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ABSTRACT

In this paper, we propose a f -divergence Thermodynamic Variational Objective
(f -TVO). f -TVO generalizes the Thermodynamic Variational Objective (TVO)
by replacing Kullback–Leibler (KL) divergence with arbitary differeitiable f -
divergence. In particular, f -TVO approximates dual function of model evidence
f∗(p(x)) rather than the log model evidence log p(x) in TVO. f -TVO is derived
from a deformed χ-geometry perspective. By defining χ-exponential family ex-
ponential, we are able to integral f -TVO along the χ-path, which is the deformed
geodesic between variational posterior distribution and true posterior distribution.
Optimizing scheme of f -TVO includes reparameterization trick and Monte Carlo
approximation. Experiments on VAE and Bayesian neural network show that
the proposed f -TVO performs better than cooresponding baseline f -divergence
variational inference.

1 INTRODUCTION

Variational inference (VI) is a core technique in probabilistic machine learning (Mnih & Gregor,
2014; Mnih & Rezende, 2016; Tucker et al., 2017; Maddison et al., 2017; Paisley et al., 2012;
Salimans et al., 2013; Ranganath et al., 2014; Kucukelbir et al., 2015). Normal Variational inference
tries to perform a tractable posterior distribution approximation for log model evidence estimation
log p(x). Commonly, this is done by introducing a divergence D[q(z|x)||p(z|x)] between variational
distribution q(z|x) and true posterior p(z|x) as a regularization term. Then the evidence lower bound
(ELBO): log p(x)−D[q(z|x)||p(z|x)] is used as a surrogate optimization objective for maximum
likelihood parameter estimation (Hoffman & Johnson, 2016; Duan et al., 2017; Yang, 2017).

Recently, there are serveral directions that generalize normal variational inference. Interested readers
can refer to VI’s background and progression in (Blei et al., 2017; Zhang et al., 2018). One direction
is to explore tighter variational bounds (Burda et al., 2016; Chen et al., 2018; Masrani et al., 2019;
Brekelmans et al., 2020). Among these efforts, the recent Thermodynamic Variational Objective
(TVO) approach connects variational inference with thermodynamic integration. In paricular, TVO
interprets the log model evidence estimation as 1D integral along the geodesic path between joint
distribution of data and hidden variable p(x, z) and variational hidden variable distribution q(z|x).
By properly choosing intergral intervals of Riemannian sum approximations, the TVO approximates
the log likelihood with a series of upper and lower bounds, which are tighter surrogates than the
normal variational inference objectives for model parameter likelihood maximization (Masrani et al.,
2019).

Another direction is trying to extend the normal VI framework by replacing KL divergence with
other statistical divergences. Among these efforts, Rényi’s α-divergence and χ-divergence can be
regarded as the root divergences, which makes many existing divergence as special cases including
KL-divergence. Rényi’s α-VI (Li & Turner, 2016) and χ-VI (Dieng et al., 2017) are stochastic
VI that generalized from stochastic VI (Hoffman et al., 2013) and black-box VI (Ranganath et al.,
2014), and outperform the classical KL-VI in Bayesian regressions and image reconstruction on
some benchmarks. More generally, recent work f -divergence variational inference (f -VI) (Wan
et al., 2020) gives a general framework that includes all divergences from f -divergence family. The
variational objective of f -divergence VI can be regarded as the surrogate bound of dual function of
model evidence f∗(p(x)).
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Divergences f(t) f∗(t) Variational Bound

KL divergence t log t − log t ELBO
KL divergence − log t t log t EUBO
General χn divergence t1−n − t, n ∈ R \ {0, 1} tn − 1 CUBOn
Total Varaition divergence |t− 1| |t− 1| TVD
Rényi α divergence Dα(q||p) = (α− 1)−1 log[1 + (α− 1)Hα(q||p)] RVB

Table 1: Difference divergences and their corresponding f function. Rényi α-divergence is not
f -divergence, but it can be formulated with Hellinger divergenceHα(q||p), which is an f -divergence.

In this paper, we combine the above two directions together by proposing f -TVO that generalizes the
original TVO to arbitary f -divergence in a unified framework. f -TVO approximates dual function
of model evidence f∗(p(x)) rather than the log model evidence log p(x) in TVO. The estimation of
f -TVO is established from a deformed χ-geometry prospective. By defining χ-exponential family
distribution, the computation of f -TVO is integrated over the χ-path, which is the geodesic between
p(x, z) and q(z|x) under χ-geometry. The proposed f -TVO is a tighter bound of dual function of
model evidence f∗(p(x)) rather than the normal variational lower bound in TVO.

Our contributions include the following:
– We enrich the TVO by proposing a unified f-TVO framework that compatible with an amount

of existing divergence, such as KL, α divergence, χ divergence;
– We derive a unified f-TVO bound equiped with the upper/lower bound criteria that improves

many existing bounds, such as ELBO, CUBO, RVB;
– Experiments show that our proposed f-TVO is a better optimization surrogate than corre-

sponding f-VI.
The rest of the paper is organized as follows: Sec. 2 reviews preliminary knowledges for f -divergence
and Thermodynamic Variational Objective, Sec. 3 presents our f -TVO, Sec. 4 extends our approach
to more variants of f -TVO, and Sec. 5 presents our experiment results.

2 PRELIMINARY

In this section, we will review the preliminary knowledge for f -divergence and Thermodynamic
Variational Objective.

2.1 f -DIVERGENCE

f -divergence is a measures of difference between two probability distributions. It can be defined as
follows (Sason & Verdú, 2016).

Definition 1. Given a convex function f with f(1) = 0, then f -divergence from probability distri-
bution q(z) to p(z) is defined as:

Df (p||q) =

∫
f(
q(z)

p(z)
)p(z)dz = Ep[f(

q(z)

p(z)
)] (1)

Many existing well-know divergence can be regarded as special cases of f -divergence by properly
choose the generation function f . Table 1 shows the relationship between the sample divergences
and their corresponding generation function f .

Wan et al.(Wan et al., 2020) proposed a f -divergence variational inference (f -VI) that generalizes
normal variational inference to all f-divergences in a unified framework. f -VI framework is primarily
based on reverse f -divergence (Wan et al., 2020). One can connect forward f -divergence Df (p||q)
with the reverse f -divergence Df (q||p) via dual function f∗ as follows.
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ELBO

TVO log p(x)

Figure 1: Thermodynamic Variational Objective (TVO). Left:evidence lower bound (ELBO); middle:
TVO is a Riemannian sum approximation of log p(x); right: log model evidence log p(x). TVO is a
tighter bound of log p(x) than ELBO.

Definition 2. Given a function f, its dual funtion1 f∗ is defined as:

f∗(t) = t · f(1/t) (2)

The dual function f∗ has the following properties: (1)(f∗)∗ = f , (2)f∗ is convex iff f is convex,
(3)f∗(1) = 0 iff f(1) = 0. f -divergence in equation 1 can be reformulated with the dual function
f∗:

Df (p||q) =

∫
f(
q(z)

p(z)
)p(z)dz =

∫
f∗(

p(z)

q(z)
)q(z)dz = Df∗(q||p) (3)

As shown in the theorem below, f -variational bound is an approximation of the dual function f∗ of
the model evidence p(x):
Theorem 1. The dual function of model evidence f∗(p(x)) is bounded by the f -variational bound
Lf (q, x)

Lf (q, x) = Eq(z|x)[f∗(
p(z, x)

q(z|x)
)] ≥ f∗(p(x)) (4)

where equality is obtained when q(z|x) = p(z|x).

The proof of the theorem is straightforward as f∗ is convex (Wan et al., 2020).

Many well-known variation bounds can be represented in the f -VI framework. For example, f -VI
recovers to ELBO when f = t log t, and f -VI recovers to CUBOn when f = t1−n − t. More details
are shown in the Table 1.

2.2 THERMODYNAMIC VARIATIONAL OBJECTIVE

The evidence lower bound (ELBO) is a lower bound of the log evidence of a generative model p(x, z).
It can be formulated as the difference between log evidence of model evidence log p(x) and KL
divergence of variational posterior distribution q(z|x) and true posterior distribution p(z|x):

ELBO = log p(x)−DKL(q(z|x)||p(z|x)) (5)

The Thermodynamic Variational Objective (TVO) gives a tighter bound of log p(x) than ELBO. As
shown in Fig. 1, TVO is a Riemannian sum of integral along the geometric path between the model
and inference network:

1

K

(
ELBO +

K−1∑
k=1

Eπβk [log
p(x, z)

q(z|x)
]
)

︸ ︷︷ ︸
TVO

≤
∫ 1

0

Eπβ [log
p(x, z)

q(z|x)
]dβ = log p(x) (6)

1Note:dual function here is different from Fenchel conjugate function: fc(y) = supx∈dom f (y
>x− f(x)).
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where β = [β0, β1, · · · , βK ] is a partition between [0,1], where β0 = 0, and βK = 1, πβ is
the normalized geometric combination of p(x, z) and q(z|x), i.e. π̃β = q(z|x)1−βp(x, z)β and
πβ = π̃β/Zβ , where Zβ is a normalization constant for each β. One can verify that πβ is a member
of exponential family distribution, no matter what q(z|x) and p(x, z) are:

πβ(z|x) = π0(z|x) exp{β · T (x, z)− φ(x;β)} (7)

where T (x, z) = log p(x,z)
q(z|x) , φ(x;β) is the log partition function that normalize over z.

3 χ-THERMODYNAMIC VARIATIONAL OBJECTIVE

In this section, we establish our theory for f -Thermodynamic Variational Objective (f -TVO). We
first connect f -divergence with χ-geometry. Then, we present f -TVO as an integration along the
χ-path. Lastly, we specify the computation process of f -TVO and its gradients.

3.1 χ-LOGARITHM AND χ-EXPONENTIAL

We first define a generalized χ-logarithm function for a positive non-increasing function χ:

logχ(u) =

∫ u

1

χ(v)dv (8)

which is different from the definition in (Naudts, 2011; Amari, 2016). Notice that equation 8 gives
normal log function log u when χ(v) = 1

v . The inverse of the χ-logarithm is called χ-exponential:

expχ(u) = 1 +

∫ u

0

ψ(v)dv (9)

where ψ is an auxiliary function. One can determine ψ for each logχ(u), e.g. ψ(v) = exp(v) when
logχ(u) = log u. χ-Logarithm and χ-Exponential have the following properties:

(1)
d

du
expχ(u) = ψ(u), (2) u = expχ(logχ(u)), (3)

1

χ(u)
= ψ(logχ(u)).

For any divergence with convex diffrentiable generation function f with f(0) = 1, there exists a
continuous positive non-increasing function χ that connects the dual function f∗:

f∗(u) = − logχ(u) = −
∫ u

1

χ(v)dv (10)

then f -divergence can be represented as

Df (q||p) = Df∗(p||q) = −
∫
p(z) · logχ(

q(z)

p(z)
)dz (11)

3.2 THERMODYNAMIC INTEGRATION

Using the χ-logarithm function and χ-exponential function defined in equation 8 and equation 9, we
can define a exponential family distribution under χ-geometry:

Definition 3. χ-Exponential Family Distribution:

logχ
p(x, θ)

c(x)
= θ · x− Φ(θ) (12)

or equivalently:

p(x, θ) = c(x) expχ{θ · x− Φ(θ)} (13)

where x is random variable, θ is parameter, Φ(θ) is the partition function, c(x) is the normalization
term.
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Given two unnormalized distribution π̃0(z) and π̃1(z), we define an unnormalized distribution that is
the log χ interpolation between π̃0(z) and π̃1(z):

logχ(π̃β(z)) = (1− β) logχ(π̃0(z)) + β logχ(π̃1(z)) (14)

Its normalized distribution is defined as:

πβ(z) =
π̃β(z)

Zβ
(15)

where Zβ =
∫
π̃β(z)dz. It’s easy to show that: π̃β(z) is on the log χ geodesic between π̃0(z) and

π̃1(z) with χ-Exponential Family Distribution as:
Theorem 2. πβ is also an χ-exponential family distribution, no matter π̃0(z) and π̃1(z).

Proof.

π̃β(z) = expχ((1− β) logχ π̃0(z) + β logχ π̃1(z))

= expχ(logχ π̃0(z) + β(logχ π̃1(z)− logχ π̃0(z))) (16)

By defining the potential energy function: Uβ(z) = logχ π̃β(z), then we can estimate the logχ of the
ratio of the normalizing constants via thermodynamic integration:

logχ Z1 − logχ Z0 =

∫ 1

0

∫
χ(Zβ)

χ(π̃β(z))
(logχ π̃0(z)− logχ π̃1(z))dzdβ (17)

Notice that variational inference can be connected with thermodynamic integration if we set:

π̃0(z) = q(z|x), Z0 =

∫
q(z|x)dz = 1

π̃1(z) = p(x, z), Z1 =

∫
p(x, z)dz = p(x) (18)

then the logχ of model evidence is the thermodynamic integration (TI):

logχ p(x) =

∫ 1

0

Sβdβ (19)

where Sβ =
∫ χ(Zβ)
χ(π̃β(z))

(logχ q(z|x)− logχ p(x, z)))dz

Recall the relation between f -divergence and χ function in equation 10, then logχ p(x) = f∗(p(x))
is dual function f of the model evidence, which corresponds to the f -VI in (Wan et al., 2020).

To approximate f -TVO defined in equation 17, we pick the a list of ordered partitions β =
[β0, β1, · · · , βK ], where β0 ≤ β1 ≤ · · · ≤ βK , β0 = 0, βK = 1, then our f -TVO is the left
Riemannian approximation of TI:

f -TVOL(K) =

K∑
k=1

∆kSβk−1
, (20)

where ∆k = βk − βk−1.

3.3 COMPUTATION

In this section, we show how to efficiently compute the f -TVO.

We first rewrite Sβ in equation 17 into

Sβ =

∫
χ(Zβ)

χ(π̃β(z))
(logχ π̃0(z)− logχ π̃1(z))dz

= Eq(z)[
χ(Zβ)

χ(π̃β(z))
(logχ π̃0(z)− logχ π̃1(z))/q(z|x)] (21)
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We apply the reparameterization trick to estimate Sβ . We assume there is a mapping gφ(ε) that
satisfies: z = gφ(ε). Then the expectation of arbitrary function F (z) over distribution q(z) can
be computed as Eq(z)[F (z)] = Eε[F (gφ(ε))]. In particular, we use the prevalent Gaussian repa-
rameterization: z ∼ N (µ,Σ), i.e. z = µ + Σ

1
2 ε, ε ∼ N (0, I). Then Sβ can be reformulated

as:

Sβ = Eε[
χ(Zβ)

p(ε)χ(π̃β(gφ(ε)))
(logχ p(ε)− logχ p(x, gφ(ε)))] (22)

where we define q(z|x) = p(ε) and p(x, z) = p(x, gφ(ε)) in equation 19. Empirically, we can
compute Sβ as:

Ŝβ =
1

N

N∑
n=1

[wn(logχ p(εn)− logχ p(x, gφ(εn)))] (23)

where wn = χ(
∑N
n=1 π̃β(gφ(εn)))/p(εn)χ(π̃β(gφ(εn))).

In practice, we split the computation of Ŝβ into two parts: Ŝβ = L−R:

L =
1

N

N∑
n=1

[wn logχ p(εn)]

R =
1

N

N∑
n=1

[wn logχ p(x, gφ(εn))] (24)

This is because we use log p(x, gφ(εn)) and log p(εn)) during our computation to avoid numerical
overflow or underflow. All the intermediate sum operations are performed by logsumexp operation
until we get logL and logR, then we use exponential operation to complete the computation.

4 GENERALIZING THERMODYNAMIC OBJECTIVES

Recall f -TVO in equation 20 is left Riemannian approximation of Thermodynamic integration.
Similarly, We can also have right Riemannian approximation of f -TI:

f -TVOR(K) =

K∑
k=1

∆kSβk (25)

Both left and right Riemannian approximation corresponds to existing variational bounds. For
example, left single Riemannian approximation of the KL-TVO equals the ELBO, while the right
single Riemannian approximation equals to the EUBO. Also, it is easy to verify if the dual function
f∗ is increasing (decreasing), then left Riemannian approximation is an upper (lower) bound of
Thermodynamic integration, while right Riemannian approximation is a lower (upper) bound of
Thermodynamic integration.

In addition to the left or right Riemannian approximation of Thermodynamic integration, we can
also define a “zig-zag” (z) approximation of Thermodynamic integration, which combines left and
right Riemannian approximation. As shown in FIg. 2, the “zig-zag” Thermodynamic objective can be
formulated as:

f -TVOZ =

K∑
k=1

∆k[1(k%2 = 1)Sβk−1
+ 1(k%2 = 0)Sβk ] (26)

where 1(A) is indicator function, i.e. 1(A) = 1 when condition A is true, 1(A) = 0 when condition
A is false.

5 EXPERIMENTS

In this section, we evaluate the effectiveness and the wide applicability of f -TVO on two tasks.
f -TVO is first used as a surrogate optimization objective of f -VI in a Bayesian neural network for
linear regression, then used in a VAE for image reconstruction and generation. For both tasks, we use
Adam as our optimizer with recommended parameters in (Da, 2014). For all experiments, we use
even partition of the temperature for Riemannian integration.
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(a) !-TVO% (b) !-TVO& (c) !-TVO'

Figure 2: Variants of f -Thermodynamic Variational Objective (f -TVO). (a)Left Riemannian approxi-
mation; (b) Right Riemannian approximation; (c)zig-zag Riemannian approximation.

Dataset KL-VI KL-TVO χ-VI χ-TVO α-VI α-TVO fc1-VI fc1-TVO

Caltech 101 73.72 73.51 73.84 73.61 74.95 74.23 74.90 74.62
Frey Face 160.85 160.58 160.61 160.32 161.06 160.85 160.73 160.35
MNIST 59.03 58.89 62.15 61.77 61.88 61.42 59.47 59.21
Omniglot 109.65 109.52 110.57 109.89 110.75 110.12 108.31 108.09

Table 2: Test reconstruction errors of f -TVO VAEs. Lower is better. In most cases, f -TVO
outperform corresponding f -VI.

5.1 BAYESIAN VARIATIONAL AUTOENCODER

f -TVO is used in Bayesian VAE for image reconstruction task on datasets including Caltech 101
Silhouettes (Cal), Frey Face (Fre), MNIST (MNI), and Omniglot (Omn). We have replaced the
conventional ELBO loss function of VAE with the proposed f -TVOs that correspond to flexible f -
divergences. We test and compare the f -TVO VAEs associated with three well-known f -divergences
(KL-divergence, Renyi’s α-divergence with α = 3, and χ-divergence with n = 2). We also try a
customized divergence which is defined by its dual function f∗c1(t) = log2 t+ log t.

We use the left Riemannian approximation with 5 partitions, i.e. f -TVOL(5) in our setting. As shown
in Table 2, the proposed f -TVOs outperforms the corresponding baselines in most cases.

Effects of numbers of partitions. Here, we study the effects of different numbers of partitions on
Bayesian variational autoencoder in our experiments. We try partition numbers K = 1, 2, 5, 10 in
the f -TVO, respectively. As shown in Fig. 3, we can see that even partition number is K = 2 can
improve the baseline performance.

Effects of f -TVO variants. We also study the effects of f -TVO variants defined in Sec. 4. We try all
3 variants f -TVOL,f -TVOR and f -TVOZ on Bayesian variational autoencoder in our experiments.
As shown in Fig. 4, three f -TVO variants achieve similar performance.

5.2 BAYESIAN NEURAL NETWORKS

Our experiments of Bayesian neural network are performed on regression tasks. We generally follow
the experiments settings as in (Wan et al., 2020). In particular, We use twelve datasets that are
collected from the UCI dataset repository, where each dataset is randomly split into 90%/10% for
training and testing. The model is a single-layer neural network with 50 hidden units (ReLUs). We
use θ ∼ N (θ; 0, I) as a Gaussian prior of the network weights and Gaussian approximation to the
true posterior.

In the experiments, we try different f -TVOs, including corresponds to KL TVO, α-divergence
TVO, where α = 3, χ-square divergence TVO. Following (Wan et al., 2020), we also define a
custom divergence, which is defined by its dual function fc2 = f̃∗(t) − f̃∗(1), where f̃∗(t) =

7
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(a) (b)

(c) (d)

Figure 3: Effect of partition numbers. We evaluate f -TVO with partition numbers [1,2,5,10] on
datasets (a)Caltech (b) Frey Face (c) MNIST (d) Omniglot.

Dataset KL-VI KL-TVO χ-VI χ-TVO α-VI α-TVO fc2-VI fc2-TVO

Airfoil 2.18 2.07 2.36 1.96 2.43 2.14 2.35 2.20
Aquatic 1.17 1.11 1.25 1.12 1.16 1.11 1.14 1.05
Boston 2.88 2.69 2.99 2.80 2.89 2.73 2.86 2.73
Building 1.56 1.38 2.81 2.36 1.87 1.64 1.85 1.65
CCPP 4.19 3.96 4.26 3.96 4.20 3.86 4.35 4.08
Concrete 5.40 5.38 3.51 3.37 5.40 5.24 5.26 5.11
Fish Toxicity 0.95 0.88 0.92 0.89 0.91 0.86 0.89 0.85
Protein 1.96 1.91 2.46 2.24 1.85 1.74 2.00 1.89
Real Estate 7.53 7.39 7.51 7.33 7.50 7.40 7.62 7.45
Stock 3.95 3.78 3.93 3.74 3.99 3.84 3.95 3.81
Wine .658 .648 .647 .639 .643 .635 .665 .649
Yacht 0.79 0.76 1.23 1.23 1.05 0.95 1.22 1.18

Table 3: Test RMSE of Bayesian Neural Network for f -VIs and f -TVOs. Lower is better. In most
cases, f -TVOs outperform corresponding f -VIs.

−1/6 · (log t + t0)3 − 1/2 · (log t + t0) − 1. We use the left Riemannian approximation with 5
partitions, i.e. f -TVOL(5) in our setting. As shown in Table 3, the proposed f -TVOs outperform the
corresponding baselines.

6 CONCLUSION

In this paper, we have proposed a general f -TVO framework that is a tighter evidence bounds
than f -VI. f -TVO unifies all differential f -divergence into TVO from a χ-geometry perspective.
By connecting f -divergence with χ-geometry, f -TVO is the Riemanian sum of thermodynamic
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(a) (b)

(c) (d)

Figure 4: Effect of f -TVO variants. We evaluate f -TVO with all 3 variants: left riemannian
approximation, right Riemannian approximation, “zig-zag” Riemannian approximation, on datasets
(a)Caltech (b) Frey Face (c) MNIST (d) Omniglot.

Dataset KL-VI KL-TVO χ-VI χ-TVO α-VI α-TVO fc2-VI fc2-TVO

Airfoil 2.22 2.14 2.30 2.02 2.40 2.21 2.29 2.16
Aquatic 1.57 1.52 1.59 1.47 1.54 1.48 1.54 1.39
Boston 2.49 2.32 2.54 2.40 2.48 2.36 2.49 2.38
Building 6.90 6.71 6.85 6.75 6.79 6.56 6.74 6.58
CCPP 2.84 2.65 2.93 2.76 2.84 2.57 2.99 2.80
Concrete 3.23 3.02 2.75 2.51 3.12 2.87 3.10 2.83
Fish Toxicity 1.35 1.36 1.27 1.25 1.31 1.26 1.32 1.27
Protein 2.12 1.91 2.11 1.97 2.14 1.90 2.25 2.06
Real Estate 3.55 3.40 3.69 3.45 3.59 3.38 3.65 3.51
Stock -1.08 -1.12 -1.08 -1.06 -1.10 -1.08 -1.14 -1.18
Wine .975 .974 .970 .966 .971 .965 .978 .970
Yacht 1.72 1.68 1.88 1.82 1.87 1.87 2.02 1.95

Table 4: Test negative log-likelihood of Bayesian Neural Network for f -VIs and f -TVOs. Lower is
better. In most cases, f -TVOs outperform corresponding f -VIs.

integration along the geodesic between q(z|x) and p(x, z) under χ-geometry. Empirical experiments
of some instances of f -TVO on the popular benchmarks show the superior performance than state-
of-the art results, which imply the flexibility and effectiveness of f -TVO. Future work on f -TVO
may include more efficient f -TVO optimization methods, and more explorations on the properties of
χ-geometry.
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