
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BICERT: A BLINEAR MIXED INTEGER PROGRAMMING
FORMULATION FOR PRECISE CERTIFIED BOUNDS
AGAINST DATA POISONING ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data poisoning attacks pose one of the biggest threats to modern AI systems,
necessitating robust defenses. While extensive efforts have been made to develop
empirical defenses, attackers continue to evolve, creating sophisticated methods
to circumvent these measures. To address this, we must move beyond empirical
defenses and establish provable certification methods that guarantee robustness.
This paper introduces a novel certification approach using Bilinear Mixed Integer
Programming (BMIP) to compute sound, deterministic bounds that provide such
provable robustness. Using BMIP, we compute the reachable set of parameters
that could result from training with potentially manipulated data. A key insight
to make this computation feasible is relaxing the reachable parameter set to a
convex set between training iterations. At test time, this parameter set allows us
to predict all possible outcomes, guaranteeing robustness. Our BMIP approach is
more precise than previous methods, which rely solely on interval and polyhedral
bounds. Crucially, it overcomes the fundamental limitation of prior approaches
where parameter bounds could only grow, often uncontrollably. We show that
these tighter bounds eliminate a key source of divergence issues, resulting in more
stable training and higher certified accuracy.

1 INTRODUCTION

Date poisoning attacks are one of the most significant threats to the integrity of machine learning
models today. Attackers can potentially exert far-reaching influence by poisoning ubiquitous foun-
dation models that are widely used, or targeting systems in critical applications, such as finance,
healthcare, or autonomous decision-making. These attacks aim to inject malicious data into the
training process, leading the model to make incorrect or harmful predictions during deployment. The
recent trend of training foundation models on massive datasets scraped from all available sources
has exacerbated this threat, as data curation on this scale is nearly impossible (Wan et al., 2023;
Carlini et al., 2024). Government agencies across the US and Europe have recognized poisoning
as one of the fundamental threats to AI systems and highlight the need for robust defenses in their
respective reports (ENISA, 2020; Vassilev et al., 2024) and legislation (European Union, 2024).

Identifying this threat, many empirical defenses have been developed to mitigate the risks (Cinà
et al., 2023). These approaches typically use a combination of data filtering, robust training, and
model inspection to detect or prevent the influence of poisoning attacks. However, their empirical
nature means they can detect the presence of specific attacks but cannot guarantee their absence. As
a result, more sophisticated attacks have been developed to circumvent these defenses (Suciu et al.,
2018). A recent line of work explores rigorous, provable guarantees that bound the influence that
poisoning attacks can have on a model’s predictions (Lorenz et al., 2024; Sosnin et al., 2024). These
methods are based on test-time certifiers (Gowal et al., 2018; Zhang et al., 2018) and use interval and
polyhedral constraints to compute upper and lower real-valued bounds for each parameter during
training. These parameter intervals bound the influence that data perturbations can have on the
trained model. These works are crucial, as they are the first to provide sound, deterministic bounds
on the model parameters and, consequently, an adversary’s influence on the training.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, while these types of bounds have been shown to be a good trade-off between preci-
sion and computational efficiency for test-time certification (Li et al., 2023), the significant over-
approximations of polyhedral constraints limit the method’s scalability for training. Lorenz et al.
(2024) have analyzed this limitation and show that interval bounds can cause the training to diverge.

This work addresses the imprecisions of prior methods by proposing a more precise certification
method BiCert. We formulate certified training as an optimization problem with bilinear mixed in-
teger constraints, which can be solved without over-approximations. Since solving an optimization
problem across the entire computational graph of training is computationally infeasible even for
small models, we strategically cut the computational graph after each parameter update, solving the
optimization problem in parameter space. We demonstrate that the bounds achieved by this method
remain sound while maintaining computational feasibility, and solve the fundamental limitations of
prior methods. An experimental evaluation validates our method, confirming our theoretical analysis
and comparing it to prior work. The results show state-of-the-art performance, significantly outper-
forming the baselines for larger perturbation radii and demonstrating improved training stability.

2 RELATED WORK

There are two major lines of work on certified defenses against training-time attacks: ensemble-
based methods and bound-based methods.

Ensemble-Based Methods. Ensemble-based methods are typically based on either bagging or
randomized smoothing. Wang et al. (2020), Rosenfeld et al. (2020), and Weber et al. (2023) extend
Randomized Smoothing (Cohen et al., 2019) to training-time attacks. While Wang et al. (2020) and
Weber et al. (2023) compute probabilistic guarantees against ℓ0 and ℓ2-norm adversaries respec-
tively, Cohen et al. (2019) provide these guarantees against label flipping attacks.

A similar line of work provides probabilistic guarantees against training-time attacks using bagging.
Jia et al. (2021) find that bagging’s data sub-sampling shows intrinsic robustness to poisoning. Wang
et al. (2022) enhance the robustness guarantees with advanced sampling strategies, while Levine &
Feizi (2021) introduce a deterministic bagging method. Zhang et al. (2022) adapt this approach
for backdoor attacks with triggers. Recent studies also explore different threat models, including
temporal aspects Wang & Feizi (2023) and dynamic attacks Bose et al. (2024).

Bound-Based Methods. In contrast to these ensemble-based sampling methods, Lorenz et al.
(2024) and Sosnin et al. (2024) propose to compute sound, deterministic bounds of the model’s pa-
rameters during training. Both methods share the same underlying principle. They define a polytope
of allowed perturbations in input space and propagate it through the forward and backward passes
during training. By over-approximating the reachable set with polytopes along the way, they com-
pute sound, worst-case bounds for the model’s gradients. Using these bounds, the model parameters
can be updated with sound upper and lower bounds, guaranteeing that all possible parameters re-
sulting from the data perturbations lie within these bounds. Lorenz et al. (2024) use intervals to
represent these polytopes and extend the approach to also include test-time perturbations. Sosnin
et al. (2024) use a combination of interval and linear bounds and additionally limit the number of
data points that can be perturbed. Both approaches’ biggest limitations are the significant over-
approximations caused by using polytopes to represent the reachable sets, which can lead to loose
bounds and divergence issues.

3 CERTIFIED TRAINING USING BILINEAR MIXED INTEGER PROGRAMMING

The goal of our method is to bound the error that bounded perturbations to the training data can
introduce on the final machine learning model. However, precisely computing these bounds is in-
feasible even for small model sizes, as it has been shown that this is a ΣP

2 -hard problem (Marro &
Lombardi, 2023). The challenge therefore lies in finding a feasible over-approximation, which (i)
ensures sound bounds, (ii) makes as few over-approximations as possible, and (iii) remains compu-
tationally feasible.

Previous works (Lorenz et al., 2024; Sosnin et al., 2024) compute sound bounds using In-
terval Bound Propagation (IBP). However, their scalability is limited due to significant over-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ReLU

ReLU

Figure 1: Illustration of a single forward and backward pass for a simplified model.

approximations of interval bounds. While over-approximations are undesirable in any certification
task, they are especially costly during training. Lorenz et al. (2024) show that over-approximations
can cause the training to diverge, making it prudent to minimize them.

There are two leading causes of divergence when training with interval bounds: (i) IBP does not
preserve the relationship between input and output variables and therefore over-approximates even
simple operations such as addition and subtraction. (ii) The size of bounds for parameters can only
grow due to the interval subtraction in the parameter update step (section 4). This motivates the
main design decisions of our method using Bilinear Mixed Integer Programming. BMIP allows us
to compute exact bounds for one training iteration, including forward pass, loss, backpropagation,
and parameter updates. In an ideal world with unlimited compute, we would propagate these exact
bounds throughout the entire training and inference process. However, this is computationally in-
feasible. We therefore relax the bounds for the model parameters to a convex set after each training
iteration. This cuts the verification graph to a single training iteration while avoiding the divergence
issues of previous methods, as we will show in section 4.

3.1 ILLUSTRATIVE EXAMPLE

Before we formally define BiCert, we illustrate it on a simplified example (fig. 1). This illustration
employs a model with only two inputs, x1 and x2. The first operation is a fully connected layer
(without bias) with weights w11, w12, w21, and w22. This linear layer is followed by a ReLU non-
linearity and a second fully connected layer with weights w5 and w6. We use (x1 = 1, x2 = 1)
as an example input with target label t = 1. We set the perturbations ϵ = 1, which leads to upper
and lower bounds of [0, 2] for both inputs. We color all equations that belong to the optimization
problem in teal. The full optimization problem with all constraints is in appendix A.

Forward Pass. The first step is to encode the forward pass through the model as constraints of the
optimization problem. We start with the input by defining x1 and x2 as variables of the optimization
problem. By the definition of the threat model, their constraints are 0 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

For the fully connected layer, we encode the variables x3 and x4 with respect to x1 and x2. We need
the parameters wij as variables to do so, which are set to their initial values w11 = 1, w12 = 1,
w21 = 1, and w22 = −1. One might be tempted to substitute these variables with their values
to simplify the optimization problem. However, this would cause information loss, which would
decrease the precision of the final solution. This effect will amplify in later rounds where wij

are no longer single values but intervals with upper and lower bounds. We add the constraints
x3 = w11x1 + w21x2 and x4 = w12x1 + w22x2 to the optimization problem. Since we multiply
two variables with each other, the problem becomes bilinear, which is one of the reasons we require
a bilinear optimization problem.

The ReLU non-linearity can be directly encoded as a piecewise linear constraint: x5 = max(0, x3),
or, equivalently, x5 = x3 if x3 > 0, and x5 = 0 otherwise. x6 is defined accordingly. ReLUs are
the main reason we require Mixed Integer Programming, as they allow us to encode piecewise linear
constraints using binary decision variables. x7 is a linear combination of the two outputs, adding
the constraint x7 = w5x5 +w6x6 with w5 = −1 and w6 = 1. At this stage, we can already see that
BiCert’s bounds are more precise. Computing the bounds for x7 using FullCert’s IBP (Lorenz et al.,
2024), we get −4 ≤ x7 ≤ 2, while solving the optimization problem gives −4 ≤ x7 ≤ 0 with a
tighter upper bound.

Loss. After the forward pass through the model, we encode the loss function as constraints to the
optimization problem. We use the hinge loss L(x7, t) = max(0, 1− tx7) = max(0, 1− x7) in this
example because it is a piecewise linear function and therefore can be exactly encoded, analogous
to ReLUs. General losses can be supported by bounding the function with piecewise linear bounds.

Backward Pass. For the backward pass, we need to compute the loss gradient for each parameter
using the chain rule. It starts with the last layer, which is ∂L

∂x7
= −1 if x7 ≤ 1, 0 otherwise. This is

also a piecewise linear function and can be encoded as a constraint to the optimization problem.

The gradients for the linear layer x7 = w5x5 + w6x6 can be determined using the chain rule:
∂L
∂w5

= x5
∂L
∂x7

and ∂L
∂x5

= w5
∂L
∂x7

, with corresponding expressions for x6 and w6. Given that
the outer gradient ∂L

∂x7
, as well as x5 and w5, are variables, this backward propagation leads to

bilinear constraints. The derivatives of ReLU are piecewise linear, resulting in ∂L
∂x3

= 0 if x3 ≤ 0

and ∂L
∂x3

= ∂L
∂x5

otherwise. The derivatives for the parameters w11, w12, w21, and w22 function
analogously to w5 and w6.

Parameter Update. The last step is the parameter update. We also encode the new parameters as
a constraint: w′

i = wi−λ ∂L
∂wi

. Theoretically, we could directly continue with the next forward pass,
using the new parameters w′

i, resulting in an optimization problem that precisely encodes the entire
training. However, this is computationally infeasible in practice. We therefore relax the constraints
after each parameter update by solving the optimization problem for each parameter: w′

i = minw′
i,

and w′
i = maxw′

i, subject to the constraints which encode the forward and backward passes from
above. w′

i and w′
i are real-valued constraints that guarantee w′

i ≤ w′
i ≤ w′

i. This leads to valid
bounds for all parameters in consecutive iterations, as mentioned above.

3.2 FORMAL DEFINITION

Before we introduce the details of our method, we must first define the training-time certification
problem and establish the soundness of the general approach. To certify the robustness of the
model’s training, we have to define a precondition for which the certificate should hold. For training-
time certification, this is the formalization of the adversary’s capabilities to perturb the training data.
We define all valid dataset permutations as a family of datasets, similar to prior work (Eq. (2) in
Lorenz et al. (2024) and Section 3.1 in Sosnin et al. (2024)):

Definition 1 (Family of Datasets) A family of datasets Dϵ
p is the set of all datasets that can be

produced by perturbing data points x from the original dataset D within an ℓp ball:

Dϵ
p :=

{
D′ | ∀(x′, y′) ∈ D′∃(x, y) ∈ D ∧ ∥x′ − x∥p ≤ ϵ ∧ y′ = y

}
. (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

For continuous domains of x (e.g., Rd), the cardinality of Dϵ
p is generally infinite.

The final certificate should guarantee that at test time, the model’s predictions are independent of the
training data perturbation. Given a gradient-based training algorithm A (e.g., SGD), dataset D, and
model f with parameters θ, we can formalize training as θ = A(D, θ0), where θ0 is the parameter
initialization. This allows us to define the certificate as follows:

Definition 2 (Certificate) For test input x and its label y, the certificate guarantees that

fθ′(x) = y ∀D′ ∈ Dϵ
p ∧ θ′ = A(D′, θ0). (2)

The equation holds if we can guarantee that for all perturbed datasets in Dϵ
p the model predicts the

same label.

Solving this problem is, while theoretically possible, typically infeasible in practice. The compu-
tational graph of training a model is deep, especially for larger models and datasets. We therefore
divide the problem into two steps: (1) find sound bounds on the model’s parameters after training,
and (2) based on these parameter bounds, check whether the prediction is correct for all parameters
within those bounds. This division has an additional bonus: because the training, which is the most
costly part of the computation, is independent of the test sample x, we only have to compute the
parameter bounds once and can then re-use them for multiple test samples.

Definition 3 (Parameter Bounds) To formalize this, we define bounds in parameter space that con-
tain all parameter configurations that could result from training on a dataset in Dϵ

p:

θ ≤ A(D′, θ0) ≤ θ ∀D′ ∈ Dϵ
p. (3)

Instead of solving eq. (2), we can then solve the simplified version:

Proposition 1 For valid parameter bounds
[
θ, θ

]
according to definition 3, the following equation

implies that definition 2 holds:

fθ′(x) = y ∀θ′ ∈
[
θ, θ

]
. (4)

Proof: it holds that ∀D′ ∈ Dϵ
p ∧ θ′ = A(D′, θ0) =⇒ θ′ ∈

[
θ, θ

]
according to definition 3.

Substituting θ′, eq. (4), therefore implies that eq. (2) holds. Note that the inverse is not necessarily
true, as definition 3 does not require the bounds to be tight.

Splitting the test-time inference makes the trained model reusable and the test-time inference com-
putationally feasible. However, the computational graph for model training is still too deep, as it
spans multiple iterations of forward and backward passes. To solve this, we further split the prob-
lem after each parameter update by computing parameter bounds as before. We refine eq. (3) and
consider bounds

[
θi, θi

]
after iteration i of training algorithm A:

θi ≤ Ai (D
′, θ′) ≤ θi ∀D′ ∈ Dϵ

p, θ
′ ∈

[
θi−1, θi−1

]
, (5)

with θ0 = θ0 = θ0 and Ai being the i-th iteration of training algorithm A. This relaxation is sound
for all i by construction, and proposition 1 holds for the bounds after each iteration. In the end, this
results in n+1 problems to be solved, where n is the number of iterations of the training algorithm.

3.3 BICERT: BOUNDS VIA BILINEAR MIXED INTEGER PROGRAMMING

The key innovation of our method BiCert is the approach to solving eq. (5). Using Bilinear
Mixed Integer Programming, we can compute an exact solution for each iteration, avoiding over-
approximations. For each training iteration, we build an optimization problem over each model
parameter, with the new, updated value as the optimization target. Dϵ

p, the current model parame-
ters, the transformation functions of each layer, the loss, the gradients of the backward pass, and the
parameter update are encoded as constraints. This leads to 2 ∗m optimization problems for a model

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

with m parameters of the form

min/max θji+1, j = 1, . . . ,m

subject to Input Constraints
Parameter Constraints
Layer Constraints
Loss Constraints
Gradient Constraints
Parameter Update Constraints.

(6)

The objectives are the parameters, which we maximize and minimize independently to compute
their upper and lower bounds. The constraints are the same for all parameters and only have to be
constructed once. We present these constraints for fully-connected models with ReLU activation
below.

Input Constraints. The first set of constraints encodes the allowed perturbations, in this case, the
ℓ∞ norm with radius ϵ, where o

(0)
k are the auxiliary variables encoding the n input features:

o
(0)
k ≤ xk + ϵ, k = 1, . . . , n o

(0)
k ≥ xk − ϵ, k = 1, . . . , n. (7)

Parameter Constraints. Parameters have bounds starting from the second iteration, as discussed
above. We encode them as:

θji ≤ θ
j

i , j = 1, . . . ,m θji ≥ θji , j = 1, . . . ,m. (8)

Linear Layers. Linear layer constraints are straight-forward, as they are linear combinations of
the layer’s inputs o(l−1)

v , and the layer’s weights w(l)
uv ∈ θi−1 and biases b(l)u ∈ θi−1:

o(l)u =
∑
v

w(l)
uvo

(l−1)
v + b(l)u , u = 1, . . . ,

∣∣∣o(l)∣∣∣ . (9)

This results in bilinear constraints, as the layer’s parameters are multiplied by the inputs, both of
which are variables of the optimization problem.

ReLU Layers. ReLUs are encoded as piecewise-linear constraints, e.g., via Big-M or SOS:

o
(l)
i =

{
0 if o(l−1)

u ≤ 0

o
(l−1)
u otherwise

, u = 1, . . . ,
∣∣∣o(l)∣∣∣ . (10)

Loss Function. We use the margin loss because it is piecewise linear, and we can therefore encode
it exactly. For other loss functions, we can use (piecewise) linear relaxations. With the last-layer
output o(L), the ground-truth label y, and auxiliary variable J , we define the constraint as eq. (11):

J = max
(
0, 1− yo(L)

)
(11)

∂J

∂o(L)
=

{
−y if yo(L) ≤ 1

0 otherwise
(12)

Loss Gradients. The derivative of the margin loss is also piecewise linear (eq. (12)).

ReLU Gradients. The local gradient of the ReLU function is also piecewise linear (eq. (13)).
Multiplication with the upstream gradient results in a piecewise bilinear constraint (eq. (14)).

∂x
(l)
i

∂x
(l−1)
i

=

{
0 if x(l−1)

i ≤ 0

1 otherwise
(13)

∂L

∂x
(l−1)
i

=
∂L

∂x
(l)
i

∂x
(l)
i

∂x
(l−1)
i

(14)

Linear Gradients. All partial derivatives for linear layers are bilinear:

∂J

∂o
(l−1)
u

=
∑
v

wuv
∂L

∂o
(l)
v

(15a) ∂J

∂w
(l)
uv

= o(l−1)
u

∂J

∂o
(l)
v

(15b)
∂J

∂b
(l)
u

= ou
∂J

∂o
(l)
u

(15c)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: BMIP Training
Input: Dataset D, Initial parameters θ0 ∈ Rm, Perturbation size ϵ ∈ R, Num iterations n ∈ N
Output: Parameter bounds θn ∈ Rm, θn ∈ Rm

1 Initialize θ0, θ0 ← θ0;
2 for i = 1 to n do
3 bmip← initialize optimization problem();
4 bmip.add parameter constraints(θi−1, θi−1);
5 for x ∈ D do
6 bmip.add input constraints(x, ϵ);
7 for each layer l = 1 to L do
8 bmip.add layer constraints(l);
9 bmip.add loss constraints();

10 bmip.add loss gradient constraints();
11 for each layer l = L to 1 do
12 bmip.add layer gradient constraints(l);

13 bmip.add parameter update constraints();
14 θi = bmip.minimize(θi);
15 θi = bmip.maximize(θi);

16 return θn, θn;

Parameter Updates. The last set of constraints is the parameter updates. It is essential to include
this step before relaxation because the old parameters are contained in both subtraction operands.
Solving this precisely is a key advantage compared to prior work (section 4).

θji+1 = θji − λ
∂J

∂θj
, j = 1, . . . ,m. (16)

3.4 ALGORITHMIC IMPLEMENTATION

We implement this optimization procedure according to algorithm 1, effectively unrolling the train-
ing procedure. For each iteration of the training algorithm (line 2), we initialize an optimization
problem (line 3) and add the current parameter bounds as constraints (line 4). For each data point
x, we add the input constraints (line 6), layer constraints (line 8), loss constraints (line 9), derivative
constraints (lines 10-12), and parameter update constraints (line 13). We then solve the optimization
problem twice for each parameter, once for the upper and once for the lower bound (lines 14-15).
The algorithm returns the final parameter bounds.

Once the model is trained, we can use the final parameter bounds for prediction (algorithm 2). The
principle is the same as encoding only the forward pass from training (lines 1-5). For classification,
we can then compare the logit and check whether one is always greater than all others (lines 6-12).
If so, we return the corresponding class (line 12). Otherwise, we cannot guarantee a prediction,
and the algorithm has to abstain (line 13). The post-condition (lines 6-13) can be adjusted, e.g., for
regression tasks.

4 THEORETICAL COMPARISON TO PRIOR WORK

As discussed before, the main limitation of prior work is the significant over-approximations intro-
duced by relaxing bounds to interval/polyhedral constraints after each layer. While these techniques
have shown an acceptable trade-off for inference-time certification (Gowal et al., 2018; Boopathy
et al., 2019; Singh et al., 2019), they require robust training of the underlying models to account for
and minimize these over-approximations (Mao et al., 2024).

For training-time certification, these trade-offs are fundamentally different. For one, the over-
approximations cannot be compensated for, as using the bounds as loss targets would invali-
date the guarantees. Furthermore, the computational graph is significantly deeper, so the over-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 2: BMIP Predict

Input: Test data x, Parameter bounds θ, θ ∈ Rm

Output: Certified prediction y, or abstain
1 bmip← initialize optimization problem();
2 bmip.add parameter constraints(θ, θ);
3 bmip.add input variables(x);
4 for each layer l = 1 to L do
5 bmip.add layer constraints(l);

6 for each logit o(L)
u do

7 c← True;
8 for each logit o(L)

v ̸= o
(L)
u do

9 cv = bmip.minimize(o(L)
u − o

(L)
v);

10 c← c ∧ (cv ≥ 0);
11 if c then
12 return u;

13 return abstain;

approximations accumulate more. Lorenz et al. (2024) show that these accumulating over-
approximations pose fundamental barriers for the training to converge, often leading to exploding
bound sizes, even at a (local) minimum.

To analyze this behavior, Lorenz et al. (2024) use the Lyapunov sequence hi = (θi − θ∗)2 that
measures the distance of the current parameter vector θi to the optimum θ∗, as originally proposed
by Bottou (1998). Under some assumptions (Bottou, 1998), we can show that SGD converges if hi

converges. To do so, we expand the sequence to eq. (17) (eq. 15 in (Lorenz et al., 2024)) using the
parameter update step.

hi+1 − hi = −2λi(θi − θ∗)∇θJ(θi)︸ ︷︷ ︸
distance to optimum

+λ2
i (∇θJ(θi))

2︸ ︷︷ ︸
discrete dynamics

. (17)

The second term relating to the discrete nature of the algorithm is bounded by an assumption on a
monotone decrease in the learning rate (mostly strict convexity and bounded gradients, see Bottou
(1998)). It remains to show that the first term, which contains the distance to the optimum multiplied
by the gradient and the negative learning rate, is negative. Bottou (1998) show that this is the case
for regular SGD, where θ is a vector of real numbers. Lorenz et al. (2024) show that for intervals
Θ, this only holds if Θi ∩Θ∗ = ∅, that is, the algorithm diverges if the optimum intersects with the
current parameters.

We show that this limitation does not apply to exact certifiers. By definition, the solution does not
contain any over-approximations in the update step. Therefore, it holds that

−2λi(Θi −Θ∗)∇θJ(Θi) ≥ 0 ⇐⇒ ∃θi ∈ Θi, θ
∗ ∈ Θ∗ − 2λi(θi − θ∗)∇θJ(θi) ≥ 0 (18)

Since the right-hand side is false according to Bottou (1998), it implies that the term is negative, and
therefore our approach does not suffer from the same limitation.

The second limitation Lorenz et al. (2024) show is the fact that the size of the parameter intervals
can only increase (their eq. 16). This is related to the parameter update step θi+1 = θi− λ∇θJ(θi).
If both operands of the subtraction are intervals, the size of the resulting interval is the sum of both
sizes, i.e., |θi+1| = |θi| + |λ∇θJ(θi)|. In contrast, our exact solution allows parameter intervals to
shrink as we preserve the relationship between the two operands (eq. (16)).

Solving these two fundamental limitations, combined with generally significantly more precise
bounds, solves many of the training instabilities of prior work. In particular, we did not encounter
any diverging bounds where training fails due to bounds approaching ±∞. This increased preci-
sion comes at the cost of increased training time, as solving the BMIP is more expensive than loose
interval bounds.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ϵ 0.0001 0.001 0.01

FullCert 83.9% ± 3.60 82.2% ± 4.40 71.5% ± 11.20
Sosnin et al. 85.6% ± 0.04 84.0% ± 0.04 44.9% ± 0.22
BiCert (Ours) 83.3% ± 0.05 82.0% ± 0.05 81.4% ± 0.06

Table 1: Comparison of BiCert to FullCert (Lorenz et al., 2024) and Sosnin et al. (2024) across
different ϵ values. The numbers represent the mean and standard deviation of certified accuracy
across randomly chosen seeds.

5 EXPERIMENTS

We perform several experiments to evaluate our method and to validate our theoretical findings. To
this end, we compare BiCert to prior work and analyze its runtime behavior.

5.1 IMPLEMENTATION DETAILS

We use Gurobi (Gurobi Optimization, LLC, 2024) as a solver for this work. It offers several benefits,
including support for piecewise linear and bilinear constraints and a Python interface for integrat-
ing deep learning frameworks. The library also supports reusing the same optimization model for
multiple optimizations, including warm starts that allow for more efficient solutions. To represent
the parameter bounds, we use the BoundFlow library by Lorenz et al. (2024). Our implementa-
tion also supports mini-batch processing, similarly to typical deep learning frameworks. Additional
implementation and training details, including model architectures, hyperparameters, and hardware
configuration, are listed in appendix B.

5.2 CERTIFIED ACCURACY ACROSS PERTURBATION SIZES

To validate the theoretical analysis of our method, we evaluate BiCert experimentally and compare it
to FullCert (Lorenz et al., 2024) and Sosnin et al. (2024). We evaluate it on the Two-Moons dataset
for classification, a widely used dataset with two classes of points configured in interleaving half
circles. Table 1 presents the certified accuracy, i.e., the percentage of data points from a held-out
test set where algorithm 2 returns the ground-truth class. All values are mean and standard deviation
across 5-10 runs with different random seeds.

For small perturbation radii ϵ, our method performs similarly to the baselines. With increasing
radius, the advantages of tighter bounds become apparent, where our method significantly outper-
forms the baselines. This trend makes sense, as the over-approximations become more influential
with larger perturbations. The second advantage of our method becomes apparent when looking
at the standard deviation, especially for FullCert and for larger perturbations. The small standard
deviation shows a much more stable training behavior compared to the baseline, which aligns with
our analysis in section 4.

5.3 RUNTIME AND COMPLEXITY ANALYSIS

Of course, there is no free lunch when it comes to optimization. In our case, the higher precision
and, therefore, certified accuracy, comes at the cost of an increased computational complexity. We
investigate this impact by measuring the time it takes to train our models. Table 2 shows the av-
erage runtime for each perturbation size for the first 10 epochs. The general trend is an increased
complexity for later epochs and an increased complexity for larger perturbation radii.

These results are consistent with our expectations. Larger perturbations increase the problem
complexity, as they give the adversary a higher degree of freedom and increase the set of possible
parameters. More iterations also increase the influence of those perturbations, as the data is pro-
cessed multiple times, in addition to the effects of accumulating over-approximations as the depth
of the computational graph grows.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Epoch ϵ = 0.0001 ϵ = 0.001 ϵ = 0.01

1 8 9 9
2 38 65 112
3 15 66 141
4 19 65 199
5 14 65 321
6 21 73 719
7 21 87 1023
8 23 103 2626
9 28 162 6711
10 29 299 12502

Table 2: Average runtime per epoch for different ϵ in seconds. The runtime increases for larger
perturbations and later epochs.

6 DISCUSSION

BiCert addresses the fundamental limitations of prior certified training approaches, specifically the
over-reliance on convex over-approximations that lead to unstable training and diverging parameter
bounds. By introducing Bilinear Mixed Integer Programming (BMIP) for certified training, we pro-
vide tighter, more precise bounds at each training iteration. Our method ensures that the parameter
bounds can shrink, effectively mitigating the divergence issues faced by previous methods.

The primary benefit of this approach lies in its improved precision, which leads to significantly
higher certified accuracy, especially for larger perturbations. As demonstrated in our experiments,
BiCert consistently outperforms existing methods in terms of the certified accuracy of the model.
Additionally, the reduced variance in our results highlights the robustness and reliability of our
approach.

This increased precision comes at the cost of a higher computational complexity. Solving piecewise
bilinear optimization problems for each parameter update is more computationally expensive than
the interval-based methods used in prior work. This trade-off between computational cost and certi-
fication precision is crucial when deploying certified defenses in practical settings. While the added
cost may be prohibitive for large-scale models, our method provides a valuable framework for im-
proving the precision and reliability of certification in smaller models or scenarios where robustness
is critical.

Looking forward, there are opportunities to explore hybrid approaches that combine the precision
of BMIP with the computational efficiency of interval-based methods, potentially achieving a more
scalable solution. Intelligently choosing the best constraints to relax while preserving precision
where required could combine the best of both worlds, yielding precise, scalable bounds.

Overall, this work provides a significant advancement in certified defenses, demonstrating that more
precise certification methods are feasible and necessary for ensuring the robustness of machine learn-
ing models against poisoning attacks. Despite the computational cost, our approach offers a sub-
stantial improvement in certified accuracy and stability, laying the groundwork for future research
in precise, scalable certification techniques.

7 CONCLUSION

This work addresses fundamental limitations in state-of-the-art certifiers that compute bounds
for training-time attacks on neural networks. In particular, their over-reliance on convex over-
approximations limits their applicability to larger perturbation sizes, makes training unstable, and
can cause models to diverge even for ideal, convex settings. Using Bilinear Mixed Integer Program-
ming (BMIP), we can compute exact bounds for each training iteration. This approach significantly
improves training stability and certified accuracy of the resulting models, outperforming the state-
of-the-art. We believe that this work lays the foundation for effective certified defenses against
training-time attacks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Reproducibility is a cornerstone of scientific progress, and we have taken careful steps to ensure
that our results can be independently verified. All algorithms used in this work, including the BMIP
training procedure (algorithm 1) and the prediction algorithm (algorithm 2), are described in detail.
Additionally, the illustrative example (section 3.1) offers a step-by-step guide to understanding our
method. The bounds for all layers, the loss, their gradients, and the parameter update are derived and
explained in section 3.3. Our implementation and the experimental setup are explained in section 5.1
and appendix B, where we describe the solver setup, datasets, model architectures, and hyperparam-
eters. We are committed to publishing the code for our experiments under an open-source license
when the paper is published. We refrain from including it with the submission due to ICLR’s policy
of making supplementary material publicly available while under review.

REFERENCES

Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. Cnn-cert: An efficient
framework for certifying robustness of convolutional neural networks. In AAAI Conference on
Artificial Intelligence (AAAI), 2019.

Avinandan Bose, Madeleine Udell, Laurent Lessard, Maryam Fazel, and Krishnamurthy Dj Dvi-
jotham. Certifying robustness to adaptive data poisoning. In ICML Workshop: Foundations of
Reinforcement Learning and Control–Connections and Perspectives, 2024.

Léon Bottou. Online learning and stochastic approximations. On-Line Learning in Neural Networks,
1998.

Nicholas Carlini, Matthew Jagielski, Christopher A. Choquette-Choo, Daniel Paleka, Will Pearce,
Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. Poisoning web-scale train-
ing datasets is practical. In 2024 IEEE Symposium on Security and Privacy (S&P), 2024.

Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon, Werner Zellinger,
Bernhard A. Moser, Alina Oprea, Battista Biggio, Marcello Pelillo, and Fabio Roli. Wild patterns
reloaded: A survey of machine learning security against training data poisoning. ACM Comput.
Surv., 2023.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In international conference on machine learning (ICML), 2019.

ENISA. Ai cybersecurity challenges: Threat landscape for artificial intelligence. Technical report,
European Union Agency for Cybersecurity (ENISA), 2020.

European Union. Regulation (EU) 2024/1689 of the European Parliament and of the Council of
13 June 2024 laying down harmonised rules on artificial intelligence and amending Regulations
(EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139
and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (Artificial
Intelligence Act) (Text with EEA relevance). Official Journal of the European Union, 2024.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. arXiv preprint arXiv:1810.12715, 2018.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrinsic certified robustness of bagging against
data poisoning attacks. In AAAI Conference on Artificial Intelligence (AAAI), 2021.

Alexander Levine and Soheil Feizi. Deep partition aggregation: Provable defenses against general
poisoning attacks. In International Conference on Learning Representations (ICLR), 2021.

Linyi Li, Tao Xie, and Bo Li. Sok: Certified robustness for deep neural networks. In 2023 IEEE
Symposium on Security and Privacy (S&P), 2023.

11

https://www.gurobi.com
https://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tobias Lorenz, Marta Kwiatkowska, and Mario Fritz. Fullcert: Deterministic end-to-end certifica-
tion for training and inference of neural networks. In German Conference on Pattern Recognition
(GCPR), 2024.

Yuhao Mao, Stefan Balauca, and Martin Vechev. Ctbench: A library and benchmark for certified
training. arXiv preprint arXiv:2406.04848, 2024.

Samuele Marro and Michele Lombardi. Computational asymmetries in robust classification. In
Proceedings of the 40th International Conference on Machine Learning, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. Certified robustness to label-
flipping attacks via randomized smoothing. In International Conference on Machine Learning
(ICML), 2020.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for cer-
tifying neural networks. In Proceedings of the ACM on Programming Languages (PACMPL),
2019.

Philip Sosnin, Mark N. Müller, Maximilian Baader, Calvin Tsay, and Matthew Wicker. Certified
robustness to data poisoning in gradient-based training. arXiv preprint arXiv:2406.05670, 2024.

Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor Dumitras. When does
machine learning FAIL? generalized transferability for evasion and poisoning attacks. In USENIX
Security Symposium (USENIX Security), 2018.

Apostol Vassilev, Alina Oprea, Alie Fordyce, and Hyrum Anderson. Adversarial machine learning:
A taxonomy and terminology of attacks and mitigations. Technical report, National Institute of
Standards and Technology, 2024.

Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning language models during
instruction tuning. In International Conference on Machine Learning (ICML), 2023.

Binghui Wang, Xiaoyu Cao, Neil Zhenqiang Gong, et al. On certifying robustness against backdoor
attacks via randomized smoothing. arXiv preprint arXiv:2002.11750, 2020.

Wenxiao Wang and Soheil Feizi. Temporal robustness against data poisoning. In Advances in Neural
Information Processing Systems (NeurIPS), 2023.

Wenxiao Wang, Alexander J Levine, and Soheil Feizi. Improved certified defenses against data poi-
soning with (deterministic) finite aggregation. In International Conference on Machine Learning
(ICML), 2022.

Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li. Rab: Provable robustness against
backdoor attacks. In IEEE Symposium on Security and Privacy (S&P), 2023.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. Advances in neural information
processing systems (NeurIPS), 2018.

Yuhao Zhang, Aws Albarghouthi, and Loris D’Antoni. Bagflip: A certified defense against data
poisoning. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A FULL EXAMPLE

In section 3.1 we present an example model to illustrate our method. We list the full optimization
problem for the first training iteration here.

min/max w′
i, i ∈ {11, 12, 21, 22, 5, 6}

subject to 0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

1 ≤ w11 ≤ 1

1 ≤ w12 ≤ 1

1 ≤ w21 ≤ 1

−1 ≤ w22 ≤ −1
−1 ≤ w5 ≤ −1
1 ≤ w6 ≤ 1

x3 = w11x1 + w21x2

x4 = w12x1 + w22x2

x5 =

{
x3 if x3 > 0

0 if x3 = 0

x6 =

{
x4 if x4 > 0

0 if x4 = 0

x7 = w5x5 + w6x6

L =

{
1− x7 if 1− x7 > 0

0 otherwise

∂L

∂x7
=

{
−1 if 1− x7 > 0

0 otherwise
∂L

∂w6
= x6

∂L

∂x7

∂L

∂x6
= w6

∂L

∂x7

∂L

∂w5
= x5

∂L

∂x7

∂L

∂x5
= w5

∂L

∂x7

∂L

∂x4
=

{
∂L
∂x6

if x4 > 0

0 if x4 = 0

∂L

∂x3
=

{
∂L
∂x5

if x3 > 0

0 if x3 = 0

∂L

∂w11
= x1

∂L

∂x3

∂L

∂w12
= x1

∂L

∂x4

∂L

∂w21
= x2

∂L

∂x3

∂L

∂w22
= x2

∂L

∂x4

∂L

∂x2
= w21

∂L

∂x3
+ w22

∂L

∂x4

∂L

∂x1
= w11

∂L

∂x3
+ w12

∂L

∂x4

w′
i = wi − λ

∂L

∂wi

B TRAINING AND IMPLEMENTATION DETAILS

We train our models using a combination of the BoundFlow library (Lorenz et al., 2024) and the
Gurobi optimizer (Gurobi Optimization, LLC, 2024). Since PyTorch (Paszke et al., 2019) does not
support bound-based training, we only use its basic tensor representations.

All computations are performed on a compute cluster, which mainly consists of AMD Rome 7742
CPUs with 128 cores and 2.25 GHz. Each task is allocated up to 32 cores. No GPUs are used since
Gurobi does not use them for solving.

Unless indicated otherwise, we use fully connected networks with ReLU activations, two layers, and
20 neurons per layer. For binary classification problems, we use margin loss, i.e., J = max(0, 1 −
y · f(x)), because it is piecewise linear and can therefore be encoded exactly. It produces similar
results to Binary Cross-Entropy loss for regular training without perturbations.

We train models until convergence using a held-out validation set, typically after 5 to 10 epochs on
Two-Moons. We use a default batch size of 100 and a constant learning rate of 0.1. We sub-sample

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

the training set with 100 points per iteration. All reported numbers are computed using a held-out
test set that was not used during training or hyper-parameter configuration.

For the comparison to Lorenz et al. (2024), we use the numbers from their paper. Since Sosnin et al.
(2024) do not report certified accuracy for Two-Moons, we train new models in an equivalent setup.
As a starting point, we use the Two-Moons configurations provided in their code. We change the
model architecture to match ours, i.e., reducing the number of hidden neurons to 20. We also set
n = |D| to adjust the threat model to be the same as ours. The solver mode is left at its preconfigured
“interval+crown” for the forward pass and “interval” for the backward pass. We ran the experiments
10 times with the same random seeds to compute mean and standard deviation statistics.

14

	Introduction
	Related Work
	Certified Training using Bilinear Mixed Integer Programming
	Illustrative Example
	Formal Definition
	BiCert: Bounds via Bilinear Mixed Integer Programming
	Algorithmic Implementation

	Theoretical Comparison to Prior Work
	Experiments
	Implementation Details
	Certified Accuracy Across Perturbation sizes
	Runtime and Complexity Analysis

	Discussion
	Conclusion
	Full Example
	Training and Implementation Details

