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Abstract

By planning through a learned dynamics model, model-based reinforcement learn-1

ing (MBRL) offers the prospect of good performance with little environment2

interaction. However, it is common in practice for the learned model to be in-3

accurate, impairing planning and leading to poor performance. This paper aims4

to improve planning with an importance sampling framework that accounts and5

corrects for discrepancy between the true and learned dynamics. This framework6

also motivates an alternative objective for fitting the dynamics model: to minimize7

the variance of value estimation during planning. We derive and implement this8

objective, which encourages better prediction on trajectories with larger returns.9

We observe empirically that our approach improves the performance of current10

MBRL algorithms on two stochastic control problems, and provide a theoretical11

basis for our method.12

1 Introduction13

Model free reinforcement learning methods have achieved good performance on a number of complex14

tasks, but usually require a large amount of data collected through environment interaction [25, 23].15

Model-based reinforcement learning (MBRL) can potentially reduce these data requirements by fitting16

a model of the environment dynamics on a small dataset, then planning through the learned dynamics17

to produce a good policy. However, inaccurate models can severely impair planning performance.18

Recent techniques attempt to avoid compounding model error by restricting the number of model19

unrolling steps [16, 11], but this creates a trade-off between planning performance and sample20

efficiency. More importantly, such approaches assume that the learned model mostly matches the true21

(one timestep) dynamics, and only address compounding error that arises over many timesteps. In this22

paper we show that there are a range of environments where the learned model can be inaccurate even23

on short time horizons (e.g., one timestep), so merely mitigating compounding error is insufficient.24

Given the evidence that even deep neural network models can struggle to learn complex, high25

dimensional distributions [2], we expect inaccurate learned dynamics to be an increasingly important26

issue as we apply MBRL to harder and more realistic environments.27

Consider a learned dynamics model as a generative model from which we sample transitions. Even if28

the model is inaccurate, some samples may be better than others. Our approach trains a discriminative29

model to assess the quality of sampled transitions during planning, and upweight or downweight value30

estimates computed from high and low quality samples, respectively. In section 3.1 we also show31

that this method is a form of likelihood-free importance sampling that, assuming the discriminator32

is an optimal classifier, produces unbiased value estimates for planning. Since our discriminator33

can correct model error during planning, we are no longer restricted to fitting the dynamics using a34

maximum likelihood objective. Instead, we can learn biased dynamics models with advantageous35

properties, such as reduced value estimation variance during planning. We derive and implement an36
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objective function for learning these variance-minimizing models. Unlike maximum likelihood, our37

proposed objective incorporates trajectory return statistics into the model fitting process. We call our38

planning and model training framework Discriminator Augmented MBRL (or DAM for short).39

To evaluate scenarios where the dynamics is difficult to learn, our experiments consider environments40

with stochastic and multi-modal dynamics. We find that DAM significantly improves planning41

performance over existing MBRL algorithms in these environments.42

2 Preliminaries43

Consider a Markov Decision Process (MDP) M ⌘ (S,A, p, r, �, T ) [30], where S denotes the state44

space, A denotes the action space, p : S⇥A⇥S 7! R>0 denotes the transition dynamics, r : S⇥A 7!45

R denotes the reward function, � 2 [0, 1] denotes the discount factor and T denotes the maximum46

episode horizon. Our objective is to maximize Ep(⌧)[R(⌧)] where R(⌧) =
P

T

t=1 �
t
r(st, at) denotes47

the discounted return for the trajectory ⌧ = {s1, a1, . . . sT }, which is sampled from48

p(⌧) = p(s1)
T�1Y

t=1

p(st+1|st, at)⇡(at|st). (1)

Here, p : S 7! R>0 denotes the initial state distribution, and ⇡(at | st) defines our controller which49

is optimized to maximized the expected discounted return. The overloaded notation p is interpreted50

based on variable(s) for which the density is computed.51

Since p is can only be sampled sequentially in practice, MBRL [20, 28] learns an estimate of the transi-52

tion dynamics q : S⇥A⇥S 7! R>0. We can also define q(⌧) = p(s1)
Q

T�1
t=1 q(st+1|st, at)⇡(at|st)53

analogous to p(⌧). The model is generally learned by maximizing Es0,a,s⇠B
⇥
log q(s0 | s, a)

⇤
, where54

B denotes the dataset of transitions collected in M. The approximate transition dynamics can be55

used to learn a parametric controller ⇡ or perform online planning using sampling based methods.56

3 Discriminator Augmented MBRL57

Function ESTIMATEVALUE
input :s1: Initial state
input :a = {at}Ht=1: Action sequence
w  1 ; // stores weights (Eq. 4)
R 0;
for t 1 to H do

rt  r(st, at);
R R+ w · rt;
st+1 ⇠ q(·|st, at);
w  w · �(D̃(st, at, st+1)) ; // Eq. 8

end
Result: R

Algorithm 1: ESTIMATEVALUE produces an esti-
mated return R of some action sequence using a
learned model q. Since q may be biased with re-
spect to the true dynamics, it uses a discriminator D
to correct the estimate as described in Sec. 3.1.

Figure 1: In this illustration, the blue curve de-
picts a ground truth density and orange a learned
model. Importance sampling weights (repre-
sented by each arrow’s magnitude in log-scale)
can help us correct estimates under the incorrect
model distribution.

58

In this work, we look at some of the fundamental components of model-based reinforcement learning.59

In Section 3.1, we discuss an often ignored discrepancy caused by sampling trajectories from learned60

dynamics models and discuss how this bias can be corrected using importance sampling. Then, in61

Section 3.2, we discuss how interpreting the model-based RL in an importance sampling framework62

suggests a novel objective for learning models for environment dynamics.63
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3.1 Correcting the Sampling Bias in Model-Based RL64

Consider our optimization objective J(⇡) = Ep(⌧)[R(⌧)]. Using the approximate dynamics q intro-65

duces a bias in our estimation of J(⇡). Model-based RL methods generally use J̃q(⇡) = Eq(⌧)[R(⌧)]66

as a proxy for J(⇡), where the trajectories are sampled from q(⌧) instead of p(⌧) without accounting67

for the resulting bias. In this work, we mitigate this bias by using the importance sampling framework:68

Ep(⌧) [R(⌧)] = Eq(⌧)

h
p(⌧)

q(⌧)
R(⌧)

i
= Eq(⌧)

h
w(⌧)R(⌧)

i
(2)

where we have introduced the importance sampling correction w(⌧) to correct for the bias introduced69

by sampling trajectories from q(⌧). Simplifying w(⌧), we get70

w(⌧) =
T�1Y

t=1

p(st+1 | st, at)
q(st+1 | st, at)

=
T�1Y

t=1

w(st+1, at, st) (3)

By exploiting the MDP’s temporal structure, we can obtain an improved importance sampling71

estimator that weights the per-timestep rewards instead of the trajectory return. Comparing to Eq. 2,72

we see that this estimator multiplies the reward at time t by a weight that only depends on transitions73

leading up to it, and not transitions that occur after it:74

Ep(⌧)[R(⌧)] =
TX

t=1

Eq

" 
tY

m=1

w(sm, am, sm+1)

!
r(st, at)

#
(4)

As stated earlier, we only have access to the samples from the transition dynamics and not the75

probabilities. Thus to compute w(⌧) for ⌧ ⇠ q, we use techniques from density ratio estimation [36,76

13, 33]. We setup a binary classification problem over D : S ⇥ A ⇥ S ⇥ Y 7! [0, 1], where77

Y = {0, 1}. Using the transition samples from the environment and the learned dynamics, we create78

a dataset of transitions {s0, a, s, y}, where y = 1 for (s0, a, s) ⇠ p(s0 | s, a)p(s, a) and y = 0 for79

(s0, a, s) ⇠ q(s0 | s, a)p(s, a). Effectively, we are training a discriminator to distinguish between real80

transitions in the environment and the transitions sampled from the learned model. Alg. 2 provides81

the pseudocode for training the discriminator.82

To connect the discriminator to the importance weights, consider the Bayes-optimal classifier for this83

problem:84

D(s0, a, s) =
p(s0 | s, a)p(s, a)

p(s0 | s, a)p(s, a) + q(s0 | s, a)p(s, a) (5)

=
p(s0 | s, a)/q(s0 | s, a)

p(s0 | s, a)/q(s0 | s, a) + 1
(6)

= �

⇣
log

p(s0 | s, a)
q(s0 | s, a)

⌘
= �

⇣
D̃(s0, a, s)

⌘
(7)

D̃ is the classifier logits, and we can recover the importance weight by exponentiating them:85

w(s0, a, s) =
p(s0, a, s)

q(s0, a, s)
= exp

�
D̃(s0, a, s)

�
(8)

For our transitions {s0, a, s}, it is important to sample s, a ⇠ p(s, a) (that is, real state-action pairs)86

so that the logits can be connected to the importance weights. Since, we only need samples to train87

the classifier, this allows us to estimate the importance weights without requiring probabilities from88

underlying transition dynamics. Alg. 1 provides the pseudocode for estimating the discriminator-89

corrected return of an action sequence, which forms the subroutine for choosing actions in sampling90

based planning algorithms.91

The benefit of this approach arises from the potential simplicity of the discriminative problem92

compared to the modelling the dynamics. The dynamics can be hard to model in the real world,93

as they often involve higher dimensional spaces (like RGB images) and can be multi-modal due to94

partial observability. The modelling and optimization challenges can often result in an incorrectly95

learned model, an example of which is shown in Fig 1. On the other hand, discrimination can be96
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an easier problem as fake and real samples can be well separated, especially in higher-dimensional97

spaces. This can improve the value estimation by down-weighting samples which do not fit with the98

real world samples. If the learned dynamics are indeed correct, the true and fake samples will be99

indistinguishable and the importance sampling weights will be close to unity, reducing the problem100

to conventional model-based RL.101

3.2 Minimum Variance Dynamics Model Fitting102

The above discussion applies to any learned model, including the conventional approach of learning103

by maximizing the log-likelihood of transitions collected in the environment. The policy objective104

under q, that is Ĵq(⇡) = 1
N

P
N

i=1 w(⌧i)R(⌧i), is an unbiased estimator of J(⇡) 8q as long as the105

support of p is a subset of support of q. However, from an optimization perspective, it is desirable106

to have an estimator with the minimum variance. Sampling based planning algorithms generate107

candidate action sequences and rank them according to their value function. Minimizing the variance108

of the value estimate of an action sequence increases the likelihood of the action sequences getting109

ranked correctly, and thus, the best action sequence getting chosen. Thus, it is favorable to reduce the110

variance of our estimate Ĵq . Assuming that the R(⌧) � 0, it can be shown that111

q
⇤(⌧) =

R(⌧)p(⌧)

Ep(⌧) [R(⌧)]
(9)

Here, q⇤ denotes the sampling distribution which minimizes the variance of Ĵq . While the denominator112

for the optimal sampling distribution is intractable, the important distinction here is that trajectories113

should be sampled in accordance to their density under the true trajectory distribution and the return114

accumulated by the trajectory. Using the q
⇤ as the target distribution, we can setup our minimization115

objective for model-based learning to be KL(q⇤(⌧) || q(⌧)). As we show in Appendix A.1, the116

gradient with respect to q is:117

rqKL(q⇤(⌧) || q(⌧)) / �
T�1X

t=1

Ep(⌧) [R(⌧)rq log q(st+1 | st, at)] (10)

Intuitively, this corresponds to upweighting the gradient for trajectories with higher return, forcing118

the dynamics model to fit better to transitions with higher return. In particular, this highlights that119

the conventional approach of learning dynamics does not represent the optimal approach in the120

importance sampling framework. The modified model training algorithm is described in Alg. 2 in the121

appendix.122

3.3 Planning and Training Loop123

The previous two sections describe how to train the dynamics model, and how to train a discriminator124

that corrects the sampling bias from that learned model. Further, ESTIMATEVALUE (Alg. 1) shows125

how to implement discriminator-corrected value estimation. We can plug ESTIMATEVALUE as a126

subroutine into most sampling based planners. Once a planner is in place, we can use it execute127

actions in the real environment, collect more data, and re-train our model and discriminator. In128

Appendix B we discuss in detail the implementation of this model-based RL loop within our model129

and discriminator training framework.130

4 Experiments131

In this section we evaluate our proposed approach and compare with model-based baselines. We132

hypothesize that environments with multi-modal dynamics make model fitting difficult, which would133

pose problems for planning. Indeed, we observe that our proposed approach improves performance134

over standard model-based RL in such settings.135

We devise and implement two environments with stochastic, multi-modal dynamics: IcyRoad and136

Intersection. In IcyRoad the agent drives a car along an icy road, and above a threshold speed the car137

has a probability of swerving off the road in either direction (hence the multi-modality) and incurring138

a large negative reward. In Intersection the agent drives a car into an intersection. An oncoming car139

is also entering the intersection and will turn either left or right with equal probability–the outcome is140
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Figure 2: Left: Depiction of different scenarios in the Intersection environment, where the agent
controls the silver car. Both cars are entering the intersection at the same time, but the agent does
not know whether the oncoming green car will turn left (left panel) or turn right (right panel). If the
agent drives into the intersection too fast, it may collide. Right: The learned (unimodal) model and
ground truth distributions p(ẏs+1|st, at), where st = (2, 0, 2, 0) and the action is to accelerate. After
training with maximum likelihood, the unimodal model erroneously places large probability mass on
unrealistic regions of the state space. The discriminator produces importance weights (black arrows,
log scale) that downweight the model’s samples in the unrealistic regions.

Average return IcyRoad Intersection
Unimodal Multimodal Unimodal Multimodal

Baseline 0.71± 1.72 5.34± 0.84 62.67± 22.10 29.58± 0.105
DAM (minvar only) 0.86± 0.79 4.55± 3.50 31.40± 1.111 31.30± 1.634
DAM (disc only) 4.88± 0.50 3.30± 2.75 87.79± 15.34 60.18± 19.58
DAM 2.32± 1.76 7.94± 0.92 46.76± 9.543 97.72± 5.127

Table 1: Average return for each method in the IcyRoad and Intersection environments. Columns are
split by whether they use a unimodal (Gaussian) or multimodal (mixture density network) learned
dynamics model. Combining our method DAM with multimodal learned dynamics models usually
performs best among different methods we evaluated. Results show mean and standard error across 3
runs (random seeds) for each hyperparameter setting.

unknown in advance to the agent. Fig. 2 illustrates the Intersection environment, and Appendix C141

both environments in more detail.142

For our baseline, we fit a dynamics model using the usual maximum likelihood loss and use a143

standard random shooting planner with uncorrected value estimates. In DAM we use both aspects of144

our method: we train the model using the minimum variance objective (Eq. 10) and plan using the145

discriminator-corrected estimator (Eq. 4). To disentangle the effects of each component of our method,146

we also evaluate variants that use only one aspect of our method, but not both. DAM (disc only) only147

does discriminator-corrected planning, while DAM (minvar only) only uses the minimum variance148

object. Practitioners typically train models that output the parameters for a Gaussian distribution,149

which is unimodal. Since our environment dynamics are multimodal, it also makes sense to try fitting150

multimodal models such as mixture density networks [4]. We test each of our planning and training151

methods with both a mixture density network model and a standard Gaussian model, and display both152

results.153

Table 1 depicts the results after 10 rounds of interleaving model (+ discriminator) training with154

data collection in the environment. We see that in both environments, DAM using multimodal155

dynamics models obtains the best results. DAM (minvar only), which only uses the minimum156

variance objective without discriminator-corrected planning, is often worse than the baseline. We157

hypothesize this occurs because the minimum variance objective increases model bias versus standard158

maximum likelihood training, which can be harmful without discriminator-corrected planning. When159

using unimodal models in either environment, we see that simply having a discriminator for planning160

already increases performance over the baseline. Fig. 2 depicts our analysis of what the trained model161

and discriminator are doing in IcyRoad: we see that the unimodal model is struggling to fit the true162

dynamics, while the discriminator is helping to correct the model error. Interestingly, adding the163

minimum variance objective to discriminator-corrected planning does not help with unimodal models,164

but it does help with multimodal models.165
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5 Related Work166

Model-based RL has a rich history in control and robotics. Classically, the methods for model-based167

control have assumed access to underlying dynamics [35, 22, 26, 24] or make simplifying assumptions168

about the environment dynamics [7, 8, 21, 18]. While such simplifying assumptions can yield exact or169

efficient controllers, the models cannot faithfully represent the underlying dynamics, especially when170

considering high dimensional state spaces like RGB images. Recent work has focused on combining171

high-capacity function approximators such as neural networks with model-based reinforcement172

learning [20, 27, 28, 6, 12, 32, 14, 29], which employ sampling-based planning methods [38, 27, 31].173

Concurrently, some recent work has integrated policy networks with deep models [16, 37] in spirit174

of Dyna [34]. Neural networks allow more flexible representation of non-linear dynamics, allowing175

model-based RL to scale to complex high dimensional tasks [17, 28]. However, despite the incredible176

progress, none of these prior works account for the bias introduced by using learned models for177

planning.178

Classically, the field of robust control has looked at designing controllers for with uncertain transition179

models [3, 9]. More relevantly, [1] incorporates bias correction for approximate transition models180

to learn better policies. However, they only focus on approximation error which arises due to the181

use of simple linear models. More recently, [19] discusses the mismatch which arises between the182

training objectives and the control objectives, and how that discrepancy can lead to biases in model183

learning. In contrast to these works, our work focuses on the sampling bias introduced despite using184

flexible function approximators like neural networks. To some extent, our work also addresses the185

bias discussed in [19], as our objective encourages the transition model to fit better to trajectories186

with higher return.187

Prior work has considered estimating value functions using transition models [15, 11, 5]. However,188

our work addresses the biased values generated by the use of learned transition models. To that extent,189

we rely on classifier-based density ratio estimation techniques [33], which have been employed in190

generative modelling [36, 13]. [10] use similar principles to correct for differences in dynamics191

when transferring experience between environments, where the classifier’s corrections are realized192

by adjusting the reward appropriately before applying model-free RL. To the best of our knowledge,193

ours is first work which raises and addresses the issue of sampling bias in context of model-based RL.194

6 Conclusion195

We introduce a framework for mitigating the impact of model error on planning in model-based RL.196

Our framework trains discriminators to correct value estimation bias, while also introducing a novel197

model training objective for minimizing value estimation variance during planning. Empirically,198

we find that these modifications improve agent performance in environments with stochastic and199

multi-modal dynamics that pose a challenge for standard model fitting techniques. By improving200

planning in environments that are difficult to model properly, this framework is a step towards more201

efficient and performant reinforcement learning in complex, real world problems.202
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