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Abstract—This work studies the sample complexity of
the multi-target detection (MTD) problem, which involves
recovering a signal from a noisy measurement containing
multiple instances of a target signal in unknown locations,
each transformed by a random group element. This prob-
lem is primarily motivated by single-particle cryo-electron
microscopy (cryo-EM), a groundbreaking technology for
determining the structures of biological molecules. We
establish upper and lower bounds for various MTD models
in the high-noise regime as a function of the group, the
distribution over the group, and the arrangement of signal
occurrences within the measurement. The lower bounds
are established through a reduction to the related multi-
reference alignment problem, while the upper bounds are
derived from explicit recovery algorithms utilizing auto-
correlation analysis. These findings provide fundamental
insights into estimation limits in noisy environments and
lay the groundwork for extending this analysis to more
complex applications, such as cryo-EM.

I. INTRODUCTION

We study the multi-target detection (MTD) problem,
where multiple signals are embedded at unknown posi-
tions within a long, noisy observation y [8]. Let x ∈ V
be the target signal to be estimated, where V is a
finite-dimensional vector space. To present the problem,
we consider V = RL; however, we later extend the
discussion to include band-limited images. Let gi ∈ G be
a group element drawn i.i.d. from a distribution ρ over G,
and let xi = gi ·x ∈ RL. An MTD observation y ∈ RLM

is given by

y =

N−1∑
i=0

si ∗ xi + ϵ, (I.1)

where ∗ denotes linear convolution, N is the number
of signal occurrences, and ϵ ∼ N (0, σ2ILM×LM ).
The unknown locations of the signal occurrences are
represented by location indicators {si}N−1

i=0 . Each si is
a one-hot vector, where si[j] = 1 specifies that the first
entry of xi is placed at entry j of the observation y. The
locations {si}N−1

i=0 are assumed to be deterministic, but
unknown. Since the statistics of y is the same for x and
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g · x for any g ∈ G, we aim to recover the G-orbit of x
{g · x | g ∈ G}.

Motivation: Cryo-EM. A key application of the MTD
model is single particle cryo-electron microscopy (cryo-
EM) [23], [7], [25]. In cryo-EM, 3-D biological samples,
such as macromolecules or viruses, are rapidly frozen in
a thin layer of vitreous ice (Figure 1(a)). The specimen is
then imaged using an electron microscope that captures
2D tomographic images, known as micrographs. Each
micrograph contains multiple tomographic projections
of the molecules, where the 3-D orientation and 2-D
position of each molecule are unknown. Therefore, cryo-
EM models can be described similarly to a 2-D version
of (I.1), where each signal occurrence is of the form
xi = Π(gi · x), where gi is a 3-D rotation and Π is
a tomographic projection. (Note that the tomographic
projection is not a group action, and thus (I.1) does not
fully capture the cryo-EM model.)

Traditional methods for reconstructing the 3D struc-
ture from micrographs typically involve a two-step pro-
cess: detecting and extracting the projection images from
the micrographs, followed by 3-D reconstruction from
those images. However, reliably detecting individual
particles is challenging in high-noise environments. This
is especially important for small molecular structures
that induce high noise levels. Therefore, it is typically
claimed that recovering small molecular structures using
cryo-EM is impossible [15]. In this context, the MTD
model was introduced as a computational framework to
circumvent particle picking by directly reconstructing the
3D structure from the micrograph. Consequently, the in-
ability to perform particle picking does not imply the im-
possibility of recovering the molecular structure, thereby
enabling the recovery of small molecular structures [9],
[19]. This technique also mitigates the ubiquitous bias
issues in particle picking [16], [3].

Contribution. The main goal of this study is to derive
upper and lower bounds on the sample complexity of
the MTD problem in the high noise regime, focusing on
three specific instances. Section II provides some basic
definitions, and Section III introduces autocorrelation
analysis, which is required for deriving the upper bounds
of sample complexity. Section IV presents the multi-
reference alignment (MRA) model and its tight connec-
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Fig. 1: (a) Single-particle electron microscopy reconstructs 3D structures from 2D projections [7]. Particles in vitrified ice
form a micrograph, modeled using the MTD framework (I.1), where xi = Π(gi · x), with gi a 3D rotation and Π as a
tomographic projection. In high noise levels, direct particle detection is infeasible, but 3D reconstruction might be feasible by
directly processing the micrographs [9]. (b) The estimation error (RMSE) versus observation length for MTD with 2D rotations
based on autocorrelation analysis (taken from [17]). As seen empirically, the image can be estimated using the third-order
autocorrelation. (c) An MTD observation of 1D signals in which identical signals xi = x are located at unknown positions in
the observation y. In the high noise regime, their locations cannot be estimated, but the signal x can be estimated accurately.
The estimation error (RMSE) scales as σ3 in high noise levels, consistent across autocorrelation analysis and expectation-
maximization (taken from [20]).

tion to the MTD model, which is the cornerstone of the
sample complexity lower bounds. Section V integrates
these findings, focusing on three specific MTD models,
and Section VI delineates how these techniques could be
extended to derive the sample complexity of the cryo-
EM technology, the ultimate goal of this research. Due
to space constraints, the proofs are omitted from this
manuscript and are available in [4].

II. PRELIMINARIES

A. Assumptions on the MTD model

We consider the asymptotic case of σ,N,M → ∞,
such that the density γ = N/M < 1 remains fixed. We
assume that γ and the noise variance σ2 are known.

Throughout, we assume that the signal occurrences
do not overlap. This, in turn, means that their starting
indices are separated by at least L entries so that their
supports do not intersect, and the corresponding signal
instances do not interfere with each other within the
observation y. In some cases, we consider a stronger
assumption that the minimal separation is doubled and
refer to this model as the well-separated case. In this
case, the starting positions of any two occurrences must
be separated by at least 2L positions, ensuring that their
endpoints are separated by at least L signal-free entries
(although still noisy) in the data.

Definition II.1 (Separation). Consider the following
separation condition:

If si1 [j1] = 1 and si2 [j2] = 1 for i1 ̸= i2,

then |j1 − j2| ≥ Lsep. (II.1)

If the MTD model satisfies (II.1) with Lsep ≥ L, we say
it is the non-overlapping; if Lsep ≥ 2L, we say it is
well-separated.

Remark II.2. The results of this paper regarding the
well-separated model are valid for Lsep ≥ 2L − 1.
Nevertheless, for the sake of simplifying the expressions
throughout the text, we assume a separation of 2L.

B. Sample complexity definition
The objective of this work is to determine the sample

complexity, i.e., the minimum number of measurements
required to achieve a desired mean-squared error (MSE)
between the true signal x and its estimator x̂ = x̂(y).
Importantly, as the estimation of x is considered up to a
group action on x, the MSE is defined as [1]:

MSE (x̂, x) =
1

∥x∥2F
E
[
min
g∈G

∥g · x̂− x∥2F

]
. (II.2)

Then, the sample complexity is defined as follows:

Definition II.3 (Sample complexity). Suppose that all
the parameters of the MTD model (I.1) are fixed except
for N,M , and σ. We define the smallest MSE attainable
by any estimator as

MSE∗
MTD(σ

2, N) := inf
x̂

E [MSE (x̂(y), x)] , (II.3)

and the sample complexity as,

N∗
MTD

(
σ2, ϵ

)
:= min

{
N : MSE∗

MTD(σ
2, N) ≤ ϵ

}
.

(II.4)



In the above definition, ϵ represents a desired error,
which in this paper approaches zero.

III. AUTOCORRELATION ANALYSIS

In this section, we present the autocorrelation analysis
method and provide several results that will be essential
in establishing the upper bounds for sample complexity.
To address the difficulty of locating signals at high noise
levels [2], [13], previous works suggested the use of
features that are invariant to unknown locations and
possibly to the unknown group actions [8], [9], [17],
[20], [12].

Definition III.1 (Empirical autocorrelations). Let z ∈
RLM be an observation following the MTD model in
(I.1). The empirical d-order autocorrelation of z is
defined by:

a(d)z [ℓ1, ℓ2, ..., ℓd−1]

=
1

LM

LM−1∑
j=0

z̃[j]z̃[j + ℓ1]...z̃[j + ℓd−1], (III.1)

for 0 ≤ ℓ1, ℓ2, ..., ℓd−1 ≤ L− 1, where z̃ is the padding
with zeros of z to a length of (M + 1)L.

Definition III.2 (Autocorrelation ensemble mean). Let
XG = g · x ∈ RL, where g ∈ G is a random group
element drawn from the distribution g ∼ ρ. Define

Y = X̃G + ϵ ∈ R3L, (III.2)

where X̃G = [0L, XG,0L] is the padding of XG

with zeros from left and right by L zeros each, and
ϵ ∼ N

(
0, σ2I3L×3L

)
. Then, the d-order autocorrelation

ensemble mean of Y is defined by,

ā
(d)
Y,ρ[ℓ1, ℓ2, ..., ℓd−1]

=
1

2L

2L−1∑
j=0

EG∼ρ,ϵ {Y [j]Y [j + ℓ1]...Y [j + ℓd−1]} ,

(III.3)

for 0 ≤ ℓ1, ℓ2, ..., ℓd−1 ≤ L− 1.

The following proposition shows, for the well-
separated case, that the empirical autocorrelation con-
verges almost surely to the autocorrelation ensemble
mean. This result is an extension of [8, Appendix A].

Proposition III.3. Let MTDG be a well-separated MTD
model defined in (I.1) with a compact group G acting
on RL, with group elements drawn according to a
distribution ρ. Let a

(d)
z be the empirical d-order auto-

correlation as defined in (III.1), and ā
(d)
Y,ρ be the d-order

autocorrelation ensemble mean as defined in (III.3).
Then, for every 0 ≤ ℓ1, ℓ2, ..., ℓd−1 ≤ L− 1,

lim
N,M→∞

a(d)z [ℓ1, ℓ2, ..., ℓd−1]

a.s.
= 2γā

(d)
Y,ρ[ℓ1, ℓ2, ..., ℓd−1]

+ (1− 2γ)χ[ℓ1, ℓ2, ..., ℓd−1], (III.4)

where

χ[ℓ1, ℓ2, ..., ℓd−1] = E [ϵ [0] ϵ [ℓ1] , ...ϵ [ℓd−1]] .

Next, we show that if the autocorrelations up to order
d̄ uniquely define an orbit of the signal, then the sample
complexity is bounded above by ω

(
σ2d̄

)
1.

Proposition III.4. Assume the same conditions as in
Proposition III.3. In addition, assume the parameter
space Θ of the unknown signals x ∈ Θ is compact.
Then, if the autocorrelation ensemble mean up to order
d̄, as defined in (III.3), uniquely determines the orbit of
the signal, then the sample complexity of recovering the
orbit is upper bounded by ω

(
σ2d̄

)
.

IV. THE MULTI-REFERENCE ALIGNMENT MODEL

A. The multi-reference alignment model

To establish the lower bounds for the MTD models,
we first introduce the multi-reference alignment (MRA)
model [6]. Formally, the MRA model is defined as,

zi = gi · x+ ϵi, gi ∈ G, (IV.1)

where G is a known compact group, the group elements
are drawn from some distribution ρ over G, and ϵi ∼
N (0, σ2I). The objective is to estimate x ∈ RL from N
observations {zi}N−1

i=0 . From the perspective of this pa-
per, the MRA problem can be interpreted as a simplified
model of the MTD problem, when the signal locations
are known. The sample complexity of the MRA problem
can be defined analogously to the sample complexity
of Definition II.3, where the number of observations
N replaces the number of signal occurrences, and the
observed data is now {zi}N−1

i=0 . We denote the sample
complexity of MRA by N∗

MRAG

(
σ2, ϵ

)
.

B. Mapping between the MRA model and the associated
MTD model.

Comparing the MRA model (IV.1) with the MTD
model (I.1) shows that the MTD model has an additional
degree of uncertainty due to the unknown locations. The
following proposition shows that the sample complexity
of the corresponding MRA problem lower bounds the
sample complexity of the MTD model.

Proposition IV.1. Consider an MRA model (IV.1), with
a distribution ρ defined on a group G. Consider a
corresponding MTD model (I.1) with the same group
G and distribution ρ, with N signal occurrences lo-
cated at unknown positions {si}N−1

i=0 , assuming the non-
overlapping case (Definition II.1). Then, the sample

1n = ω(σ2d) means that n/σ2d → ∞ as n, σ → ∞.



complexity of the MTD model (I.1) is lower bounded
by the sample complexity of the associated MRA model
(IV.1), i.e.,

N∗
MTDG

(
σ2, ϵ

)
≥ N∗

MRAG

(
σ2, ϵ

)
. (IV.2)

V. SAMPLE COMPLEXITY BOUNDS

We now establish lower and upper bounds on the
sample complexity for three specific MTD instances. The
lower bounds are derived by reducing the problem to
the corresponding MRA models and leveraging existing
results. The upper bounds are obtained through explicit
recovery techniques based on autocorrelation analysis.

A. One-dimensional MTD with circular translations

The first MTD model considers x ∈ RL, G is the
group of circular translations G = ZL, and ρ is a uniform
distribution. We demonstrate that both the upper and
lower bounds for the sample complexity are ω

(
σ6

)
.

Proposition V.1. Consider the MTD model with a uni-
form distribution ρ of the group G = ZL elements,
acting on x ∈ RL. Assume that the signal x has a non-
vanishing DFT. Then, as σ,N → ∞, we have,

1) The sample complexity of the well-separated case
is bounded from above by ω

(
σ6

)
.

2) The sample complexity of the non-overlapping
case is bounded from below by ω

(
σ6

)
.

We remark that if ρ is non-uniform, then the upper
bound remains ω

(
σ6

)
and the lower bound is ω

(
σ4

)
[1].

B. MTD with two-dimensional rotations

Next, we consider the MTD problem of estimating a
two-dimensional band-limited target image x acted upon
by SO(2) rotations, drawn from a uniform distribution.
By bandlimited images, we mean it can be represented
by finitely many Fourier-Bessel coefficients or alternative
steerable basis coefficients [22]. Importantly, although
the results from the previous sections pertain to signals
in RL, they can be naturally extended to this case with
suitable modifications.

Proposition V.2. Consider the MTD model of estimating
non-overlapping images, acted upon by SO(2) rotations
drawn from a uniform distribution. Assume that the
image x has a finite expansion in a steerable basis
(e.g., Fourier-Bessel) and all the coefficients are non-
zero. Then, as σ,N → ∞, the sample complexity is
lower bounded by ω

(
σ6

)
.

Previous empirical findings suggest that the third au-
tocorrelation moment is sufficient to reconstruct the two-
dimensional image [21], [17]; see Figure 1(b). Another
study [18] showed that an approximate expectation-
maximization method achieves comparable results.
Based on this, we conjecture an upper bound of ω

(
σ6

)
.

C. MTD with one-dimensional single signal

We now consider the one-dimensional MTD model
with no group action, G = I . In this case, the sample
complexity is upper bounded by ω

(
σ6

)
.

Proposition V.3. Consider the MTD model for x ∈ RL

and G = I . Assume that the signal x has non-vanishing
entries. Then, as σ,N → ∞, the sample complexity is
upper bounded by ω

(
σ6

)
.

The lower bound for this model has not yet been
proven. Based on previous empirical results [20] (see
Figure 1(c)), we conjecture a lower bound of ω(σ6).

VI. OUTLOOK

This work is a first step toward analyzing the sample
complexity of the MTD model, where the ultimate goal
is to understand the sample complexity of the cryo-EM.

Cryo-EM and related models. The lower bounds in
this work are derived by reducing the MTD model to
a simpler MRA model. Consequently, any findings on
the sample complexity of the MRA problem directly
translate into lower bounds for the MTD model. In
particular, in [5], the authors derived the sample com-
plexity of many different MRA models and cryo-EM
for generic signals in some specific parameter regimes.
In particular, this paper implies a lower bound of ω

(
σ6

)
on the sample complexity of the cryo-EM problem, at
least in some parameter regime. Similarly, for signals in
RL acted upon by elements of the dihedral group, the
results of [11], [14] imply a lower bound of ω

(
σ6

)
if

the distribution over the group is uniform, and ω
(
σ4

)
if

the distribution is non-uniform.
Priors. The analysis of the lower bounds on the sam-

ple complexity can be extended to include a prior on the
signal. For instance, in [24], the sample complexity of
high-dimensional MRA under a Gaussian prior has been
derived. Similarly, in [10], the sample complexity of
signals that reside in a low-dimensional semi-algebraic
set was studied. This generalization underscores the
robustness of the derived bounds, demonstrating their
applicability even when additional prior information
about x is included in the model.

Upper bounds via autocorrelation analysis. The
upper bounds are based on explicit algorithms for signal
recovery from autocorrelations. To date, very few prov-
able MTD algorithms have been designed. Designing
such algorithms—besides their importance for valida-
tion, reproducibility, and consistency—will immediately
imply sample complexity upper bounds.

REFERENCES

[1] Emmanuel Abbe, Tamir Bendory, William Leeb, João M Pereira,
Nir Sharon, and Amit Singer. Multireference alignment is easier
with an aperiodic translation distribution. IEEE Transactions on
Information Theory, 65(6):3565–3584, 2018.



[2] Cecilia Aguerrebere, Mauricio Delbracio, Alberto Bartesaghi,
and Guillermo Sapiro. Fundamental limits in multi-image align-
ment. IEEE Transactions on Signal Processing, 64(21):5707–
5722, 2016.

[3] Amnon Balanov, Wasim Huleihel, and Tamir Bendory. Einstein
from noise: Statistical analysis. arXiv preprint arXiv:2407.05277,
2024.

[4] Amnon Balanov, Shay Kreymer, and Tamir Bendory. A note on
the sample complexity of multi-target detection. arXiv preprint
arXiv:2501.11980, 2025.

[5] Afonso S Bandeira, Ben Blum-Smith, Joe Kileel, Jonathan Niles-
Weed, Amelia Perry, and Alexander S Wein. Estimation under
group actions: recovering orbits from invariants. Applied and
Computational Harmonic Analysis, 66:236–319, 2023.

[6] Afonso S Bandeira, Moses Charikar, Amit Singer, and Andy Zhu.
Multireference alignment using semidefinite programming. In
Proceedings of the 5th conference on Innovations in theoretical
computer science, pages 459–470, 2014.

[7] Tamir Bendory, Alberto Bartesaghi, and Amit Singer. Single-
particle cryo-electron microscopy: Mathematical theory, compu-
tational challenges, and opportunities. IEEE signal processing
magazine, 37(2):58–76, 2020.

[8] Tamir Bendory, Nicolas Boumal, William Leeb, Eitan Levin, and
Amit Singer. Multi-target detection with application to cryo-
electron microscopy. Inverse Problems, 35(10):104003, 2019.

[9] Tamir Bendory, Nicolas Boumal, William Leeb, Eitan Levin,
and Amit Singer. Toward single particle reconstruction without
particle picking: Breaking the detection limit. SIAM Journal on
Imaging Sciences, 16(2):886–910, 2023.

[10] Tamir Bendory, Nadav Dym, Dan Edidin, and Arun Suresh. A
transversality theorem for semi-algebraic sets with application to
signal recovery from the second moment and cryo-EM. arXiv
preprint arXiv:2405.04354, 2024.

[11] Tamir Bendory, Dan Edidin, William Leeb, and Nir Sharon.
Dihedral multi-reference alignment. IEEE Transactions on In-
formation Theory, 68(5):3489–3499, 2022.

[12] Tamir Bendory, Ti-Yen Lan, Nicholas F Marshall, Iris Rukshin,
and Amit Singer. Multi-target detection with rotations. Inverse
problems and imaging (Springfield, Mo.), 17(2):362, 2023.

[13] Marom Dadon, Wasim Huleihel, and Tamir Bendory. Detection
and recovery of hidden submatrices. IEEE Transactions on Signal
and Information Processing over Networks, 2024.

[14] Dan Edidin and Josh Katz. Generic orbit recovery from invariants
of very low degree. arXiv preprint arXiv:2408.09599, 2024.

[15] Richard Henderson. The potential and limitations of neutrons,
electrons and X-rays for atomic resolution microscopy of un-
stained biological molecules. Quarterly reviews of biophysics,
28(2):171–193, 1995.

[16] Richard Henderson. Avoiding the pitfalls of single particle cryo-
electron microscopy: Einstein from noise. Proceedings of the
National Academy of Sciences, 110(45):18037–18041, 2013.

[17] Shay Kreymer and Tamir Bendory. Two-dimensional multi-
target detection: An autocorrelation analysis approach. IEEE
Transactions on Signal Processing, 70:835–849, 2022.

[18] Shay Kreymer, Amit Singer, and Tamir Bendory. An approxi-
mate expectation-maximization for two-dimensional multi-target
detection. IEEE signal processing letters, 29:1087–1091, 2022.

[19] Shay Kreymer, Amit Singer, and Tamir Bendory. A stochas-
tic approximate expectation-maximization for structure deter-
mination directly from cryo-EM micrographs. arXiv preprint
arXiv:2303.02157, 2023.

[20] Ti-Yen Lan, Tamir Bendory, Nicolas Boumal, and Amit Singer.
Multi-target detection with an arbitrary spacing distribution.
IEEE Transactions on Signal Processing, 68:1589–1601, 2020.

[21] Chao Ma, Tamir Bendory, Nicolas Boumal, Fred Sigworth, and
Amit Singer. Heterogeneous multireference alignment for images
with application to 2D classification in single particle reconstruc-
tion. IEEE Transactions on Image Processing, 29:1699–1710,
2019.

[22] Nicholas F Marshall, Oscar Mickelin, and Amit Singer. Fast
expansion into harmonics on the disk: a steerable basis with

fast radial convolutions. SIAM Journal on Scientific Computing,
45(5):A2431–A2457, 2023.

[23] Eva Nogales. The development of cryo-EM into a mainstream
structural biology technique. Nature methods, 13(1):24–27, 2016.

[24] Elad Romanov, Tamir Bendory, and Or Ordentlich. Multi-
reference alignment in high dimensions: sample complexity and
phase transition. SIAM Journal on Mathematics of Data Science,
3(2):494–523, 2021.

[25] Amit Singer and Fred J Sigworth. Computational methods
for single-particle electron cryomicroscopy. Annual review of
biomedical data science, 3:163–190, 2020.


	Introduction
	Preliminaries
	Assumptions on the MTD model
	Sample complexity definition

	Autocorrelation analysis
	The multi-reference alignment model
	The multi-reference alignment model
	Mapping between the MRA model and the associated MTD model.

	Sample complexity bounds
	One-dimensional MTD with circular translations
	MTD with two-dimensional rotations
	MTD with one-dimensional single signal

	Outlook
	References

