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Abstract

We present NN4SysBench, a benchmark suite for neural network verification
that is composed of applications from the domain of computer systems. We call
these neural networks for computer systems or NN4Sys. NN4Sys is booming:
there are many proposals for using neural networks in computer systems—for
example, databases, OSes, and networked systems—many of which are safety-
critical. Neural network verification is a technique to formally verify whether
neural networks satisfy safety properties. We however observe that NN4Sys has
some unique characteristics that today’s verification tools overlook and have limited
support. Therefore, this benchmark suite aims at bridging the gap between NN4Sys
and the verification by using impactful NN4Sys applications as benchmarks to
illustrate computer systems’ unique challenges. We also build a compatible version
of NN4SysBench, so that today’s verifiers can also work on these benchmarks with
approximately the same verification difficulties. The code is available here:
https://github.com/Khoury-srg/NN4SysBench.

1 Introduction

Al safety is critical in the field of deep learning and neural networks. One pivotal technique to
guarantee safety is neural network verification [23| [30l], or NN-verification. It offers systematic
and rigorous guarantees to ensure the reliability and robustness of neural networks. In recent years,
formally verifying neural networks has gained significant attention, and various benchmark suites [3]]
have emerged to assess the verification efficiency for different problems. These benchmark suites—
such as ACAS XU (22| 23], MNIST [28]], and CIFAR-10 [27,[17]—provide a platform for researchers
and practitioners to compare different verification methodologies, ultimately helping people use
neural networks safely.

However, there has been limited attention on verifying neural networks for computer systems
(NN4Sys). NN4Sys refers to neural networks that replace traditional components in computer
systems, like OSes, databases, and networked systems. People have demonstrated that NN4Sys can
significantly improve the performance of a system [26,33]. Meanwhile, since computer systems are
critical infrastructures, NN4Sys has strong safety requirements. But, unlike traditional ML tasks,
NN4Sys has unique characteristics which bring new challenges for today’s verifiers. (We detail
the motivation and the challenges in §2}) Thus, there is a strong need to connect NN4Sys and
NN-verification.

To bridge the gap between NN4Sys and NN-verification, we introduce NN4SysBench, a benchmark
suite for NN-verification to verify impactful NN4Sys applications. NN4SysBench encompasses
a diverse set of applications from a wide spectrum of systems, including database indexes [26],
distributed system schedulers [35]], and Internet congestion control [21]. Each benchmark has a set of
specifications that cover different verification difficulties. Over the past three years, NN4SysBench has
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been used as part of the benchmarks in the International Verification of Neural Networks Competition
(VNN-COMP) [3]], contributing to the evaluation of the state-of-the-art verifiers.

Goals and non-goals. As mentioned earlier, NN4Sys brings new challenges to verifiers, and until
today, some NN4Sys properties still haven’t been supported. Therefore, NN4SysBench has two
versions—a vanilla version and a compatible version—targeting different goals:

* Vanilla version: this version contains the original neural networks proposed by their original
authors, and the specifications that should have been verified assuming an oracle verifier.

» Compatible version: we customize the networks to simulate the original proposals, and remove
the unsupported operators and network architectures, so that verifiers can verify these networks.

The primary goal of NN4SysBench is to demonstrate the characteristics of NN4Sys, with the
overarching aim of helping and accelerating advancements in future neural network verifiers. To
achieve this, the vanilla version is built to exemplify verification challenges that NN4Sys poses,
thereby serving as motivations for new verification techniques. Meanwhile, the compatible version
is used for evaluating the performance of today’s verifiers. It provides an approximation of the
verification difficulties inherent in various NN4Sys applications. Beyond its immediate usefulness,
we envision that the compatible NN4SysBench will also serve as a stepping stone towards the eventual
establishment of verifying vanilla NN4Sys.

However, NN4SysBench is not designed for the following points: first, NN4SysBench is not built for
detecting unsafe behaviors in the original NN4Sys proposals. In our benchmarks, we replicate the
original proposal by retraining the neural networks. A specification violation on our networks does
not necessarily imply that the original proposal is unsafe. Second, NN4SysBench is not designed for
proposing perfect specifications. We do not claim that the specifications used in our benchmarks are
what NN4Sys must satisfy. The specifications are subjective to our understanding of the applications,
and many specifications are “better-to-obey” rather than “have-to-obey”. In fact, it is an open question
to design high-quality specifications for NN4Sys. Third, NN4SysBench does not contribute to
NN-verification. It does not invent any new verification methods or algorithms.

Contributions. Our contributions are as follows.

* We design and implement NN4SysBench, a benchmark suite that bridges NN4Sys and NN-
verification. We propose safety specifications for these NN4Sys applications.

* We customize the existing NN4Sys to form a compatible version of NN4SysBench, which enables
today’s verifiers to experiment on NN4Sys applications.

* We highlight some NN4Sys characteristics that we observe, some of which significantly differ
from classic machine learning tasks.

* We experiment NN4SysBench with two state-of-the-art verifiers, «3-CROWN [55] 48] and
Marabou [24]. They perform differently on different benchmarks, which indicates that
NN4SysBench covers various verification difficulties.

We wish that NN4SysBench can illustrate how NN4Sys works, meanwhile also demonstrate the
potentials of NN-verification for computer systems. NN4SysBench may further hint better ways for
verifying NN4Sys applications.

2 Motivation: verifying NN4Sys

Background: NN4Sys. People have introduced a broad range of NN4Sys applications in computer
systems. These applications either use neural networks to replace traditional data structures for
performance (e.g., learned index [37]), or to make better decisions (e.g., learned scheduler [42]).
Below we list a few NN4Sys applications in databases, OSes, and networked systems.

In databases, people proposed learned index [26} [13 12} 45l 37]], learned cardinality estimation [235]],
and learned query optimizers [38| 36]]. In operating systems, there are systems using neural networks
for predicting I/O latency [20], page prefetching [[7], load balancing [[16]], and job scheduling [41]].
Likewise, neural networks are used for networked systems, including congestion control [21]],
datacenter network traffic optimization [9} 43]], resource allocation and scheduling [32} 154, 135]],
optimizing video streaming [33]], and packet classification [29]. In addition, Haj-Ali et al. [[19] and
Mao et al. [34] have surveyed NN4Sys applications.



Why verifying NN4Sys? Despite having better average performance, NN4Sys is not widely deployed
in practice. One major reason is that neural networks are black boxes and what has been learned
by the neural networks is unclear to developers. Thus, neural networks may produce unexpected
results for unseen inputs, and risk the stability and correctness of the systems. For example, a neural
network based scheduler may attempt to schedule invalid jobs [32]; a learned video streaming system
may pick the worst bitrate even if the network condition is good [15]; a learned index may output a
faraway data position for non-existing keys [S0[]; and a learned cardinality may violate monotonicity
and predict a smaller number for a larger query range [49].

Meanwhile, testing cannot address the above-mentioned problem, as the input space is usually infinite
(like database key space) and testing cannot cover all possible inputs. Despite the challenge of
infinite input spaces, there is a hope: neural network verification can provably check networks for a
continuous range of inputs. This enables developers to verify if a trained NN4Sys follows a safety
property for any inputs under some predefined conditions, even if infinite. In fact, NN-verification
has already been used for examining desired properties of networked systems [[15} [11]].

NN4Sys brings new verification challenges. Though promising, adopting verification in NN4Sys
is non-trivial. This is because NN4Sys has its own characteristics, some of which turn out to be
challenging for today’s neural network verifiers. Here, we list the unique characteristics of NN4Sys
to highlight some challenges to apply NN-verification on NN4Sys applications.

1. Large number of specification entries. We observe that NN4Sys usually has many specification
entries—a basic specification unit, representing a single rule. For example, in reachability
specifications, an entry comprises an input range and an output range. This high number of entries
is because safety properties need to cover the entire input space to be comprehensive. For example,
the learned index in our benchmark has 150K entries.

2. Monotonicity specification. Beyond normal specifications of specifying input-output constraints,
NN4Sys also requires monotonicity properties. As an example, learned cardinality estimation
requires results to be monotonically increasing while query ranges increase.

3. Probabilistic specification. NN4Sys sometimes needs specifications to be probabilistic—it can be
either the guarantees hold probabilistically (e.g., in probabilistic data structures) or developers
want to give some leeway to networks (e.g., allowing false predictions).

4. Temporal specification. in many cases, NN4Sys requires properties related to time. For example,
congestion control protocols should eventually increase the packet sending rate when facing good
network conditions, but increasing doesn’t have to happen immediately.

5. Hierarchical models. NN4Sys sometimes uses multiple neural networks in a hierarchical structure
which together serve one task, for example, RMI [26]. Ideally, verification tools can check them
end-to-end in one pass.

To clarify the challenges, here are several nuances to mention. First, we are not claiming that every
challenge mentioned is impossible to verify; some are merely inefficient due to the absence of targeted
support. Similarly, even if some challenges are not directly supported, there are alternative methods
to verify them by making modifications to networks or specifications—as demonstrated in how we
build the compatible version of NN4SysBench. It’s also worth noting that the verification of certain
challenges is exclusive to specific verifiers and lacks a universal verification interface. Lastly, there
are indeed some challenges that are currently unverifiable (e.g., variable tensor indexing), presenting
challenges to today’s verification techniques.

Bridging the gap with NN4SysBench. To address the divide between NN4Sys and NN-verification,
we propose NN4SysBench, as a benchmark suite for NN4Sys. NN4SysBench is designed to include
impactful NN4Sys that already exists, plus specifications that we create. Also, each benchmark is
available in two versions: vanilla and compatible. So far, NN4SysBench includes six benchmarks
that span a wide array of applications. These have been implemented in diverse computer systems,
each providing unique functionalities and specifications. Next, we introduce NN4SysBench.

3 NN4SysBench

NN4SysBench contains six NN4Sys applications, detailed in Figure [I, We will introduce these
applications (§3.1)), their specifications (§3.2)), and the overall organization of NN4SysBench (§3.3).



benchmark  benchsize training network operators specifications

size depth  in_dim  compatible vanilla reach mono prob temp
small 33K 8 1 v
LearnedIndex large SL 66K 12 1 Gemm,ReLU -
. small 103K 19 154 Gemm,RelLU, v
CardEsti large SL osm 18 154 MatMul,Split, B v
small 103K 21 308 ReduceSum,Slice, v
(dual-model) -, oo SL osm 20 308 Concat,Sigmoid v
BloomFilter — SL 133K 8 1 Gemm,ReLU — v
small 0.6K v
CongestCtrl medium RL 1.5K 6 30 Gemm,Tanh - v
large 4.1K v
small 0.6K v
(dual-model) medium RL 1.5K 8 60 Gemm, Tanh,Split - v
large 4.1K v
small 0.6K Gemm,Tanh v
(chain-model) medium RL 1.5K 40 151 Split,Concat - v
large 4.1K v
Gemm,ReLU, +LeakyReLu,
LearnedSched - RL 3K 217 43K Split,Reshape, +Slice,+Gather, v’
MatMul(const) +MatMul(var)
small 103K 12 +Slice, v
AdaptBitrate medium RL 264K 11 48 Gemm, +MatMul, v
large 527K 11 ReLU, +Convld v
small 103K Reshape, +Flatten, v
(dual-model) medium RL 264K 18 96 Concat +ReduceSum, v
large 527K +Gather v

Figure 1: NN4SysBench application overview. We get network parameters from onnx-tool [6]: “size” is
the number of trained parameters in network; “depth” is the longest path in network’s computational graph;
“in_dim” is the size of flattened input tensor. In “training”, “SL” means supervised learning; “RL” means

reinforcement learning. In “operators”, “vanilla” column indicates operators used by the original models but
» B

not by the compatible models. In “specifications”, “reach”, “mono”, “prob”, “temp” represent reachability,
monotonicity, probabilistic, and temporal specifications, respectively.

3.1 Neural networks for computer systems

The six applications in NN4SysBench are: learned index, learned bloom filter [26], learned cardinali-
ties [25]], learned congestion control [21]], learned adaptive bitrate [33]], and learned scheduler [35].
Below, we introduce them by their training methods.

Supervised learning. There are three NN4Sys applications that use supervised learning: (1) Database
learned index (abbreviated as LearnedIndex): A database index is a data structure that improves
data retrieval by linking database keys to their storage positions. Learned indexes replace traditional
structures like B-Trees with ML models that predict storage locations based on database keys. (2)
Learned bloom filter (abbreviated as BloomFilter): a bloom filter is a probabilistic data structure that
has been widely used in many computer systems. Bloom filters test whether an element (for example,
a string) is in a pre-defined set. Bloom filters allow false positives: it may return true for an element
that is not in the set. The inputs are being-tested elements, and the outputs are booleans, whether
the elements are in the set. (3) Learned cardinalities (abbreviated as CardEsti): database cardinality
estimation predicts the number of rows returned by a database query (i.e., a SQL statement), which
will then influence the query optimization plans. Traditional cardinality estimation relies on heuristics
and domain knowledge; whereas, the learned cardinalities learn from the trace data. The inputs of
learned cardinalities are SQL queries, and the outputs are estimated number of returned rows.

Reinforcement learning. The other three use reinforcement learning: (1) Learned Internet congestion
control (abbreviated as CongestCtrl): congestion control protocols are to ensure efficient data
transmission and prevent packet congestion in a network. Learned congestion control studies the
patterns of congestion and non-congestion conditions, takes network conditions as input, and decides
sending rates in the near future. (2) Learned adaptive bitrate (abbreviated as AdaptBitrate): in
video streaming, adaptive bitrate algorithms are used on client-side video players to decide the
resolution (e.g., 720P) to download for the next video chunk. Learned adaptive bitrate uses neural
networks to select future video chunks based on observations collected by client video players.
(3) Learned distributed system scheduler (abbreviated as LearnedSched): a distributed computing
system like Spark manages a cluster of machines and runs multiple jobs, each containing multiple



benchmark  spec description

LearnedIndex reach  All predicted data locations are error-bounded.

. reach  The predicted cardinalities are close to the ground-truth cardinalities from the database.

CardEsti =

mono A larger-ranged query returns larger cardinality.
BloomFilter — prob  The false positive and false negative rates are bounded.
reach ~ When observing good (bad) networking conditions, the sender does not decrease (in-
CongestCtrl crease) packet sending rates.
mono  When observing better networking conditions, the sender increases packet sending rates
by either the same or a larger amount.
temp  When the networking condition changes from bad to good, the sender eventually increases
packet sending rates.

LearnedSched reach (1) if job A’s input depends on job B’s output, B is not finished, then A should not be
scheduled. (2) A user cannot get their jobs scheduled earlier by requiring more resources
for them.

reach ~ When facing good (bad) downloading conditions, the video streaming system should not
pick the worst (best) video resolution.

mono  Better downloading conditions imply better resolutions.

AdaptBitrate

Figure 2: A high-level description of the specifications for the applications in NN4SysBench.

tasks with dependencies among them. A learned scheduler uses neural networks to learn workload-
specific scheduling algorithms to optimize some high-level objective, such as minimizing average job
completion time. Inputs are the status of the current jobs, tasks, and the cluster; Outputs are the next
tasks to run.

Benchmark selection. To ensure benchmark relevance and quality, we considered the following
criteria in selecting our benchmarks. First, to provide a comprehensive view of NN4Sys, we aim to
cover a broad spectrum of applications in computer systems, including databases (LearnedIndex and
CardEsti), networked systems (CongestCtrl and AdaptBitrate), distributed systems (LearnedSched),
and generic data structures used in systems (BloomFilter). Second, we focus on highly cited works to
ensure the benchmarks are impactful in their fields. Third, we prioritize the open-sourced projects,
so we have accurate guidance to replicate the networks in a modern DL framework like PyTorch.
Finally, we tend to choose benchmarks that have been previously subjected to verification efforts
by other people [[15,50]], as these NN4Sys applications are what people want to verify and we can
borrow intuitions from their specification design.

3.2 NN4Sys specifications

Specifications are safety properties that developers expect the NN4Sys to satisfy. For example, the
specification for the learned index aims to guarantee that the outputs (i.e., the predicted data positions
of a key) closely align with the actual data positions, within a predefined error bound. This ensures
that the learned index consistently locates existing data within the database, an essential requirement
for any index structure. The correctness and safety properties of various NN4Sys applications
vary significantly and are specific on the requirements of applications and the problems they solve.
NN4SysBench has a diverse collection of NN4Sys, hence having a diverse set of specifications. We
brief the specifications for each NN4Sys in Figure[2] In NN4SysBench, we design the specifications
for each NN4Sys based on our understanding of the original systems. We also borrow specifications
from prior verification work [15 52] to some of these NN4Sys. We classify specifications to four
categories: reachability, monotonicity, probabilistic, and temporal specifications.

Reachability specification. In some NN4Sys, developers want to bound the outputs of a neural
network regarding a range of inputs, for example in learned indexes. We call these input-output
properties, reachability specifications, which we define as: Formally, consider a neural network as
a function f to which inputs denote as « € D, and outputs are y € D, where D, and D,, are the
domain and range of f. Users can define a reachability specification by providing a pair of domains
as (x € X,y € V), where ¥ C D, and Y C D,. And a reachability specification is written as:
Vo, x € X = y = f(x) € Y. Reachability specification is also called neural network robustness
in verifying vision models [40, 55, [10]] and others.

Monotonicity specification. Monotonicity is a widely used correctness property in systems. For
example, if the network condition improves, a video streaming system should not decrease the video



quality. We define monotonicity specification as: For a network f, two inputs xy and z1 in some input
domain X, a monotonically increasing specification reads as: Vag,z1 € X, Vi, zq[i]| > z1[i] =
f(zo)[j] = f(x1)[4], where j is an output dimension provided by users.

Probabilistic specification. This specification describes a NN4Sys obeying rules with some given
probability. It is useful when either the guarantees hold probabilistically (e.g., in probabilistic data
structures) or users want to give some leeway to NN4Sys (e.g., allowing few false predictions).
For example, learned bloom filters require probabilistic specification because they allow a small
number of false positives. We define probabilistic specifications as: Given a network f and its
input and output x and y, users can define a probabilistic specification by specifying a reachability
specification (X', )) and a probability P indicating how likely the probabilistic specification holds.
The probabilistic specification is written as: Vo, x € X = Pr(y €Y |y = f(x)) > P.

Temporal specification. Many NN4Sys require properties related to time, especially those applica-
tions interacting with environments. For example, a congestion control protocol should eventually
increase the packet sending rate, if the network remains in good conditions. Note that the NN4Sys’s
decisions (here, the sending rates) may not change immediately, but the expected behavior should
happen in a finite number of steps.

3.3 Benchmark organization

In NN4SysBench, each application (e.g., learned index) forms a benchmark set. Each set contains
multiple benchmark cases. A case represents a verification problem—given a trained neural network
and a set of specifications, does the network satisfy the specifications.

NN4SysBench comprises six benchmark sets, each corresponding to a NN4Sys application in Figure[T]
Within each set, we’ve provided multiple pre-trained networks of varying sizes, reflecting a spectrum
of verification challenges. Specifications are derived from our predefined templates, and users of
NN4SysBench have the flexibility to configure both a random seed and the number of specifications
to generate—these are two parameters in benchmark configurations. Besides network sizes, different
specification templates also present varying levels of complexity. Also, as a technicality, unlike other
applications, BloomFilter and LearnedSched each use a single model: BloomFilter employs a simple
model, whereas LearnedSched is based on GNN, for which we retain the original model size to
preserve verification complexity.

Tuning benchmark difficulty. NN4SysBench serves as performance tests for neural network verifiers,
requiring a diverse range of difficulties to effectively tell the capabilities of the verifiers. To provide
varied levels of difficulties, we alter the networks and adjust the specifications by tuning several
influencing factors, including network depth, network size, the number of perturbed dimensions in
specifications, and the range of specification perturbations. The interplay between these factors and
the verification difficulty is studied in section[5} This investigation helps us fine-tune the benchmark
difficulty to examine the verifiers’ performance under varying conditions.

Building benchmarks from scratch. Beyond “ready-to-verify” benchmark cases, we also provide
infrastructures for users who want to update the network architectures or modify specifications.
Users can build their own benchmark cases with the desired neural networks and specifications. In
particular, we provide the training code for each application based on PyTorch and specification
templates written in VNN-LIB format [1]].

4 Designing compatible benchmarks

As mentioned earlier (§2)), some of the networks and specifications are not supported by current neural
network verifiers. To make NN4SysBench accessible to and compatible with today’s NN-verification,
we build the compatible NN4SysBench. In particular, we customize the networks and specifications to
satisfy the assumptions that verifiers make—the rules used by the International Verification of Neural
Networks Competition [3]]. Below we detail how we approximate the unsupported characteristics.

Dual-model to simulate monotonicity. In order to support monotonicity specification (§3.2)), we
implement a dual-model architecture that simulates two network inferences at the same time. For
example, in learned cardinalities [25]], we duplicate the pre-trained model and connect the two models
side-by-side as a single new model (see Figure[3). The dual-model’s inputs and outputs are doubled
compared to the original model. By using a split operator, we divide the inputs in half: the first half
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Figure 3: Dual-model and chain-model overview. In input tensors, represents tensor concatenation. In
the dual-model, the “diff”” operator is based on the output of the original neural network. (Take CardEsti as an
example: the output is the number of returned rows, so the “diff” is the subtraction operator.) In the chain-model,
the “output” from the prior network and the “partial input” together form the complete input tensor for the next
network in the chain.

“||”

is channeled to the first model, while the latter half is directed to the second model. Dual-model’s
output is the difference between the estimated cardinality for the first-half and the second-half inputs.

With the dual-model, a monotonicity specification can be expressed as, for example: (except for year,
other properties of ¢; and g are the same.) ¢;.year < 2015 < qa.year =—> y; — yo < 0, where ¢;
and g- serve as inputs to the first and the second models respectively, while y;, yo are the outputs
from the the first and the second models, respectively.

Chain-model to approximate k-step temporal specifications. Multiple NN4Sys applications
require to incorporate temporal specifications into their operations. Take, for instance, the case of
Aurora [21]], a system designed to tackle Internet congestion control with neural networks. In this
context, users anticipate observing a gradual increase in the packet sending rate as network congestion
subsides, a change that might not manifest instantaneously but should eventually happen, as long as
the network conditions remain stable. These temporal specifications, which we formally defined in
§3.2] play a crucial role in achieving desired system performance. However, while some verification
frameworks, such as vegas [51]], support verification for specific multi-step NN, verifiers still haven’t
fully supported temporal specifications. This highlights a significant gap in verification capabilities
to ensure the safety of NN4Sys applications operating within dynamic environments.

To simulate the temporal specifications, we construct chain-models by replicating the original network
k times and concatenating them. This chain-model serves as a representation of the original model’s
behavior over a span of k consecutive steps. Notably, the output from one model step serves as
the input for the subsequent step, as illustrated in Figure [3] Consequently, for a chain-model,
the cumulative inputs amount to k times the inputs of the original model, while the final output
corresponds to the output of the ultimate model in the sequence. This approach allows us to model the
temporal specifications required for congestion control, which specify that after k& successive steps of
favorable network conditions, the model should opt to increase the packet sending rate. Chain-model
is not new; it has been used before in NN-verification by Eliyahu et al. [15] and Wu et al. [52].

Counting units for probabilistic specifications. Accurately verifying probabilistic specifications
like learned bloom filters [39} 147] is challenging. Instead, we simulate this verification by (i) splitting
the input space into tiny equal-sized units, (ii) verifying each unit separately, and (iii) counting
the verified safe units over all units as the probability of verified safe space. Of course, this is a
conservative approximation because a verified unsafe unit might have most of the space that is safe.
The size of the unit will be a parameter to trade off verification performance and the accuracy of
probabilistic specifications. For our learned bloom filter benchmark, we choose a dataset that has a
two dimensional input (a geolocation with a latitude and a longitude). We split the input space evenly
to 10K (i.e., 100 x 100) units.

Merging hierarchical models for learned index. It is hard to verify vanilla RMIs [26] as a whole
because an RMI has a hierarchical structure and is comprised of many models. In NN4SysBench, we
use a straightforward approach to approximate learned index: employing a single neural network to
learn what an RMI learns. However, neural networks are more costly and harder to train compared
to RMISs, as noted by Kraska et al. [26] §2.3]. To address this, we borrow training approaches from
Ouroboros [50] to train a single neural network that learns very well in a 150K-key lognormal dataset.
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Figure 4: Verification runtime for different benchmarks. The x-axis are the benchmarks; the y-axis is the
average verification runtime of ten cases (in log-scale). Bars on the left are the benchmarks solved by both
verifiers; on the right are the ones only solved by a3-CROWN. The bars are sorted by verification time, with the
exact runtime displayed above each bar. Instances labeled “NaN” indicate cases where the given verifier cannot
verify the instance.

S Experimental evaluation

There are two questions we want to answer:

* How do state-of-the-art verifiers perform on NN4SysBench?
* How does verification difficulty change according to different benchmarks?

Verifiers. We experiment with two verifiers: (1) a8-CROWN [4] is a verifier based on an efficient
linear bound propagation framework and branch and bound. It can be accelerated efficiently on GPUs
and can scale to large networks. (2) Marabou [J5] is an SMT-based verifier that transforms neural
network verification to constraint satisfaction problems, and solves the problem using a specialized
SMT solver (github commit a2077b46). Note that the verifier performance comparison is not entirely
apple-to-apple, as «3-CROWN uses GPUs and Marabou does not.

Benchmarks. Each benchmark comprises (1) a trained neural network and (2) a set of specifications,
named after their combination. For example, CongestCtrl_small_chain_spec4 represents a
benchmark from application CongestCtrl: the model size is small; it is a chain-model (§4); the
corresponding specification is spec4. We briefly describe specifications: (1) LearnedIndex: all
specifications are reachability specifications, different in the number of spec entries. (2) CardEsti:
specifications for dual-model are monotonicity specifications, for normal models are reachability
specifications. (3) BloomFilter: specifications are approximated probabilistic specifications (§4) (4)
CongestCtrl: spec101/102/2 are reachability specifications; spec3 is monotonicity specifications
for dual-models; spec4 is temporal specifications for chain-models. (5) LearnedSched: specifications
(spec1/2) are reachability specifications. (6) AdaptBitrate: specifications (spec1/2) are reachability
specifications; spec3 is monotonicity specifications for dual-models. Please see Figure 2] for the
meaning of each type of specifications regarding different NN4Sys.

NN4SysBench configs. NN4SysBench allows users to configure the number of specifications for
each benchmark, and randomly generate specifications (§3.3). In the following experiments, we
fix the random seed to generate the same set of benchmarks for two verifiers, and we configure
NN4SysBench to generate 10 specifications from one specification template. That means for each
pair of application and specification template, we generate 10 cases.

Experiment setup. We run experiments on a machine with 32-Core Intel Xeon Gold 6338 CPU,
256GB memory, and an NVIDIA A30(24GB) GPU. Detailed settings can be found in Appendix.

5.1 NN4Sys verification performance

We experiment all the above mentioned benchmarks on the two verifiers, a3-CROWN and Marabou.
We measure how much time each verifier spends on the verification. In this experiment, we collect the
end-to-end verification time for each benchmark. Note that we configure NN4SysBench to generate
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Figure 5: Verification time versus model size for CongestCtrl and AdaptBitrate. The bars represent the
benchmark verification time from a3-CROWN (the left y-axis), and the line indicates the ONNX model size in
bytes (the right y-axis). The benchmarks are sorted by their model size.

10 cases for each benchmark, so the runtime for each benchmark is the average of ten runs. If there is
a timeout (180 seconds), we add 180 seconds to the overall time. Figure @] shows the results.

As Figure[d] shows, different benchmarks have significantly different verification runtime (notice that
y-axis is in log-scale). This highlights that NN4SysBench can distinguish verification capabilities.
Also, all benchmarks can be verified by at least one of the verifier, indicating that our compatible
benchmarks indeed work with today’s verifiers. Finally, we can see that different verifiers perform
differently on different benchmarks. For example, Marabou can solve some small networks very
efficiently; meanwhile, a3-CROWN can solve some large networks that Marabou cannot address.

Even in compatible version of NN4SysBench, there are several benchmarks that neither verifier is able
to verify, due to unsupported operators. In particular, the «8-CROWN does not support scatter oper-
ator, which are used in chain-models, such as LearnedSched_chain and AdaptBitrate_chain
models. Meanwhile, Marabou does not support Add (const), Matmul (var), slice operator, and
some other operators, making it unable to verify a number of benchmarks.

5.2 Benchmark difficulty

NN4SysBench is designed to explore different verification difficulties. This demonstrates the intrinsic
complexity of each NN4Sys application. In addition, various difficulties allow NN4SysBench, as
a benchmark suite, provide more information for different verifiers. Next, we study what’s the
difficulties of different NN4Sys applications, and different specifications. We use the verification
time of a3-CROWN as a metric to tell the benchmark difficulty. We experiment with two NN4Sys
applications (CongestCtrl and AdaptBitrate) with multiple specification templates. We study their
difficulties regarding their verification time and model sizes. Figure [5|shows the results.

There are three trends in Figure[5] First, the overall trend is that the larger the model, the longer
the verification time. Hence, the verification difficulty increases when the model size increases.
This is not surprising, as the number of non-linear operations decides the potential branches during
verification. Second, for these two applications, monotonicity specifications are harder to verify
than reachability specifications. For example, verifying AdaptBitrate_small_dual_spec3 takes
longer than verifying AdaptBitrate_small_spec2, even though they have similar model sizes.
Third, safe specifications are harder to verify than unsafe specifications. For example, given same
model, verifying CongestCtrl_small_spec101, which contains 10 safe cases and 0 unsafe cases,
is longer than verifying CongestCtrl_small_spec102, which contains O safe and 10 unsafe cases.

6 Related work

Benchmarks in verification. Benchmarking in verification has developed in response to the empir-
ical research within different fields [18} [14]]. Compared to these developed fields, neural network
verification is a new field under development, and verification competitions have been positive driven
force to develop high-quality benchmarks. In particular, International Verification of Neural Net-
works Competition [8], VNN-COMP, has been a representative competition to introduce and compare
state-of-the-art methods in NN-verification. It also has benchmarks spanning different applications
and scenarios.



Carvana UNet [2] is a benchmark proposed in VNN-COMP that introduces networks and specifi-
cations for semantic segmentation in autonomous driving. To benchmark the ability that current
verifiers handle practical neural network architectures, Carvana UNet covers comparably complex
networks including Conv2d layers, AveragePool layers and TransposedConv Upsampling [46] layers
followed by batch normalization. ERAN benchmark is proposed to understand how the choice
of activation function affects certifiability. Although most of NN Verification methods focus their
analysis on ReLU based networks, modern network architectures, such as EfficientNet [44], are
based on non-piecewise-linear activation functions. The ERAN benchmark aims at comparing the
certifiability of networks based on piecewise-linear and non-piecewise-linear activation functions.
Xu et al. [53] summarizes a benchmark suite on various tasks with networks, most of which are
composed of fully-connected layers.

NN4SysBench is different from these literatures as it focuses on verification for neural networks
within system applications, advocating to bridge the gap between current NN-verification methods and
growing machine learning for system applications. The proposed benchmark provides supplementary
tasks, architectures, and specifications to the verification community, and shows the potential to
advance research in NN-verification for systems.

7 Future work and conclusion

Future work. We’re working on adding more NN4Sys instances to NN4SysBench, for example,
I/O latency predictors [20], OS kernel load balancing [16]], and learned memory allocator [31]. One
interesting topic is to study and provide a set of high-level specification interfaces for NN4Sys
that cover most safety properties required by computer systems. We also plan to include other
categories of specifications, and develop sophisticated specifications that have more structures than a
simple parallel OR in VNN-LIB. In particular, we plan to build compound specifications which are a
combination of multiple different categories of specifications to serve the same safety property. For
example, a compound of monotonicity and error-bounded existing keys can substitute the current
specifications for learned index, with much fewer specification entries.

Conclusion. We present a benchmark suite, NN4SysBench, with a hope to bridge NN-verification
and NN4Sys. NN4SysBench is designed for today’s verification tools while hinting at the future
verification of NN4Sys.

Acknowledgements

This work has been partially supported by Khoury apprenticeship program. Cheng Tan is supported
in part by NSF CAREER #2237295. Huan Zhang is supported in part by the AI2050 program at
Schmidt Sciences (Al 2050 Early Career Fellowship) and NSF (IIS-2331967).

References
[1] The Verification of Neural Networks Library (VNN-LIB). www.vnnlib.org, 2019.

[2] benchmark of VNN-COMP 2022. https://github.com/ChristopherBrix/
vnncomp2022_benchmarks/tree/main/benchmarks) 2022.

[3] 4th International Verification of Neural Networks Competition (VNN-COMP’23). https:
//sites.google.com/view/vnn2023, 2023.

[4] alpha-beta-CROWN. https://github.com/Verified-Intelligence/
alpha-beta-CROWN, 2023.

[5] Marabou. https://github.com/NeuralNetworkVerification/Marabou, 2023.
[6] onnx-tool. https://github.com/ThanatosShinji/onnx-tooll 2023.

[7] Tbrahim Umit Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Velikov, and Erez Zadok. A
machine learning framework to improve storage system performance. In Proceedings of the
13th ACM Workshop on Hot Topics in Storage and File Systems, pages 94-102, 2021.

10


www.vnnlib.org
https://github.com/ChristopherBrix/vnncomp2022_benchmarks/tree/main/benchmarks
https://github.com/ChristopherBrix/vnncomp2022_benchmarks/tree/main/benchmarks
https://sites.google.com/view/vnn2023
https://sites.google.com/view/vnn2023
https://github.com/Verified-Intelligence/alpha-beta-CROWN
https://github.com/Verified-Intelligence/alpha-beta-CROWN
https://github.com/NeuralNetworkVerification/Marabou
https://github.com/ThanatosShinji/onnx-tool

[8] Christopher Brix, Mark Niklas Miiller, Stanley Bak, Taylor T. Johnson, and Changliu Liu. First
three years of the international verification of neural networks competition (van-comp), 2023.

[9] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. Auto: Scaling deep reinforcement learning
for datacenter-scale automatic traffic optimization. In Proc. SIGCOMM, 2018.

[10] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning, pages 1310-1320. PMLR, 2019.

[11] Arnaud Dethise, Marco Canini, and Nina Narodytska. Analyzing Learning-Based Networked
Systems with Formal Verification. In Proceedings of INFOCOM’21, 2021.

[12] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang,
Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, et al. Alex: an updatable adap-
tive learned index. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020.

[13] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. Tsunami: A learned multi-
dimensional index for correlated data and skewed workloads. arXiv preprint arXiv:2006.13282,
2020.

[14] Vijay Victor D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated
techniques for formal software verification. I[EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27:1165-1178, 2008.

[15] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael Schapira. Verifying learning-augmented
systems. In Proc. SIGCOMM, 2021.

[16] Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya Akella, and
Christopher J Rossbach. Towards a machine learning-assisted kernel with lake. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, pages 846-861, 2023.

[17] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. Ai2: Safety and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE Symposium on Security and Privacy (SP), pages 3—18. IEEE, 2018.

[18] Aarti Gupta. Formal hardware verification methods: A survey. In Computer-Aided Verification,
pages 5-92. Springer, 1992.

[19] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Joseph Gonzalez, Krste Asanovic, and Ion
Stoica. Deep reinforcement learning in system optimization. arXiv preprint arXiv:1908.01275,
2019.

[20] Mingzhe Hao, Levent Toksoz, Nanqingin Li, Edward Edberg Halim, Henry Hoffmann, and
Haryadi S Gunawi. Linnos: Predictability on unpredictable flash storage with a light neural
network. In Proc. OSDI, 2020.

[21] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. A deep
reinforcement learning perspective on internet congestion control. In International Conference
on Machine Learning. PMLR, 2019.

[22] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J Kochenderfer.
Policy compression for aircraft collision avoidance systems. In 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pages 1-10. IEEE, 2016.

[23] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An efficient smt solver for verifying deep neural networks. In International Conference on
Computer Aided Verification, pages 97-117. Springer, 2017.

[24] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim,
Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljié, et al. The marabou framework
for verification and analysis of deep neural networks. In Computer Aided Verification: 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I 31, pages 443-452. Springer, 2019.

11



[25] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons Kem-
per. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint
arXiv:1809.00677, 2018.

[26] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proc. SIGMOD, 2018.

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[28] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[29] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. Neural packet classification. In Proc. SIGCOMM.
2019.

[30] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, and
Mykel J Kochenderfer. Algorithms for verifying deep neural networks. arXiv preprint
arXiv:1903.06758, 2019.

[31] Martin Maas, David G Andersen, Michael Isard, Mohammad Mahdi Javanmard, Kathryn S
McKinley, and Colin Raffel. Learning-based memory allocation for c++ server workloads. In
Proc. ASPLOS, 2020.

[32] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Resource man-
agement with deep reinforcement learning. In Proceedings of the 15th ACM workshop on hot
topics in networks, pages 50-56, 2016.

[33] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video streaming with
pensieve. In Proc. SIGCOMM, pages 197-210, 2017.

[34] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang, Haonan Wang,
Ryan Marcus, Ravichandra Addanki, Mehrdad Khani, Songtao He, et al. Park: An open
platform for learning augmented computer systems. 2019.

[35] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. Learning scheduling algorithms for data processing clusters. In Proc. SIGCOMM.
2019.

[36] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska,
Olga Papaemmanouil, and Nesime Tatbul. Neo: A learned query optimizer. arXiv preprint
arXiv:1904.03711, 2019.

[37] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra, Alfons
Kemper, Thomas Neumann, and Tim Kraska. Benchmarking learned indexes. arXiv preprint
arXiv:2006.12804, 2020.

[38] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim
Kraska. Bao: Learning to steer query optimizers. arXiv preprint arXiv:2004.03814, 2020.

[39] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching.
Advances in Neural Information Processing Systems, 31, 2018.

[40] Christoph Miiller, Gagandeep Singh, Markus Piischel, and Martin Vechev. Neural network
robustness verification on gpus. arXiv preprint arXiv:2007.10868, 2020.

[41] Yiming Qiu, Hongyi Liu, Thomas Anderson, Yingyan Lin, and Ang Chen. Toward reconfig-
urable kernel datapaths with learned optimizations. In Proc. HotOS, 2021.

[42] Ibrahim Sabek, Tenzin Samten Ukyab, and Tim Kraska. Lsched: A workload-aware learned
query scheduler for analytical database systems. In Proceedings of the 2022 International
Conference on Management of Data, pages 1228-1242, 2022.

12



[43] Saim Salman, Christopher Streiffer, Huan Chen, Theophilus Benson, and Asim Kadav. Deep-
conf: Automating data center network topologies management with machine learning. In
Proceedings of the 2018 Workshop on Network Meets AI & ML, 2018.

[44] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, pages 6105-6114. PMLR, 2019.

[45] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie Wang, and
Haibo Chen. Xindex: a scalable learned index for multicore data storage. In Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
308-320, 2020.

[46] Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Diego Manzanas Lopez, Nathaniel Hamilton,
Xiaodong Yang, Stanley Bak, and Taylor T Johnson. Robustness verification of semantic
segmentation neural networks using relaxed reachability. In International Conference on
Computer Aided Verification, pages 263-286. Springer, 2021.

[47] Kapil Vaidya, Eric Knorr, Tim Kraska, and Michael Mitzenmacher. Partitioned learned bloom
filter. arXiv preprint arXiv:2006.03176, 2020.

[48] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-CROWN: Efficient bound propagation with per-neuron split constraints for complete and

incomplete neural network verification. Advances in Neural Information Processing Systems,
34,2021.

[49] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou. Are we ready
for learned cardinality estimation? arXiv preprint arXiv:2012.06743, 2020.

[50] Tianhao Wei, Zhihao Jia, Changliu Liu, and Cheng Tan. Building verified neural networks for
computer systems with ouroboros. Proceedings of Machine Learning and Systems, 5, 2023.

[51] Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh. Scalable
verification of gnn-based job schedulers. arXiv preprint arXiv:2203.03153, 2022.

[52] Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh. Scalable
verification of gnn-based job schedulers. Proceedings of the ACM on Programming Languages,
6(O0PSLA2):1036-1065, 2022.

[53] Dong Xu, David Shriver, Matthew B. Dwyer, and Sebastian G. Elbaum. Systematic generation
of diverse benchmarks for dnn verification. Computer Aided Verification, 12224:97 — 121, 2020.

[54] Zhiyuan Xu, Yanzhi Wang, Jian Tang, Jing Wang, and Mustafa Cenk Gursoy. A deep reinforce-
ment learning based framework for power-efficient resource allocation in cloud rans. In 2017
IEEE International Conference on Communications (ICC). IEEE, 2017.

[55] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. Advances in Neural Informa-
tion Processing Systems, 31:4939-4948, 2018. URL https://arxiv.org/pdf/1811.00866,
pdf.

13


https://arxiv.org/pdf/1811.00866.pdf
https://arxiv.org/pdf/1811.00866.pdf

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , Or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes]
* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section [T|Goals and non-
goals.

(c) Did you discuss any potential negative societal impacts of your work? We believe
there are no potential negative societal impacts of our work, so we do not discuss it.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] URL is in
abstract.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In supplemental material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] We have fixed the random seed.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Details are in supplemental
material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We utilized established
models as the foundation for our benchmark. The original creators have been cited to
acknowledge their foundational work.

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] We have re-implemented the code and retrained the models, enhancing their
functionality. Our re-implemented code and modifications are provided as new assets.
URL provided.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] No research with human subjects included.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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