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ABSTRACT

Modern, multi-branched neural network architectures often possess complex in-
terconnections between layers, which we call coupled channels (CCs). Structured
pruning of CCs in these multi-branch networks is an under-researched problem, as
most existing works are typically designed for pruning single-branch models like
VGG-nets. While these methods yield accurate subnetworks, the improvements in
inference times when applied to multi-branch networks are comparatively modest,
as these methods do not prune CCs, which we observe contribute significantly
to inference time. For instance, layers with CCs as input or output take more
than 66% of the inference time in ResNet-50. Moreover, pruning in the data-free
regime, where data is not used for pruning, is gaining traction owing to privacy
concerns and computational costs associated with fine-tuning. Motivated by this,
we study the problem of pruning CCs in the data-free regime. To facilitate the
development of algorithms to prune CCs, we define Data Flow Couplings (DFCs)
to enumerate the layers that constitute coupled connections and the associated
transformation. Additionally, saliencies for pruning CCs cannot be gauged in isola-
tion, as there may be discrepancies among the layerwise importance of CCs using
conventional scoring strategies. This necessitates finding grouped saliencies to
gauge the importance of all corresponding coupled elements in a network. We thus
propose the Backwards Graph-based Saliency Computation (BGSC) algorithm,
a data-free method that computes saliencies by estimating an upper bound to the
reconstruction error of intermediate layers; we call this pruning strategy Data Flow
driven Pruning of Coupled channels (DFPC). Finally, we show the efficacy of
DFPC for models trained on standard datasets. Since we pruned coupled channels,
we achieve up to 1.66x improvements in inference time for ResNet-101 trained
on CIFAR-10 with a 5% accuracy drop without fine-tuning. With access to the
ImageNet training set, we achieve significant improvements over the data-free
method and see an improvement of at least 47.1% in speedup for a 2.3% accuracy
drop for ResNet-50 against our baselines.1

1 INTRODUCTION

As computational resources have become significantly more powerful, deep learning models have
become correspondingly larger and more complex as well, with some models possessing billions of
parameters (Sevilla et al., 2022). Moreover, many modern architectures are multi-branched networks
due to layer skip connections like Residual Connections (He et al., 2016) that are used to avoid
vanishing gradients. These large, complex architectures enable these models to learn patterns in data
with better performance in terms of optimization and generalization (Arora et al., 2019; Neyshabur
et al., 2019; Zhang et al., 2021).

The benefits of overparameterization in these models come at the cost of increased memory and
compute footprint, necessitating the invention of techniques to mitigate them. Techniques such as
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network pruning(Hoefler et al., 2021), quantization(Gholami et al., 2021), knowledge distillation(Gou
et al., 2021), and low-rank decomposition(Jaderberg et al., 2014) make it possible to compress
overparameterized models in order to improve real-world performance metrics such as inference time
and power consumption. Pruning involves discarding elements of neural networks after gauging the
importance or saliencies of these elements. Generally, two broad categories of pruning techniques
exist in the literature - unstructured pruning, which involves removing individual weights from
the model, such as the results in Han et al. (2015); LeCun et al. (1989); Tanaka et al. (2020), and
structured pruning (also called channel pruning for CNNs), which involves removing entire neurons
or channels from the model (Ding et al., 2021; Luo et al., 2017; Prakash et al., 2019; Singh et al., 2019;
Wang et al., 2021; He et al., 2017). In this work, we focus on structured pruning for multi-branched
CNNs.

Due to the complicated interconnections that exist in multi-branched networks, pruning multi-
branched neural networks such as ResNets and MobileNets, raise unique challenges that do not
arise when pruning single branch networks such as VGG-nets (Simonyan & Zisserman, 2015).
These complex connections, such as residual connections in ResNets, require channels fed into the
connection to be of the same dimensions, thus coupling the channels. Pruning such coupled channels
(CCs) is generally not addressed in current works on structured pruning, such as Ding et al. (2021);
Joo et al. (2021); Luo et al. (2017); Singh et al. (2019); Wang et al. (2021), which are designed for
pruning single-branched networks; for example, in ResNets, only the output channels of the first two
layers of a ResNet residual block are pruned, and the channels that feed into the residual connections
are ignored when using these methods. Pruning CCs is challenging since not pruning filters from all
the associated layers would break the CNN. Furthermore, pruning CCs is crucial as we observe that
the layers associated with CCs take up a significant portion of the inference time - more than 66% in
ResNet-50.

The few methods for pruning CCs currently available generally rely on data-driven statistics of the
output layer to infer saliencies and involve heavy finetuning(Chen et al., 2021; Liu et al., 2021; Luo
& Wu, 2020; Shen et al., 2021). However, situations may arise where models trained on proprietary
datasets may be distributed but not the dataset for reasons such as privacy, security, and competitive
disadvantage(Yin et al., 2020). Thus, pruning without data is an important challenge and an active
area of research(Patil & Dovrolis, 2021; Srinivas & Babu, 2015; Tanaka et al., 2020). However, these
techniques do not address pruning CCs, especially in the one-shot and data-free pruning regime,
which is an open problem(Hoefler et al., 2021).

In this work, we aim to prune CCs with the additional challenge of doing so without access to data.
Towards answering the posed challenges, our contributions in this work are as follows.

1. Unlike single-branch networks, the CCs in multi-branched networks provide an additional chal-
lenge for structured pruning. Identifying the associations between coupled layers, as well as
the mappings between them, is a nontrivial task. To address this problem, we define Data Flow
Couplings (DFCs) to abstract the notion of coupling in a network by enumerating both the layers
and transformations involved in the coupling. Two types of layers are associated with a DFC -
feed-in and feed-out layers; their outputs and inputs are involved in the coupling.

2. Pruning involves measuring saliencies for elements to be pruned, which, for CCs, is not straight-
forward due to interconnections between layers. In Section 4, we investigate whether saliencies
of channels in a DFC can be inferred in isolation from the feed-in layers. To do so, we define
Maximum Score Disagreement to quantify disagreement in saliencies among the feed-in layers.
We empirically observe significant disagreement among saliencies assigned to channels by the
feed-in layers suggesting that the importance of such channels cannot be deduced in isolation.
This leads us to propose grouped saliencies, with which we can rank coupled elements of a DFC.

3. Measuring the effect of pruning coupled elements of a multi-branch network without data, and thus
inferring filter saliencies, is a challenging task. For this, Theorem 1 proposes a saliency mechanism,
using the transformations enumerated by the DFCs, that bounds the joint reconstruction error
of the outputs of the DFC’s feed-out layers without data. To compute these saliencies, we
propose the Backwards Graph-based Saliency Computation (BGSC)[1] Algorithm. To mitigate the
computational cost of this algorithm (both time and memory) for CNNs, we provide a parallelized
implementation of the algorithm owing to its embarrassingly parallel nature. On ResNet-101 for
the CIFAR-10 dataset, we obtain a 1.66x inference time speedup for a 5% accuracy drop without
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(a) A feed-forward neural network (b) Residual block in ResNet-50
with downsample layer

(c) Residual block in ResNet-50 with
no layer in shortcut branch

Figure 1: Examples of data flow (sub)graphs in various networks

retraining. On ResNet-50 for the ImageNet dataset, we obtain an inference time speedup of at
least 47.1% against our baselines for a 2.3% accuracy drop with retraining.

2 NOTATION, PRELIMINARIES AND RELATED WORK

2.1 NOTATION AND PRELIMINARIES

Notation. Let [n] = {1, ..., n} ⊂ N for any n ∈ N. Let x ∈ Rn denote a vector, and M denote a
matrix. x(k) and M(i, j) denote the kth and (i, j)th element of x and M respectively. ∥x∥1 and
∥x∥∞ denote the L1-norm and max-norm of the vector x respectively. |x|/|M | denote the element-
wise absolute (vector of x)/(matrix of M ). That is, |x|(k) = |x(k)| and |M |(i, j) = |M(i, j)|. ⊙
denotes the Hadamard product. The output of an element-wise transformation F applied on a
matrix is such that the (i, j)th element of the output depends only on the (i, j)th element of the
input. That is, for matrix M , F (M)(i, j) = f(i,j)(M(i, j)). A similar definition is used in this
manuscript when considering element-wise transformations on a vector and when the element-wise
transformation is a function of multiple matrices/vectors. Let |A| denote the cardinality of a set A.
Networks under consideration for analysis. Across definitions and derivations in Sections 3
and 5, we assume that fully-connected (FC) layers are the only layers in the network that do
not perform element-wise transformations. The network can have layers like batch-norm and
non-linearities like ReLU that perform element-wise transformations. Let there be L FC layers in
the network. We assign each FC layer a unique integer from the set [L]. The order of numbering
is not important. Consider a layer l ∈ [L]. We denote its weight matrix by Wl. For a layer l that
is given an input x, the corresponding output y is obtained as y = Wlx.
Terminology for CNNs. We recall the standard definitions from Hoefler et al. (2021); Dumoulin
& Visin (2016). Channels denote the different views of the data (e.g., the red, green and blue
channels of a color image). Convolutional layers have multiple filters, each comprising multiple
kernels. A convolutional layer with n input and m output channels has m filters, each comprising
n kernels.
Data flow graph. The data flow graph of a neural network is a directed graph that encapsulates
the transformation produced by a network. Each node in the graph applies some operation to the
data provided. Each edge in the graph denotes the data flow between nodes, with data flowing
from tail to head of the edge. The backwards graph of the neural network is similar to the data
flow graph except for the direction of edges being reversed. Figure 1a shows the data flow graph
of a four-layer feed-forward neural network. Such a network is said to have a single branch.
Terminology for ResNets. ResNets consist of Residual Connections(He et al., 2016). A block of
layers in these networks with a residual connection around them is called a residual block. Figures
1b and 1c show instances of residual blocks in ResNet-50. These have two branches and thus make
ResNets multi-branched. The residual branch contains most of the convolutional layers in the
residual block. The other branch is called the shortcut branch. In ResNets, multiple consecutive
residual blocks are clubbed together and called a layer-block.

2.2 RELATED WORK

Pruning coupled channels (CCs). Existing literature (Gao et al., 2019; Liu et al., 2021; Luo &
Wu, 2020; Shen et al., 2021) prune CCs by grouping layers whose output channels are coupled.
Liu et al. (2021) propose an algorithm to group such layers. Liu et al. (2021); Luo & Wu (2020);
Shen et al. (2021) utilize data-driven statistics of the output layer to measure saliencies. Gao
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et al. (2019), and Chen et al. (2021) alter the training objective by introducing sparsity-promoting
regularizers. But, Gao et al. (2019) use the Train-Prune-Finetune pruning pipeline(Han et al.,
2015) whereas Chen et al. (2021) simultaneously train and prune the network. The experimental
results, particularly of Liu et al. (2021); Shen et al. (2021), show that pruning CCs results in a
better trade-off between accuracy and inference time speedups when finetuning is possible.
Saliency scores. Techniques exist in structured pruning that derive saliencies of channels from the
information extracted from consecutive layers(Joo et al., 2021; Luo et al., 2017) or one layer(Hu
et al., 2016; Li et al., 2017) without access to a dataset. Such structured pruning techniques locally
measure the saliencies of channels. Gao et al. (2019) and Yang et al. (2018) utilize joint norms of
weights in filters of grouped layers to infer saliencies. Minimizing the Reconstruction Error of
the next layer is a metric to gauge the saliencies of channels(Luo et al., 2017; Yu et al., 2018) in
structured pruning. However, this metric has only been applied to prune non-CCs and is assumed
in the literature to not apply to CCs since such a metric requires a notion of consecutiveness
among layers(Liu et al., 2021). However, in this work, we leverage DFCs to solve this problem.
Data-free pruning. Early efforts toward data-free pruning include Srinivas & Babu (2015), which
measured similarity between neurons and merged similar neurons. Recently, Tanaka et al. (2020)
proposed the Synflow method, an unstructured, data-free pruning method that relied on preserving
gradient flow. Similar works include Gebhart et al. (2021); Patil & Dovrolis (2021), which use
the Neural Tangent Kernel-based techniques to modify SynFlow. Yin et al. (2020) synthesize a
dataset from a pre-trained CNN classifier and utilize the synthesized dataset to perform iterative
data-driven pruning, with the drawback that synthesizing the dataset from the classifier is very
costly.

3 DATA FLOW COUPLINGS

In this section, motivated by the need to enumerate both the layers involved in CCs as well as
the transformations between them, we define Data Flow Couplings (DFCs). We also provide
examples of DFCs in ResNet-50.
Motivation for defining DFCs. Studies intending to prune CCs in CNNs either group layers
whose output channels are coupled(Gao et al., 2019; Liu et al., 2021; Luo & Wu, 2020; Shen
et al., 2021) or group weights across layers if they belong to the same coupled channel(Chen
et al., 2021). However, these groupings do not simultaneously enumerate both the layers and the
transformations involved in an instance of coupling. Such descriptions aid us in understanding
the end-to-end transformation produced by the instance of coupling. In Section 5, we use these
descriptions to derive a data-free mechanism for which DFCs are crucial. A Data Flow Coupling
(DFC) abstracts the end-to-end transformation and the associated layers for an instance of coupling
in a network.

Definition 1 Consider a neural network with L FC layers where each FC layer is assigned
a unique integer from the set [L]. Consider two sets of layers A = {a1, a2, ..., ap}, B =

{b1, b2, ..., bq} where A,B ⊂ [L]. Let z(m) be an arbitrary input sample from a data set {zj}Mj=1

that is fed to the network, let u(m)
a , v(m)

a denote the input to and the corresponding output of layer
a ∈ A, and let x(m)

b , y(m)
b denote the same for layer b ∈ B. Suppose there exists a collection of

functions F defined by the data flow graph of the network, such that the input to any layer b ∈ B

is obtained through a map Fb : R
∑

a∈A dim(v(m)
a ) → Rdim(x

(m)
b ) ∈ F , where Fb is a function of

the outputs of layers a ∈ A. Let the function that gives the value of activation to the kth neuron in
Fb be denoted by Fbk. Then, we say the tuple τ =< A,B, F > is a data flow coupling if

(C1) F consists of element-wise mappings. For all b ∈ B, k ∈ dim(x
(m)
b ),

x
(m)
b (k) = Fbk(v

(m)
a1

(k), v(m)
a2

(k), ...., v(m)
ap

(k)) (1)

(C2) Non-redundant. The subgraph of the data-flow graph consisting of layers in A, B, and the
connections between them form a single component.

(C3) Completeness. There do not exist sets A′, B′ ⊂ [L] and a collection of functions F ′ defined
by the data flow graph of the network where A ⊆ A′ and B ⊆ B′ and either A ̸= A′ or
B ̸= B′ such that < A′, B′, F ′ > satisfies conditions (C1) and(C2).
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Figure 2: An instance of a DFC in ResNet-50.

We provide discussion for conditions (C2) and (C3) of Definition 1 in Appendix B.
Some terminology for DFCs. For a DFC < A,B, F > denoted by τ , we call the layers in A the
feed-in layers since their outputs are used as inputs by layers in B post transformations governed
by F . Consequently, we call the layers in B the feed-out layers. Additionally, as a consequence of
(C1), it is the case that for all a ∈ A and b ∈ B, dim(v

(m)
a ) = dim(x

(m)
b ) = n(τ). We call n(τ)

as the cardinality of coupling.
DFCs in CNNs. The notion of a DFC for a neural network with FC layers can be extended to a
CNN by altering the element-wise property of transformations in F to channel-wise.
Example of a DFC in ResNet-50. Consider the subnetwork of ResNet-50, as shown on the left
in Figure 2. For simplicity, we only show the convolutional layers and residual additions from
the data flow graph of the subnetwork. Each convolutional layer in the figure has its assigned
unique integer on the top left corner besides its corresponding rectangular box in the diagram.
This example focuses on the DFC involving channel coupling due to residual additions. The DFC
τ is < A,B, F >, where A = {9, 10, 13, 16}, and B = {11, 14, 17, 18}. It is easy to infer the
DFC’s collection of functions F from the diagram. However, for completeness, we show F11,k.

F11,k(v
(m)
9 (k),v

(m)
10 (k)) = ReLU(BN9,k(v

(m)
9 (k))) +ReLU(BN10,k(v

(m)
10 (k))) (2)

where BNl,k(x) =
x−µl

k

σl
k

⊙ γl
k + βl

k. Here, BNl,k denotes the batchnorm transformation applied

on the kth channel output from the lth layer of the neural network.
Properties of DFCs. Note that in Figure 2, the tuple < A,B, F > with A = {11} and B = {12}
and F capturing the associated transformation satisfies the definition of a DFC. Thus, the notion
of consecutive layers, as in single-branch networks, is a special case of a DFC. Thus, DFCs
simultaneously capture the transformational effect of coupled and non-CCs during the forward
pass. Moreover, it is easy to see that a network can be divided into a collection of DFCs while
preserving the overall transformation it produces.

4 GROUPED SALIENCIES

In this section, we investigate whether saliencies can be assigned to CCs in isolation using existing
saliency mechanisms. To do so, we define Maximum Score Disagreement, which quantifies the
disagreement or inconsistency in saliency rankings. When computed in isolation for each feed-in
layer, our experiments suggest inconsistency among saliency ranks assigned to corresponding
channels of a DFC. Thus, we propose Grouped Saliencies to rank channels of a DFC.
Saliency mechanisms under consideration. Broadly, structured pruning algorithms compute
saliencies of non-coupled channels and discard the lowest-ranked channels first (Hoefler et al.,
2021). Saliency scoring mechanisms exist for structured pruning that use statistics of the feed-in
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(a) F.O. Taylor Approximate (b) L1 norm (c) Linear Replacibility

Figure 3: Plots illustrating disagreement of scores among the feed-in layers for gauging the importance of
channels for a ResNet-50 model trained on CIFAR-100 dataset. Each plot is a histogram of the MSD values
for the three saliency scoring mechanisms. A DFC with a particular downsampling layer in its feed-in layers is
uniquely determined by the layer block containing it in the ResNet-50 architecture. The DFC in figure 2 is called
layer-block-1 for this experiment. DFC named layer-block-1, layer-block-2, layer-block-3, and layer-block-4
have a cardinality of coupling equal to 256, 512, 1024, and 2048 respectively.

layer (Joo et al., 2021; Li et al., 2017; Molchanov et al., 2019). We use these saliencies to illustrate
the necessity of grouped saliencies. Molchanov et al. (2019) propose to gauge the saliency of a
filter in a convolutional layer by measuring the first-order Taylor approximation error attained on
discarding the filter. Li et al. (2017) propose to use the L1 norm of the weights in the filter to
gauge the corresponding channel’s saliency. Joo et al. (2021) measure the saliency of a filter by
measuring how linearly dependent the filter is on other filters in the layer. To capture the variation
of ranks assigned by various feed-in layers of a DFC, we define the Maximum Score Disagreement
(MSD) as follows.

Definition 2 Maximum Score Disagreement. For a DFC < A,B, F >, denoted by τ , let
ranka(k) denote the rank assigned by the feed-in layer a to channel k using a saliency scoring
mechanism. We then define the Maximum Score Disagreement for this channel k as

MSDτ (k) = max
a,b∈A,a̸=b

|ranka(k)− rankb(k)| (3)

Discussion. Given a DFC τ =< A,B, F >, we compute a saliency score for each filter of all the
feed-in layers separately, thus giving us a rank for each filter in each feed-in layer from the set
[n(τ)]. We say that the saliency mechanism is consistent or in agreement if MSDτ (k) = 0 ∀k ∈
[n(τ)]. When under agreement, ranka(k) = rankb(k) ∀k ∈ [n(τ)], and a, b ∈ A. This means
that all feed-in layers agree regarding the order in which the corresponding channels should be
pruned. However, if MSDτ (k) is large for some k ∈ [n(τ)], there is a disagreement among at
least two layers regarding the importance of channel k.

Experiments. We perform three experiments to investigate the agreement among saliencies
computed in isolation through the MSD values. We use the three saliency scoring mechanisms
mentioned above in this section. We use all DFCs consisting of coupled channels arising from
residual connections in ResNet-50 trained on the CIFAR-100 dataset (MIT License) for this
experiment (training specifications in section F of the supplementary material).

Observation. Consider layer-block-4 in the histograms in figure 3c. The most frequent bin for this
particular histogram lies in the MSD Range of 1000-2000. This shows significant disagreements
among saliency ranks computed in isolation by the feed-in layers. Similarly, we can see that the
disagreement for all three importance measures is significantly high for all histograms in all plots
of figure 3. Similar trends also arise for ResNet-50 trained on CIFAR-10 and ImageNet datasets.

Grouped Saliencies. These observations show that we need to jointly consider coupled elements
of a DFC to infer their saliencies. We call saliencies that measure the importance of channels in a
DFC using at least one of all the feed-in layers, all the feed-out layers, and the entire collection of
functions F as grouped saliencies.

In the following section, we propose an algorithm that computes a grouped saliency using all three
elements of the triple of a DFC as detailed in Definition 1.
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5 A DATA FLOW DRIVEN DATA FREE GROUPED SALIENCY BASED ON THE
RECONSTRUCTION ERROR OF INTERMEDIATE OUTPUTS

In this section, we propose an Algorithm called BGSC[1] to compute the saliency of all neurons
in a DFC. We begin by describing the preliminaries for the Algorithm. We then describe the
desired objective function to measure our saliency. Finally, through Theorem 1, we show that the
saliencies computed using the BGSC Algorithm upper bound the desired objective function.
Setup. Consider a neural network with the DFC < A,B, F > denoted by τ for which ua, va

denote the input to and the output of layer a ∈ A, and by xb, yb denote the same for layer b ∈ B.
Let Pba denote the set of all paths from layer b ∈ B to layer a ∈ A in the backwards graph of the
network. We aim to remove less important neurons from τ . On removing a neuron from τ , the
output of the feed-out layers in B may change. Thus, our goal is to select a neuron whose removal
causes the least perturbation in the output across all feed-out layers of τ .
Measuring Saliencies. Let s ∈ {0, 1}n(τ) be a mask, such that ∥s∥1 = n(τ)− 1. Here, setting
s(k) = 0 for any k ∈ [n(τ)] is equivalent to pruning the kth neuron from τ . Thus, to infer the
least salient neuron in τ , we would want to solve the following optimization problem.

min
k∈[n(τ)]

∑
b∈B

OPT (b) s.t. ∥s∥1 = n(τ)− 1, s(k) = 0 (4)

where OPT (b) = ∥Wbxb −Wb(xb ⊙ s)∥1 is the change in output of layer b ∈ B on applying
the mask s.

Algorithm 1 BGSC: Backwards Graph based Saliency Computation

Input: A DFC τ =< A,B, F >, the backwards graph G
Output: List Sal. ▷ Sal(k) is saliency of kth neuron
1: Sal(k)← 0 for all k ∈ n(τ)
2: for each a ∈ A, b ∈ B do
3: for each path π between b and a in G do
4: acc = |Wb|T e
5: for each node ν in π do
6: if ν performs residual addition then
7: Do nothing.
8: else if ν performs a Lipschitz continuous element-wise transformation then
9: Find C: matrix consisting tightest Lipschitz constants for the transformation.

10: acc = C.acc
11: for all k ∈ [n(τ)] do
12: s←− s(k) = 0, s(j) = 1∀ j ∈ [n(τ)] \ {k}
13: accπba(k) = |WT

a |(e′ − s)⊙ acc
14: Sal(k) = Sal(k) + ∥accπba(k)∥1

Overview. The BGSC Algorithm traverses through all paths in the backwards graph that exists
between any pair of feed-out and feed-in layers of the DFC under consideration to compute the
saliency of neurons. For each path, the Algorithm accumulates scores for each neuron. The
saliency of a neuron is then obtained by summing up the scores accumulated from every path.
This is shown in line 14 of Algorithm 1. While traversing each path π, the accumulated score is
initialized as shown in line 4 of the Algorithm. Then as we traverse the backwards graph along
path π from the feed-out layer, we augment the accumulated score at every node depending on the
operation it performs, as depicted in lines 7 and 10 of the Algorithm. Once we reach the feed-in
layer, we perform one last augmentation to the accumulated score as depicted on line 13 of the
Algorithm.

Theorem 1 Suppose τ =< A,B, F > is a DFC as defined in Definition 1. Let accπba be as
computed in Algorithm 1 for all a ∈ A, b ∈ B, and π ∈ Pba. Then,

OPT (b) ≤
∑
a∈A

∑
π∈Pba

(accπba(k))
T |ua| ∀b ∈ B (5)

Proof of Theorem 1 is presented in Section C of the Appendix.
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(a) Acc. vs. params for
ResNet101 on CIFAR10

(b) Acc. vs. FLOPs for
ResNet101 on CIFAR10

(c) Acc. vs. params for
ResNet50 on ImageNet

(d) Acc. vs. params for
ResNet101 on ImageNet

Figure 4: Figures comparing Accuracy (Acc.) versus Sparsity (Sp.) (through FLOPs or parameters) for DFPC
and L1-norm-based pruning strategies under the data-free regime. Additionally, the plots also compare Acc.
vs. Sp. when we choose to prune CCs vs. when we don’t. In each figure, the blue and the green plots denote
Acc. vs. Sp. for DFPC when we choose to prune CCs, and when we don’t choose to prune CCs, respectively.
Similarly, the orange and the red plots denote Acc. vs. Sp. for L1 when we choose to prune CCs, and when we
don’t choose to prune CCs, respectively.

From Theorem 1, we have∑
b∈B

OPT (b) ≤
∑

a∈A,b∈B

∑
π∈Pba

(accπba(k))
T |ua| ≤ γ

∑
a∈A,b∈B

∑
π∈Pba

∥accπba(k)∥1 (6)

Here, since we do not have access to the uas, and we know that the pixel values of an input image
are bounded, we define γ = maxa∈A,I{∥u(I)

a ∥∞}. u(I)
a denotes the value of ua on feeding input

I to the network. Here, the maximization over I denotes the maximization over the set of all
possible images. Thus, we infer the saliency of a neuron k in τ by

Salτ (k) =
∑

a∈A,b∈B

∑
π∈Pba

∥accπba(k)∥1. (7)

Time complexity of Algorithm 1: Let n be the number of nodes in the subgraph of the backwards
graph consisting of the feed-out layers, the feed-in layers, and the connections between them
for a DFC τ . Also, let P = ∪a∈A,b∈BPba denote the set of all paths between the feed-in and
feed-out layers of τ in the backwards graph of the network. If γA = maxa∈A dim(ua), and
γB = maxb∈B dim(xb) then, the time complexity of BGSC Algorithm is O{n(τ).|P |.[γB +
n(τ).(n+ γA)]}.
BGSC Algorithms for CNNs. The BGSC algorithm is defined here for multi-branched neural
networks. However, while it is computationally expensive for CNNs, it is embarrassingly parallel.
In Appendix D, we describe a parallelized implementation of the BGSC algorithm that is faster to
execute. We use this parallelized version for our experiments.

6 PRUNING EXPERIMENTS

In this section, we present the results of our pruning experiments obtained using DFPC on CNNs.
Since our work, to the best of our knowledge, is the first to adopt data-free pruning to prune
coupled channels (CCs), we baseline our work against an extension of the L1-norm based saliency
scores(Li et al., 2017) (similar to Gao et al. (2019)) and random pruning. In Appendix E, we show
how we measure these saliencies for CCs. Moreover, to strengthen the experiments, we baseline
against structured pruning algorithms in the data-driven regime on the ImageNet dataset. We also
show that decreases in FLOPs does not yield a similar decrease in inference time, as also noted
in Yang et al. (2018); Liu et al. (2021), highlighting the importance of pruning CCs. Details of
experiments and the ablation studies are presented in Appendix F.
Compute Platform. Appendix A specifies the platform used for inference time measurements.
Data-Free Experiments. Experiments are performed on ResNet-50/101, MobileNet-v2, and
VGG16 for the CIFAR-10/100 datasets. We also present results on ResNet-50/101 for the
ImageNet dataset.
Results of Data-Free Experiments. Figures 4a, 4c, 4d, and more in Appendix F, show that DFPC
consistently outperforms L1-based scores for a given sparsity budget whether we choose to prune
CCs or not. For CIFAR-10/100 datasets, the performance of the L1-based saliency score is quite
similar whether we chose to prune CCs or not, whereas pruning CCs with DFPC outperforms
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DFPC when CCs are ignored, in terms of both FLOPs and parametric sparsity. For the ImageNet
dataset, both DFPC and L1-based pruning perform similarly whether CCs are pruned or not.
Finally, as noted in Tables 1 and 5, both accuracies and inference times improve as we prune CCs.
Our experiments suggest that generally, DFPC outperforms the L1-based saliency score in terms
of inference time gained for a particular drop in accuracy.
Data-Driven Experiments and Results. For comparison with contemporary work that finetune
models after pruning, we present our results in Table 2. On a GPU, for a 0.2% accuracy drop,
DFPC(30) attains an inference time speedup of 1.53x, similar to that of Greg-2(Wang et al.,
2021), but with 2% higher test accuracy. Additionally, for an accuracy drop of 2.3%, similar
to GReg-2, DFPC(54) attains a 2.28x speedup which is 49% higher than the nearest basline
(GReg-2) on GPUs, and 47.1% faster than the nearest baseline (ThiNet-30) on our CPU platform.
Moreover, DFPC attains a 52% higher speedup for the same reduction in FLOPs on GPUs, and
60% improvement on CPUs, over GReg-2 and OTO.

Table 1: Pruning Results without using the training dataset and no finetuning on CIFAR-10. RN is an
abbreviation for ResNet; CP denotes if we choose to prune coupled channels; RF denotes the reduction in
FLOPs; RP denotes the reduction in parameters; ITS denotes inference time speedup.

Model Name CP? Acc-1(%) RF RP ITS(CPU) ITS(GPU)

Unpruned RN-50 - 94.99 1x 1x 1x 1x

Random pruned RN-50 No 90.51 1.09x 1.10x 1.06x 1.08x
L1-norm prunedLi et al. (2017) RN-50 No 88.33 1.38x 1.32x 1.16x 1.17x
DFPC pruned RN-50 No 89.95 1.44x 1.82x 1.22x 1.22x

Random pruned RN-50 Yes 88.39 1.09x 1.09x 1.13x 1.11x
L1-norm prunedLi et al. (2017) RN-50 Yes 90.87 1.28x 1.20x 1.62x 1.31x
DFPC pruned RN-50 Yes 90.25 1.46x 2.07x 1.58x 1.36x

Unpruned RN-101 - 95.09 1x 1x 1x 1x

Random pruned RN-101 No 90.35 1.15x 1.14x 1.14x 1.06x
L1-norm prunedLi et al. (2017) RN-101 No 87.59 1.22x 1.22x 1.21x 1.09x
DFPC pruned RN-101 No 89.80 1.53x 1.84x 1.56x 1.25x

Random pruned RN-101 Yes 90.18 1.08x 1.08x 1.33x 1.14x
L1-norm prunedLi et al. (2017) RN-101 Yes 90.31 1.22x 1.21x 1.31x 1.11x
DFPC pruned RN-101 Yes 90.14 1.64x 2.22x 1.66x 1.35x

Unpruned VGG-19 - 93.50 1x 1x 1x 1x

Random pruned VGG-19 - 90.09 1.11x 1.11x 1.34x 1.16x
L1-norm prunedLi et al. (2017) VGG-19 - 90.05 1.30x 1.96x 1.76x 1.31x
DFPC pruned VGG-19 - 90.12 1.68x 3.16x 1.95x 1.43x

Table 2: ResNet-50 for ImageNet with finetuning. The number x inside the brackets (x) in the Model Name
column denotes the pruned model obtained after x pruning iterations.

Model Name FLOP Parameter Top-1 Speedup Speedup FLOP Reduction by FLOP Reduction by
Reduction Reduction Accuracy(%) (GPU) (CPU) Speedup (GPU) Speedup (CPU)

Unpruned 1.00x 1.00x 76.1 1.00x 1.00x 1.00x 1.00x
GReg-2Wang et al. (2021) 3.02x 2.31x 73.9 1.53x 1.36x 1.97 2.22

OTOChen et al. (2021) 2.86x 2.81x 74.7 1.45x 1.25x 1.97 2.29
DFPC(30) 1.98x 1.84x 75.9 1.53x 1.42x 1.29 1.39

ThiNet-30Luo et al. (2017) 3.46x 2.95x 71.6 1.50x 1.38x 2.31 2.51
DFPC(54) 3.46x 2.65x 73.8 2.28x 2.03x 1.51 1.70

7 DISCUSSION AND CONCLUSION

This work proposes a data-free method to prune networks with coupled channels to obtain a
superior accuracy vs inference time trade-off. To do this, we propose data flow couplings that
abstract the coupling of channels in a network. We also show the necessity of defining grouped
saliencies. Finally, we provide an algorithm to compute grouped saliencies on DFCs based on
the reconstruction error of the output of the feed-out layers. We also provide a parallelized
implementation of BGSC for use with CNNs. The algorithm attains superior speedups in both
the data-free and data-driven regimes against our baselines. Notably, in the data-driven regime,
DFPC pruned ResNet-50 obtains up to 47.1% faster models for a 2.3% accuracy drop on the
ImageNet dataset. In the future, we aim to develop pruning strategies robust enough to prune
arbitrary networks and advance the goal of achieving faster inference times.
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APPENDIX

The appendix is structured as follows.

(a) In Appendix A, we specify the setup and the procedure used to measure the inference time of
models for the pruning experiments performed throughout the manuscript.

(b) In Appendix B, we provide discussion on conditions (C2) and (C3) in the Definition of a
Data Flow Coupling as defined in Section 3 of the manuscript.

(c) In Appendix C, we present the Proof of Theorem 1 as promised in Section 5 of the manuscript.

(d) In Section 6 of the main paper, we perform our experiments on CNNs. But, our definitions
and derivations in Sections 3, and 5 consider neural networks with linear/fully-connected
layers. In Section D, we discuss how to apply the BGSC Algorithm(Algorithm 1 of the
manuscript) to CNNs to compute the saliencies of channels.

(e) As a part of our pruning experiments from Section 6 of the manuscript, we compare the
efficacy of DFPC against two grouped saliencies extended from the L1-based and random
saliency mechanisms in the data-free regime. Section E shows how we extended the said
saliency mechanisms to grouped saliencies.

(f) In Section F, we state the experimental procedures and their results in detail for our pruning
experiments presented in Section 6 of the manuscript.

A SPECIFICATIONS FOR INFERENCE TIME MEASUREMENTS

Inference time measurements. We define the time taken to inference a model on the test set as
its inference time. Inference time for a given model is measured as follows in our experiments.
The five epochs are warmups, and we discard their results. The inference time is now computed as
the average of the next ten epochs. Shen et al. (2021) use a similar method to measure inference
times. Inference time does not include the time taken to load data into memory.
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A.1 CPU HARDWARE

Table 3: Specifications of CPU hardware used for inference time measurements

CPU Model Name AMD EPYC 7763 64-Core
CPU(s) 256
Thread(s) per core 2
Core(s) per socket 64
Socket(s) 2
NUMA node(s) 8
CPU MHz 2445.419
L1d & L1i cache 4 MiB
L2 cache 64 MiB
L3 cache 512 MiB
RAM 1TB (DDR4, 3200 MT/s)

The CPU inference time measurements performed as a part of the pruning experiments in Section
6 are performed using the OS Ubuntu 20.04.3 LTS with kernel 5.13.0-39-generic on the hardware
specified in Table 3. The software stack used for inferencing consisted of Python 3.9.7, PyTorch
1.10.1, and Torchvision 0.11.2.

A.2 GPU HARDWARE

The GPU inference time measurements performed as a part of the pruning experiments in Section
6 are performed using the OS Ubuntu 16.04.7 LTS with kernel 4.15.0-142-generic on the hardware
specified in Table 3. The GPU is an NVIDIA 1080 Ti with CUDA 10.2 and a memory of 12GB.
The software stack used for inferencing consisted of Python 3.9.7, PyTorch 1.10.1, and Torchvision
0.11.2.

B DISCUSSION FOR CONDITIONS (C2) AND (C3) IN DEFINITION OF A DATA
FLOW COUPLING

In this section, we discuss the requirement of conditions (C2) and (C3) in defining a Data Flow
Coupling through examples. We begin by restating the definition and then providing examples
that illustrate the importance of the two conditions.
Setup. Consider a neural network with L FC layers where each FC layer is assigned a unique inte-
ger from the set [L]. Now, consider two sets of layers A = {a1, a2, ..., ap}, B = {b1, b2, ..., bq}
where A,B ⊂ [L]. Let z(m) be an arbitrary input sample from the data set {zj}Mj=1 that is fed

to the network. Then, by u
(m)
a , v(m)

a denote the input to and the corresponding output of layer
a ∈ A, and by x

(m)
b , y(m)

b denote the same for layer b ∈ B. Let A,B be such that there exists a
collection of functions F defined by the data flow graph of the network. The input to any layer
b ∈ B is obtained through a map Fb : R

∑
a∈A dim(v(m)

a ) → Rdim(x
(m)
b ) ∈ F . Fb is a function of

the outputs of layers a ∈ A. Let the function that gives the value of activation to the kth neuron in
Fb be denoted by Fbk.
DFC Definition. The tuple τ =< A,B, F > is a data flow coupling if

(C1) F consists of element-wise mappings. For all b ∈ B, k ∈ dim(x
(m)
b ),

x
(m)
b (k) = Fbk(v

(m)
a1

(k), v(m)
a2

(k), ...., v(m)
ap

(k)) (8)

(C2) Non-redundant. The subgraph of the data-flow graph consisting of layers in A, B, and the
connections between them form a single component.

(C3) Completeness. There do not exist sets A′, B′ ⊂ [L] and a collection of functions F ′ defined
by the data flow graph of the network where A ⊆ A′ and B ⊆ B′ and either A ̸= A′ or
B ̸= B′ such that < A′, B′, F ′ > satisfies conditions (C1) and(C2).

Discussion for Condition (C2). We include this condition to avoid including redundant channels
in a DFC. Consider two DFCs in a network with the same cardinality of coupling and no layers in
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common between the two DFCs. One might mistakenly club the two DFCs into one by taking the
union of their feed-in and feed-out layers, respectively. Thus, if condition (C2) were not present,
the combination of the two DFCs would also become a DFC. This would create an undesired
constraint to prune channels from both DFCs simultaneously.

(a) A DFC (b) Not a DFC

Figure 5: Figures illustrating the importance of the completeness condition in the definition of a Data
Flow Coupling.

Discussion for Condition (C3). This completeness condition ensures that none of the feed-in or
the feed-out layers is left out when considering a DFC. Let us assume that the set of layers and
transformations in Figure 5a satisfies the definition of a DFC. If condition (C3) were not present,
one could mistakenly not consider all feed-in or feed-out layers while considering this DFC. An
example for such an error is shown in Figure 5b.

C PROOF OF THEOREM 1

In this section, we present the proof to Theorem 1 posited for the BGSC Algorithm in the main
manuscript. We begin by setting up the mathematical preliminaries and re-stating the Theorem 1.
Finally, we present our proof.
Setup. Consider a neural network with the DFC < A,B, F > denoted by τ for which ua, va

denote the input to and the corresponding output of layer a ∈ A, and by xb, yb denote the same
for layer b ∈ B. In τ , each function Fb captures element-wise transformations from operations
like batch-normalization, non-linearities, etc. Thus, we model Fb as a composite function. That is,
Fb = f1b (f

2
b (...)) where each f tb is an element-wise function of vas. Let Pba denote the set of all

paths from layer b ∈ B to layer a ∈ A in the backwards graph of the network.

Assumption 1 We assume that all functions f tb in τ map the additive identity of their domain to
the additive identity of their co-domain and are Lipschitz continuous.

Optimization Problem. Let s ∈ {0, 1}n(τ) be a mask, such that ∥s∥1 = n(τ)− 1. Here, setting
s(k) = 0 for any k ∈ [n(τ)] is equivalent to pruning the kth neuron from τ . Thus, to infer the
least salient neuron in τ , we want to solve the following optimization problem.

min
k∈[n(τ)]

∑
b∈B

OPT (b) s.t. ∥s∥1 = n(τ)− 1, s(k) = 0 (9)

where OPT (b) = ∥Wbxb −Wb(xb ⊙ s)∥1 is the change in output of layer b ∈ B on applying
the mask s.
Theorem 1 Let accπba(k) be as computed in Algorithm 1 for all a ∈ A, b ∈ B, and π ∈ Pba.
Then,

OPT (b) ≤
∑
a∈A

∑
π∈Pba

(accπba(k))
T |ua| ∀b ∈ B (10)
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Figure 6: Focussing on layer 18, a feed-out layer in a DFC.

Proof of Theorem 1 We focus on one feed-out layer, b of the DFC τ . For instance, consider layer
18 in Figure 6. Consider OPT (b). Let e, e′ be vectors whose element are all 1s. The dimensions
of e, e′ should be clear from the context. We have

OPT (b) = eT |Wbxb −Wb(xb ⊙ s)| ≤ (|Wb|Te)T .|(e′ − s)⊙ xb| (11)
We now start unfolding the cascadation of functions that obtain xb from the uas to prove the
theorem. Let us define the accumulated score, acc, as the vector on the left in the inner-product of
the right-most term of 11. That is,

acc = |Wb|Te (12)
Let us now perform a case-wise analysis on f tb . Let the accumulated score until unfolding level t
be acc.
(a) Residual Connection: If f tb = f t+1

b1 + f t+1
b2 where both f t+1

b1 and f t+1
b2 are element-wise

functions on vbs. Then, we have
accT .|(e′ − s)⊙ f tb | ≤ accT .|(e′ − s)⊙ f t+1

b1 |+ accT .|(e′ − s)⊙ f t+1
b2 | (13)

(b) Elementwise Lipschitz continuous transformation: When f tb is Lipschitz continuous, there
exists a constant Ck, for each f t

b(k), such that |f t
b(k)(r) − f t

b(k)(s)| ≤ Ck|r − s| for any
two scalars r and s in the domain of f t

b(k). Then, from Assumption 1, we have

accT .|(e′ − s)⊙ f tb(f
t+1
b )| = accT .|f tb(f t+1

b )− f tb(s⊙ f t+1
b )|

≤ accT .|C|f t+1
b − s⊙ f t+1

b || = (C.acc)T |(e′ − s)⊙ f t+1
b | (14)

where C is a diagonal matrix with Ck as its kth diagonal element. Thus, the new accumulated
score is

accnew = C.acc. (15)
Additionally, to generate a tighter upper bound for equations 11, we use the smallest constant
Ck that satisfy Lipschitz continuity for f t

b(k).
As one unfolds Fj to attain upper bounds on OPT (b) using 13 and 15 in a DFC < A,B, F >,
we are guaranteed to attain a situation where either of f t+1

b1 , f t+1
b2 , f t+1

b performs no transformation
on its only input va for some a ∈ A. Denote by ˆaccπba the score accumulated until now by
unfolding transformations from b to a along the path π in the backwards graph of the network.
This condition should occur by the construction of the network. From here, we perform one more
step of unfolding, where we have

ˆaccπba.|(e′ − s)⊙ va| ≤ {|WT
a |(e′ − s)⊙ ˆaccπba}T .|ua| (16)

Finally, the accumulated score for one path π in the backwards graph from b to a is accπba(k) =
|WT

a |(e′ − s)⊙ ˆaccπba.□
Gist of proof: The value accπba(k).|ua| = |WT

a |(e′ − s)⊙ ˆaccπba.|ua| for a feed-in layer a and a
feed out layer b of a DFC measures an upper bound to the change in value of the output of b if
we were to make output value of layer a to be zero for channel k and only for the path π. Thus,
to measure the upper bound of joint perturbations of outputs of all feed-out layers on removing
a channel k, we take a summation of these upper bounds across all paths π from between the
feed-out and the feed-in layers.
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D APPLYING BGSC TO CNNS

Across definitions and derivations in Sections 3, 4, and 5, we consider networks with fully-
connected layers as the only layers that do not perform element-wise transformations. But, we
demonstrate the efficacy of our method through experiments on CNNs in Section 6. CNNs consist
of convolutional layers which do not perform element-wise transformations. In this Section, we
show an equivalent linear layer for any convolutional layer and how to use the BGSC Algorithm
to compute the saliencies of channels in DFCs that consist of convolutional layers.

D.1 LINEAR LAYER EQUIVALENT TO A CONVOLUTIONAL LAYER

A convolutional layer with m input and n output channels consists of n filters and m kernels per
filter. Let the ith filter be denoted by the weight tensor Wi ∈ Rm×K×K for all i ∈ [n] where
K × K is the size of the kernel. Let the jth kernel in the ith filter be denoted by the matrix
Wij ∈ RK×K for all j ∈ [m]. Assuming the bias terms to be zero, if the jth input channel and
the ith output channel are denoted as Ij and Oi respectively then for all i ∈ [n],

Oi =
∑
j∈[m]

Wij ⊛ Ij (17)

where ⊛ denotes the convolutional operation. Let us denote by Oij = Wij ⊛Ij . Then the (p, q)th
element of the matrix Oij is given by

Oij(p, q) =

K−1∑
r=0

K−1∑
s=0

Wij(p, q).Ij(p+ r, q + s). (18)

This is a linear transformation. Thus, we can find an equivalent matrix for a convolutional
operation. Thus, if Îj and Ôij denote the flattened vectors corresponding to the matrices Ij
and Oij respectively, then there exists a matrix Ŵij such that Ôij = Ŵij Îj . If Ôi denotes the
flattened vector corresponding to the matrix Oi, we have Ôi =

∑
j∈[m] Ŵij Îj . Then, we can

write the transformation of a convolutional layer through a linear layer as follows.
Ô1

Ô2

...

Ôn

 =


Ŵ11, Ŵ12, ..., Ŵ1m

Ŵ21, Ŵ22, ..., Ŵ2m

...

Ŵn1, Ŵn2, ..., Ŵnm




Î1
Î2
...

Îm

 (19)

Finding weight matrix for the equivalent linear layer. A convolutional layer has multiple
configurations, such as padding, strides, and dilation. One way to computationally find the
equivalent linear layer to a convolutional layer in the presence of all such configurations is to
emulate the convolution operation. During the emulation, fill the equivalent linear layer’s weight
matrix if an input contributes to the computation of the output by the corresponding weight in the
corresponding kernel.
Observation. The equivalent linear layer’s weight matrix is sparse (consisting of many 0s).
Additionally, the weight matrix stores m.n.Ix.Iy.Ox.Oy elements, where Ix, Iy and Ox, Oy

represent the dimensions of Ij and Oi respectively. This number can grow very large very quickly.
Using the BGSC Algorithm for CNNs. To measure the saliencies of channels in a DFC τ of a
CNN, we first need to think in terms of channels. Instead of element-wise transformations, the
focus shifts to channel-wise transformations. An output channel of a channel-wise transformation
depends only on the corresponding input channel. The shape of the output and input channels
need not be the same; however, the number of input and output channels must be the same in a
channel-wise transformation. Additionally, the mask s is changed. Consider a convolutional layer
in the set of feed-in layers. If we want to prune the ith channel, the mask is such that s(j) = 0 for
all (i− 1)OxOy < j ≤ iOxOy and s(j) = 1 for all other js.

D.2 PARSING THROUGH CHANNEL-WISE OPERATIONS OF A CNN IN BGSC ALGORITHM

In this Section, we discuss how to parse through various channel-wise transformations in the
BGSC Algorithm to compute the saliencies of channels in a DFC consisting of convolutional
layers. Note that all element-wise transformations are also channel-wise transformations. But, the
converse does not hold.
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D.2.1 RELU OPERATION

The tightest Lipschitz constant for a ReLU function is 1. This clearly is the case since
|max{0, x} − max{0, y}| ≤ |x − y| for any x, y ∈ R. Thus, the matrix C consisting of
the tightest Lipschitz constants [line 9 of BGSC Algorithm(1)] for a ReLU operation is an identity
matrix.

D.2.2 BATCH NORMALIZATION (2D)

For channel k, a batch norm layer linearly transforms each element of the kth channel of the input,
x, as x−µk

σk
.γk + βk where µk, σk, γk, βk are the parameters in a batch norm layer. Thus, the

(i, i)th element of the matrix C is | γk

σk
| where k denotes the channel the ith input/output element

belongs to.

D.2.3 MAX-POOLING, AVERAGE-POOLING (2D)

For each feature-map corresponding to every input channel, the pooling operation operates on
each patch of the feature-map to reduce their size. Max-pool computes the maximum value for
each patch of a feature map to create the downsampled feature map. Average-pool computes the
average value for each patch of a feature map to create the downsampled feature map.
Consider a pooling kernel of size K1 ×K2. We assume that for max-pooling, over a sufficiently
large number of samples, each element is equally likely to be the maximum element in any patch
of the image of size K1 ×K2. Thus, in the long run, the transformation by the max-pool and
average-pool is equivalent to a convolutional layer whose specifications follow. If the number of
channels input to the pooling layers is m, then the convolutional layer has m input and output
channels with filters such that for every filter i ∈ [m], Wij is a matrix with all its entries as 1

K1K2

if j = i and 0 otherwise. The bias term is 0 for each channel, and the remaining configurations,
like stride, padding, and dilation, remain the same as that of the pooling layer.
Now, from Section D.1, there exists an equivalent linear layer l with weight matrix Wl for the
convolutional layer that is equivalent to the pooling layers. If the accumulated score is accπba until
the BGSC Algorithm reaches node l. Then we update the score as

accπba = WT
l accπba. (20)

This is justified through the following inequality in the analysis presented in Section 5.

(accπba)
T |Wlf

t
b −Wl(f

t
l ⊙ s)| ≤ (|Wl|Taccπba)T .|(e′ − s)⊙ f tl | (21)

D.2.4 ADAPTIVE AVERAGE POOLING (2D)

An adaptive average pooling performs average pooling. Here the pooling operation is specified by
the shape of the output feature-map desired. Thus the kernel size for the layer is appropriately
selected. Once the kernel size is identified, the methodology is the same as that of average-
pooling(D.2.3).

D.3 MISCELLANEOUS IMPLEMENTATION DETAILS

In this Section, we describe choices made while implementing BGSC to produce the results in
Section 6. Moreover, we report the execution times for BGSC algorithms on our hardware.

D.3.1 REDUCING MEMORY USAGE

Consider the second convolutional layer in VGG-19. It takes 64 channels of 32x32 images as input
and produces an output of the same dimensions. From Section D.1, we know that the equivalent
linear layer for this convolutional layer will require space to store 232 floating point numbers.
Assuming each number takes one byte of memory, the memory requirement for the weight matrix
is already 4GB. This number jointly grows bi-quadratically with the dimensions of the input and
output feature maps. Thus, to reduce this memory requirement, we use the sparse representation
of matrices to represent the weight matrices corresponding to the equivalent linear layer.

D.3.2 REDUCING TIME TO COMPUTE SALIENCIES OF CHANNELS IN ALL DFCS IN A
NETWORK THROUGH PARALLELIZATION

The time complexity of the BGSC Algorithm for a DFC is O{n(τ).|P |.[γB +n(τ).(n+γA)]}. In
a DFC, γA, γB , n(τ) are generally of the same order. So, we define γmax = max{γA, γB , n(τ)}.
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Then, we can write the time-complexity of BGSC Algorithm to be O{γ2
max.|P |.(n + γmax)}.

We know that the γmax for a DFC with convolutional layers grows quadratically with respect to
the dimensions of feature maps and linearly with the number of channels. Thus BGSC is quite
computationally expensive. However, we reduce the time taken to execute BGSC Algorithm by
parallelly computing the accπba for each path π ∈ P . Moreover, since saliency computation of two
DFCs can be performed independently, we parallelly compute saliencies for channels of multiple
DFCs of the network.

D.3.3 PRACTICAL RUNTIME OF BGSC FOR RESNET-50 AND MOBILENET-V2
ARCHITECTURES.

For exposition, we presented the BGSC Algorithm in Section 5. This algorithm is computationally
expensive if run sequentially as per the pseudocode in Algorithm 1. In an attempt to speedup
saliency computation of a DFC using the BGSC Algorithm on CNNs for our experiments, we
exploited the embarrassingly parallel nature of this algorithm. In an attempt to prototype this
algorithm for ResNet-50/100, MobileNet-v2, and VGG-19, we were able to reduce the saliency
computation time. However, there still remains scope for improvement which we discuss in this
section in case one aims to deploy this algorithm in production. We also report the time it takes to
compute saliencies for the ResNet-50 and MobileNet-v2 architectures.
Execution times for BGSC Algorithm. We now report the time taken to execute BGSC Algorithm
on our CPU hardware (specified in Appendix A.1) for computing saliencies of channels in all DFCs
in ResNet-50 and MobileNet-v2 when each method can call upto 10 threads (–num-processes
argument in our code).

Table 4: Latency of executing BGSC algorithm to compute saliencies of all channels in specified networks
when each method can call upto 10 threads.

Model Name Dataset Execution Time

ResNet-50 ImageNet 38 minutes
ResNet-50 CIFAR-10/100 12 minutes

MobileNet-v2 CIFAR-10/100 68 seconds

Further improvements possible. We now list further improvements to improve the latency of
executing BGSC for all DFCs of a network. It is important to note that for the execution times
measured for BGSC algorithm above, at one instant, the maximum number of DFCs that can be
processed is also 10.

• In Python, multithreading is not truly possible due to GIL (Global Interpreter Lock), thus
we use multiprocessing. There are associated overheads with multiprocessing that affect the
execution time of the BGSC algorithm. Thus, dedicated effort to write code in C++ or CUDA
may be benefical in reducing this overhead cost.

• Due to lack of support, we were unable to leverage parallelism for sparse matrix multiplication.
Dedicated effort to parallelise sparse matrix multiplication can further reduce the time taken
to execute the BGSC Algorithm.

E EXTENDING L1-NORM BASED AND RANDOM SCORES TO PRUNE
COUPLED CHANNELS

In this Section we demonstrate the usage of the two saliency scoring mechanisms, L1-norm and
random, to prune coupled channels. These have been used as a benchmark to compare DFPC
against in our Pruning Experiments(6).
Consider a CNN with L convolutional layers. Let us assign each convolutional layer in the CNN a
unique integer in [L]. Additionally, consider a DFC < A,B, F > denoted by τ in the CNN.

E.1 EXTENDING L1-NORM BASED SALIENCY SCORE

For a convolutional layer l ∈ [L], Li et al. (2017) assign the kth channel a score of ∥W l
k∥1 where

W l
k denotes the weights of the kth filter in layer l. We extend this saliency score to a grouped

saliency score as follows.
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We assign a saliency score to channel k ∈ [n(τ)] as the sum of L1-norms of the corresponding
filters across all feed-in layers. That is,

Salτ (k) =
∑
a∈A

∥Wa
k∥1 ∀k ∈ n(τ). (22)

This extension is similar to that proposed by Gao et al. (2019).

E.2 EXTENDING RANDOM SALIENCY SCORE

Extending this saliency score is trivial. We assign each channel k ∈ n(τ) a number sampled from
the uniform distribution between 0 and 1 as a saliency score. That is,

Salτ (k) ∼ U [0, 1] ∀k ∈ n(τ). (23)

Here, U [a, b] denotes uniform distribution between scalars a, b ∈ R, a ≤ b.

F EXPERIMENTS IN DETAIL AND ABLATION STUDIES

In this Section, we present a comprehensive version of our experiments that we presented in
Section 6 of the main manuscript. We begin by presenting the experiments performed on the
CIFAR-10 and CIFAR-100 datasets. Then, we present the experiments performed on the ImageNet
dataset.

F.1 CIFAR-10 AND CIFAR-100 EXPERIMENTS

Experimental Setup. We showcase our results using the CIFAR-10 and CIFAR-100 datasets
(MIT License) and ResNet-50, ResNet-101, MobileNet-v2, and VGG-19. In these experiments,
we maintain a data-free regime. Additionally, we use two settings for our experiments to show
the effect of pruning coupled channels and fairly compare DFPC, L1, and random scores for
ablation. In the first setting, we prune both the coupled and non-coupled channels in the network.
In the second setting, we only prune the non-coupled channels. This helps us understand the gain
obtained from pruning coupled channels. These experiments are carried out for three grouped
saliencies: DFPC, L1, and Random. Moreover, these experiments are performed two times on
ResNets. In this first set of experiments, we prune both coupled and non-coupled channels. But in
the second set of experiments, we only prune the non-coupled channels.
Pruning Procedure. Once we obtain grouped saliencies Salτ (k) for each channel of every DFC
in a network, we compare these scores globally to select the channel to prune among all DFCs. To
prevent layer collapse, we add a check not to prune a channel if a DFC has a coupling cardinality
of 1.
Pretrained Models. We train the models using SGD Optimizer with a momentum factor of 0.9
and weight decay of 5× 10−4 for 200 epochs using Cosine Annealing step sizes with an initial
learning rate of 0.1.
Tables 1, 5, and 6. We produce these tables as follows. We prune 1% of the remaining channels
at a time in the network and measure the top-1 accuracy of the pruned model. In these tables, we
report the description of pruned models with accuracy closest to 90% for CIFAR-10 and 70% for
CIFAR-100. For random saliencies, the tables report the average values obtained after three trials.
Figures. In figures 7- 13, we plot the results of our pruning experiments to show how accuracy
varies with sparsities (with respect to FLOPs and parameters) when we choose to prune coupled
channels for various strategies to gauge the importance of coupled channels.

F.1.1 DISCUSSION OF EXPERIMENTAL RESULTS

From figures 7- 13, it is evident that DFPC outperforms L1 and Random grouped saliencies in
accuracy versus sparsity charts for both sparsity in terms of parameters and FLOPs. The margin
of outperformance is significantly higher when pruning coupled channels. We observe that this
superiority arises due to the occurrence of more pruning iterations to obtain a similar accuracy
drop. Additionally, the gap of outperformance is reduced when sparsity is considered with respect
to FLOPs. For all cases, but two, DFPC results in a pruned model with faster inference time
despite similar accuracies. It is for ResNet-50 and MobileNet-v2 trained on CIFAR-10 that L1-
norm-based grouped saliency produces a pruned model with faster inference time when pruning
coupled channels on our CPU platform. Additionally, L1-norm-based grouped saliency performs
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similarly in terms of accuracy versus sparsity charts whether we chose to prune coupled channels
or not. However, in the same regime, DFPC performs slightly better when pruning coupled
channels. Thus, by looking at the trends in figures 7-12 and tables 1 and 5, it is the case that in
general, for a given accuracy, both sparsity (in terms of FLOPs and number of parameters) and
inference time speed-ups when pruning coupled channels are at least as good as when not pruning
them.

To conclude, we were able to prune models without having access to the training data set or any
statistics derived from it. We did not use fine-tuning either. We showed that our proposed method
almost always improves performance in terms of sparsity and inference time speedups as opposed
to readily-available approaches to gauge saliencies of coupled channels in the absence of a data
set.

Table 5: Pruning Results without using the training dataset and no finetuning on CIFAR-100. RN
is an abbreviation for ResNet; CP denotes if we choose to prune coupled channels; RF denotes the
reduction in FLOPs; RP denotes the reduction in parameters; ITS denotes inference time speedup.

Model Name CP? Acc-1(%) RF RP ITS(CPU) ITS(GPU)

Unpruned RN-50 - 78.85 1x 1x 1x 1x

Random pruned RN-50 No 70.29 1.08x 1.08x 1.06x 1.04x
L1-norm prunedLi et al. (2017) RN-50 No 70.24 1.16x 1.02x 1.17x 1.08x
DFPC pruned RN-50 No 71.75 1.23x 1.20x 1.31x 1.11x

Random pruned RN-50 Yes 69.50 1.07x 1.07x 1.02x 1.02x
L1-norm prunedLi et al. (2017) RN-50 Yes 69.61 1.21x 1.02x 1.12x 1.18x
DFPC pruned RN-50 Yes 70.31 1.27x 1.22x 1.24x 1.16x

Unpruned RN-101 - 79.43 1x 1x 1x 1x

Random pruned RN-101 No 71.66 1.11x 1.10x 1.07x 1.05x
L1-norm prunedLi et al. (2017) RN-101 No 70.07 1.30x 1.18x 1.32x 1.13x
DFPC pruned RN-101 No 70.01 1.71x 1.53x 1.54x 1.30x

Random pruned RN-101 Yes 71.68 1.08x 1.08x 1.05x 1.02x
L1-norm prunedLi et al. (2017) RN-101 Yes 71.59 1.25x 1.12x 1.20x 1.16x
DFPC pruned RN-101 Yes 70.03 1.72x 1.53x 1.82x 1.34x

Unpruned VGG-19 - 72.02 1x 1x 1x 1x

Random pruned VGG-19 - 68.92 1.02x 1.02x 1.00x 1.00x
L1-norm prunedLi et al. (2017) VGG-19 - 70.40 1.16x 1.31x 1.14x 1.06x
DFPC pruned VGG-19 - 70.10 1.26x 1.50x 1.20x 1.11x

Table 6: Pruning Results without using the training dataset and no finetuning for the MobileNet-v2
architecture. MV2 is an abbreviation for MobileNet-v2; RF denotes the reduction in FLOPs; RP
denotes the reduction in parameters; ITS denotes inference time speedup.

Model Name Dataset Acc-1(%) RP RF ITS(CPU) ITS(GPU)

Unpruned MV2 CIFAR-10 92.5 1x 1x 1x 1x

L1-norm prunedLi et al. (2017) MV2 CIFAR-10 90.36 3.92x 3.60x 3.62x 2.31x
DFPC pruned MV2 CIFAR-10 90.08 5.32x 3.74x 3.54x 2.23x

Unpruned MV2 CIFAR-100 72.78 1x 1x 1x 1x

L1-norm prunedLi et al. (2017) MV2 CIFAR-100 71.87 2.70x 2.91x 3.21x 2.12x
DFPC pruned MV2 CIFAR-100 69.87 3.61x 3.16x 3.25x 2.15x
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(a) Accuracy vs parameters for
different pruning strategies when

coupled channels are pruned

(b) Accuracy vs FLOPs for different
pruning strategies when coupled

channels are pruned

(c) Accuracy vs parameters plot for
comparing DFPC and L1 when

pruning and not pruning coupled
channels.

Figure 7: Plots for pruning experiments on the ResNet-50 architecture trained on CIFAR-10 dataset

(a) Accuracy vs parameters for
different pruning strategies when

coupled channels are pruned

(b) Accuracy vs FLOPs for different
pruning strategies when coupled

channels are pruned

(c) Accuracy vs parameters plot for
comparing DFPC and L1 when

pruning and not pruning coupled
channels.

Figure 8: Plots for pruning experiments on the ResNet-101 architecture trained on CIFAR-10 dataset

(a) Accuracy vs parameters for
different pruning strategies

(b) Accuracy vs FLOPs for different
pruning strategies

Figure 9: Plots for pruning experiments on the VGG19 architecture trained on CIFAR-10 dataset
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(a) Accuracy vs parameters for
different pruning strategies when

coupled channels are pruned

(b) Accuracy vs FLOPs for different
pruning strategies when coupled

channels are pruned

(c) Accuracy vs parameters plot for
comparing DFPC and L1 when

pruning and not pruning coupled
channels.

Figure 10: Plots for pruning experiments on the ResNet-50 architecture trained on CIFAR-100 dataset

(a) Accuracy vs parameters for
different pruning strategies when

coupled channels are pruned

(b) Accuracy vs FLOPs for different
pruning strategies when coupled

channels are pruned

(c) Accuracy vs parameters plot for
comparing DFPC and L1 when

pruning and not pruning coupled
channels.

Figure 11: Plots for pruning experiments on the ResNet-101 architecture trained on CIFAR-100
dataset

(a) Accuracy vs parameters for
different pruning strategies when

coupled channels are pruned

(b) Accuracy vs FLOPs for different
pruning strategies when coupled

channels are pruned

Figure 12: Plots for pruning experiments on the VGG19 architecture trained on CIFAR-100 dataset
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(a) Accuracy vs parameters for
DFPC and L1 based pruning

strategies on the CIFAR-10 dataset.

(b) Accuracy vs parameters for
DFPC and L1 based pruning

strategies on the CIFAR-100 dataset.

Figure 13: Plots for pruning experiments on the MobileNet-v2 architecture trained on CIFAR-10 and
CIFAR-100 datasets.

F.2 IMAGENET EXPERIMENTS

F.2.1 WITHOUT FINETUNING (DATA-FREE REGIME)

In this Section, we present the results of Pruning on the ImageNet dataset. We perform the
following set of experiments. For ResNet-50, and ResNet-101 we measure accuracy vs sparsity(in
terms of parameters) for the ImageNet dataset. These experiments are carried out for two grouped
saliencies: DFPC and L1. Moreover, we performed these experiments two times. We prune
both coupled and non-coupled channels in this first set of experiments. But in the second set of
experiments, we only prune the non-coupled channels.
Pruning Procedure. Once we obtain grouped saliencies Salτ (k) for each channel of every DFC
in a network, we compare these scores globally to select the channel to prune among all DFCs.
Pretrained Models. Pretrained models of ResNet-50 and ResNet-101 are obtained from the
Torchvision library.
Figures. In figure 14, we plot the results of our pruning experiments to show how accuracy varies
with parametric sparsities when we choose to prune coupled channels for the two strategies.

(a) Accuracy vs parameters for
ResNet-50 models trained on the

ImageNet dataset.

(b) Accuracy vs parameters for
ResNet-101 models trained on the

ImageNet dataset.

Figure 14: Plots for Accuracy vs parameters for ResNet-50 models trained on the ImageNet dataset.

Discussion. The accuracies drop quite quickly for models trained on the ImageNet dataset.
However, we still find that DFPC obtained better sparsities than the L1 score for both cases
when we pruned coupled channels and when we didn’t. Moreover, we see that the trajectories
of pruning are quite similar in terms of accuracy vs sparsity, irrespective of choosing to prune
coupled channels. This could be attributed to the quick drop in accuracy of this experiment. Due
to a quick drop in accuracies, we could not find a suitable accuracy level where we could report
speedup fairly.
Comparision with Yin et al. (2020). Yin et al. (2020) is a contemporary work in Data-Free
pruning that synthesizes the dataset from a pre-trained model. Synthesis of such a dataset is
computationally expensive. In this comparison, we compare the reduction in FLOPs vs the
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accuracy drop of Yin et al. (2020) and DFPC. For a 1.02x FLOP reduction, the Accuracy of DFPC
drops to 70.8%. However, Yin et al. (2020) maintain a 76.1% accuracy for a FLOP reduction of
1.3x.

F.2.2 WITH FINETUNING (DATA-DRIVEN REGIME)

In this Section, we present the experimental of our pruning experiments on ResNet-50 trained
on ImageNet dataset when we finetune the model as presented in Table 2 in Section 6 of the
manuscript.

Experimental Setup. We use the pre-trained model of ResNet-50 available as a part of Torchvision
for pruning. We prune 1% of the remaining channels in each pruning iteration followed by a
finetuning of 3 epochs, each with step sizes of 10−3, 10−4, 10−5 per pruning iteration. The batch
size was 256. After the pruning ends, we finally prune the network for 90 epochs with a batch
size of 512. We use the SGD Optimizer with a momentum factor of 0.9 and weight decay of
1× 10−4 and Cosine Annealed step sizes with an initial learning rate of 0.1. Here, we normalize
the saliency scores of each DFC during each pruning iteration.

Pruned ResNet-50 architectures obtained. In Figure 15, we present the pruned architectures
of ResNet-50 obtained on pruning and finetuning when using DFPC. We see that all layers are
actually being pruned and that layers within the sets in the following list are being pruned which
were not pruned by most structured pruning works. Moreover notice that all members within a
particular set have the same number of remaining channels.

• {conv1}

• {layer1.0.downsample.0, layer1.0.conv3, layer1.1.conv3, layer1.2.conv3}

• {layer2.0.downsample.0, layer2.0.conv3, layer2.1.conv3, layer2.2.conv3, layer2.3.conv3}

• {layer3.0.downsample.0, layer3.0.conv3, layer3.1.conv3, layer3.2.conv3, layer3.3.conv3,
layer3.4.conv3, layer3.5.conv3}

• {layer4.0.downsample.0, layer4.0.conv3, layer4.1.conv3, layer4.2.conv3}
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(a) ResNet-50 DFPC(30)

(b) ResNet-50 DFPC(54)

Figure 15: Visualization of ResNet-50 architecture pruned using DFPC.
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