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ABSTRACT

Video anomaly detection (VAD) is a challenging computer vision task with many
practical applications. As anomalies are inherently ambiguous, it is essential for
users to understand the reasoning behind a system’s decision in order to deter-
mine if the rationale is sound. In this paper, we propose a simple but highly
effective method that pushes the boundaries of VAD accuracy and interpretability
using attribute-based representations. Our method represents every object by its
velocity and pose. The anomaly scores are computed using a density-based ap-
proach. Surprisingly, we find that this simple representation is sufficient to achieve
state-of-the-art performance in ShanghaiTech, the largest and most complex VAD
dataset. Combining our interpretable attribute-based representations with implicit,
deep representation yields state-of-the-art performance with a 99.1%, 93.6%, and
85.9% AUROC on Ped2, Avenue, and ShanghaiTech, respectively. Our method is
accurate, interpretable, and easy to implement.

1 INTRODUCTION

Video anomaly detection (VAD) is a key goal of video surveillance but is very challenging. One of
the most common VAD settings is the one-class classification (OCC). In this setting, only normal
videos are seen during the training stage without any anomalies. At deployment, the trained model
is required to distinguish between normal events and those that are abnormal in a semantically
meaningful way. The key difficulty is that the difference between patterns that are semantically
meaningful and those that are not is subjective. In fact, two human operators may disagree on
whether an event is anomalous. Furthermore, as no labeled anomalies are provided for training, it is
not possible to directly learn the discriminative patterns.

VAD has been researched for decades, but the advent of deep learning has brought significant break-
throughs. Recent approaches to anomaly detection follow two main directions: (i) handcrafted
priors for self-supervised learning: many methods designed auxiliary tasks such as rotation predic-
tion, invariance to handcrafted augmentations, and predicting the arrow of time and rate of temporal
flow. These approaches dominate VAD. (ii) Representation extraction using pretrained encoder: a
two-stage approach which first computes representations using pretrained encoders (such as ResNet
pretrained on ImageNet), followed by standard density estimation such as kNN or Mahalanobis dis-
tance. This approach is successful in image anomaly detection and segmentation. The issue with
both approaches is that the representations that they learn are opaque and non-interpretable. As
anomalies are ambiguous, it is essential that the reasoning is made explicit so that a human operator
could understand if the criteria for the decision are justified.

Most state-of-the-art anomaly detection methods are not interpretable, despite their use in safety-
critical applications. In this paper, we follow a new direction: representing data using semantic
attributes which are meaningful to humans and therefore easier to interpret. Our method extracts
representations consisting of the velocity and pose attributes, which were found to be important in
previous work (Markovitz et al., 2020; Georgescu et al., 2021a). We use these representations to
score anomalies by density estimation. Our method classifies frames as anomalous if their velocity
and/or pose take an unusual value. This allows automatic interpretation; the attribute taking an
unusual value is interpreted to be the rationale behind the decision (see Fig. 1).

It is surprising that our simple velocity and pose representations achieves state-of-the-art perfor-
mance on the largest and most complex VAD dataset, with 85.9% AUROC in ShanghaiTech. While
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Figure 1: Human-interpretable visualizations on Avenue and ShanghaiTech. We present the most
normal and anomalous frames for each feature. For anomalous frames, we visualize the bounding
box of the object with the highest anomaly score. Best viewed in color.

our attribute-based representation is very powerful, there are concepts that are not adequately repre-
sented by it. The reason is that some attributes cannot simply be quantified using semantic human
attributes. Consequently, to model the residual attributes, we couple our explicit attribute-based
representation with an implicit, deep representation, obtaining the best of both worlds. Our final
method achieves state-of-the-art performance on the three most commonly reported datasets while
being highly interpretable. The advantages of our method are three-fold:

1. Achieving state-of-the-art results in the three most commonly used public datasets: 99.1%,
93.6%, 85.9% AUROC on Ped2, Avenue and ShanghaiTech.

2. Making interpretable decisions, important in critical environments where human under-
standing is key.

3. Being easy to implement.

2 RELATED WORK

Classical video anomaly detection methods were typically composed of two steps: handcrafted fea-
ture extraction and anomaly scoring. Some of the manual features that were extracted were: optical
flow histograms (Chaudhry et al., 2009; Colque et al., 2016) and SIFT (Lowe, 2004). Commonly
used scoring methods include: density estimation (Eskin et al., 2002; Glodek et al., 2013; Latecki
et al., 2007), reconstruction (Jolliffe, 2011), and one-class classification (Scholkopf et al., 2000).

In recent years, deep learning has gained in popularity as an alternative to these early works. The
majority of video anomaly detection methods utilize at least one of three paradigms: reconstruction-
based, prediction-based, skeletal-based, or auxiliary classification-based methods.

Reconstruction & prediction based methods. In the reconstruction paradigm, the normal training
data is typically characterized by an autoencoder, which is then used to reconstruct input video
clips. The assumption is that a model trained solely on normal training clips will not be able to
reconstruct anomalous frames. This assumption does not always hold true, as neural networks can
often generalize to some extent out-of-distribution. Notable works are (Nguyen & Meunier, 2019;
Chang et al., 2020; Hasan et al., 2016; Luo et al., 2017b; Yu et al., 2020; Park et al., 2020).

Prediction-based methods learn to predict frames or flow maps in video clips, including inpainting
intermediate frames, predicting future frames, and predicting human trajectories (Feng et al., 2021b;
Chen et al., 2020; Lu et al., 2019; Wang et al., 2021; Feng et al., 2021a; Yu et al., 2020). Additionally,
some works take a hybrid approach combining the two paradigms (Liu et al., 2021b; Zhao et al.,
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2017; Ye et al., 2019; Tang et al., 2020). As these methods are trained to optimize both objectives,
input frames with large reconstruction or prediction errors are considered anomalous.

Self-supervised auxiliary tasks. There has been a great deal of research on learning from unlabeled
data. A common approach is to train neural networks on suitably designed auxiliary tasks with au-
tomatically generated labels. Tasks include: video frame prediction (Mathieu et al., 2016), image
colorization (Zhang et al., 2016; Larsson et al., 2016), puzzle solving (Noroozi & Favaro, 2016),
rotation prediction (Gidaris et al., 2018), arrow of time (Wei et al., 2018), predicting playback ve-
locity (Doersch et al., 2015), and verifying frame order (Misra et al., 2016). Many video anomaly
detection methods use self-supervised learning. In fact, self-supervised learning is a key component
in the majority of reconstruction-based and prediction-based methods. SSMTL (Georgescu et al.,
2021a) trains a CNN jointly on three auxiliary tasks: arrow of time, motion irregularity, and middle-
box prediction, in addition to knowledge distillation. Jigsaw-Puzzle (Wang et al., 2022) trains neural
networks to solve spatio-temporal jigsaw puzzles. The networks are then used for VAD.

Skeletal methods. Such methods rely on a pose tracker to extract the skeleton trajectories of each
person in the video. Anomalies are then detected using the skeleton trajectory data. Our attribute-
based method outperforms previous skeletal methods (e.g., Markovitz et al. (2020); Rodrigues et al.
(2020); Yu et al. (2021); Sun & Gong (2023)) by a large margin. Different from skeletal approaches,
our method does not require pose tracking, which is extremely challenging in crowded scenes. Our
pose features only use a single frame, while our velocity features only require a pair of frames.
In contrast, skeletal approaches require pose tracking across many frames, which is expensive and
error-prone. It is also important to note that skeletal features by themselves are ineffective in detect-
ing non-human anomalies, therefore, being insufficient for providing a complete VAD solution.

Object-level video anomaly detection. Early methods, both classical and deep learning, operated
on entire video frames. This proved difficult for VAD as frames contain many variations, as well as
a large number of objects. More recent methods (Georgescu et al., 2021a; Liu et al., 2021b; Wang
et al., 2022) operate at the object level by first extracting object bounding boxes using off-the-shelf
object detectors. Then, they detect if each object is anomalous. This is an easier task, as objects
contain much less variation than whole frames. Object-based methods yield significantly better
results than frame-level methods.

It is often believed that due to the complexity of realistic scenes and the variety of behaviors, it is
difficult to craft features that will discriminate between them. As object detection was inaccurate
prior to deep learning, classical methods were previously applied at the frame level rather than at the
object level, and therefore underperformed on standard benchmarks. We break this misconception
and demonstrates that it is possible to craft semantic features that are both accurate and interpretable.

3 PRELIMINARIES

In the VAD task, we are given a training set {c1, c2...cNc
} ∈ Xtrain consisting of Nc video clips

that are all normal (i.e., do not contain any anomalies). Each clip ci is comprised of Ni frames,
ci = [fi,1, fi,2, ...fi,Ni ]. Given an inference clip c the goal is to classify each frame f ∈ c as being
normal or anomalous. Each frame f is represented using a function ϕ(f) ∈ Rd, where d ∈ N is
the feature dimension. Next, an anomaly scoring function s(ϕ(f)) computes the anomaly score for
frame f . The frame is classified as anomalous if s(ϕ(f) exceeds a constant threshold.

4 METHODOLOGY

4.1 OVERVIEW

We compute an anomaly score based on density estimation of object-level feature descriptors. This
is done in three stages: pre-processing, feature extraction, and density estimation. In the pre-
processing stage (i) an off-the-shelf motion estimator is applied to predict the optical flow of each
frame; (ii) an off-the-shelf object detector is used to localize and classify the bounding boxes of all
objects within a frame. The outputs of both models are used to extract object-level velocity, pose,
and deep representations (see Sec. 4.3). Finally, the anomaly score of each test frame is computed
using density estimation. The computation of object-level features is illustrated in Fig. 2.
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Figure 2: An overview of our proposed method for extracting explicit attribute-based representa-
tions, and implicit deep representations. As a first step, we extract optical flow maps and bounding
boxes for all of the objects in the frame. We then crop each object from the original image and its
corresponding flow map. Our representation consists of velocity, pose, and deep (CLIP) features.

4.2 PRE-PROCESSING

Anomalous objects in video clips typically exhibit unusual motions or activities. Therefore, we rely
on representations that are linked to objects and motions.

Optical flow. Our method uses optical flow as a preliminary stage for inferring object movement. It
is computed between every pair of two successive frames. We extract the optical flow map, denoted
by o for each frame f ∈ c in every video clip c using an off-the-shelf optical flow model.

Object detection. Our method models frames by representing every object individually. This fol-
lows many recent papers, e.g., (Georgescu et al., 2021a; Liu et al., 2021b; Wang et al., 2022) that
found object-based representations to be more effective than global, frame-level representations.
Similarly to the recent papers, we first detect all objects in each frame using an off-the-shelf object
detector. Formally, our object detection generates a set of m bounding boxes b1, b2...bm for each
frame, with corresponding class labels y1, y2, ..., ym.

4.3 FEATURE EXTRACTION

Our method represents each object by two attributes: velocity and pose.

Velocity features. Our working hypothesis is that unusual velocity is a relevant attribute for iden-
tifying anomalies in video. As objects can move in both x and y axes and both the magnitude
(speed) and orientation of the velocity may be anomalous, we compute velocity features for each
object in each frame. We begin by cropping the frame-level optical flow map by the bounding box
of each object as detected by the object detector. Following this step, we obtain a set of cropped
object flow maps, as illustrated in Fig. 2. These flow maps are then rescaled to a fixed size of
Hflow × Wflow. Next, we represent each flow map with the average motion for each orientation,
where orientations are quantized into B ∈ N equi-spaced bins (a similar idea as Chaudhry et al.
(2009)). The final representation is a B-dimensional vector consists of the average flow magnitudes
of the flow vectors in each bin, as illustrated in Fig. 3. This representation is capable of describing
motion in both the radial and tangential directions. We denote our velocity feature extractor as:
ϕvelocity : Hflow ×Wflow → RB .

Pose features. Irregular human activity is often anomalous. While a full understanding of activity
requires temporal features, we find that human pose from even a single frame may provide a suffi-
ciently discriminative signal of irregular activities. We represent human pose by its body landmark
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Figure 3: An illustration of our velocity feature vector ϕvelocity. Left: Orientations are quantized
into B = 8 equi-spaced bins, and each optical flow vector in the object’s bounding box is assigned
to one-directional bin. Right: The average magnitudes of the optical flow vectors in each bin give a
velocity feature vector of dimension B. Best viewed in color.

positions. Our method obtains pose feature descriptors for each human object o using an off-the-
shelf keypoints extractor, denoted by ϕ̂pose(o) ∈ R2×d, where d ∈ N is the number of keypoints. In
practice, we used AlphaPose (Fang et al., 2017), which we found to work well. The output of the
keypoints extractor is the pixel coordinates of each landmark position. We perform a simple normal-
ization stage to ensure that the keypoints are invariant to the position and size of the human. We first
subtract from each landmark, the coordinates of the top-left corner of the object bounding box. We
then scale the x and y axes so that the object bounding box has a final size of Hpose×Wpose (where
Hpose,Wpose are constants). Formally, let l ∈ R2 be the top-left corner of the human bounding box.
The pose description becomes:

ϕpose(o) =

(
Hpose

height(o) 0

0
Wpose

width(o)

)
(ϕ̂pose(o)− l) (1)

Where height(o), width(o) is the object o bounding box height and width respectively. Finally, we
flatten ϕpose to obtain the final pose feature vector.

Deep features. While our attribute-based representation is already very powerful, it is sometimes in-
sufficiently expressive to detect all anomalies. Powerful deep features are very expressive, bundling
together many different attributes. Hence, we use implicit, deep representations to model the residual
attributes which are not described by velocity and pose. In image anomaly detection, implicit repre-
sentations are pretrained on external, generic datasets and then transferred to the anomaly detection
task. Previous work (Reiss et al., 2021; Reiss & Hoshen, 2023) showed that coupling such powerful
representations with simple anomaly detection classifiers (e.g., kNN) can achieve outstanding re-
sults. Concretely, our implicit representation is computed using a pretrained CLIP encoder (Radford
et al., 2021), denoted by ϕdeep(.), to represent the bounding box of each object in each frame.

4.4 DENSITY ESTIMATION

We use density estimation for scoring samples as normal or anomalous, where low estimated density
is indicative of anomaly. To estimate the density, we fit a separate estimator for each feature. For
velocity features, which are lower dimensional, we use a GMM estimator. As our pose and deep
features are high-dimensional and are not assumed to obey particular parametric assumptions, we es-
timate their density using kNN. I.e., we compute the L2 distance between feature x of a target object
and the k exemplars in the corresponding training feature set. A comparison of different exemplar
selection methods is in Sec. 5.4. We denote our density estimators by svelocity(.), spose(.), sdeep(.).

Score calibration. Combining the three density estimators requires calibration. To do so, we esti-
mate the distribution of anomaly scores on the normal training set. We then scale the scores using
min-max normalization. The kNN used for scoring pose and deep features present a subtle point.
When computing kNN on the training set, the exemplars must not be taken from the same clip
as the target object. The reason is that the same object appears in nearby frames with virtually
no variation, distorting kNN estimates. Instead, we compute the kNN between each training set
object and all objects in the other video clips provided in the training set. We can now define
∀f ∈ {velocity, pose, deep} : µf = maxo{sf (ϕf (o))}, and νf = mino{sf (ϕf (o))}.
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4.5 INFERENCE

Each inference clip c = {f1, ..., fn} is fed frame by frame into both the optical flow estimator and
the object detector. We then extract our attributed features from each object o. We compute an
anomaly score for each attributed feature of each object o. The score for every frame is simply
the maximum score across all objects. The final anomaly score is the sum of the individual feature
scores normalized by our calibration parameters:

t(f) = max
k

{s(ϕvelocity(ok))− νvelocity
µvelocity − νvelocity

}+max
k

{s(ϕpose(ok))− νpose
µpose − νpose

}

+max
k

{s(ϕdeep(ok))− νdeep
µdeep − νdeep

} (2)

We denote the anomaly score for every frame in a clip c as t(c) = {t(f1), ..., t(fn)}. As we expect
events to be prolonged, we smooth the results by applying a temporal 1-D Gaussian filter over t(c).

5 EXPERIMENTS

5.1 DATASETS

Our experiments were conducted using three publicly available VAD datasets. Training and test sets
are defined for each dataset, and anomalous events are only included during testing.

UCSD Ped2. The Ped2 dataset (Mahadevan et al., 2010) contains 16 normal training videos and 12
test videos at a 240 × 360 pixel resolution. Videos are gathered from a fixed scene with a camera
above the scene and pointed downward. The training video clips contain only normal behavior of
pedestrians walking, while examples of abnormal events are bikers, skateboarding, and cars.

CUHK Avenue. The Avenue dataset (Lu et al., 2013) contains 16 normal training videos and 21 test
videos at 360 × 640 pixel resolution. Videos are gathered from a fixed scene using a ground-level
camera. The training video clips contain only normal behavior. Examples of abnormal events are
strange activities (e.g. throwing objects, loitering, and running), movement in the wrong direction,
and abnormal objects.

ShanghaiTech Campus. The ShanghaiTech dataset (Liu et al., 2018) is the largest publicly avail-
able dataset for VAD. There are 330 training videos and 107 test videos from 13 different scenes
at 480 × 856 pixel resolution. ShanghaiTech contains video clips with complex light conditions
and camera angles, making this dataset more challenging than the other two. Anomalies include
robberies, jumping, fights, car invasions, and bike riding in pedestrian areas.

5.2 IMPLEMENTATION DETAILS

We use ResNet50 Mask-RCNN (He et al., 2017) pretrained on MS-COCO (Lin et al., 2014) to ex-
tract object bounding boxes. To filter out low confidence objects, we follow the same configurations
as in (Georgescu et al., 2021a). Specifically for Ped2, Avenue, and ShanghaiTech, we set confidence
thresholds of 0.5, 0.8, and 0.8. In order to generate optical flow maps, we use FlowNet2 (Ilg et al.,
2017). For our landmark detection, we use AlphaPose (Fang et al., 2017) pretrained on MS-COCO
with d = 17 keypoints. We use a pretrained ViT B-16 (Dosovitskiy et al., 2020) CLIP (Radford
et al., 2021) image encoder as our deep feature extractor. Our method is built around the extracted
objects and flow maps. We use Hvelocity × Wvelocity = 224 × 224 to rescale flow maps. As for
Hpose × Wpose rescaling, we calculate the average height and width from the bounding boxes of
the train set and use those values. The lower resolution of Ped2 prevents objects from filling a his-
togram, and to extract pose representations, therefore we use B = 1 orientations and rely solely on
velocity and deep representations. We use B = 8 orientations for Avenue and ShanghaiTech. When
testing, for anomaly scoring we use kNN for the pose and deep representations with k = 1 nearest
neighbors. For velocity, we use GMM with n = 5 Gaussians. Finally, the anomaly score of a frame
represents the maximum score among all the objects within that frame.
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Table 1: Frame-level AUROC (%) comparison. The best and second-best results are bolded and
underlined, respectively.

Year Method Ped2 Avenue ShanghaiTech
Micro Macro Micro Macro Micro Macro

≤ 2019

(Chaudhry et al., 2009) 61.1 - - - - -
HOFM (Colque et al., 2016) 89.9 - - - - -
S-RNN (Luo et al., 2017a) 92.2 - 81.7 - 68.0 -
STAN (Lee et al., 2018) 96.5 - 87.2 - - -
Frame-P (Liu et al., 2018) 95.4 - 85.1 - 72.8 -
Mem-AE. (Gong et al., 2019) 94.1 - 83.3 - 71.2 -
Ionescu et al. (2019) 94.3 97.8 87.4 90.4 78.7 84.9
BMAN (Lee et al., 2019) 96.6 - 90.0 - 76.2 -

2020

Park et al. (2020) 97.0 - 88.5 - 70.5 -
CAC (Wang et al., 2020) - - 87.0 - 79.3 -
Scene-Aw (Sun et al., 2020) - - 89.6 - 74.7 -
VEC (Yu et al., 2020) 97.3 - 90.2 - 74.8 -
C-AE (Chang et al., 2020) 96.5 - 86.0 - 73.3 -

2021

AMMCN (Cai et al., 2021) 96.6 - 86.6 - 73.7 -
Georgescu et al. (2021a) 97.5 99.8 91.5 91.9 82.4 89.3
MPN (Lv et al., 2021) 96.9 - 89.5 - 73.8 -
HF2 (Liu et al., 2021a) 99.3 - 91.1 93.5 76.2 -
Feng et al. (2021a) 97.2 - 85.9 - 77.7 -
Georgescu et al. (2021b) 98.7 99.7 92.3 90.4 82.7 89.3

2022
(Ristea et al., 2022) - - 92.9 91.9 83.6 89.5
DL-AC (Yang et al., 2022) 97.6 - 89.9 - 74.7 -
JP (Wang et al., 2022) 99.0 99.9 92.2 93.0 84.3 89.8

2023

Yang et al. (2023) 98.1 - 89.9 - 73.8 -
EVAL (Singh et al., 2023) - - 86.0 - 76.6 -
Cao et al. (2023) - - 86.8 - 79.2 -
FPDM (Yan et al., 2023) - - 90.1 - 78.6 -
LMPT (Shi et al., 2023) 97.6 - 90.9 - 78.8 -
Ours 99.1 99.9 93.6 96.3 85.9 89.6

5.3 EVALUATION METRICS

Our study follows the popular evaluation metric in video anomaly detection literature by varying the
threshold over the anomaly scores to measure the frame-level Area Under the Receiver Operation
Characteristic (AUROC) with respect to the ground-truth annotations. We report two types of AU-
ROC: (i) Micro-averaged AUROC, which is calculated by concatenating frames from all videos and
then computing the score. (ii) Macro-averaged, which is calculated by averaging the frame-level
AUROCs for each video. In most existing studies, micro-averaged AUROC is reported, while only
a few report macro-averaged AUROC.

5.4 EXPERIMENTAL RESULTS

We compare our method and state-of-the-art from recent years in Tab. 1. The performance num-
bers of the baseline methods were directly taken from their original papers. We report both micro
and macro average AUROC (when available) for the three publicly available most commonly used
datasets: UCSD Ped2, CUHK Avenue, and ShanghaiTech.

Ped2 Results. Ped2 is a long-standing video anomaly detection dataset and has therefore been
reported by many previous papers. Most methods obtained over 94% on Ped2, indicating that of
the three public datasets, it is the simplest. While our method is comparable to the current state-of-
the-art method (HF2 Liu et al. (2021b)) in terms of performance, it also provides an interpretable
representation. The near-perfect results of our method on Ped2 indicate it is practically solved.

Avenue Results. It is evident from previous works that Avenue is of a different complexity level
than Ped2. Nevertheless, our method applied to this dataset obtained a new state-of-the-art AUROC
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Table 2: Ablation study, frame-level AUROC (%) comparison. The best and second-best results are
bolded and underlined, respectively.

Pose Features Deep Features Velocity Features Avenue ShanghaiTech
Micro Macro Micro Macro

✓ 73.8 76.2 74.5 81.0
✓ 85.4 87.7 72.5 82.5

✓ 86.0 89.6 84.4 84.8
✓ ✓ 89.3 88.8 76.7 84.9

✓ ✓ 93.0 95.5 84.5 88.7
✓ ✓ 86.8 93.0 85.9 88.8
✓ ✓ ✓ 93.6 96.3 85.1 89.6

of 93.6% in terms of micro-averaged AUROC. Additionally, our method performance exceeds the
current state-of-the-art by a considerable margin of 2.8%, reaching 96.3% macro-averaged AUROC.

ShanghaiTech Results. Our method outperforms all previous methods on the hardest dataset,
ShanghaiTech, by a considerable margin. Accordingly, our method achieves 85.9% AUROC, while
the highest performance previous methods have achieved is 84.3% (Jigsaw-Puzzle Wang et al.
(2022)), surpassing the current state-of-the-art by a margin of 1.6%.

To summarize, our method achieves state-of-the-art performance on the three most commonly used
public benchmarks. It outperforms all previous approaches without any optimization while utilizing
representations that can be interpreted by humans.

5.5 ABLATION STUDY

We conducted an ablation study on Avenue and ShanghaiTech datasets to better understand the fac-
tors contributing to the performance of our method. We report anomaly detection performance of
all feature combinations in Tab. 2. Our findings reveal that the velocity features provide the highest
frame-level AUROC on both Avenue and ShanghaiTech, with 86.0% and 84.4% micro-averaged
AUROC, respectively. In ShanghaiTech, our velocity features on their own are already state-of-
the-art compared with all previous VAD methods. We expect this to be due to the large number
of anomalies associated with speed and motion, such as running people and fast-moving objects,
e.g. cars and bikes. The combination of velocity and pose results in an 85.9% AUROC in Shang-
haiTech. The pose features are designed to detect unusual behavior, such as fighting between people
and unnatural poses, as illustrated in Fig. 1 and App. A.2. However, we observe a slight degrada-
tion when we combine our attribute-based representation with the deep residual representation; this
may be because deep representations bundle together many different attributes, and they are often
dominated by irrelevant nuisance attributes that do not distinguish between normal and anomalous
objects. As for Avenue, our attribute-based representation performs well when combined with the
deep residual representation, resulting in state-of-the-art results of 93.6% micro-averaged AUROC
and 96.3% macro-averaged AUROC. Overall, we have observed that using all three features was key
to achieving state-of-the-art results.

5.6 FURTHER ANALYSIS & DISCUSSION

Interpretable decisions. We use a semantic attribute-based representation, which allows interpre-
tation of the rationale behind decisions. This is based on the fact that our method categorizes frames
as anomalous if their velocity and/or pose take an unusual value. The user can observe which at-
tribute had an unusual value, this would indicate that the frame is anomalous in this attribute. To
demonstrate the interpretability of our method, we present in Fig. 1 a visualization of most normal
and anomalous frames in Avenue and ShangahiTech for each representation. High anomaly scores
from the velocity representation are attributed to fast-moving (often non-human) objects. As can
also be seen from the pose representation, the most anomalous frames contain anomalous human
poses that are indicative of unusual behavior. Finally, our implicit deep representation captures con-
cepts that cannot be adequately represented by our semantic attribute representation (for example,
unusual objects). This complements the semantic attributes, obtaining the best of both worlds.
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Table 3: Our final results when kNN is replaced by k-means. Frame-level AUROC (%) comparison.

k =
Avenue ShanghaiTech

Micro Macro Micro Macro
1 91.8 94.0 84.2 87.2
5 92.0 94.2 84.3 88.1
10 92.1 94.5 84.6 88.1
100 92.9 95.2 84.8 88.6
All 93.6 96.3 85.1 89.6

Pose features for non-human objects. We extract pose representations exclusively for human
objects and not for non-human objects. We calculate the pose anomaly score for each frame by
taking the score of the object with the most anomalous pose. Non-human objects are given a pose
anomaly score of −∞ and therefore do not contribute to the frame-wise pose anomaly score.

k-Means as a faster alternative to kNN. We can speed up kNN by reducing the number of samples
via k-means. In Tab. 3, we compare the performance of our method when combined with velocity,
pose, and deep features as well as its approximations based on k-means. Our method still uses kNN
as the anomaly scores are calculated using the sum of distances to nearest neighbor means. This is
much faster than the original kNN as there are fewer means than the number of objects in the training
set. As can be seen, inference time can be significantly improved with a small loss in accuracy.

What are the benefits of pretrained features? Previous image anomaly detection work (Reiss
et al., 2021) demonstrated that using feature extractors pretrained on external, generic datasets (e.g.
ResNet on ImageNet classification) achieves high anomaly detection performance. This was demon-
strated on a large variety of datasets across sizes, domains, resolutions, and symmetries. These rep-
resentations achieved state-of-the-art performance on distant domains, such as aerial, microscopy,
and industrial images. As the anomalies in these datasets typically had nothing to do with velocity
or human pose, it is clear the pretrained features model many attributes beyond velocity and pose.
Consequently, by combining our attribute-based representations with CLIP’s image encoder, we are
able to emphasize both explicit attributes (velocity and pose) derived from real-world priors and
attributes that cannot be described by them, allowing us to achieve the best of both worlds.

Why do we use an image encoder instead of a video encoder? Newer and better self-supervised
learning methods e.g. TimeSformer (Bertasius et al., 2021), VideoMAE (Tong et al., 2022), X-CLIP
(Ni et al., 2022) and CoCa (Yu et al., 2022) are constantly improving the performance of pretrained
video encoders on downstream supervised tasks such as Kinetics-400 (Kay et al., 2017). Hence,
it is natural to expect that video encoders that utilize both temporal and spatial information will
provide a higher level of performance than image encoders that do not. Unfortunately, in preliminary
experiments, we found that features extracted by pretrained video encoders did not work as well a
pretrained image features on the type of benchmark videos used in VAD. this result underscores
the strong generalizability properties of pretrained image encoders, previously highlighted in the
context of image anomaly detection. Improving the generalizability of pretrained video features in
the one-class classification VAD setting is a promising avenue for future work.

6 CONCLUSION

Our paper proposes a simple yet highly effective attribute-based method that pushes the boundaries
of video anomaly detection accuracy and interpretability. In every frame, we represent each object
using velocity and pose representations, which is followed by density-based anomaly scoring. These
simple velocity and pose representations allow us to achieve state-of-the-art in ShanghaiTech, the
most complex video anomaly dataset. When we combine interpretable attribute-based representa-
tions with implicit deep representations, we achieve top video anomaly detection performance with
a 99.1%, 93.6%, and 85.9% AUROC on Ped2, Avenue, and ShanghaiTech, respectively. We also
demonstrated the advantages of our three feature representations in a comprehensive ablation study.
Our method is highly accurate, interpretable, and easy to implement.
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A APPENDIX

In the supplementary, we provide additional examples of frame-level scores predicted by our inter-
pretable method as well as examples of localization. Furthermore, we provide information regarding
the running time of our method.

A.1 RUNNING TIME

We carried out all our experiments on a NVIDIA RTX 2080 GPU. Our preprocessing stage, which
includes object detection and optical flow extraction, takes approximately 80 milliseconds (ms) per
frame. It takes my method approximately 5 ms to compute the velocity extraction, pose extraction,
and deep features extraction stages, combined with anomaly scoring. Our method runs at 12FPS
with an average of 5 objects per frame.

A.2 QUALITATIVE RESULTS

We provide visualization of the anomaly detection process for Avenue and ShanghaiTech in Fig. 4
and Fig. 5, where the anomaly curve shows the anomaly scores across all frames of a video. Our
anomaly scores are highly correlated with the ground-truth occurrence of anomalous events. This
demonstrates the effectiveness of our method. In Ped2, Fig. 6 and Fig. 7 demonstrate the effec-
tiveness of our method, which can easily detect fast-moving objects such as trucks and bicycles.
Accordingly, we can conclude that Ped2 has been practically solved based on the near-perfect re-
sults obtained by our method (as well as many others). Fig. 8 shows that our method is capable of
detecting anomalies within a short timeframe. Fig. 9 and Fig. 10 provide more qualitative informa-
tion regarding our method’s ability to detect anomalies of various types. In this way, our method
achieves a new state-of-the-art in Avenue and ShanghaiTech, surpassing other approaches by a wide
margin.

Figure 4: Frame-level scores and anomaly localization examples for test video 04 from Avenue.
Best viewed in color.

Figure 5: Frame-level scores and anomaly localization examples for test video 03 0059 from Shang-
haiTech. Best viewed in color
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Figure 6: Frame-level scores and anomaly localization examples for test video 04 from Ped2. Best
viewed in color.

Figure 7: Frame-level scores and anomaly localization examples for test video 05 from Ped2. Best
viewed in color.

Figure 8: Frame-level scores and anomaly localization examples for test video 03 from Avenue.
Best viewed in color.

Figure 9: Frame-level scores and anomaly localization examples for test video 01 0025 from Shang-
haiTech. Best viewed in color.
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Figure 10: Frame-level scores and anomaly localization examples for test video 07 0048 from
ShanghaiTech. Best viewed in color.
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