1 (P, P′) + 𝐿 (| |𝜃 − 𝜃′ | |2 +𝑊1 (P, P′). (64)

That is,

𝑅𝑛 − 𝑅′𝑛
 ≤ 𝐿 (1 + 𝛽

𝛾
) (| |𝜃 − 𝜃′ | |2 +𝑊1 (P, P′)). (65)

31

Remains to be shown that, assuming 𝐿 < (1 + 𝛽

𝛾
)−1, the sequence (𝑅𝑛 (𝜃𝑡 , P𝑡))𝑡∈N converges to a fix

point at a linear rate. The existence and uniqueness of a fix point follows from Banach’s fix point
theorem [4], since equation 65 guarantees that the map 𝑅𝑛 is a contraction for 𝐿 < (1 + 𝛽

𝛾
)−1 on a

complete metric space. So, let (𝜃𝑐, P𝑐) denote such a fix point. Observe that it holds per equation 65
for all 𝑡 ∈ N

| | (𝜃𝑡 , P𝑡) − (𝜃𝑐, P𝑐) | | ≤ 𝐿 (1 +
𝛽

𝛾
) | | (𝜃𝑡 , P𝑡) − (𝜃𝑐, P𝑐) | | (66)

Repeatedly applying this yields

| | (𝜃𝑡 , P𝑡) − (𝜃𝑐, P𝑐) | | ≤ 𝐿𝑡 (1 +
𝛽

𝛾
)𝑡 | | (𝜃0, P0) − (𝜃𝑐, P𝑐) | | (67)

Setting the expression on the right-hand side to be at most Δ gives

| | (𝜃𝑡 , P𝑡) − (𝜃𝑐, P𝑐) | | ≤ 𝐿𝑡 (1 +
𝛽

𝛾
)𝑡 | | (𝜃0, P0) − (𝜃𝑐, P𝑐) | | ≤ Δ (68)

Rearranging and setting the expression on the right-hand side to be at most Δ gives

log | | (𝜃𝑡 , P𝑡) − (𝜃𝑐, P𝑐) | | ≤ 𝑡 log
{
𝐿 (1 + 𝛽

𝛾
)
}
≤ log

Δ

| | (𝜃𝑡 , P𝑡) − (𝜃𝑐, P𝑐)
}
| |

(69)

Rearranging for 𝑡 and exploiting that 𝐿 (1 + 𝛽

𝛾
) < 1 yields

𝑡 ≥
log | | (𝜃0 ,P0)−(𝜃𝑐 ,P𝑐) | |

Δ

log 𝐿 (1 + 𝛽

𝛾
)

(70)

since | | (𝜃0, P0) − (𝜃𝑐, P𝑐) | | and 𝐿 (1 + 𝛽

𝛾
) are fixed quantities, we have that

| | (𝜃𝑡 , P𝑡) − (𝜃𝑐, P𝑐) | | ≤ Δ (71)

if 𝑡 ≥ log | | (𝜃0 ,P0)−(𝜃𝑐 ,P𝑐) | |
Δ

(log 𝐿 (1 + 𝛽

𝛾
))−1, which proves the linear rate of convergence.

□

Note that the proof was mainly an application of Banach fixed-point theorem [4] and as such similar
to the proof of [74, theorem 3.5]. The key differences to [74, theorem 3.5] are: (1) We need to prove
the Lipschitz-continuity of the sample adaption function 𝑓 first, see theorem 1, which is non-trivial
for several instances of reciprocal learning. (2) [74, theorem 3.5] considers simple repeated risk
minimization, i.e., a mapping Θ→ Θ, while reciprocal learning is 𝑅 : Θ ×P × N→ Θ ×P × N or
𝑅𝑛 : Θ ×P→ Θ ×P (definitions 6 and 7).

F.6 Proof of Theorem 4

Proof. Recall that 𝑅∗𝑛 = (𝜃∗, P∗) = arg min𝜃,P E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃,P) ℓ(𝑌, 𝑋, 𝜃) per definition 9 and 𝜃𝑐 =

arg min𝜃 E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃) per definition 8. First assume that 𝜃𝑐 ≠ 𝜃∗, since otherwise the
the statement would be trivial due to 𝐿 > 0, 𝐿ℓ > 0, 𝛾 > 0 per assumptions.

We will now prove the statement | |𝜃𝑐 − 𝜃∗ | | ≤ 2𝐿ℓ𝐿

𝛾
by contradiction. Thus, assume that | |𝜃𝑐 − 𝜃∗ | | >

2𝐿ℓ𝐿

𝛾
.

First observe that E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃) is (𝐿𝐿ℓ)-Lipschitz in 𝜃 for fixed P𝑐 and 𝜃𝑐, since the
loss is 𝐿ℓ-Lipschitz and 𝑓𝑛 is 𝐿-Lipschitz in 𝜃, since it is 𝐿 𝜃 -Lipschitz in 𝜃 (see 1. in proof of
theorem 1) and 𝐿 = max{𝐿 𝜃 , 𝐿P, 𝐿𝑛}. That is,

E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃𝑐) − E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃∗) ≤ 𝐿ℓ𝐿 | |𝜃∗ − 𝜃𝑐 | |. (72)

32

Further note that

E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃∗) − E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃𝑐) ≥
𝛾

2
| |𝜃∗ − 𝜃𝑐 | |2, (73)

which holds because we can state due to assumption 3 (strong convexity) that

E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐)
[
ℓ(𝑌, 𝑋, 𝜃∗) − ℓ(𝑌, 𝑋, 𝜃𝑐)

]
≥ E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐)

[
∇𝜃ℓ(𝑌, 𝑋, 𝜃𝑐)𝑇 (𝜃∗ − 𝜃𝑐)

]
+ 𝛾

2
| |𝜃∗ − 𝜃𝑐 | |2

(74)

by taking expectations on the inequality stated in assumption 3 (strong convexity). By classical
first-order optimality conditions [44] we know that the first term on the right-hand side is larger or
equal to 0, from which equation 73 directly follows, see also [74, Theorem 4.3].

If now | |𝜃𝑐 − 𝜃∗ | | > 2𝐿ℓ𝐿

𝛾
, or equivalently 𝛾

2 | |𝜃𝑐 − 𝜃
∗ | |2 > 𝐿ℓ𝐿 | |𝜃𝑐 − 𝜃∗ | | as we assumed, we have

per equations 72 and 73 that

E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃𝑐) − E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃∗)
< E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃∗) − E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃𝑐), (75)

which would imply

E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃∗) > E(𝑌,𝑋)∼ 𝑓𝑛 (𝜃𝑐 ,P𝑐) ℓ(𝑌, 𝑋, 𝜃𝑐), (76)

which contradicts definition 9 and the non-negativity of the loss function.

□

F.7 Proof of Theorem 5

Proof. By Cauchy criterion for series 𝑅𝑡 , 𝑡 ∈ N with respect to sum or product norm on Θ ×P × N.
According to the Cauchy criterion the series 𝑅𝑡 diverges, if there is an 𝜖 such that ∃𝑡 ∈ N : ∀𝑚, 𝑛 ≥
𝑡 : 𝑑𝑝 (𝑅𝑚−𝑅𝑛) = 𝑑𝑝 ((𝜃𝑚, P𝑚, 𝑛𝑚) − (𝜃𝑛, P𝑛, 𝑛𝑛))) > 𝜖 with 𝑑𝑝 the sum norm and 𝑚 ≠ 𝑛; 𝑚, 𝑛 ∈ N.
This holds for 𝜖 ∈ (0, 1), since | |𝑛𝑚 − 𝑛𝑛 | | ≥ 1. □

F.8 Proof of Theorem 6

Proof. By counterexample. Assume 𝑓𝑛 : Θ ×P → P is not Lipschitz-continuous, i.e., no 𝐿 < ∞
exists such that

𝑊1 (𝑓 (𝜃, P), 𝑓 (𝜃′, P′)) ≤ 𝐿 · | | (| |𝜃 − 𝜃′ | |2,𝑊1 (P, P′)) | |𝑝 .

Let again 𝑅𝑛,1 := 𝑅𝑛,1 (𝜃, P) and 𝑅′
𝑛,1 := 𝑅𝑛,1 (𝜃′, P′) be first components of 𝑅(𝜃, P) and 𝑅(𝜃′, P′),

respectively. Further assume that 𝑅𝑛,1 = 𝐶 + 𝜃′𝐿, 𝐶 ∈ R. It becomes evident that for any fixed point
𝜃𝑐 it must hold: 𝜃𝑐 = 𝐶

1−𝐿 . If 𝐿 →∞, this fixed point does not exist: lim𝐿→∞ (𝜃𝑐) = ±∞. □

33

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and section 1 (introduction) of the paper accurately reflect the paper’s
contribution and scope, covering all results presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are explicitely discussed in sections 1 and 6
(Subsection "Limitations) of the main paper as well as mentioned when stating the main
results in sections 3 and 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

34

Answer: [Yes]
Justification: The theoretical results of the paper are stated in Theorems 1, 2, 3, 4, 5, and
6 as well as in Lemmata 1 and 2. For each of these theorems and Lemmata, full sets of
assumptions and conditions are provided. Moreover, complete proofs for all these statements
are provided in the paper’s appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper does include two experiments in section C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

35

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See section C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See section C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See section C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper is, in every aspect, conform with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We do not foresee direct negative societal impact from the current work.
Positive societal impact in form of making decisions based on reciprocal learning algorithms
such as active learning or self-training more reliable and trustworthy are discussed in section
1, 2, and 6 of the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

37

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

38

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

39

	Introduction
	Reciprocal learning
	An illustrating running example: self-training
	A decision-theoretic perspective
	Formal definition and desirable properties
	Self-training is an instance of reciprocal learning

	Convergence of reciprocal learning: Lipschitz is all you need
	Which reciprocal learning algorithms converge?
	Related work
	Discussion
	Familiar examples of reciprocal learning
	Self-Training
	Implications of convergence results

	Active learning
	Multi-armed bandits

	Additional Illustrations
	Difference between reciprocal learning and performative prediction
	Reciprocal learning compared to general online learning

	Illustrative experiments on data regularization
	Alternative stochastic data selection
	Discussion of assumptions on loss
	General discussion of assumption 1, 2, and 3
	Discussion of assumption 3: Strong convexity of loss function

	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

