DFPC: DATA FLOW driven PRUNING OF COUPLED CHANNELS WITHOUT DATA.

Anonymous authors
Paper under double-blind review

ABSTRACT

Most structured pruning algorithms achieve subnetworks which not only have high predictive accuracy but also have significantly lower FLOPs. It is now noted that the decrease in FLOPs seldom results in a similar decrease in inference time. These algorithms avoid pruning coupled channels (CCs). These channels contribute significantly to the total inference time; layers with CCs as input or output take more than 66% of the inference time in ResNet-50. Motivated by this, we study the problem of pruning CCs in the data-free regime in this paper. Formal studies for pruning CCs are sparse due to a lack of proper characterization. Thus, we define Data Flow Couplings (DFCs) that abstract the notion of coupling and aid us in scoring coupled elements of the network. Gauging saliencies of CCs is not straightforward, for there exists a discrepancy among the layerwise importance of CCs using conventional scoring strategies. This necessitates the definition of grouped saliencies to gauge the importance of coupled elements in a network. Since we do not have access to data, we propose the Backwards Graph-based Saliency Computation (BGSC) algorithm that computes saliencies by estimating an upper bound to the reconstruction error of intermediate layers. We then compare saliencies to prune CCs and call this pruning strategy DFPC. Finally, we show the efficacy of DFPC for models trained on CIFAR-10, CIFAR-100, and ImageNet datasets. For instance, we find that for a 5% accuracy drop and 1.64x reduction of FLOPs for ResNet-101 trained on the CIFAR-10 dataset, the inference time speedup obtained by DFPC is up to 1.66x, without finetuning. When assuming access to the ImageNet training set, we significantly improve over the data-free method. We see at least a 47.1% improvement in speedup for a 2.3% accuracy drop for ResNet-50 against our baselines.

1 INTRODUCTION

With improved hardware for training and inferencing deep learning models, we find ourselves in the Large-Scale Era (Sevilla et al., 2022) where models may possess billions of parameters. Overparameterization allows these large models to learn patterns in data with better performance in terms of optimization and generalization (Arora et al., 2019; Neyshabur et al., 2019; Zhang et al., 2021). Many modern architectures include layer skip connections like Residual Connections (He et al., 2016) to avoid vanishing gradients.

The benefits of overparameterization in these models come at the cost of increased memory and compute footprint. Techniques such as Network Pruning (Hoefler et al., 2021), Quantization (Gholami et al., 2021), Knowledge Distillation (Gou et al., 2021), and Low-Rank decomposition (Jaderberg et al., 2014) make it possible to compress overparameterized models. This work focuses on Network Pruning. Pruning involves discarding elements of a deep learning model after gauging the importance or saliencies of these elements. Generally, two broad categories of pruning techniques exist in the literature - structured and unstructured pruning. Unstructured pruning involves removing individual weights from the model, such as the results in Han et al. (2015); LeCun et al. (1989); Tanaka et al. (2020). Structured pruning (Ding et al., 2021; Luo et al., 2017; Prakash et al., 2019; Singh et al., 2019; Wang et al., 2021) involves removing entire neurons or channels from the model. Structured pruning in CNNs is also called Channel Pruning (He et al., 2017; Meng et al., 2020).
Most existing works on structured pruning do not prune channels fed into residual connections. Works such as Ding et al. (2021); Joo et al. (2021); Luo et al. (2017); Singh et al. (2019); Wang et al. & Babu, 2015; Tanaka et al., 2020) only prune the output channels of the first two layers of a ResNet residual block. Our primary aim is to prune channels like those fed into residual connections since pruning them has shown to obtain faster inference times for a permissible accuracy drop (Liu et al., 2021). Such connections require channels fed into the connection to be of the same dimensions, thus coupling the channels. Moreover, Yang et al. (2018); Liu et al. (2021); Shen et al. (2021) note that a decrease in FLOPs seldom leads to a similar decrease in inference times.

Pruning coupled channels (CCs) is an under-explored area of research. Moreover, pruning involves heavy fine-tuning using a dataset. Also, existing works to prune CCs primarily rely on data-driven statistics of the output layer to infer saliencies (Chen et al., 2021; Liu et al., 2021; Luo & Wu, 2020; Shen et al., 2021). Situations may arise where models trained on proprietary datasets may be distributed but not the dataset for reasons such as privacy, security, and competitive disadvantage (Yin et al., 2020). Thus, pruning without data is an active area of research (Patil & Dovrolis, 2021; Srinivas & Babu, 2015; Tanaka et al., 2020). These techniques do not address pruning CCs, especially in the one-shot and data-free pruning regime, which is an open problem (Hoefler et al., 2021). In this work, we study pruning CCs without access to data.

Towards answering the posed challenges, our contributions in this work are as follows.

1. Pruning CCs requires us to measure their importance. However, CCs lack proper characterization for formal treatment. Thus, we define data flow couplings (DFCs) that abstract the notion of coupling in a network through the layers and transformations involved in the coupling. Two types of layers are associated with a DFC - feed-in and feed-out layers; their outputs and inputs are involved in the coupling.

2. Gauging saliencies for CCs is not straightforward due to interconnections between outputs of multiple layers. There may exist disagreement among various feed-in layers regarding the importance of channels in a DFC. This necessitates the definition of grouped saliencies to rank coupled elements of a DFC jointly.

3. Our goal is to prune CCs without data to obtain faster latencies. However, measuring the effect of pruning a channel without data is difficult. For this, we propose the Backwards Graph-based Saliency Computation (BGSC) Algorithm to compute grouped saliencies of neurons in a DFC. Theorem 1 shows that these saliencies measure an upper bound to the joint reconstruction error of the outputs of a DFC’s feed-out layers without data. Despite being computationally expensive (both time and memory) for CNNs, we efficiently implement BGSC Algorithm owing to its embarrassingly parallel nature.

2 Notation, Preliminaries and Related Work

2.1 Notation and Preliminaries

Notation. Let \(|n| = \{1, ..., n\} \subset \mathbb{N} \) for any \(n \in \mathbb{N} \). Let \(x \in \mathbb{R}^n \) denote a vector, and \(M \) denote a matrix. \(x(k) \) and \(M(i, j) \) denote the \(k^{th} \) and \((i, j)^{th} \) element of \(x \) and \(M \) respectively. \(\|x\|_1 \) and \(\|x\|_\infty \) denote the L1-norm and max-norm of the vector \(x \) respectively. \(\|x\|/\|M\| \) denote the element-wise absolute (vector of \(x \))/(matrix of \(M \)). That is, \(|x|(k) = |x(k)| \) and \(|M|(i, j) = |M(i, j)| \). \(\odot \) denotes the Hadamard product. The output of an element-wise transformation \(F \) applied on a matrix is such that the \((i, j)^{th} \) element of the output depends only on the \((i, j)^{th} \) element of the input. That is, for matrix \(M, F(M)(i, j) = f(i, j)(M(i, j)) \). A similar definition is used in this manuscript when considering element-wise transformations on a vector and when the element-wise transformation is a function of multiple matrices/vectors. Let \(|A| \) denote the cardinality of a set \(A \).

Networks under consideration for analysis. Across definitions and derivations in Sections 3 and 5, we assume that fully-connected (FC) layers are the only layers in the network that do not perform element-wise transformations. The network can have layers like batch-norm and non-linearities like ReLU that perform element-wise transformations. Let there be \(L \) FC layers in the network. We assign each FC layer a unique integer from the set \([L]\). The order of numbering is not important. Consider a layer \(l \in [L] \). We denote its weight matrix by \(W_l \). For a layer \(l \) that is given an input \(x \), the corresponding output \(y \) is obtained as \(y = W_l x \).
Definitions in CNNs. We recall the standard definitions from Hoefler et al. (2021); Dumoulin & Visin (2016). Channels denote the different views of the data (e.g., the red, green and blue channels of a color image). Each convolutional layer has multiple filters, with each filter comprising multiple kernels. A convolutional layer with \(n \) input and \(m \) output channels has \(m \) filters, each comprising \(n \) kernels. Channel pruning discards an entire filter from a layer and the corresponding kernels from each filter of the following layer, thus reducing the number of channels.

Data flow graph. The data flow graph of a neural network is a directed graph that encapsulates the transformation produced by a network. Each node in the graph applies some operation to the data provided. Each edge in the graph denotes the data flow between nodes, with data flowing from tail to head of the edge. The backwards graph of the neural network is similar to the data flow graph except for the direction of edges being reversed. Figure 1a shows the data flow graph of a four-layer feed-forward neural network. Such a network is said to have a single branch.

Definitions in ResNets. ResNets consist of Residual Connections (He et al., 2016). A block of layers in these networks with a residual connection around them is called a residual block. Figures 1b and 1c show instances of residual blocks in ResNet-50. These have two branches and are called multi-branched networks. The residual branch contains most of the convolutional layers in the residual block. The other branch is called the shortcut branch. The output shape from both the residual and the shortcut branch in a residual block must be the same. In ResNets, multiple consecutive residual blocks are clubbed together and called a layer-block.

2.2 Related Work

Pruning coupled channels (CCs). The works in Gao et al. (2019); Liu et al. (2021); Luo & Wu (2020); Shen et al. (2021) prune CCs by grouping layers whose output channels are coupled. Liu et al. (2021) propose an algorithm to group such layers. Liu et al. (2021); Luo & Wu (2020); Shen et al. (2021) utilize data-driven statistics of the output layer to measure saliencies. Gao et al. (2019), and Chen et al. (2021) alter the training objective by introducing sparsity-promoting regularizers. But, Gao et al. (2019) use the Train-Prune-Finetune pruning pipeline (Han et al., 2015) whereas Chen et al. (2021) simultaneously train and prune the network. The experimental results, particularly of Liu et al. (2021); Shen et al. (2021), show that pruning CCs results in a better trade-off between accuracy and inference time speedups as opposed to not pruning them when finetuning is possible.

Saliency scores. Techniques exist in structured pruning that derive saliencies of channels from the information extracted from consecutive layers (Joo et al., 2021; Luo et al., 2017) or one layer (Hu et al., 2016; Li et al., 2017) without access to a dataset. Such structured pruning techniques locally measure the saliencies of channels. Gao et al. (2019) and Yang et al. (2018) utilize joint norms of weights in filters of grouped layers to infer saliencies. Minimizing the Reconstruction Error of the next layer is a metric to gauge the saliencies of channels (Luo et al., 2017; Yu et al., 2018) in structured pruning. However, this metric has only been applied to prune non-CCs and is said to not apply to CCs. This is difficult since such a metric requires a notion of consecutiveness among layers (Liu et al., 2021).

Data-free pruning. Early efforts toward data-free pruning include Srinivas & Babu (2015), which measured similarity between neurons, and merged similar neurons. Recently, Tanaka et al. (2020) proposed the Synflow method, an unstructured, data-free pruning method that relied on preserving gradient flow. Similar works include Gebhart et al. (2021); Patil & Dovrolis (2021), which use the
Neural Tangent Kernel-based techniques to modify SynFlow. Yin et al. (2020) synthesize a dataset from a pre-trained CNN classifier and utilize the synthesized dataset to perform iterative data-driven pruning. However, synthesizing the dataset from the classifier is costly.

3 Data Flow Couplings

In this section, we describe the elements pruned by structured pruning algorithms when coupled elements exist in a model. We then motivate the necessity of Data Flow Couplings (DFCs) and define them. Finally, we provide an example of a DFC in ResNet-50.

Elements pruned by structured pruning algorithms. Most structured pruning techniques prune all layers (except the output layer) of a single branch network like VGG (Simonyan & Zisserman 2015). However, they only prune specific layers limited to those whose outputs are non-coupled in multi-branch networks like ResNets. For example, [Luo et al., 2017; Singh et al., 2019; Wang et al., 2021] only prune the channels output from the first two convolutional layers in each residual block of ResNet-50, colored Blue in figures [1b] and [1c]. But, pruning coupled channels (CCs) has shown to have obtain better accuracy vs. inference-time tradeoff (Liu et al., 2021).

Motivation for defining DFCs. Previous studies intending to prune CCs in CNNs either group layers whose output channels are coupled (Gao et al., 2019; Liu et al., 2021; Luo & Wu, 2020; Shen et al., 2021) or group weights across layers if they belong to the same coupled channel (Chen et al., 2015). However, they only prune specific layers limited to those whose outputs are non-coupled in end-to-end transformation produced by the instance of coupling. This is desirable to understand some phenomena locally from the intermediate layers. For example, to gauge the importance of a channel without access to statistics of the output layer. A Data Flow Coupling (DFC) abstracts the end-to-end transformation and the associated layers for an instance of coupling in a network.

Defining DFCs. Consider a neural network with L FC layers where each FC layer is assigned a unique integer from the set $[L]$. Now, consider two sets of layers $A = \{a_1, a_2, \ldots, a_p\}$, $B = \{b_1, b_2, \ldots, b_q\}$ where $A, B \subset [L]$. Let $z^{(m)}_j$ be an arbitrary input sample from the data set $\{z^{(m)}_j\}^M_{j=1}$ that is fed to the network. Then, by $u^{(m)}_a$, $v^{(m)}_b$ denote the input to and the corresponding output of layer $a \in A$, and by $x^{(m)}_b, y^{(m)}_b$ denote the same for layer $b \in B$. Let A, B be such that there exists a collection of functions F defined by the data flow graph of the network. The input to any layer $b \in B$ is obtained through a map $F_b : \mathbb{R}^{\sum_{a \in A} \text{dim}(x^{(m)}_a)} \rightarrow \mathbb{R}^{\text{dim}(x^{(m)}_b)} \in F$, F_b is a function of the outputs of layers $a \in A$. Let the function that gives the value of activation to the k^{th} neuron in F_b be denoted by F_{bk}.

Definition 1: The tuple $\tau = < A, B, F >$ is a data flow coupling if

$$(C_1) \ F \text{ consists of element-wise mappings. For all } b \in B, k \in \text{dim}(x^{(m)}_b),$$

$$x^{(m)}_b(k) = F_{bk}(v^{(m)}_{a_1}(k), v^{(m)}_{a_2}(k), \ldots, v^{(m)}_{a_p}(k))$$

$$(C_2) \ Non-redundant. \ The \ subgraph \ of \ the \ data-flow \ graph \ consisting \ of \ layers \ in \ A, \ B, \ and \ the \ connections \ between \ them \ form \ a \ single \ component.$$

$$(C_3) \ Completeness. \ There \ do \ not \ exist \ sets \ A', B' \subset [L] \ and \ a \ collection \ of \ functions \ F' \ defined \ by \ the \ data \ flow \ graph \ of \ the \ network \ where \ A \subseteq A' \ and \ B \subseteq B' \ and \ either \ A \neq A' \ or \ B \neq B' \ such \ that \ < A', B', F' > \ satisfies \ conditions (C_1) \ and \ (C_2)$$

Intuition for Conditions (C_2) and (C_3) of Definition 1 are provided in Appendix B.

Some terminology for DFCs. For a DFC $< A, B, F >$ denoted by τ, we call the layers in A the feed-in layers since their outputs are used as inputs by layers in B post transformations governed by F. Consequently, we call the layers in B the feed-out layers. Additionally, as a consequence of (C_1), it is the case that for all $a \in A$ and $b \in B$, $\text{dim}(v^{(m)}_a) = \text{dim}(x^{(m)}_b) = n(\tau)$. We call $n(\tau)$ as the cardinality of coupling.

DFCs in CNNs. The notion of a DFC for a neural network with FC layers can be extended to a CNN by altering the element-wise property of transformations in F to channel-wise.
Example of a DFC in ResNet-50. Consider the subnetwork of ResNet-50, as shown on the left in Figure 2. For simplicity, we only show the convolutional layers and residual additions from the data flow graph of the subnetwork. Each convolutional layer in the figure has its assigned unique integer on the top left corner besides its corresponding rectangular box in the diagram. This example focuses on the DFC involving channel coupling due to residual additions. The DFC \(\tau\) is \(< A, B, F >\), where \(A = \{9, 10, 13, 16\}\), and \(B = \{11, 14, 17, 18\}\). It is easy to infer the DFC’s collection of functions \(F\) from the diagram. However, for completeness, we show \(F_{11,k}\).

\[
F_{11,k}(v_9^{(m)}(k), v_{10}^{(m)}(k)) = ReLU(BN_{9,k}(v_9^{(m)}(k))) + ReLU(BN_{10,k}(v_{10}^{(m)}(k)))
\]

where \(BN_{l,k}(x) = \frac{x - \mu_k}{\sigma_k} \odot \gamma_k + \beta_k\). Here, \(BN_{l,k}\) denotes the batchnorm transformation applied on the \(k\)th channel output from the \(l\)th layer of the neural network.

Properties of DFCs. Note that in Figure 2 the tuple \(< A, B, F >\) with \(A = \{11\}\) and \(B = \{12\}\) and \(F\) capturing the associated transformation satisfies the definition of a DFC. Thus, the consecutiveness of layers is a special case of a DFC. Thus, DFCs simultaneously capture the transformational effect of coupled and non-CCs during the forward pass. Moreover, it is easy to see that a network can be divided into a collection of DFCs while preserving the overall transformation it produces.

4 GROUPED SALIENCIES

In this section, we define grouped saliencies using DFCs and empirically proffer its necessity using CNNs. We begin by describing the process of ranking channels to decide later which channels to prune. We then empirically show that when multiple feed-in layers exist in a DFC, they often disagree on the importance they assign to corresponding channels. To show this, we define the Maximum Score Disagreement. Thus, we define Grouped Saliencies using DFCs.

Ranking process to select the least salient element. Broadly, structured pruning algorithms (Ding et al., 2021; Luo et al., 2017; Prakash et al., 2019; Singh et al., 2019; Wang et al., 2021) compute saliencies of non-coupled channels. Once the algorithm computes saliencies for channels in a DFC, it ranks channels, with the lowest-ranked channel being the least salient. Finally, it discards the lowest-ranked channel first when pruning from the DFC.

Saliency mechanisms under consideration. Saliency scoring mechanisms exist for structured pruning that use statistics of the feed-in layer (Joo et al., 2021; Li et al., 2017; Molchanov et al., 2019). We use these saliencies to proffer the necessity of grouped saliencies. We briefly describe them now. Molchanov et al. (2019) propose to gauge the saliency of a filter in a convolutional layer by measuring the first-order Taylor approximation error attained on discarding the filter. Li et al. (2017) propose to use the L1 norm of the weights in the filter to gauge the corresponding channel’s
Defining Maximum Score Disagreement. To capture the variation of ranks assigned by various feed-in layers of a DFC, we define the Maximum Score Disagreement (MSD) as follows.

Definition 2 Maximum Score Disagreement. For a DFC $< A, B, F >$, denoted by τ, let $\text{rank}_a(k)$ denote the rank assigned by the feed-in layer a to channel k using a saliency scoring mechanism. We then define the Maximum Score Disagreement for this channel k as

$$MSD_{\tau}(k) = \max_{a,b \in A, a \neq b} |\text{rank}_a(k) - \text{rank}_b(k)|$$

Intuition for MSD is provided in Appendix C.

Experiments. We perform three experiments to see what MSD values channels take for DFCs in practice. One each of the saliency scoring mechanisms mentioned above. We use all DFCs consisting of coupled channels arising from residual connections in ResNet-50 trained on the CIFAR-10 dataset (MIT License) for this experiment (training specifications in section G of the supplementary material).

Description of Plots in Figure 3. Plots in Figure 3 are histograms of the MSD values for the three saliency scoring mechanisms. The legends in the plots of Figure 3 tell the layer-block of the downsampling layer present in the set of feed-in layers of the DFC. A DFC with a particular downsampling layer in its feed-in layers is uniquely determined in the ResNet-50 architecture. For example, the DFC in figure 2 is called layer-block-1 for this experiment. DFC named layer-block-1, layer-block-2, layer-block-3, and layer-block-4 have cardinality of coupling equal to 256, 512, 1024, and 2048 respectively.

Observation. Consider the histograms in figure 3. Consider layer-block-4. The most frequent bin for this particular histogram lies in the MSD Range of 1000-2000. Which shows significant disagreements among layers for more than 1000 channels. Similarly, we can see that the disagreement for all three importance measures is significantly high for all histograms in all plots of figure 3.

Similar trends have come up for ResNet-50 trained on CIFAR-100 and ImageNet datasets. Thus we need grouped saliencies, defined below, to gauge the importance of coupled channels.

Definition 3 Grouped Saliencies. Saliencies that measure the importance of channels in a DFC using at least one of all the feed-in layers, all the feed-out layers, and the entire collection of functions F is called a grouped saliency.

In the following section, we propose an algorithm that computes a grouped saliency using all three entities specified in the definition above.

5 A DATA FLOW DRIVEN DATA FREE GROUPED SALIENCY BASED ON THE RECONSTRUCTION ERROR OF INTERMEDIATE OUTPUTS

In this section, we propose an Algorithm called BGSC to compute the saliency of all neurons in a DFC. We begin by describing the preliminaries for the Algorithm. We then describe the desired objective function to measure our saliency. Finally, through Theorem, we show that the saliencies computed using the BGSC Algorithm upper bound the desired objective function.
Setup. Consider a neural network with the DFC \(<A, B, F>\) denoted by \(\tau\) for which \(u_a, v_a\) denote the input to and the corresponding output of layer \(a \in A\), and by \(x_b, y_b\) denote the same for layer \(b \in B\). Let \(P_{ba}\) denote the set of all paths from layer \(b \in B\) to layer \(a \in A\) in the backwards graph of the network.

Observation. We aim to remove less important neurons from \(\tau\). On removing a neuron from \(\tau\), the output of the feed-out layers in \(B\) may change. With this observation, our goal is to select a neuron whose removal causes the least perturbation in the output across all feed-out layers of \(\tau\).

Measuring Saliencies. Let \(s \in \{0, 1\}^{n(\tau)}\) be a mask, such that \(\|s\|_1 = n(\tau) - 1\). Here, setting \(s(k) = 0\) for any \(k \in [n(\tau)]\) is equivalent to pruning the \(k^{th}\) neuron from \(\tau\). Thus, to infer the least salient neuron in \(\tau\), we would want to solve the following optimization problem.

\[
\min_{k \in [n(\tau)]} \sum_{b \in B} OPT(b) \quad \text{s.t.} \quad \|s\|_1 = n(\tau) - 1, s(k) = 0
\]

where \(OPT(b) = \|W_b x_b - W_b (x_b \odot s)\|_1\) is the change in output of layer \(b \in B\) on applying the mask \(s\).

Algorithm 1 BGSC: Backwards Graph based Saliency Computation

\textbf{Input:} A DFC \(\tau = < A, B, F >\), the backwards graph \(G\)

\textbf{Output:} List \(Sal\).

1: \(Sal(k) \leftarrow 0\) for all \(k \in n(\tau)\)
2: for each \(a \in A, b \in B\) do
3: for each path \(\pi\) between \(b\) and \(a\) in \(G\) do
4: \(acc = |W_b|^T e\)
5: for each node \(n\) in \(\pi\) do
6: if \(n\) performs residual addition then
7: Do nothing.
8: else if \(n\) performs a Lipschitz continuous element-wise transformation then
9: \(\text{Find C: matrix consisting tightest Lipschitz constants for the transformation.}\)
10: \(acc = Cacc\)
11: for all \(k \in [n(\tau)]\) do
12: \(s \leftarrow s(k) = 0, s(j) = 1 \forall j \in [n(\tau)] \setminus \{k\}\)
13: \(acc_{ba}^\pi = |W_{\pi_{ba}}| (e' - s) \odot acc\)
14: \(Sal(k) = Sal(k) + \|acc_{ba}^\pi\|_1\)

Overview. The BGSC Algorithm traverses through all paths in the backwards graph that exists between any pair of feed-out and feed-in layers of the DFC under consideration to compute the saliency of neurons. For each path, the Algorithm accumulates scores for each neuron. The saliency of a neuron is then obtained by summing up the scores accumulated from every path. This is shown in line 14 of Algorithm 1. While traversing each path \(\pi\), the accumulated score is initialized as shown in line 4 of the Algorithm. Then as we traverse the backwards graph along path \(\pi\) from the feed-out layer, we augment the accumulated score at every node depending on the operation it performs, as depicted in lines 7 and 10 of the Algorithm. Once we reach the feed-in layer, we perform one last augmentation to the accumulated score as depicted on line 13 of the Algorithm.

Theorem 1 Let \(acc_{ba}^\pi\) be as computed in Algorithm 1 for all \(a \in A, b \in B,\) and \(\pi \in P_{ba}\). Then,

\[
OPT(b) \leq \sum_{a \in A} \sum_{\pi \in P_{ba}} (acc_{ba}^\pi)^T |u_a| \quad \forall b \in B
\]

Proof of Theorem 1 is presented in Section D of the Appendix.

From Theorem 1 we have

\[
\sum_{b \in B} OPT(b) \leq \sum_{a \in A} \sum_{b \in B} \sum_{\pi \in P_{ba}} (acc_{ba}^\pi)^T |u_a| \leq \gamma \sum_{a \in A} \sum_{b \in B} \sum_{\pi \in P_{ba}} \|acc_{ba}^\pi\|_1
\]

Here, since we do not have access to the \(u_a\)'s, and we know that the pixel values of an input image are bounded, we define \(\gamma = \max_{a \in A, I} \{\|u_a^{(I)}\|_\infty\}\). \(u_a^{(I)}\) denotes the value of \(u_a\) on feeding input \(I\).
Figure 4: Some plots from our data-free experiments.

to the network. Here, the maximization over I denotes the maximization over the set of all possible images. Thus, we infer the saliency of a neuron k in τ by the following quantity.

$$\text{Sal}_\tau(k) = \sum_{a \in A, b \in B} \sum_{\pi \in P} \| \text{acc}_\tau^{\pi}_{ba} \|_1$$

where $\|s\|_1 = n(\tau) - 1, s(k) = 0$.

Time complexity of Algorithm 1

Let n be the number of nodes in the subgraph of the backwards graph consisting of the feed-out layers, the feed-in layers, and the connections between them for a DFC τ. Also, let $P = \bigcup_{a \in A, b \in B} P_{ba}$ denote the set of all paths between the feed-in and feed-out layers of τ in the backwards graph of the network. If $\gamma_A = \max_{a \in A} \text{dim}(u_a)$, and $\gamma_B = \max_{b \in B} \text{dim}(x_b)$ then, the time complexity of BGSC Algorithm is $O\{n(\tau) \cdot |P| \cdot (\gamma_B + n(\tau) \cdot (n + \gamma_A))\}$.

BGSC Algorithms for CNNs. In this section, we saw the pseudocode for the BGSC algorithm on a neural network. In Appendix E, we show how we extend and implement this algorithm for CNNs, particularly since its extension to CNNs is computationally expensive.

6 Pruning Experiments

In this section, we present the results of our pruning experiments obtained using DFPC on CNNs. Since our work, to the best of our knowledge, is the first to adopt data-free pruning to prune coupled channels (CCs), we baseline our work against an extension of the L1-norm based saliency scores (Li et al., 2017) (similar to Gao et al. (2019)) and random pruning. In Appendix F we show how we measure these saliencies for CCs. Both of these saliencies are data-free. Moreover, to strengthen the experiments, we baseline against structured pruning algorithms in the data-driven regime on the ImageNet dataset. Details of experiments and the ablation studies are presented in Appendix G.

Compute Platform. Platform specifications for inference time measurements are available in Appendix A of the supplementary material.

Data-Free Experiments. We perform our experiments on ResNet-50, ResNet-101 and VGG16 for CIFAR-10 and CIFAR-100 datasets. Moreover, we present results for ResNet-50 and ResNet-101 on ImageNet.

Results of Data-Free Experiments. From figures 4a, 4c, 4d and more in Appendix G we see that DFPC consistently outperforms L1 based scores for a given sparsity budget. However, the margin of outperformance is lower with respect to FLOPs. Moreover, for CIFAR-10/100 datasets, the performance of the L1-based saliency score is quite similar whether we chose to prune CCs or not. However, DFPC shows marginal improvement when pruning CCs. But, for the ImageNet dataset, both DFPC and L1-based saliency score is quite similar whether we chose to prune CCs or not. Finally, as can be seen from Tables 1 and 4 in general, both accuracy and inference times improve as we prune CCs. Additionally, DFPC outperforms the L1-based saliency score in terms of inference time gained for a particular drop in accuracy almost always, except for the CPU performance of ResNet-50 on the CIFAR-10 dataset.
Data-Driven Experiments and Results. For comparison with contemporary work that finetune, we present our results in Table 2. On a GPU, for a 0.2% accuracy drop, DFPC(30) attains an inference time speedup of 1.53x, similar to that of Greg-2 [Wang et al., 2021], but with improved accuracy. Additionally, for an accuracy drop by 2.3%, similar to GReg-2, DFPC(54) attains a 2.28x speedup which is significantly better than contemporary structured pruning methods that we baseline against. This latency is 49.0% faster than GReg-2 on our GPU platform and 47.1% faster than ThiNet-30 on our CPU platform. Note that OTO [Chen et al., 2021] also prunes CCs. Moreover, DFPC attains a FLOP Reduction to Speedup ratio that is closer to one than GReg-2 and OTO.

Table 1: Pruning Results without using the training dataset and no finetuning on CIFAR-10. RN is an abbreviation for ResNet; CP denotes if we choose to prune coupled channels; RF denotes the reduction in FLOPs; RP denotes the reduction in parameters; ITS denotes inference time speedup.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>CP?</th>
<th>Acc-1(%)</th>
<th>RF</th>
<th>RP</th>
<th>ITS(CPU)</th>
<th>ITS(GPU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpruned RN-50</td>
<td>-</td>
<td>94.99</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
</tr>
<tr>
<td>Random pruned RN-50</td>
<td>No</td>
<td>90.51</td>
<td>1.09x</td>
<td>1.10x</td>
<td>1.06x</td>
<td>1.08x</td>
</tr>
<tr>
<td>L1-norm pruned Li et al. [2017] RN-50</td>
<td>No</td>
<td>88.33</td>
<td>1.38x</td>
<td>1.32x</td>
<td>1.16x</td>
<td>1.17x</td>
</tr>
<tr>
<td>DFPC pruned RN-50</td>
<td>No</td>
<td>89.95</td>
<td>1.44x</td>
<td>1.35x</td>
<td>1.22x</td>
<td>1.22x</td>
</tr>
<tr>
<td>Random pruned RN-50</td>
<td>Yes</td>
<td>88.39</td>
<td>1.09x</td>
<td>1.09x</td>
<td>1.13x</td>
<td>1.11x</td>
</tr>
<tr>
<td>L1-norm pruned Li et al. [2017] RN-50</td>
<td>Yes</td>
<td>90.87</td>
<td>1.28x</td>
<td>1.20x</td>
<td>1.62x</td>
<td>1.31x</td>
</tr>
<tr>
<td>DFPC pruned RN-50</td>
<td>Yes</td>
<td>90.25</td>
<td>1.46x</td>
<td>2.07x</td>
<td>1.58x</td>
<td>1.36x</td>
</tr>
<tr>
<td>Unpruned RN-101</td>
<td>-</td>
<td>95.09</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
</tr>
<tr>
<td>Random pruned RN-101</td>
<td>No</td>
<td>90.35</td>
<td>1.15x</td>
<td>1.14x</td>
<td>1.06x</td>
<td>1x</td>
</tr>
<tr>
<td>L1-norm pruned Li et al. [2017] RN-101</td>
<td>No</td>
<td>87.59</td>
<td>1.22x</td>
<td>1.22x</td>
<td>1.21x</td>
<td>1.09x</td>
</tr>
<tr>
<td>DFPC pruned RN-101</td>
<td>No</td>
<td>89.80</td>
<td>1.53x</td>
<td>1.84x</td>
<td>1.56x</td>
<td>1.25x</td>
</tr>
<tr>
<td>Random pruned RN-101</td>
<td>Yes</td>
<td>90.18</td>
<td>1.08x</td>
<td>1.08x</td>
<td>1.33x</td>
<td>1.14x</td>
</tr>
<tr>
<td>L1-norm pruned Li et al. [2017] RN-101</td>
<td>Yes</td>
<td>90.31</td>
<td>1.22x</td>
<td>1.21x</td>
<td>1.31x</td>
<td>1.11x</td>
</tr>
<tr>
<td>DFPC pruned RN-101</td>
<td>Yes</td>
<td>90.14</td>
<td>1.65x</td>
<td>2.22x</td>
<td>1.66x</td>
<td>1.35x</td>
</tr>
<tr>
<td>Unpruned VGG-19</td>
<td>-</td>
<td>93.50</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
</tr>
<tr>
<td>Random pruned VGG-19</td>
<td>No</td>
<td>90.09</td>
<td>1.11x</td>
<td>1.11x</td>
<td>1.34x</td>
<td>1.16x</td>
</tr>
<tr>
<td>L1-norm pruned Li et al. [2017] VGG-19</td>
<td>No</td>
<td>90.05</td>
<td>1.30x</td>
<td>1.96x</td>
<td>1.76x</td>
<td>1.31x</td>
</tr>
<tr>
<td>DFPC pruned VGG-19</td>
<td>No</td>
<td>90.12</td>
<td>1.68x</td>
<td>3.16x</td>
<td>1.95x</td>
<td>1.43x</td>
</tr>
</tbody>
</table>

Table 2: ResNet-50 for ImageNet with finetuning. The number x inside the brackets (x) in the Model Name column denotes the pruned model obtained after x pruning iterations.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>FLOP Reduction</th>
<th>Parameter Reduction</th>
<th>Top-1 Accuracy(%)</th>
<th>Speedup (GPU)</th>
<th>Speedup (CPU)</th>
<th>FLOP Reduction by Speedup (GPU)</th>
<th>FLOP Reduction by Speedup (CPU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpruned</td>
<td>1.00x</td>
<td>1.00x</td>
<td>76.1</td>
<td>1.00x</td>
<td>1.00x</td>
<td>1.00x</td>
<td>1.00x</td>
</tr>
<tr>
<td>GReg-2 [Wang et al., 2021]</td>
<td>3.02x</td>
<td>2.31x</td>
<td>73.9</td>
<td>1.53x</td>
<td>1.36x</td>
<td>1.97</td>
<td>2.22</td>
</tr>
<tr>
<td>OTO [Chen et al., 2021]</td>
<td>2.86x</td>
<td>2.81x</td>
<td>74.7</td>
<td>1.45x</td>
<td>1.25x</td>
<td>1.97</td>
<td>2.29</td>
</tr>
<tr>
<td>DFPC(30)</td>
<td>1.98x</td>
<td>1.84x</td>
<td>75.9</td>
<td>1.53x</td>
<td>1.42x</td>
<td>1.29</td>
<td>1.39</td>
</tr>
<tr>
<td>ThiNet-30 [Luo et al., 2017]</td>
<td>3.46x</td>
<td>2.95x</td>
<td>71.6</td>
<td>1.50x</td>
<td>1.38x</td>
<td>2.31</td>
<td>2.51</td>
</tr>
<tr>
<td>DFPC(30)</td>
<td>3.46x</td>
<td>2.65x</td>
<td>73.8</td>
<td>2.28x</td>
<td>2.03x</td>
<td>1.51</td>
<td>1.70</td>
</tr>
</tbody>
</table>

7 DISCUSSION AND CONCLUSION

This work proposes a data-free method to prune networks with coupled channels to obtain a superior accuracy vs inference time trade-off. To do this, we propose data flow couplings that abstract the coupling of channels in a network. We also show the necessity of defining grouped saliencies. Finally, we provide an algorithm to compute grouped saliencies on DFCs based on the reconstruction error of the output of the feed-out layers. This algorithm is implemented for CNNs owing to its embarrassingly parallel nature. However, this algorithm fails to gauge saliencies when an element-wise transformation does not support Lipschitz continuity. The algorithm attains superior speedups in both the data-free and data-driven regimes against our baselines. Notably, in the data-driven regime, DFPC pruned ResNet-50 obtains up to 47.1% faster models for a 2.3% accuracy drop on the ImageNet dataset. In the future, we aim to develop pruning strategies robust enough to prune arbitrary networks and advance the goal of achieving faster inference times.
REFERENCES

APPENDIX

Code for our pruning experiments is made available. The appendix is structured as follows.

1. In Appendix A, we specify the setup and the procedure used to measure the inference time of models for the pruning experiments performed throughout the manuscript.
2. In Appendix B we present the intuition behind conditions (\(C_2\)) and (\(C_3\)) in the Definition of a Data Flow Coupling as defined in Section 3 of the manuscript.
3. In Appendix C we present the intuition behind the definition of Maximum Score Disagreement as defined in Section 4 of the manuscript.
4. In Appendix D we present the Proof of Theorem 1 as promised in Section 5 of the manuscript.
5. In Section 6 of the main paper, we perform our experiments on CNNs. But, our definitions and derivations in Sections 3, and 5 consider neural networks with linear/fully-connected layers. In Section E we discuss how to apply the BGSC Algorithm (Algorithm 1 of the manuscript) to CNNs to compute the saliencies of channels.
6. As a part of our pruning experiments from Section 6 of the manuscript, we compare the efficacy of DFPC against two grouped saliencies extended from the L1-based and random saliency mechanisms in the data-free regime. Section F shows how we extended the said saliency mechanisms to grouped saliencies.
7. In Section G we state the experimental procedures and their results in detail for our pruning experiments presented in Section 6 of the manuscript.

A SPECIFICATIONS FOR INFERENCE TIME MEASUREMENTS

Inference time measurements. We define the time taken to inference a model on the test set as its inference time. Inference time for a given model is measured as follows in our experiments. The five epochs are warmups, and we discard their results. The inference time is now computed as the average of the next ten epochs. Shen et al. (2021) use a similar method to measure inference times. Inference time does not include the time taken to load data into memory.

A.1 CPU HARDWARE

Table 3: Specifications of CPU hardware used for inference time measurements

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Model Name</td>
<td>AMD EPYC 7763 64-Core</td>
</tr>
<tr>
<td>CPU(s)</td>
<td>256</td>
</tr>
<tr>
<td>Thread(s) per core</td>
<td>2</td>
</tr>
<tr>
<td>Core(s) per socket</td>
<td>64</td>
</tr>
<tr>
<td>Socket(s)</td>
<td>2</td>
</tr>
<tr>
<td>NUMA node(s)</td>
<td>8</td>
</tr>
<tr>
<td>CPU MHz</td>
<td>2445.419</td>
</tr>
<tr>
<td>L1d & L1i cache</td>
<td>4 MiB</td>
</tr>
<tr>
<td>L2 cache</td>
<td>64 MiB</td>
</tr>
<tr>
<td>L3 cache</td>
<td>512 MiB</td>
</tr>
<tr>
<td>RAM</td>
<td>1TB (DDR4, 3200 MT/s)</td>
</tr>
</tbody>
</table>

1 Code can be accessed [here](#).
The CPU inference time measurements performed as a part of the pruning experiments in Section 6 are performed using the OS Ubuntu 20.04.3 LTS with kernel 5.13.0-39-generic on the hardware specified in Table 3. The software stack used for inferencing consisted of Python 3.9.7, PyTorch 1.10.1, and Torchvision 0.11.2.

A.2 GPU HARDWARE

The GPU inference time measurements performed as a part of the pruning experiments in Section 6 are performed using the OS Ubuntu 16.04.7 LTS with kernel 4.15.0-142-generic on the hardware specified in Table 3. The GPU is an NVIDIA 1080 Ti with CUDA 10.2 and a memory of 12GB. The software stack used for inferencing consisted of Python 3.9.7, PyTorch 1.10.1, and Torchvision 0.11.2.

B INTUITION FOR CONDITIONS (C2) AND (C3) IN DEFINITION OF A DATA FLOW COUPLING

In this section, we provide intuition for the requirement of conditions (C2) and (C3) in defining a Data Flow Coupling through examples. We begin by restating the definition and then providing examples that illustrate the importance of the two conditions.

Setup. Consider a neural network with L FC layers where each FC layer is assigned a unique integer from the set $[L]$. Now, consider two sets of layers $A = \{a_1, a_2, ..., a_p\}$, $B = \{b_1, b_2, ..., b_q\}$ where $A, B \subset [L]$. Let $\mathbf{z}^{(m)}$ be an arbitrary input sample from the data set $\{\mathbf{z}^j\}_{j=1}^M$ that is fed to the network. Then, by $\mathbf{u}_a^{(m)}$, $\mathbf{v}_a^{(m)}$ denote the input to and the corresponding output of layer $a \in A$, and by $\mathbf{x}_b^{(m)}$, $\mathbf{y}_b^{(m)}$ denote the same for layer $b \in B$. Let A, B be such that there exists a collection of functions F defined by the data flow graph of the network. The input to any layer $b \in B$ is obtained through a map $F_b : \mathbb{R}^{\sum_{a \in A} \text{dim}(\mathbf{v}_a^{(m)})} \to \mathbb{R}^{\text{dim}(\mathbf{x}_b^{(m)})} \in F$. F_b is a function of the outputs of layers $a \in A$. Let the function that gives the value of activation to the k^{th} neuron in F_b be denoted by F_{bk}.

DFC Definition. The tuple $\tau = < A, B, F >$ is a data flow coupling if

\[(C_1) \text{ } F \text{ consists of element-wise mappings.} \text{ For all } b \in B, k \in \text{dim}(\mathbf{x}_b^{(m)}), \]

\[x_b^{(m)}(k) = F_{bk}(\mathbf{v}_{a_1}^{(m)}(k), \mathbf{v}_{a_2}^{(m)}(k), ..., \mathbf{v}_{a_p}^{(m)}(k)) \quad (8)\]

\[(C_2) \text{ Non-redundant.} \text{ The subgraph of the data-flow graph consisting of layers in } A, B, \text{ and the connections between them form a single component.}\]

\[(C_3) \text{ Completeness.} \text{ There do not exist sets } A', B' \subset [L] \text{ and a collection of functions } F' \text{ defined by the data flow graph of the network where } A \subseteq A' \text{ and } B \subseteq B' \text{ and either } A \neq A' \text{ or } B \neq B' \text{ such that } \langle A', B', F' \rangle \text{ satisfies conditions (C1) and (C2)}\]

Intuition for Condition (C2) We include this condition to avoid including redundant channels in a DFC. Consider two DFCs in a network with the same cardinality of coupling and no layers in common between the two DFCs. One might mistakenly club the two DFCs into one by taking the union of their feed-in and feed-out layers, respectively. Thus, if condition (C2) were not present, the combination of the two DFCs would also become a DFC. This would create an undesired constraint to prune channels from both DFCs simultaneously.
Intuition for Condition (C₃) This completeness condition ensures that none of the feed-in or
the feed-out layers is left out when considering a DFC. Let us assume that the set of layers and
transformations in Figure 5a satisfies the definition of a DFC. If condition (C₃) were not present, one
could mistakenly not consider all feed-in or feed-out layers while considering this DFC. An example
for such an error is shown in Figure 5b.

C INTUITION FOR MAXIMUM SCORE DISAGREEMENT

This section provides intuition for Maximum Score Disagreement (MSD) as defined in Definition 2.
We begin by restating the definition of MSD.

Maximum Score Disagreement: For a DFC < A, B, F >, denoted by τ, let rankₐ(k) denote the
rank assigned by the feed-in layer a to channel k using a saliency scoring mechanism. We then define
the Maximum Score Disagreement for this channel k as

$$MSD_τ(k) = \max_{a,b \in A, a \neq b} |rankₐ(k) - rankₐ(k)|$$

(9)

Intuition. Assume that for a DFC < A, B, F > denoted by τ, separately, we compute a saliency
score for each filter of all the feed-in layers using some saliency scoring mechanism for structured
pruning. Later, we separately assign a rank to each filter for each feed-in layer from the set [n(τ)]. If
for a channel k ∈ [n(τ)], let rankₐ(k) = γ for some constant γ ∈ [n(τ)], a ∈ A and MSD_τ(k) = 0.
This means that all feed-in layers agree that if we were to prune γ layers in one shot, channel k should
be the γth channel to be pruned. However, if MSD_τ(k) is large, there is a disagreement among at
least two layers on how important channel k is. In an ideal case, if MSD_τ(k) = 0 for all k ∈ [n(τ)],
we could use the rank assigned by either of the feed-in layers to gauge the saliency of a channel.

D PROOF OF THEOREM 1

In this section, we present the proof to Theorem 1 posited for the BGSC Algorithm in the main
manuscript. We begin by setting up the mathematical preliminaries and re-stating the Theorem 1.
Finally, we present our proof.

Setup. Consider a neural network with the DFC < A, B, F > denoted by τ for which uₐ, vₐ
denote the input to and the corresponding output of layer a ∈ A, and by xₐ, yₐ denote the same
for layer b ∈ B. In τ, each function Fₐ captures element-wise transformations from operations
like batch-normalization, non-linearities, etc. Thus, we model Fₐ as a composite function. That is,
Fₐ = f₁ₐ(f₂ₐ(…)) where each fₜₐ is an element-wise function of vₐₜ. Let Pₐₜ denote the set of all
paths from layer b ∈ B to layer a ∈ A in the backwards graph of the network.

Assumption 1 We assume that all functions fₜₐ in τ map the additive identity of their domain to the
additive identity of their co-domain and are Lipschitz continuous.
We now start unfolding the cascadation of functions that obtain x where OPT. Let us now perform a case-wise analysis on f. That is, acc should be clear from the context. We have

$$\min_{k \in [n(\tau)]} \sum_{b \in B} OPT(b) \text{ s.t. } \|s\|_1 = n(\tau) - 1, s(k) = 0$$

(10)

where $OPT(b) = \|W_b x - W_b(x_b \odot s)\|_1$ is the change in output of layer $b \in B$ on applying the mask s.

Theorem 1 Let acc_{ba} be as computed in Algorithm 1 for all $a \in A, b \in B, \pi \in P_{ba}$. Then,

$$OPT(b) \leq \sum_{a \in A} \sum_{\pi \in P_{ba}} (acc_{ba})^T u_a \forall b \in B$$

(11)

Proof of Theorem 1 We focus on one feed-out layer, b of the DFC τ. For instance, consider layer 18 in Figure 6. Consider $OPT(b)$. Let e, e' be vectors whose element are all 1s. The dimensions of e, e' should be clear from the context. We have

$$OPT(b) = e^T [W_b x - W_b(x_b \odot s)] \leq (|W_b|^T e)^T \cdot (e' - s) \odot x_b$$

(12)

We now start unfolding the cascadation of functions that obtain x_b from the u_as to prove the theorem. Let us define the accumulated score, acc, as the vector on the left in the inner-product of the right-most term of (12). That is,

$$acc = |W_b|^T e$$

(13)

Let us now perform a case-wise analysis on f_b^t. Let the accumulated score until unfolding level t be acc.

1. **Residual Connection:** If $f_b^t = f_{b1}^{t+1} + f_{b2}^{t+1}$ where both f_{b1}^{t+1} and f_{b2}^{t+1} are element-wise functions on v_bs. Then, we have

$$acc^T \cdot ((e' - s) \odot f_b^t) \leq acc^T \cdot (f_{b1}^{t+1} \odot (e' - s) \odot f_{b2}^{t+1}) \leq acc^T \cdot (e' - s) \odot f_b^{t+1}$$

(14)

2. **Elementwise Lipschitz continuous transformation:** When f_b^t is Lipschitz continuous, there exists a constant C_b, for each $f_b^t(k)$, such that $|f_b^t(k)(r) - f_b^t(k)(s)| \leq C_b |r - s|$ for any two scalars r and s in the domain of $f_b^t(k)$. Then, from Assumption 1 we have

$$acc^T \cdot (e' - s) \odot f_b^t(f_b^{t+1}) = acc^T \cdot |f_b^t(f_b^{t+1} - (s \odot f_b^{t+1})| \leq acc^T \cdot |C| f_b^{t+1} - (s \odot f_b^{t+1})$$

$$\leq acc^T \cdot |C| f_b^{t+1} - (e' - s) \odot f_b^{t+1} = (C \cdot acc)^T (e' - s) \odot f_b^{t+1}$$

(15)

where C is a diagonal matrix with C_b as its k^{th} diagonal element. Thus, the new accumulated score is

$$acc_{new} = C \cdot acc$$

(16)

Additionally, to generate a tighter upper bound for equations (12) we use the smallest constant C_b that satisfy Lipschitz continuity for $f_b^t(k)$.

Figure 6: Focussing on layer 18, a feed-out layer in a DFC.
As one unfolds F_j to attain upper bounds on $OPT(b)$ using \cite{14} and \cite{16} in a DFC $<A, B, F>$, we are guaranteed to attain a situation where either of $f_{t+1}^{b_1}, f_{t+1}^{b_2}, ..., f_{t+1}^{b_t}$ performs no transformation on its only input v_a for some $a \in A$. Denote by acc_{ba}^π the score accumulated until now by unfolding transformations from b to a along the path π in the backwards graph of the network. This condition should occur by the construction of the network. From here, we perform one more step of unfolding, where we have

$$\text{acc}_{ba}^\pi \leq |W_a^T (e' - s) \odot \text{acc}_{ba}^\pi|^T u_a$$

Finally, the accumulated score for one path π in the backwards graph from b to a is $\text{acc}_{ba}^\pi = |W_a^T (e' - s) \odot \text{acc}_{ba}^\pi|$.

E APPLYING BGSC TO CNNS

Across definitions and derivations in Sections 3, 4, and 5, we consider networks with fully-connected layers as the only layers that do not perform element-wise transformations. But, we demonstrate the efficacy of our method through experiments on CNNs in Section 6. CNNs consist of convolutional layers as the only layers that do not perform element-wise transformations.

E.1 LINEAR LAYER EQUIVALENT TO A CONVOLUTIONAL LAYER

A convolutional layer with m input and n output channels consists of n filters and m kernels per filter. Let the i^{th} filter be denoted by the weight tensor $W_i \in \mathbb{R}^{m \times K \times K}$ for all $i \in [n]$ where $K \times K$ is the size of the kernel. Let the j^{th} kernel in the i^{th} filter be denoted by the matrix $W_{ij} \in \mathbb{R}^{K \times K}$ for all $j \in [m]$. Assuming the bias terms to be zero, if the j^{th} input channel and the i^{th} output channel are denoted as I_j and O_i respectively then for all $i \in [n]$,

$$O_i = \sum_{j \in [m]} W_{ij} \odot I_j$$

where \odot denotes the convolutional operation. Let us denote by $O_{ij} = W_{ij} \odot I_j$. The $(p, q)^{th}$ element of the matrix O_{ij} is given by

$$O_{ij}(p, q) = \sum_{r=0}^{K-1} \sum_{s=0}^{K-1} W_{ij}(p, q) I_j(p + r, q + s).$$

This is a linear transformation. Thus, we can find an equivalent matrix for a convolutional operation. Thus, if \hat{I}_j and \hat{O}_{ij} denote the flattened vectors corresponding to the matrices I_j and O_{ij} respectively, then there exists a matrix \hat{W}_{ij} such that $\hat{O}_{ij} = W_{ij} \hat{I}_j$. If \hat{O}_i denotes the flattened vector corresponding to the matrix O_i, we have $\hat{O}_i = \sum_{j \in [m]} \hat{W}_{ij} \hat{I}_j$. Then, we can write the transformation of a convolutional layer through a linear layer as follows.

$$\begin{bmatrix} \hat{O}_1 \\ \hat{O}_2 \\ \vdots \\ \hat{O}_n \end{bmatrix} = \begin{bmatrix} W_{11} & W_{12} & \ldots & W_{1m} \\ W_{21} & W_{22} & \ldots & W_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ W_{n1} & W_{n2} & \ldots & W_{nm} \end{bmatrix} \begin{bmatrix} \hat{I}_1 \\ \hat{I}_2 \\ \vdots \\ \hat{I}_n \end{bmatrix}$$

Finding weight matrix for the equivalent linear layer. A convolutional layer has multiple configurations, such as padding, strides, and dilation. One way to computationally find the equivalent linear layer to a convolutional layer in the presence of all such configurations is to emulate the convolution operation. During the emulation, fill the equivalent linear layer’s weight matrix if an input contributes to the computation of the output by the corresponding weight in the corresponding kernel.

Observation. The equivalent linear layer’s weight matrix is sparse (consisting of many 0s). Additionally, the weight matrix stores $m \times n \times I_x \times I_y \times O_x \times O_y$ elements, where I_x, I_y, and O_x, O_y represent the dimensions of I_j and O_i respectively. This number can grow very large very quickly.

Using the BGSC Algorithm for CNNs. To measure the saliencies of channels in a DFC τ of a CNN, we first need to think in terms of channels. Instead of element-wise transformations, the focus shifts
to channel-wise transformations. An output channel of a channel-wise transformation depends only on the corresponding input channel. The shape of the output and input channels need not be the same; however, the number of input and output channels must be the same in a channel-wise transformation. Additionally, the mask \(s \) is changed. Consider a convolutional layer in the set of feed-in layers. If we want to prune the \(i^{th} \) channel, the mask is such that \(s(j) = 0 \) for all \((i - 1)O_xO_y < j \leq iO_xO_y \) and \(s(j) = 1 \) for all other \(j \).

E.2 Parsing through channel-wise operations of a CNN in BGSC Algorithm

In this Section, we discuss how to parse through various channel-wise transformations in the BGSC Algorithm to compute the saliencies of channels in a DFC consisting of convolutional layers. Note that all element-wise transformations are also channel-wise transformations. But, the converse does not hold.

E.2.1 ReLU Operation

The tightest Lipschitz constant for a ReLU function is 1. This clearly is the case since \(\max \{0, x\} - \max \{0, y\} \leq |x - y| \) for any \(x, y \in \mathbb{R} \). Thus, the matrix \(C \) consisting of the tightest Lipschitz constants [line 9 of BGSC Algorithm(1)] for a ReLU operation is an identity matrix.

E.2.2 Batch Normalization (2D)

For channel \(k \), a batch norm layer linearly transforms each element of the \(k^{th} \) channel of the input, \(x \), as \(\frac{x - \mu_k}{\sigma_k} \cdot \gamma_k + \beta_k \) where \(\mu_k, \sigma_k, \gamma_k, \beta_k \) are the parameters in a batch norm layer. Thus, the \((i, i)\)\(^{th}\) element of the matrix \(C \) is \(\frac{\gamma_k}{\sigma_k} \) where \(k \) denotes the channel the \(i^{th} \) input/output element belongs to.

E.2.3 Max-pooling, Average-pooling (2D)

For each feature-map corresponding to every input channel, the pooling operation operates on each patch of the feature-map to reduce their size. Max-pool computes the maximum value for each patch of a feature map to create the downsampled feature map. Average-pool computes the average value for each patch of a feature map to create the downsampled feature map.

Consider a pooling kernel of size \(K_1 \times K_2 \). We assume that for max-pooling, over a sufficiently large number of samples, each element is equally likely to be the maximum element in any patch of the image of size \(K_1 \times K_2 \). Thus, in the long run, the transformation by the max-pool and average-pool is equivalent to a convolutional layer whose specifications follow. If the number of channels input to the pooling layers is \(m \), then the convolutional layer has \(m \) input and output channels with filters such that for every filter \(i \in [m] \), \(W_{ij} \) is a matrix with all its entries as \(\frac{1}{K_1K_2} \) if \(j = i \) and 0 otherwise. The bias term is 0 for each channel, and the remaining configurations, like stride, padding, and dilation, remain the same as that of the pooling layer.

Now, from Section [E.1], there exists an equivalent linear layer \(l \) with weight matrix \(W_l \) for the convolutional layer that is equivalent to the pooling layers. If the accumulated score is \(\text{acc}^\pi_{ba} \) until the BGSC Algorithm reaches node \(l \). Then we update the score as

\[
\text{acc}^\pi_{ba} = W_l^T \text{acc}^\pi_{ba}.
\]

This is justified through the following inequality in the analysis presented in Section [5]

\[
(W_{lj}f_j - W_l(f_l^T \odot s)) \leq (|W_l|^T \text{acc}^\pi_{ba})^T \cdot (|e' - s) \odot f_l^T |
\]

E.2.4 Adaptive Average Pooling (2D)

An adaptive average pooling performs average pooling. Here the pooling operation is specified by the shape of the output feature-map desired. Thus the kernel size for the layer is appropriately selected. Once the kernel size is identified, the methodology is the same as that of average-pooling [E.2.3].

E.3 Miscellaneous Implementation Details

In this Section, we describe choices made while implementing BGSC to produce the results in Section [6].
E.3.1 Reducing memory usage

Consider the second convolutional layer in VGG-19. It takes 64 channels of 32x32 images as input and produces an output of the same dimensions. From Section E.1, we know that the equivalent linear layer for this convolutional layer will require space to store 2^{32} floating point numbers. Assuming each number takes one byte of memory, the memory requirement for the weight matrix is already 4GB. This number jointly grows bi-quadratically with the dimensions of the input and output feature maps. Thus, to reduce this memory requirement, we use the sparse representation of matrices to represent the weight matrices corresponding to the equivalent linear layer.

E.3.2 Reducing time to compute saliencies of channels in all DFCs in a network through parallelization

The time complexity of the BGSC Algorithm for a DFC is $O\{n(\tau)|P|,|\gamma_B + n(\tau),n + \gamma_A|\}$. In a DFC, $\gamma_A, \gamma_B, n(\tau)$ are generally of the same order. So, we define $\gamma_{\text{max}} = \max\{\gamma_A, \gamma_B, n(\tau)\}$. Then, we can write the time-complexity of BGSC Algorithm to be $O\{\gamma_{\text{max}}^2|P|,(n + \gamma_{\text{max}})\}$.

We know that the γ_{max} for a DFC with convolutional layers grows quadratically with respect to the dimensions of feature maps and linearly with the number of channels. Thus BGSC is quite computationally expensive. However, we reduce the time taken to execute BGSC Algorithm by parallelly computing the $\text{acc}_\pi^{\text{ba}}$ for each path $\pi \in P$. Moreover, since saliency computation of two DFCs can be performed independently, we parallelly compute saliencies for channels of multiple DFCs of the network.

F Extending L1-norm based and random scores to prune coupled channels

In this Section we demonstrate the usage of the two saliency scoring mechanisms, L1-norm and random, to prune coupled channels. These have been used as a benchmark to compare DFPC against in our Pruning Experiments[6].

Consider a CNN with L convolutional layers. Let us assign each convolutional layer in the CNN a unique integer in $[L]$. Additionally, consider a DFC $< A, B, F >$ denoted by τ in the CNN.

F.1 Extending L1-norm based saliency score

For a convolutional layer $l \in [L]$, Li et al. (2017) assign the k^{th} channel a score of $\|W^l_k\|_1$ where W^l_k denotes the weights of the k^{th} filter in layer l. We extend this saliency score to a grouped saliency score as follows.

We assign a saliency score to channel $k \in [n(\tau)]$ as the sum of L1-norms of the corresponding filters across all feed-in layers. That is,

$$\text{Sal}_\tau(k) = \sum_{a \in A} \|W^a_k\|_1 \quad \forall k \in n(\tau).$$

(23)

This extension is similar to that proposed by Gao et al. (2019).

F.2 Extending random saliency score

Extending this saliency score is trivial. We assign each channel $k \in n(\tau)$ a number sampled from the uniform distribution between 0 and 1 as a saliency score. That is,

$$\text{Sal}_\tau(k) \sim \mathcal{U}[0, 1] \quad \forall k \in n(\tau).$$

(24)

Here, $\mathcal{U}[a, b]$ denotes uniform distribution between scalars $a, b \in \mathbb{R}, a \leq b$.

G Experiments in detail and ablation studies

In this Section, we present a comprehensive version of our experiments that we presented in Section 6 of the main manuscript. We begin by presenting the experiments performed on the CIFAR-10 and CIFAR-100 datasets. Then, we present the experiments performed on the ImageNet dataset.
G.1 CIFAR-10 and CIFAR-100 Experiments

Experimental Setup. We showcase our results using the CIFAR-10 and CIFAR-100 datasets (MIT License) and ResNet-50, ResNet-101, and VGG-19. In these experiments, we maintain a data-free regime. Additionally, we use two settings for our experiments to show the effect of pruning coupled channels and fairly compare DFPC, L1, and random scores for ablation. In the first setting, we prune both the coupled and non-coupled channels in the network. In the second setting, we only prune the non-coupled channels. This helps us understand the gain obtained from pruning coupled channels. These experiments are carried out for three grouped saliencies: DFPC, L1, and Random. Moreover, these experiments are performed two times on ResNets. In this first set of experiments, we prune both coupled and non-coupled channels. But in the second set of experiments, we only prune the non-coupled channels.

Pruning Procedure. Once we obtain grouped saliencies Sal_k for each channel of every DFC in a network, we compare these scores globally to select the channel to prune among all DFCs. To prevent layer collapse, we add a check not to prune a channel if a DFC has a coupling cardinality of 1.

Pretrained Models. We train the models using SGD Optimizer with a momentum factor of 0.9 and weight decay of 5×10^{-4} for 200 epochs using Cosine Annealing step sizes with an initial learning rate of 0.1.

Tables 1 and 4. We produce these tables as follows. We prune 1% of the remaining channels at a time in the network and measure the top-1 accuracy of the pruned model. In these tables, we report the description of pruned models with accuracy closest to 90% for CIFAR-10 and 70% for CIFAR-100. For random saliencies, the tables report the average values obtained after three trials.

Figures. In figures 7-12 we plot the results of our pruning experiments to show how accuracy varies with sparsities (with respect to FLOPs and parameters) when we choose to prune coupled channels for various strategies to gauge the importance of coupled channels.

G.1.1 Discussion of Experimental Results

From figures 7-12 it is evident that DFPC outperforms L1 and Random grouped saliencies in accuracy versus sparsity charts for both sparsity in terms of parameters and FLOPs. The margin of outperformance is significantly higher when pruning coupled channels. We observe that this superiority arises due to the occurrence of more pruning iterations to obtain a similar accuracy drop. Additionally, the gap of outperformance is reduced when sparsity is considered with respect to FLOPs. For all cases, but one, DFPC results in a pruned model with faster inference time despite similar accuracies. It is for ResNet-50 trained on CIFAR-10 that L1-norm-based grouped saliency produces a pruned model with faster inference time when pruning coupled channels on our CPU platform. Additionally, L1-norm-based grouped saliency performs similarly in terms of accuracy versus sparsity charts whether we chose to prune coupled channels or not. However, in the same regime, DFPC performs slightly better when pruning coupled channels. Thus, by looking at the trends in figures 7-12 and tables 1 and 4 it is the case that in general, for a given accuracy, both sparsity (in terms of FLOPs and number of parameters) and inference time speed-ups when pruning coupled channels are at least as good as when not pruning them.

To conclude, we were able to prune models without having access to the training data set or any statistics derived from it. We did not use fine-tuning either. We showed that our proposed method almost always improves performance in terms of sparsity and inference time speedups as opposed to readily-available approaches to gauge saliencies of coupled channels in the absence of a data set.
Table 4: Pruning Results without using the training dataset and no finetuning on CIFAR-100. RN is an abbreviation for ResNet; CP denotes if we choose to prune coupled channels; RF denotes the reduction in FLOPs; RP denotes the reduction in parameters; ITS denotes inference time speedup.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>CP?</th>
<th>Acc-1(%)</th>
<th>RF</th>
<th>RP</th>
<th>ITS(CPU)</th>
<th>ITS(GPU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpruned RN-50</td>
<td>-</td>
<td>78.85</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
</tr>
<tr>
<td>Random pruned RN-50</td>
<td>No</td>
<td>70.29</td>
<td>1.08x</td>
<td>1.08x</td>
<td>1.06x</td>
<td>1.04x</td>
</tr>
<tr>
<td>L1-norm pruned Li et al. [2017] RN-50</td>
<td>No</td>
<td>70.24</td>
<td>1.16x</td>
<td>1.02x</td>
<td>1.17x</td>
<td>1.08x</td>
</tr>
<tr>
<td>DFPC pruned RN-50</td>
<td>No</td>
<td>71.75</td>
<td>1.23x</td>
<td>1.20x</td>
<td>1.31x</td>
<td>1.18x</td>
</tr>
<tr>
<td>Random pruned RN-50</td>
<td>Yes</td>
<td>69.50</td>
<td>1.07x</td>
<td>1.07x</td>
<td>1.02x</td>
<td>1.02x</td>
</tr>
<tr>
<td>L1-norm pruned Li et al. [2017] RN-50</td>
<td>Yes</td>
<td>69.61</td>
<td>1.21x</td>
<td>1.02x</td>
<td>1.12x</td>
<td>1.18x</td>
</tr>
<tr>
<td>DFPC pruned RN-50</td>
<td>Yes</td>
<td>70.31</td>
<td>1.27x</td>
<td>1.22x</td>
<td>1.24x</td>
<td>1.16x</td>
</tr>
<tr>
<td>Unpruned RN-101</td>
<td>-</td>
<td>79.43</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
</tr>
<tr>
<td>Random pruned RN-101</td>
<td>No</td>
<td>71.66</td>
<td>1.11x</td>
<td>1.10x</td>
<td>1.07x</td>
<td>1.05x</td>
</tr>
<tr>
<td>L1-norm pruned Li et al. [2017] RN-101</td>
<td>No</td>
<td>70.07</td>
<td>1.30x</td>
<td>1.18x</td>
<td>1.22x</td>
<td>1.13x</td>
</tr>
<tr>
<td>DFPC pruned RN-101</td>
<td>No</td>
<td>70.01</td>
<td>1.71x</td>
<td>1.53x</td>
<td>1.54x</td>
<td>1.38x</td>
</tr>
<tr>
<td>Random pruned RN-101</td>
<td>Yes</td>
<td>71.68</td>
<td>1.08x</td>
<td>1.08x</td>
<td>1.05x</td>
<td>1.02x</td>
</tr>
<tr>
<td>L1-norm pruned Li et al. [2017] RN-101</td>
<td>Yes</td>
<td>71.59</td>
<td>1.25x</td>
<td>1.12x</td>
<td>1.20x</td>
<td>1.16x</td>
</tr>
<tr>
<td>DFPC pruned RN-101</td>
<td>Yes</td>
<td>70.03</td>
<td>1.72x</td>
<td>1.53x</td>
<td>1.52x</td>
<td>1.13x</td>
</tr>
<tr>
<td>Unpruned VGG-19</td>
<td>-</td>
<td>72.02</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
</tr>
<tr>
<td>Random pruned VGG-19</td>
<td>-</td>
<td>68.92</td>
<td>1.02x</td>
<td>1.02x</td>
<td>1.00x</td>
<td>1.00x</td>
</tr>
<tr>
<td>L1-norm pruned Li et al. [2017] VGG-19</td>
<td>-</td>
<td>70.40</td>
<td>1.16x</td>
<td>1.31x</td>
<td>1.14x</td>
<td>1.06x</td>
</tr>
<tr>
<td>DFPC pruned VGG-19</td>
<td>-</td>
<td>70.10</td>
<td>1.26x</td>
<td>1.50x</td>
<td>1.29x</td>
<td>1.11x</td>
</tr>
</tbody>
</table>

Figure 7: Plots for pruning experiments on the ResNet-50 architecture trained on CIFAR-10 dataset

Figure 8: Plots for pruning experiments on the ResNet-101 architecture trained on CIFAR-10 dataset
Figure 9: Plots for pruning experiments on the VGG19 architecture trained on CIFAR-10 dataset

Figure 10: Plots for pruning experiments on the ResNet-50 architecture trained on CIFAR-100 dataset

Figure 11: Plots for pruning experiments on the ResNet-101 architecture trained on CIFAR-100 dataset
G.2 IMAGE NET EXPERIMENTS

G.2.1 WITHOUT FINETUNING (DATA-FREE REGIME)

In this Section, we present the results of Pruning on the ImageNet dataset. We perform the following set of experiments. For ResNet-50, and ResNet-101 we measure accuracy vs sparsity (in terms of parameters) for the ImageNet dataset. These experiments are carried out for two grouped saliencies: DFPC and L1. Moreover, we performed these experiments two times. We prune both coupled and non-coupled channels in this first set of experiments. But in the second set of experiments, we only prune the non-coupled channels.

Pruning Procedure. Once we obtain grouped saliencies $\text{Sal}_x(k)$ for each channel of every DFC in a network, we compare these scores globally to select the channel to prune among all DFCs.

Pretrained Models. Pretrained models of ResNet-50 and ResNet-101 are obtained from the Torchvision library.

Figures. In figure 13, we plot the results of our pruning experiments to show how accuracy varies with parametric sparsities when we choose to prune coupled channels for the two strategies.

Discussion. The accuracies drop quite quickly for models trained on the ImageNet dataset. However, we still find that DFPC obtained better sparsities than the L1 score for both cases when we pruned coupled channels and when we didn’t. Moreover, we see that the trajectories of pruning are quite similar in terms of accuracy vs sparsity, irrespective of choosing to prune coupled channels. This could be attributed to the quick drop in accuracy of this experiment. Due to a quick drop in accuracies, we could not find a suitable accuracy level where we could report speedup fairly.
Comparison with Yin et al. (2020). Yin et al. (2020) is a contemporary work in Data-Free pruning that synthesizes the dataset from a pre-trained model. Synthesis of such a dataset is computationally expensive. In this comparison, we compare the reduction in FLOPs vs the accuracy drop of Yin et al. (2020) and DFPC. For a 1.02x FLOP reduction, the Accuracy of DFPC drops to 70.8%. However, Yin et al. (2020) maintain a 76.1% accuracy for a FLOP reduction of 1.3x.

G.2.2 WITH FINETUNING (DATA-DRIVEN REGIME)

In this Section, we present the experimental of our pruning experiments on ResNet-50 trained on ImageNet dataset when we finetune the model as presented in Table 2 in Section 6 of the manuscript.

Experimental Setup. We use the pre-trained model of ResNet-50 available as a part of Torchvision for pruning. We prune 1% of the remaining channels in each pruning iteration followed by a finetuning of 3 epochs, each with step sizes of 10^{-3}, 10^{-4}, 10^{-5} per pruning iteration. The batch size was 256. After the pruning ends, we finally prune the network for 90 epochs with a batch size of 512. We use the SGD Optimizer with a momentum factor of 0.9 and weight decay of 1×10^{-4} and Cosine Annealed step sizes with an initial learning rate of 0.1. Here, we normalize the saliency scores of each DFC to attain zero mean and unit variance before each pruning iteration.