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Abstract

Inspired by how the early stages of visual perception in humans and primates are vulnerable
to adversarial attacks, we present a new defense method called Error Correction by Agree-
ment Checking (ECAC). This strategy is designed to mitigate realistic black-box threats. We
exploit the fact that natural and adversarially trained models rely on distinct feature sets
for classification. Notably, naturally trained models retain commendable accuracy against
adversarial examples generated using adversarially trained models. Leveraging this dispar-
ity, ECAC moves the input toward the prediction of the naturally trained model unless it
leads to disagreement in prediction between the two models, before making the prediction.
This simple error correction mechanism is highly effective against leading SQA (Score-based
Query Attacks) as well as decision-based and transfer-based black-box attacks. We also
verify that, unlike other black-box defenses, ECAC maintains significant robustness even
when adversary has full access to the model. We demonstrate its effectiveness through com-
prehensive experiments across various datasets (CIFAR and ImageNet) and architectures
(ResNet and ViT).

1 Introduction

Since the advent of adversarial attacks [Szegedy et al. (2014), the field has seen an arms race between
adversarial defenses and attacks. Defenses based on adversarial training [Madry et al.| (2018]) have withstood
the test of time. However, robust accuracy still needs improvement for reliable deployment. In realistic
scenarios, attackers lack complete access to models, making black-box defense a practical choice and must
be prioritized. However often these defenses only defend against Score based Query attacks (SQA) (like
AAAChen et al (2022), RND |Qin et al|(2021))), while leaving transfer and decision-based attack surface
open. Our work focuses on these practical challenges, proposing a defense that works well against all these
black-box attacks.

Nat’ SAT TRADES MART

Nat’ 00.00 71.27 72.50 75.97
SAT 82.74 51.61 62.22 64.19
TRADES 82.67 62.53 52.94 66.23
MART 78.42  59.01 61.03 54.87

Table 1: Transfer accuracy of adversaries generated by different models. (ResNet-18, CIFAR-10, PGD-100
attack). Columns show models used for crafting the attack.

We argue that simple feed-forward networks struggle with adversarial robustness due to the absence of an
error correction mechanism, a key component of biological perception Hawkins & Sandra (2004). Notably,
Elsayed et al. (2018) found that under rapid, time-limited conditions (= 74 ms), where humans likely cannot
engage error correction, adversarial images also mislead human perception. Motivated by this, we propose
incorporating an error correction mechanism to enhance the robustness of trained models.

A key challenge is to define a suitable error signal. Prior work |Zhang & Zhu| (2019)) showed that adversarially
trained models rely on shape, while naturally trained models rely on texture, indicating they attend to distinct
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Figure 1: ECAC Architecture. WeakM refers to a naturally trained model, StrongM refers to an adversarially
trained model, and jointM refers to when the models are in parallel.

and often orthogonal features. This difference makes it difficult for adversarial examples to transfer between
them. Table |1 shows that adversarial examples crafted on a robust model (strongM) are more likely to be
correctly classified by a naturally trained model (weakM ), and the reverse also holds. Based on this, we use
the disagreement between these models as an implicit error signal. Figure [l illustrates the architecture, and
the full algorithm is described in Section [3.3

To our knowledge, this is the first work to leverage a naturally trained model to strengthen the robustness
of an adversarially trained model. Our contributions are as follows:

e We propose ECAC, a simple method inspired by biological error correction to defend against black-
box attacks.

e We experimentally demonstrate that ECAC improves robustness against score-based, decision-based,
transfer, and adaptive attacks. It also remains effective even when the adversary has full access to
the model.

2 Background and Related Work

2.1 Preliminaries

We consider a K-class classifier f parameterized by 8, which maps an input z; € X to its class label y;. The
model outputs logits f.(z;,8) for each class ¢, and the predicted label is ypreq, = arg max fe(z;,0)
(&
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We refer to naturally trained models as weakM and adversarially trained models as strongM. Their pre-
dictions are denoted Yweakns, @0d Ysirongns, respectively. During defense, we perturb the input using both
models jointly by summing their cross-entropy losses; we denote this configuration as jointM.

In adversarial settings, the input x; is perturbed to z to induce misclassification. Perturbations are con-
strained to Belx;] = @ : ||z} — x;||, < €, where |||, is the ¢, norm and € is the perturbation budget. The
projection operator [] clips 2’ to keep it within B.[z;].

We focus on the ¢-norm as it is the standard in adversarial robustness research, offering a well-established
benchmark with imperceptible and efficiently computable perturbations. Following convention, we set € =
8/255 for CIFAR-10 and e = 4/255 for ImageNet.

2.2 Adversarial attacks and defenses

This subsection summarizes adversarial attacks and defenses most relevant to our work. For a broader
survey, see [Akhtar et al| (2021).

Adversarial attacks: Common white-box attacks include FGSM |Goodfellow et al. (2014), PGD and
targeted-PGD |Kurakin et al.| (2018); Madry et al. (2018), and their variants such as AutoPGD (APGD)
[Croce & Hein| (2020b)), FAB |Croce & Hein| (2020a)), and C&W |Carlini & Wagner| (2017). These attacks use
the gradient of the loss with respect to the input x; to iteratively estimate a perturbation direction that
maximizes loss in a local neighborhood:

g e T (@l + o sen(Vapl(al, v) (1)
Be[ml]

Variants differ in their choice of loss function, step size, and update rules. These are considered the strongest
attacks, as the adversary has full access to the model parameters.

In real-world scenarios, attackers typically lack full model access. If they can query class confidence
scores, they use Score-based Query Attacks (SQA) to iteratively craft adversaries. The Square attack
[Andriushchenko et al. (2020) is a leading example: it perturbs random square regions by +2e and retains
changes that reduce confidence in the true class. Other SQA methods include Bandit [Ilyas et al.| (2018b]),
SimBA |Guo et al. (2019)), ZOO [Chen et al. (2017)), SignHunter [Al-Dujaili & O’Reilly] (2019), and NES

et al.| (2018a)).
In decision-based (hard-label) attacks, only the predicted class is available. Notable examples include SPSA

Uesato et al.| (2018)), HopSkipJump [Chen et al| (2020), RayS|Chen & Gul (2020), and others Ma et al | (2021));
Shukla et al.| (2021)); Cheng et al.| (2018)); Brendel et al.| (2018]).

In transfer attacks, adversaries craft inputs using white-box attacks on a surrogate model. Due to the
transferability of adversarial examples [Szegedy et al. (2014]), such attacks often succeed when the surrogate
shares architecture or training data. When combined with decision-based attacks, they greatly reduce query
counts [Sitawarin et al.| (2024).

Adversarial defense: Adversarial Training (AT), which trains models on adversarial examples, remains
the most effective defense. Key methods include SAT [Madry et al|(2018) and TRADES [Zhang et al.| (2019),
with several extensions such as MART Wang et al.| (2019), GAIRAT |Zhang et al. (2020), HE [Pang et al.|
(2020); [Fakorede et al. (2023), MAIL Liu et al|(2021), and AWP |Wu et al.| (2020); Yu et al.| (2022).

Most black-box defenses neglect decision-based and transfer attacks, leading to a false sense of robustness.
Such defenses can often be bypassed by training a surrogate model. The need to guard against transfer
attacks is highlighted by [Szegedy et al. (2014)); [Sitawarin et al.| (2024)).

2.3 Related work

ECAC (ours) is an adaptive defense, modifying the input at inference to correct potential errors. While
several methods also perform input nudging, their goals differ. (2021)) maximize the total cross-
entropy, which [Croce et al] (2022) show can hurt accuracy near decision boundaries. [Shi et al. (2021) use
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self-supervised signals, whereas ECAC leverages the disagreement between strongM (adversarially trained)
and weakM (naturally trained), incorporating guidance from weakM. |Tao et al.| (2022)) and |Li et al.| (2023)
apply nudging during training and are not adaptive defenses.

RND |Qin et al.| (2021) adds Gaussian noise to resist SQA attacks. AAA |[Chen et al.| (2022)), closest to
ours, adaptively alters logits to mislead SQA attacks but remains vulnerable to transfer attacks. ECAC, by
contrast, increases the effective decision boundary of strongM, providing robustness beyond just SQA.

3 Methodology

3.1 Motivation from Biological Perception

Despite extensive research, neural networks still lack the robustness of biological perception. Adversarially
trained models extract more human aligned features |Zhang & Zhu| (2019), but they remain vulnerable to
real world transformations such as rotation and translation Engstrom et al| (2019). This raises a natural
question:

Can feed-forward neural networks be adversarially robust, or are they intrinsically vulnerable?

Elsayed et al. (2018)) showed that adversarial images can fool humans when presented briefly (71ms), but
not when given more time (2s). This suggests that the human brain corrects perception using top-down and
lateral feedback. |Guo et al.| (2022)) compared neural activity in primates with representations in ResNet-50.
Surprisingly, adversarially trained ResNet-50 was more stable to attacks than the primate visual system
under black-box perturbations. Yet, humans (and likely primates) are not easily fooled, implying some form
of error correction is present in the brain.

3.2 Key Insight from Model Disagreement

While making a prediction, if an oracle could identify the correct class, we could nudge the input toward
the correct class to undo adversarial perturbations. We propose using the disagreement between strongM
(adversarially trained) and weakM (naturally trained) models as a proxy for such an oracle.

As shown in Table [I} adversarial examples transfer poorly between these models. Attacks are most suc-
cessful in the white-box setting. When attacked using adversaries generated from naturally trained models,
adversarially trained models show high accuracy. Conversely, naturally trained models maintain the highest
accuracy even when attacked using adversarially trained models. This is likely because the two models rely
on distinct features—texture for naturally trained models and shape for adversarially trained ones.

Zhang & Zhu (2019) further showed that naturally trained models can still classify shuffled image tiles,
while adversarially trained models fail. Texture features are easy to remove via perturbations, and without
adversarial training, the model does not learn robust features Tsipras et al.| (2018). In contrast, adversarially
trained models become insensitive to texture. We find that combining the two models yields stronger
robustness.

We assume that when the models agree, the prediction is likely correct. Since both models are trained for
accuracy, simultaneous errors are rare. We experimentally validated this assumption for CIFAR-10 using
the ResNet-18 model. We found that when an adversary example is both crafted and nudged using jointM,
then nudging towards the correct class increases the agreement between the two models’ predictions from
34.98% to 49.20%, while if they are nudged towards a random class, the agreement decreases to 16.99%.

3.3 Error Correction by Agreement Checking

We present ECAC in Algorithm [I} First, we compute the logits logitW returned by weakM on the input x;
(Step 1). Then, we nudge the input one step toward the predicted class arg max(logitW') using Equation
(Step 2). This step uses a joint loss from both weakM and strongM:
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Algorithm 1 Error Correction by Agreement Checking (ECAC)
Inputs: xz;, strongM, weakM, s_ size
Output: Prediction logits for the input x;

logitW <« weakM (z;)
Obtain z} by nudging z; toward arg max(logitW) using Equation with step size s_ size for 1 step
logitS’ <+ strongM (x})
if argmax(logitS’) = argmax(logitWW) then
return logitS’
end if
return strongM (z;)

x) H (as; —s_size- sign(Vxétl(a:;t, yf))) (2)

B[]
where [ = l.(strongM (), y?) + lee(weak M (z}), y?) (3)
Yy = arg mgx(lagith) (4)

Here, [] denotes the projection operator that ensures z} stays within the allowed perturbation bud-
get e. Next, we compute logitS’ from strongM using the nudged input z (Step 3). If the prediction
arg max(logitS’) matches arg max(logitWW), we return logitS’ as output (Step 5). Otherwise, we discard the
nudging and return the prediction from strongM on the original input z; (Step 7).

StrongM decision boundary

weakM decision boundary
under strongM attack

. —¢-boundary

(b)

Figure 2: Illustration of adaptive defense by ECAC. See the text for details.

3.3.1 Robustness through Error Correction

Figure 2] illustrates how ECAC defends against adversarial perturbations by leveraging model disagreement.
A clean input z; at point (a) is correctly classified by both models. An attacker perturbs it toward mis-
classification, reaching point (b), but as long as both models agree, ECAC nudges the input toward the
agreed class and returns the prediction. When the models begin to disagree, two cases arise: weakM will
make the correct prediction (case A) or not (case B). In case A, shown at point (c), weakM remains correct
while strongM is fooled. ECAC nudges the input in the direction favored by weakM, using both models
jointly. This leads to point (¢’), where if the models now agree, ECAC returns the corrected prediction
from strongM. This effectively expands the decision boundary of the robust model, allowing recovery from
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misclassification. If not, it falls back to the original output of strongM. For case B, when weakM makes an
incorrect prediction, we rely on robustness of strongM. Since it is hard to fool strongM, the nudging done in
the incorrect direction would, often, not be enough for strongM to cause misclassification, especially under
realistic black-box scenario.
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Figure 3: ECAC mitigates the Square attack by combining strongM and weakM. While the attack individually
fools both models over 2500 iterations, their combination in ECAC allows one to consistently correct the
other’s errors, preventing failure.

This mechanism increases the effective decision boundary of strongM, making black-box attacks less effective.
Figure [3] shows this effect on the Square attack. While the attack fools strongM and weakM individually,
ECAC prevents failure by letting one model correct the other’s error. This frustrates the attack loop and
maintains accuracy. Similar robustness is observed against SPSA and RayS. ECAC also performs well under
transfer attacks due to the inclusion of strongM, which learns robust features.

3.4 Design Choices

Since strongM and weakM rely on different features, one option was to nudge the input only when their
predictions disagree. This would expose only strongM to the attacker until needed. However, unless the
input is corrected continuously, this approach reduces ECAC’s effectiveness on SQA attacks by nearly 10
percent. Therefore, we always apply nudging and discard it only when it fails to restore agreement.

Logits are always returned from strongM, keeping weakM’s confidence hidden. Because weakM is easier to
fool, relying on strongM when they disagree improves robustness. We found that using weakM for output
drops Square attack accuracy from 83.5 percent to 71.8 percent on CIFAR-10.

To ensure nudging keeps the input in a region classified correctly by both models, we use jointM, which
combines losses from weakM and strongM. We set ngteps = 1, as multiple small steps have a similar effect
but increase runtime. The step size sgize controls the amount of nudging. On CIFAR-10, we fix sgize = 0.02,
which balances transfer and black-box robustness. For ImageNet, where ¢ = 4/255, we set sgize = 0.01 and
observe consistent performance across models.

4 Experiments

4.1 Setup

We evaluated ECAC on CIFAR-10 and ImageNet datasets. For fine-tuning and ablation, we used ResNet-
18. Following our baseline AAA-linear |Chen et al.| (2022)), we reported results using WideResNet-28-10 for
CIFAR-10 and WideResNet-50 for ImageNet. Appendix [C] provides model sources and training details.

For Square attacks, we used the official implementation of AutoAttack (https://github.com/fra31/
auto-attack) and set p;,;+ = 0.05, consistent with AAA-linear. SPSA was run for 100 iterations with
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Defense Nat’ Accuracy on SQA Attack (# queries = 100/2500)
Methodology Acc’ Square SignHunter SimBA NES Bandit
Undefended 94.78  39.7/00.2 42.3/00.0 73.5/35.6 68.8/05.0 49.9/01.3
RND 91.05 60.8/49.1 61.0/47.8 76.4/64.3 86.2/68.2 70.4/41.6
AAA-Linear 94.84 83.4/79.8  84.2/83.0  86.4/84.5  84.6/71.0  86.7/82.8
SAT 85.83  76.9/60.5 74.9/56.6 84.1/80.4 83.3/75.4 78.7/66.2
ECAC-SAT 90.30  85.7/84.3 80.5/79.4 86.0/83.6 87.3/73.2 85.0/81.9
TRADES 86.40 77.1/61.2  74.9/57.0  86.2/82.6  85.4/748  80.3/66.2
ECAC-TRADES 91.65  87.4/85.8 81.0/79.0 86.6/85.8 87.9/74.7 85.7/83.0
AWP 85.36  75.9/62.7  74.0/60.0  84.1/80.4  83.4/75.2  79.1/68.6
ECAC-AWP 90.00  86.9/85.0 79.7/77.7 86.4/84.9 87.0/75.1 85.1/82.5
AWP_E 8825 81.3/67.8  79.5/63.4  87.2/84.4  86.9/79.9  83.4/72.5
ECAC-AWP_E 91.80  87.8/87.5 83.8/82.5 88.0/85.8 88.4/77.5 86.0/83.7
WANG23 92.44  86.5/75.5  85.0/71.6  92.1/89.1 91.5/34.8  87.8/79.7

ECAC-WANG23 94.40 91.4/90.9 87.2/85.6 91.0/89.5 92.1/81.6 89.8/88.0

Table 2: ECAC performance compared to baselines on SQA attacks for the CIFAR-10 dataset with a

perturbation budget of £ = 5= (queries = 100/2500). WideResNet-28-10 is used for all models.

perturbation size 0.001, learning rate 0.01, and 128 samples per gradient estimate. For RayS, we used the
official code (https://github.com/uclaml/RayS) with 1K and 10K queries.

Attack Undefended SAT RND AAA-Linear ECAC (Ours)
ACC(%) 78.48 68.46 75.32 78.48 72.35
Square 55.40/10.90 61.90/54.40 58.67/50.54 64.35/63.96 67.05/64.95
SignHunter | 62.25/17.30 62.65/58.25 59.36/52.98 71.75 /71.25 67.25/64.80
SimBA 70.65/57.35  66.40/64.80  66.36/63.27 70.80/66.20 72.75/69.90
NES 76.15/59.35  67.15/64.65 71.33/66.05 76.60/70.25 70.80/66.25
Bandit 62.60/27.65 64.70/59.45 65.15/61.38  69.70/69.20 69.10/67.95

Table 3: ECAC performance compared to baselines on SQA attacks for ImageNet dataset, with a perturba-
tion budget of: o, = %‘5 (#£query = 100/2500). WideResNet-50 is used for all models.
4.2 Results

In this section, we present results for black-box attacks on CIFAR-10 and ImageNet.

4.2.1 SQA attacks

Table [2] shows the results for black-box SQA attacks on WideResNet-28-10 models. Attack parameters are
given in Appendix We evaluated on the first 1K samples from CIFAR-10. RND results are taken from
Chen et al.| (2022).

ECAC-SAT, using the SAT model Madry et al.| (2018) as strongM, outperforms all baselines including AAA-
Linear on the Square attack. It also performs better on NES, while SignHunter and Bandit slightly favor
AAA-Linear. SimBA results are similar for both, despite higher natural accuracy of AAA-Linear.

To test generality, we used other robust models as strongM: TRADES [Zhang et al.[ (2019), AWP, AWP_E
Wu et al.| (2020), and WANG23 Wang et al| (2023)). With these, ECAC consistently achieves the highest
accuracy across all attacks. For SimBA, we used the SimBA-DCT variant from https://github.com/
cgb63/simple-blackbox-attack, scaling perturbations to the allowed maximum. This variant avoids the
degenerate case where one-pixel changes fail to fool robust models.

Table [3] presents ImageNet results. AAA-Linear evaluated Square attack on 1K randomly selected samples
(one per class), correctly classified by the naturally trained model. Accuracy is scaled by 78.48%. For ECAC
and other methods, we used the first 2K samples from the validation set. ECAC outperforms AAA-Linear
for both Square and SimBA attacks.
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Figure 4: Square attack accuracy of AAA-Linear for different values of p_init (fraction of pixels changed
every iter’) for CIFAR-10

Effect of p;ni; in Square Attack: AAA-Linear used p;nit = 0.05 for CIFAR-10 and 0.3 for ImageNet,
matching the original setup for naturally trained models. Later works use 0.8 to better attack robust models.
We found that this change severely reduces AAA-Linear accuracy, while ECAC remains stable (Figure [4]).

SurrogM Natural SAT AAA ECAC
(ResNet-18) (WideResNet-28-10)

AT 73.17 64.85 73.17  69.33
Natural 16.91 85.03 16.91 79.47
jointM 15.36 78.92 15.36 72.95

Table 4: Transfer attack accuracies on CIFAR-10, using ResNet-18 architecture as surrogate Model. We
note that, AAA-Linear accuracy drops considerably.

Surrogate M | Natural SAT AAA ECAC
(WRN-50) (WideResNet-50)

AT 67.05 40.65 67.05 48.95

Natural 00.01 67.15 00.01 61.90

jointM 00.00 59.10 00.00 55.70

Table 5: Transfer accuracy of adversaries generated for ImageNet. We used the same component models
that are used in the defense.

4.2.2 Transfer and Decision-based Attacks

Transfer attacks Most black-box defenses overlook the threat posed by transfer attacks, even though a
determined adversary can easily train a surrogate model and launch effective attacks without direct access
to the target. For CIFAR-10, we used a ResNet-18 model to generate PGD-20 adversaries and tested them
on WideResNet-28-10 models, i.e., the surrogate is a much smaller network.

As shown in Table @] ECAC achieves the highest worst-case robustness, especially when adversaries are
crafted using naturally trained surrogates where other defenses fail. For ImageNet, despite using the same
models (due to high computation cost) as ECAC for crafting the attack, ECAC retains significantly higher
robustness compared to AAA (Table [5).

Decision-based attacks We evaluated ECAC on SPSA and RayS attacks for CIFAR-10 (Table [6). While
both ECAC and AAA show good robustness against SPSA, RayS proves more effective against AAA due to
its strategy of starting from a high-perturbation misclassified point. In contrast, ECAC’s dynamic decision
boundary offers consistently higher robustness in both cases.
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Models RayS (1K/10K queries) SPSA
Undefended 22.30/00.10 00.00
AT 71.40/59.90 62.40
AAA-Linear 58.50/55.10 70.10
ECAC (ours) 72.00/66.60 79.00

Table 6: ECAC performance compared to baselines, using WideResNet-28-10, on decision-based attacks for
CIFAR-10, with the ¢, perturbation of: %.

4.2.3 Adaptive Attacks

We further evaluated ECAC under adaptive attacks, where the attacker knows the overall ECAC architecture
(Figure [1]) but lacks access to the internal strongM and weakM models. In a realistic black-box setting, the
attacker can query the deployed ECAC model and train surrogate models to approximate its behavior. For
CIFAR-10, we used ResNet-18 models trained with standard and adversarial training as surrogates.

Algorithm 2 Adaptive Attack for ECAC Defense

Inputs:

(z,y): Input and label pair

surrStrongM , surrogWeakM: Surrogate models

ECAC: Deployed ECAC model

s_size, e: Parameters for ECAC defense and perturbation budget

pgd_itrs, pgd__s_size: PGD attack iterations and step size

pgd Atk (input, label, model, pert _bdgt, pgd__itrs, pgd_s_size, do_t): PGD attack function; do_t indi-
cates if the attack is targeted
Output: 2’ such that ECAC(z') # y or FAILURE if not found

1. x4 < pgdAtk(x,y, surrStrongM, e + s__size, pgd_itrs,pgd_s_ size, False)
2: y; < arg max(surrStrongM (x;))

3: do_t < True

4: if y; ==y then

5: do_t < False

6: end if

7 x —x

8: jointM <+ Combine surrStrongM and surrogWeakM
9: for itr =1 to pgd_itrs do

10: a2’ + pgdAtk(x',y., jointM, e, 1, pgd_s_size,do_t)
11: if arg max(ECAC(2')) # y then

12: return z’

13: end if

14: end for

15: return FAILURE

The goal of an adaptive attack is to exploit structural weaknesses in the defense. For ECAC, two such
cases arise: (a) both strongM and weakM agree on an incorrect prediction after nudging, or (b) the two
models disagree, and strongM alone makes an error. Case (a) is particularly damaging, as ECAC returns the
incorrect shared prediction. In case (b), ECAC discards nudging and falls back on strongM, which, if wrong,
also fails the defense. To target both cases, we devised a two-stage PGD-based strategy (Algorithm: first,
we use untargeted PGD with a higher budget of € + s_ size, where s_ size is the nudging used by ECAC as
defense, to identify a class where strongM is vulnerable; then, we launch a targeted PGD attack toward that
class using jointM. After each update, we query the deployed ECAC to check if the attack succeeded . If
not, we fall back to untargeted PGD, though this rarely succeeds. This process reliably probes both failure
modes of ECAC.
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Surrogate Model Accuracy ECAC
strongM  weakM ECAC | Accuracy
50.59 00.00 40.00 60.91

Table 7: ECAC Accuracy on Adaptive Attack.

To construct an effective adaptive attack, we utilized surrogate models trained on analogous datasets. For
CIFAR-10, we trained ResNet-18 using standard and Madry’s [Madry et al.| (2018) method as our surrogate
models. The initial budget is € + s_ size, where s_size is the nudging used by ECAC as defense (0.02
for CIFAR-10). As shown in Table [, ECAC maintains high accuracy even under such informed attacks.
Notably, even the surrogate ECAC model, under white-box attack, retains 40% accuracy—highlighting the
robustness imparted by strongM.

4.2.4 Results on ViT architecture

Models Nat’ Square RayS SPSA
(ViT) (100/2.5k)  (1k/10K)

Natural 91.8  42.5/00.1 18.7/00.3 06.6

SAT 76.4 65.3/52.7 59.5/51.2 64.8

ECAC-SAT 80.1 175.8/74.4 61.8/58.6 76.7
TRADES 80.6 69.7/56.4 63.7/53.8 69.6

ECAC-TRADES | 84.8 79.9/77.9 65.7/61.5 80.3

Table 8: ECAC CIFAR-10 accuracy with ViT architecture.

To evaluate ECAC’s generality across architectures, we trained Vision Transformer (ViT) models on CIFAR-
10 using the code from Mo et al|(2022). As shown in Table [8) ECAC consistently improves the robustness
of strongM for both SAT and TRADES, confirming its applicability beyond convolutional networks.

5 Limitations

ECAC is designed for realistic scenarios of black-box settings, including decision-based and transfer attacks.
While it retains significant robustness even under white-box attacks, it does not necessarily extend to all
types of robustness, like robustness to other transformations such as rotation. Additionally, ECAC incurs
higher inference time, roughly five times higher, due to the extra forward and backward pass. A simple
ResNet-18 model takes ~ 1.6 seconds to classify the entire CIFAR-10 test set, with a batch size of 500 using
an RTX-2080 Ti graphics card, whereas ECAC takes ~ 8.3 seconds. While this overhead may be acceptable
in safety-critical contexts, it remains a practical tradeoff.

6 Conclusion and Discussion

Despite progress in adversarial robustness, current models remain vulnerable to practical black-box attacks.
Inspired by the stability of biological perception, we introduced ECAC, a defense that combines naturally
and adversarially trained models to perform error correction via prediction disagreement. ECAC improves
robustness across diverse attack types without requiring access to model internals, making it suitable for
realistic deployment scenarios.

This work highlights the value of incorporating error-correction principles into model design and points
toward future systems that may integrate memory or structured world knowledge to further enhance robust-
ness.
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A Model agreement and correct prediction

We work with the assumption that when the two models agree, their agreed prediction tends to be correct.
While this is intuitive, as the models are trained to make the correct prediction, we further analyze how and
when this assumption holds.

Our assumption is based on the intuition that the chance of StrongM and WeakM predicting the same wrong
class is low. Formally, let the accuracy of StrongM be ps and WeakM p,,, their predictions be S, and W,
and y be the correct prediction. Assume their predictions are independent and equally likely to predict any
of the wrong labels, then

(1 *pS)

P(Sp =9y )yry = mv (5)
POV, =)y = 520 ©)
where C is the number of classes. We have:
P(correct|agree) _ P(correct, agree) 7)
P(incorrectlagree)  P(incorrect,agree)
_ P(Sp, =y, W, =y) (8)

Zy’;ﬁy P(S;D = y/7 Wp = y/)

_ . Ps Pw
=V T ©)

Therefore, the assumption holds when ps, p,, > 50% for binary classification and could hold even when ps,
Pw is small for multi-class classification.

Further, as noted in the main paper, we experimentally verified this. For CIFAR-10 using the ResNet-
18 model, we found that when an adversary is both crafted and nudged using both strongM and weakM
in parallel (i.e., jointM), then nudging towards the correct class increases the agreement between the two
models’ predictions from 34.98% to 49.20%, while if they are nudged towards a random class, the agreement
decreases to 16.99%.

B Ablation Study

We conducted ablations for CIFAR-10 by varying the nudging step size s__size, the number of nudging steps
n__step, the weighting between strongM and weakM in jointM, and by testing different strongM models.

Value for s_ size
Accuracy 0.015 0.018 0.020 0.022 0.025
Natural 88.60 88.70 88.70  89.10 89.40
Square (1k iterations) 81.30 81.60 81.40 82.80 82.00
RayS (1k iterations) 72.00 172.30 72.00 72.00 71.30
Transfer (using jointM) | 69.60 68.00 67.30 66.70  65.30

Table 9: Effect on ECAC accuracy for different values of s_ size, under various attacks. The results are for
the first 1000 samples of CIFAR-10.

Increasing s_ size improves robustness to SQA attacks but reduces performance on transfer attacks, as
seen in Table 0] For n_ step, using more steps slightly boosts natural accuracy but reduces SQA accuracy
and increases runtime (Table , making one-step nudging a practical choice. To construct jointM, we
experimented with different weights on strongM and weakM losses. Table[L1]shows that setting v = 0.5 yields
a good balance across natural accuracy, SQA, and transfer attacks. Finally, while adaptive nudging methods
like AutoPGD could improve performance by tailoring perturbations per sample, their high computational
cost makes our simpler one-step nudging a more practical choice.
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n__steps Size of Natural Square Attack Square Attack
each step  Accuracy Accuracy Time (sec)

1 0.020 87.8 82.4 509.6

2 0.011 89.3 79.6 814.4

3 0.007 89.3 78.6 1123.1

Table 10: Effect on ECAC accuracy for different values of n_ steps, where total perturbation by nudging
was clipped at 0.02. The results are for the first 1000 samples of CIFAR-10.

alpha Natural Square Attack Transfer Attack Acc’ using surrog’
Accuracy Accuracy strongM  weakM joint M

0.0 91.8 80.3 70.84 77.88 70.76
0.1 91.4 82.7 69.88 78.94 71.49
0.2 91.0 84.0 69.48 78.94 71.80
0.3 91.1 84.3 69.51 79.31 71.75
0.4 90.9 84.8 69.38 79.54 71.79
0.5 90.9 84.5 69.31 79.45 72.20
0.6 90.4 85.1 68.78 79.49 72.12
0.7 90.3 85.5 68.72 79.66 72.41
0.8 90.3 85.2 68.56 79.77 72.50
0.9 89.8 84.4 68.78 80.11 72.44
1.0 86.6 81.7 65.62 84.44 77.11

Table 11: Effect on ECAC accuracy on CIFAR-10 for different values of a as used to define jointM. ECAC
uses WideResNet-28-10 models, while surrogate models use ResNet-18 architecture.

C Model source and training details used for defense

Dataset strongM Jweak M Model Architecture Model Source

CIFAR-10 | weakM WideResNet-28-10 Standard*
strongM-SAT Trained locally
strongM-TRADES Trained locally
strongM-AWP Wu2020Adversarial*
strongM-AWP__E Wu2020Adversarial _extra*
strongM-WANG23 Wang2023Better WRN-28-10*

ImageNet | weakM WideResNet-50 From PyTorch: wide_ resnet50_ 2
strongM-SAT Salman2020Do_ 50_ 2*

Table 12: Source for different WideResNet models. * indicates that the models are obtained from Robust-
Bench |Croce et al.| (2021]) and the corresponding source column contains the Model-ID

We provide the source of the WideResNet models in Table For ResNet-18 and for cases where the
corresponding model is not present on RobustBench (i.e., strongM for CIFAR-10), we trained the model
locally. We used Madry’s et al. [Madry et al.| (2018) method to train all the adversarially robust models for
CIFAR-10, which are used as strongM. In line with the settings used in the literature [Wang et al.| (2019);
Liu et al. (2021)), all the base models (i.e., those included in Table [ as well) have been trained for 120
epochs using mini-batch gradient descent with an initial learning rate of 0.01 (0.1 for WideResNet), which
was decayed by a factor of 10 at epoch 75, 90 and 100. The values for other hyper-parameters are weight
decay: 0.0035 (0.0007 for WideResNet), momentum: 0.9, and batch size: 128.

D Parameters used for SQA attacks

We used the same parameters as used by AAA defense for most of the attacks. We adapted the code from
BlackBoxBench (https://github.com/adverML/BlackboxBench), except for SimBA, where we use SimBA-
DCT as simple SimBA is unable to attack adpative attacks like ours and AAA. Further we provide the JSON
files that have the values of parameters we used for the attacks. The details of the parameters have been
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Method Hyperparameter CIFAR-10 ImageNet
Square p (fraction of pixels changed every iteration) 0.05 0.3
SignHunter ¢ (finite difference probe) 8([0, 255])  0.1([0, 1])
SimBA d (dimensionality of 2D frequency space) 32 32

order (order of coordinate selection) random random

€ (step size per iteration) o= 2=
NES 4 (finite difference probe) 2.55 0.1

n (image [, learning rate) 2 0.002

g (# finite difference estimations / step) 20 100
Bandit 0 (finite difference probe) 2.55 0.1

n (image [, learning rate) 2.55 0.01

7 (online convex optimization learning rate) 0.1 0.01

Tile size (data-dependent prior) 20 50

¢ (bandit exploration) 0.1 0.1

Table 13: Hyper-parameters as used for SQA attacks

compiled in Table[I3] For the square attack, for which we used code provided by auto attack, we used p_init
= 0.05 for CIFAR-10 and 0.3 for ImageNet.
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