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Abstract

We study the effect of normalization schemes on token representations in deep
transformers. Modeling their evolution as interacting particles on the sphere, we
show that normalization acts as a form of speed regulation. This perspective enables
a unified analysis of several schemes—including Post-LN, Pre-LN, Mix-LN, Peri-
LN, nGPT, and LN-Scaling—revealing how they influence clustering dynamics
and representation collapse. Our framework clarifies how different schemes shape
token representations across layers and provides a principled basis for comparing
them, identifying Peri-LN as a particularly effective choice.

1 Introduction

Transformer architectures have revolutionized natural language processing and beyond, demonstrating
unprecedented performance across diverse tasks—from machine translation and text generation to
reasoning and protein folding. The remarkable capabilities of transformers, including their emerging
reasoning abilities, are enabled by the attention mechanism introduced in Bahdanau et al. (2015);
Vaswani et al. (2017).

A recent line of theoretical work, initiated in Geshkovski et al. (2023), studies information processing
across deep transformer layers by reframing them as interacting particle systems, building on the
original setup of Sander et al. (2022). Following this initial work, layer normalization (LayerNorm)
emerged as a critical component significantly influencing the long-term dynamics of these systems.
Geshkovski et al. (2025) proposed a model in which particles are constrained to evolve on a sphere,
corresponding to the so-called Post-layer norm (Post-LN) scheme. This model has since become
the standard paradigm for transformer analysis in subsequent research (Karagodin et al., 2024;
Geshkovski et al., 2024a,b; Bruno et al., 2025a,b; Criscitiello et al., 2024).

Several alternatives to Post-LayerNorm (Post-LN) have emerged in recent years to improve training
performance, each subtly altering transformers’ long-term clustering behavior. Most notably, Pre-
LayerNorm (Pre-LN) has become the default choice for leading large language models including
GPT (Radford et al., 2019) and LLaMA (Touvron, H. et al, 2023). This approach was originally
introduced in ResNet-v2 He et al. (2016) before being adapted for Transformer architectures. It
enables more stable training of deeper networks while reducing sensitivity to hyperparameters such
as learning rates (Xiong et al., 2020).

Understanding normalization schemes is essential for advancing the design and performance of
transformer architectures. In particular, Sun et al. (2025) and Gromov et al. (2025) identify a
phenomenon known as the curse of depth, in which deep layers of large language models (LLMs)
degenerate into near-identity transformations. This effect is so pronounced that it enables pruning of
deeper layers with minimal impact on performance (Muralidharan et al., 2024; Siddiqui et al., 2024).
On the other hand, the well-known issue of representation collapse presents a significant challenge to
increasing the depth of LLMs.

To mitigate this issue, Li et al. (2025) propose a hybrid normalization scheme that applies Post-
LN normalization in the early layers and reserves Pre-LN normalization for the deeper layers. This

∗1Department of EECS, MIT, Cambridge, MA, USA
†2Department of Mathematics, MIT, Cambridge, MA, USA



strategy was further refined in the development of Peri-LN (Kim, B., Johnson, M. et al., 2025),
which has been adopted in the Gemma-3 model (Gemma Team et al., 2025). Alternatively, Sun et al.
(2025) suggest a simpler fix: rescaling Pre-LN by the square root of the depth (a scheme called
LN-Scaling). Additionally, Loshchilov et al. (2025) show that with careful architectural design, as in
nGPT, normalizing tokens to lie on the unit sphere can further streamline the normalization process.

Given the diversity of these approaches, we are motivated to explore the following question:

How do normalization schemes influence deep representations in transformers?

To answer this question, we revisit both classical and novel LayerNorm schemes through the lens of the
simplified interacting particle dynamics introduced in Geshkovski et al. (2025) to bring a theoretical
understanding of these various design choices. Since the final decoding layer of a transformer
is typically preceded by a normalization step, we focus on the direction of token representations.
Regardless of the specific normalization used, these directions naturally form an interacting particle
system on the sphere. This shared geometric setting enables a direct, side-by-side comparison of
various normalization schemes, all of which we reinterpret as forms of speed regulation. Despite its
simplicity, our model captures complex behaviors observed in practice, including curse of depth and
representation collapse.

Related Work. A growing body of work has examined normalization in Transformers, with a
primary focus on its empirical and theoretical implications for gradient stability. Notably, Xiong
et al. (2020) and Sun et al. (2025) provide experimental evidence that improper placement of
normalization layers can lead to exploding or vanishing gradients in deep models. These findings are
often supported by variance-based analyses that track the propagation of activations and gradients
through the network, such as (Noci et al., 2025) and (Kedia et al., 2024). Wortsman et al. (2024)
further identify normalization-related training instabilities that emerge at scale. Building on this
foundation, Li et al. (2025) and Kim, B., Johnson, M. et al. (2025) explore hybrid normalization
strategies in large-scale settings, using both theoretical approximations and empirical diagnostics to
study gradient flow and the stability of learned representations.

In contrast to prior work that primarily investigates gradient dynamics, our study focuses on the
forward evolution of token representations through the network. This perspective complements the
analysis of gradient flow by shifting the emphasis from the ability to train (via backpropagation) to
the expressiveness and structure of the learned representations. While both viewpoints offer valuable
insights, we focus on the latter in the present work. A companion paper dedicated to the analysis of
gradients is currently in preparation.

Our contributions. We provide different perspectives on normalization architecture, by casting
differently normalized Transformers as variations of a common interacting-particle ODE, where the
normalization method determines a speed factor, which can amplify initial velocity and dampen
representation collapse in deep layers. Within this unified framework, we extend the framework
of Geshkovski et al. (2025) for Post-LN and in particular, establish asymptotic clustering under
general conditions on the speed regulation mechanism. To differentiate various normalization
schemes we further study the initial and final velocity of tokens corresponding to first and deep layers
respectively. In particular, we recover the representation collapse phenomenon that plagues Post-LN.
Our theoretical framework identifies Peri-LN as a particularly effective scheme that makes good use
of both early and deep layers.

2 Normalized Attention Dynamics

A sequence of n tokens is represented by their column-vector embeddings X = (x1, . . . , xn) ∈
Rd×n. In the rest of this section, functions f : Rd → Rd applied to such a matrix are understood
column-wise: f(X) = [f(x1), . . . , f(xn)]. For each token embedding xk, we define its direction
θk = xk/∥xk∥ ∈ Sd−1 and its magnitude rk = ∥xk∥ ≥ 0, so that

xk = rk · θk.

As the sequence of token embeddings is processed through the layers of a transformer, it gets updated
from Xt to Xt+1 at layer t. In the rest of this section we derive the updates obtained by different
normalization rules and recast them as speed regulation mechanisms for token directions.
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For simplicity and convenience of exposition, we omit FFN layers and focus on pure attention. The
approach could be extended to a more general architecture, but this would introduce additional
technical complexities beyond the scope of this paper.

2.1 Attention

At layer t, an attention head is characterized by three matrix parameters Qt,Kt, V t, called Query,
Key, and Value respectively. These matrices are used to create the attention matrix, which is an n× n
matrix W = {wjk}1≤j,k≤n of pairwise interactions between tokens with entries given by

wt
jk =

eβ⟨Q
txj ,K

txk⟩∑n
l=1 e

β⟨Qtxj ,Ktxl⟩
,

where we added a redundant temperature parameter usually taken equal to 1 but that will be convenient
in our simplifications below. The attention function is the linear operator At : Rd×n → Rd×n defined
as At(X) = [X1

1 (X), . . . , At
n(X)] where each column is given by

At
j(X) =

n∑
k=1

wt
jkV

txk , j = 1, . . . , n .

Throughout this paper, we focus on the simplified setting of Geshkovski et al. (2025) where Qt =
Kt = V t = Id for all t ≥ 0.

2.2 Normalization.

The Root Mean Squared (RMS) norm Norm(x) = x/∥x∥ of a token Zhang and Titov (2019) is a
critical ingredient of all normalization schemes considered here.
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Figure 1: Normalization layer placements in various architectures.

In this paper, we study six major schemes: Post-LN (Vaswani et al., 2017), Pre-LN (Xiong et al.,
2020), Mix-LN (Li et al., 2025), Peri-LN (Kim, B., Johnson, M. et al., 2025), nGPT (Loshchilov
et al., 2025), and LN-Scaling (Sun et al., 2025). Note that Mix-LN is a combination of Post-LN for
t ≤ τ and Pre-LN for t > τ while LayerNorm-Scaling (LN-Scaling) is a deterministic rescaling of
Post-LN. The four remaining schemes are presented in Figure 1. Such explicitly layer-normalization
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rules are not the only strategies employed in practice. Other attempts to improve normalization
suggest better initializations Q0,K0, V 0 (Kedia et al., 2024) and explicit scaling of the updates,
similarly to αt that is trainable in nGPT.

Thanks to the residual connections, each layer-update can be seen as a forward Euler discretization
of a continuous-time ODE that captures the dynamics of tokens while enabling the deployment of
useful calculus tools. In this context, it is convenient to write X(t) as a function of time and replace
Xt+1 −Xt with Ẋ(t). For any two matrices X,Y ∈ Rd×n where X has unit-norm columns, define
the projection operator PXY to be the column-wise projection on to the tangent space of the sphere
Sd−1:

PXY =
[
Px1

y1, . . . ,Pxn
yn
]
,

where for any x ∈ Sd−1, y ∈ Rd, Pxy = y − ⟨y, x⟩x is the projection of y onto the tangent space of
Sd−1 at x.

The dynamics described by each normalization schemes are presented in Table 1.

Table 1: Normalization Schemes in Discrete and Continuous Time Domains. In nGPT, αt ∈ R is a
layer-dependent learnable parameter.
Scheme Discrete Time Update Continuous Time Update

Post-LN Xt+1 = Norm
(
Xt +At(Xt)

)
Ẋ(t) = PX(t)A

t(X(t))

Pre-LN Xt+1 = Xt +At
(
Norm(Xt)

)
Ẋ(t) = At

(
Norm(X(t))

)
Mix-LN Xt+1 =

[
Norm

(
Xt +At(Xt)

)]
1It≤τ Ẋ(t) =

[
PX(t)A

t(X(t))
]
1It≤τ

+
[
Xt +At

(
Norm(Xt)

)]
1It>τ +

[
At
(
Norm(X(t))

)]
1It>τ

Peri-LN Xt+1 = Xt + Norm
(
At(Norm(Xt))

)
Ẋ(t) = Norm

(
At(Norm(X(t)))

)
nGPT Xt+1 = Norm

(
Xt + αt Norm(At(Xt))

)
Ẋ(t) = PX(t)αtNorm(At(X(t)))

LN-Scaling Xt+1 = Norm
(
Xt + 1√

t+1
At(Xt)

)
Ẋ(t) = 1√

t+1
PX(t)A

t(X(t))

2.3 Speed regulation formulation

In Post-LN, nGPT, and LN-Scaling, tokens are constrained to the the sphere Sd−1 with LN-Scaling
simply adjusting the speed of the particles as a function of t compared to Post-LN. For the other
rules where tokens may have varying magnitude, one final projection is typically applied before
the final decoding layer in practice. In particular, this means that decoding depends on directions
θj(t) = Norm(xj(t)), for j = 1, . . . , n.

Interestingly, when tracking only the directional components θ1(t), . . . , θn(t) ∈ Sd−1, all normaliza-
tion rules give rise to interacting particle systems evolving on the sphere, governed by a common
velocity field but subject to distinct, rule-dependent speed-regulation mechanisms. Note that this does
not imply the particles follow the same trajectories at different speeds; indeed the speed parameter
has a significant impact on the trajectories. More specifically, directions θ1, . . . , θn ∈ Sd−1 undergo
the normalized attention dynamics given by

θ̇j(t) =
1

sj(t)
Pθj(t) A

t
j(Θ(t)) (NA)

where Θ(t) = [θ1(t), . . . , θn(t)] and we recall that Pθ = Id − θθ⊤ is the projection from Rd to the
tangent space of the sphere at θ. Using the following identities

ṙj(t) = ⟨θj(t), ẋj(t)⟩ ,

θ̇j(t) =
1

rj(t)

(
ẋj(t)− ṙj(t)θj(t)

)
=

1

rj(t)
Pθj(t)ẋj(t) ,

we readily get:
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Table 2: Speed regulation factors
sj(t) ṙj(t)

Post-LN 1 0
Pre-LN rj(t) ⟨θj(t), At

j(Θ(t))⟩
Mix-LN 1It≤τ + rj(t)1It>τ ⟨θj(t), At

j(Θ(t))⟩1It>τ

Peri-LN rj(t)∥At
j(Θ(t))∥ ⟨θj(t), At

j(Θ(t))⟩/∥At
j(Θ(t))∥

nGPT α−1
t ∥At

j(Θ(t))∥ 0

LN-Scaling
√
t+ 1 0

3 Asymptotic clustering

Since the work of Geshkovski et al. (2023, 2025), theoretical analyses of attention dynamics have
primarily focused on establishing asymptotic clustering under the Post-LN scheme, namely θj(t) →
θ∗ as t → ∞ for all j = 1, . . . , n, under a generic initialization; see also Criscitiello et al. (2024);
Chen et al. (2025). However, empirical studies have revealed that in practice, tokens often remain
trapped in metastable states for extended periods before clustering emerges (Geshkovski et al., 2024a;
Bruno et al., 2025a). Despite this, the clustering phenomenon appears to occur at multiple local
scales, and the simplified setting considered in prior work continues to offer valuable insights, as we
will demonstrate in the next section. In this section, we extend the analysis and show that asymptotic
clustering persists beyond the original Post-LN framework to other normalization schemes.

Recall that we study the normalized attention dynamics (NA) defined by

θ̇j(t) =
1

sj(t)
Pθj(t) A

t
j(Θ(t)) =

1

sj(t)
Pθj(t)

n∑
k=1

V θk(t)
eβ⟨Qθj(t),Kθk(t)⟩∑n
l=1 e

β⟨Qθj(t),Kθl(t)⟩
j = 1, . . . , n ,

where the speed regulation factor sj(t) is given in Table 2. It is interesting to note that both Pre-LN
and Peri-LN are not directly regulated by an explicit mechanism but rather by the magnitude. In
particular, this mechanism dampens the speed of each token individually according to their magnitude.

The main observation of Geshkovski et al. (2025) is that when KQ⊤ = QK⊤ = V , the Post-LN
system is a gradient flow for the energy function

E(Θ) := −
n∑

j,k=1

eβ⟨Qθk,Kθj⟩ ,

where we recall that Θ = [θ1, . . . , θn].

For (NA), we have

θ̇j(t) = − 1

sj(t)Zj(t)
∇θjE(Θ(t)) , where Zj(t) =

n∑
l=1

eβ⟨Qθj(t),Kθl(t)⟩

and ∇ denotes the spherical (Riemannian) gradient.

The above dynamics can be seen as modulated gradient flow, albeit with a complicated modulator that
depends on time and space. For vanilla gradient flows, that is for sj(t)Zj(t) = const., a celebrated
result of Łojasiewicz guarantees convergence of this gradient flow to a critical point of the energy.
Following the same steps, we show in the Appendix D.1 that this result extends to the present
framework, guaranteeing convergence of any trajectory. From there, we establish the following
clustering result.
Theorem 3.1. Consider the normalized attention dynamics (NA) with Q = K = V = Id. Then for
uniformly sampled initializations Θ(0) ∈ (Sd−1)⊗n Post-LN, nGPT, LN-Scaling cluster asymptoti-
cally

P[{tokens synchronize to 1 cluster}] = 1,

whereas for a standard Gaussian sample of X(0) := r(0)·Θ(0) with Θ(0) ∈ (Sd−1)⊗n, r(0) ∈ R⊗n

for Pre-LN, Mix-LN, Peri-LN one has

P[{tokens θj synchronize to 1 cluster} ∪ {min
j∈[n]

lim inf
t→∞

ṙj(t) = 0}] = 1.
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In fact, this result holds not only for Qt = Kt = V t = Id but more generally for Qt = Q,Kt = K,
and V t = V = Q⊤K = K⊤Q as in Sander et al. (2022). The second condition on the magnitude
growth can be traced with Table 2 definition to work with further. For example, we immediately get
the following.
Corollary 1. For Pre-LN, Peri-LN with n ≤ eβ we have unconditional syncronization.

This statement follows from a simple lower bound on ṙj . We write it for Pre-LN, and Peri-LN can
be done similarly.

ṙj = ⟨θj , Aj(Θ)⟩ = 1

Zj
(eβ⟨θj , θj⟩+

∑
k ̸=j

eβ⟨θk,θj⟩⟨θk, θj⟩) ≥
1

neβ
(eβ − (n− 1)) ≥ 1

neβ
,

where we used the fact that any negative term in the second sum is at most 1, eβ ≥ n and a trivial
bound on Zj .

4 Initial and terminal token velocities

The previous section established an asymptotic result but did not address the rate at which tokens
cluster, an aspect that is crucial for understanding how representations evolve. This question is
important because the velocity at time t determines the influence of the tth layer in shaping the final
token representation.

Before analyzing the propagation speed of tokens in our attention dynamics model, we first discuss
a benchmark for desirable behavior. In an efficient architecture, each layer should meaningfully
transform token representations, causing substantial displacement in representation space. If tokens
remain nearly stationary across many layers, the architecture risks representation collapse. Equally
important, however, is ensuring that early layers contribute significantly—delaying transformation
until later stages can limit the expressive power of the network.

4.1 Prelude: Symmetric initialization

Following Geshkovski et al. (2025); Cowsik et al. (2024), we begin with a so-called orthogonal
symmetric initialization where ⟨θj(0), θk(0)⟩ = 0 for j ̸= k and rj(0) = 1 for all j. This config-
uration approximately matches that of randomly initialized tokens in high dimension. Due to the
symmetry, the cosine similarity γ(t) = ⟨θj(t), θk(t)⟩ does not depend on j ̸= k and the entire token
dynamics reduces to the evolution of two scalar quantities: γ(t) and r(t). In the Appendix, we derive
a simple ODE for γ(t), r(t) following Geshkovski et al. (2025, Theorem 6.8). We plot ODE-based
evolution of γ(t) in Figure 2 with parameters β = 5, n = 256. Despite its simplicity, this setup
already provides striking insight into the effects of different normalization schemes. The importance
tracks in how cosine similarity evolution is alike in the theoretical formula plotted in Figure 2 and the
experimental setup with random weights modeled in Figure 4.
Theorem 4.1. Consider the normalized attention dynamics (NA) with Q = K = V = Id initialized
at a symmetric orthogonal configuration, i.e. ⟨θj(0), θk(0)⟩ = δjk and rj(0) = r0 for all j. Then,
for all t > 0, the cosine similarity γ(t) = ⟨θj(t), θk(t)⟩ remains constant across all pairs j ̸= k and
γ̇(t) for t → 0 and t → ∞ is given by

t → 0 t → ∞

Post-LN
2

eβ + n− 1
Ce−2t

Pre-LN
2

r0(eβ + n− 1)
C/t3

Mix-LN
2

eβ + n− 1
C/t3

Peri-LN
2

r0
√
e2β + n− 1

C/t3

nGPT
2α0√

e2β + n− 1
Cαte

−2
∫ t
C

αsds

LN-Scaling
2

eβ + n− 1
C
e−4

√
t

√
t
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where C > 0 may change from line to line.

A few remarks are in order. First, the initial velocities are comparable across models, up to the
effects of the tuning parameters α0 and r0. Notably, the temperature parameter β exponentially
damps the initial velocity, suggesting that initializing Q and K with smaller magnitudes in the
early layers may be beneficial. More striking is the effect of speed regulation at terminal velocity:
Pre-LN, Mix-LN, and nGPT (with constant αt) exhibit a polynomial slowdown, in contrast to other
normalization schemes. While LN-Scaling converges more slowly than exponential, it still outpaces
the polynomial decay. This implies that Pre-LN, Mix-LN, and nGPT cluster more gradually than
their counterparts—indicating a more effective use of intermediate layers and a stronger resistance
to representation collapse. Finally, note that the trainable parameter αt in nGPT can have a drastic
impact on both initial and terminal velocity. See Figure 2 for a visual representation of cosine
similarity and evolution of γ̇ relative to time and position. See Figure 3 for comparison between
different αt in nGPT.

(a) Cosine sim. γ(t) vs. t (b) Speed γ̇(t) vs. t (c) Phase plot γ̇(t) vs. γ(t)

Figure 2: (a) Evolution of cosine similarity γ(t), (b) its speed γ̇(t) over time, (c) phase-plot of γ̇(t) vs.
γ(t), for introduced normalization strategies. Here nGPT has αt ≡ 1, to showcase the significance
of that parameter. Pre-LN and Peri-LN are the last to converge, mitigating representation collapse.
On the other hand, Post-LN, nGPT and Peri-LN move faster in early layers, effectively utilizing
them. In the phase-plot (c) we see how at the same position the speed is defined by a known speed
control parameter, ranking different methods.

(a) Cosine sim. γ(t) vs. t (b) Speed γ̇(t) vs. t (c) Phase plot γ̇(t) vs. γ(t)

Figure 3: Convergence in nGPT from orthogonal initialization for different choices of αt – constant,
root, linear, combination of linear and constant with weights sin(4t) and cos(4t).

4.2 Initial velocity

The symmetric evolution described above is too coarse to properly discriminate between normalization
schemes at initialization. Here we show that early Peri-LN/nGPT layers move tokens order-one
distances on the hypersphere, while Post-LN and Pre-LN advance more slowly, with step sizes on
the order of O(log n/d).

7



Figure 4: Evolution of average cosine similarity γ(t) with 90% confidence interval with randomly
initialized weights (Kaiming init), d = 512, nheads = 1, β =

√
d, d > n and random initial X . We

set αt ≡ 1 for nGPT. We see that Peri-LN and nGPT initialy move faster, and that Post-LN and
nGPT eventually collapse tokens faster than Pre-LN and Peri-LN. See Appendix E for more studies,
including multi-head, untied weights and more.

Theorem 4.2. Let Q,K, V ∈ Rd×d satisfy max{∥Q⊤K∥op, ∥V ∥op} ≤ 1, β = 1. Let the initial

directions θj(0)
i.i.d.∼ Unif(Sd−1) and set the attention vector

Aj(θ) =
1

Zj

n∑
k=1

eβ⟨Qθj ,Kθk⟩V θk, Zj =

n∑
k=1

eβ⟨Qθj ,Kθk⟩.

Then there are absolute constants c, C > 0 such that for e
√
d ≥ n log n ≥ d, with probability

1− n−C simultaneously for all j ∈ [n]

∥Aj(0)∥ ≤ C

(√
log n

n
+

log n

d

)
.

To interpret the significance of Theorem 4.2, recall from Table 2 that the initial velocity of direction
θj is dampened by a factor proportional to ∥Aj(0)∥ for both Peri-LN and nGPT. Consequently the
first–layer angular displacement of Peri-LN and nGPT exceeds that of Post-LN, Pre-LN, Mix-LN,
and LN-Scaling, by a factor Ω(min(d/ log n,

√
n/ log n)).

4.3 Terminal velocity

The idealized setup of Section 4.1 sheds light on a qualitative difference between Post-LN and Pre-
LN: Post-LN clusters tokens much more aggressively than Pre-LN in the late stages of clustering. In
retrospect, the intuition behind this phenomenon is rather clear: under Pre-LN, the angular velocity
θj(t) of token j is divided by a growing radial factor rj(t), which increasingly dampens the rate
at which tokens collapse toward one another. In contrast, Post-LN normalizes this growth away,
allowing tokens to continue clustering at a higher rate.

In this section, we go beyond the symmetric case of Section 4.1 and analyze a simplified setting in
which tokens are pre-clustered, in the sense that they all lie within a narrow cone. This configuration
captures the behavior of a single well-formed cluster and isolates the dynamics from interference by
other clusters. The results below confirm our findings of Section 4.1 indicating that this idealized
setup is already informative.

Radial Growth under Pre-LN. Our first goal is to estimate the rate of growth of rj(t), the norm
of token j’s representation, under Pre-LN normalization. Empirically, the growth of hidden states
in transformers has been well-documented. For instance, studies such as (Xiong et al., 2020; Kedia
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et al., 2024) observe that in randomly initialized transformers, rj(t) ∼
√
t, reflecting the diffusive

nature of a random walk induced by randomly sampled projections V .

However, in an aligned regime where all tokens are directionally coherent, the dynamics reinforce
alignment and exhibit linear radial growth: rj(t) ∼ t as in Section 4.1. This linear scaling significantly
alters the clustering behavior. Because the angular update is effectively scaled by 1/rj(t), linear
growth in rj(t) slows the clustering rate from exponential to polynomial.

Speed of cluster collapse. To quantify the normalization induced slowdown, we introduce the Var(t)
as a proxy for intra-cluster variance. Specifically, given token directions, θ1(t), . . . , θn(t) let

Var(t) :=
1

n

n∑
k=1

∥θk(t)− θ̄(t)∥2 , where θ̄ =
1

n

n∑
j=1

θj .

Theorem 4.3. Consider the normalized attention dynamics with V = Id and arbitrary Q,K s.t.
∥Q⊤K∥ ≤ 1, initialized at θ1(0), . . . , θn(0) in a local cone, namely ⟨θj(0), θk(0)⟩ ≥ 1 − δ for
δ < 1/(100n2β2). Let the cluster center be defined as θ̄ = 1

n

∑n
j=1 θj . Then the following properties

hold

(i) Radial growth For all k, the radial component satisfies

rk(t) ≥ (1− δ)t, for both Pre-LN and Peri-LN

(ii) Speed of clustering. It holds

d

dt
Var(t) =



−Θ(Var(t)), for Post-LN
−Θ(Var(t)/t) for Pre-LN
−Θ(Var(t)/t) for Peri-LN
−Θ(Var(t)/αt) for nGPT
−Θ(Var(t)/t) for Mix-LN
−Θ

(
Var(t)/

√
t
)

for LN-Scaling

Again this result corroborates the findings of Section 4.1: Post-LN and LN-Scaling cluster token
directions at an exponential rate, while Pre-LN, Peri-LN and Mix-LN slow down to a polynomial
(∼ 1/tC) decay. Moreover, nGPT has the ability to control rate of clustering through αt. This
confirms that Pre-LN makes better use of depth, as tokens continue to evolve meaningfully across
many layers, rather than collapsing too quickly. In particular, this difference explains why Pre-LN is
less prone to representation collapse in very deep models compared to Post-LN.

Theorems 4.2–4.3 together give concrete guidelines to select a normalization scheme with large initial
and terminal velocities so as to ensure adequate progress of token representations across both first
and deep layers. A clear winner here is Peri-LN that manages to do both automatically, and nGPT
that has ability to control the behavior via αt.

5 Limitations

Our study offers a unifying dynamical-systems view of several normalization schemes, yet some
theoretical and practical caveats temper its scope.

Theoretical limitations Theorem 3.1 proves that every trajectory of the normalized-attention ODE
converges, but it furnishes neither an explicit rate nor any metastability guarantees.

We bound only the initial and terminal speeds; the intermediate regime remains uncharacterized.
In particular, one flow could enter a region where it moves faster than another—even though its
speed-control factor is larger. Comparing two flows in the general case, even when one enjoys a
higher speed-control factor, remains an open problem.

Because of the strict assumptions on the weight matrices, the analysis does not capture the full
behavior observed in both theory and practice. For example, in this work representation norms in
Pre-LN are predicted to grow linearly (when matrices Q, K, V are tied), whereas empirical work
reports a

√
t trend at initialization (when weights are random). Reconciling these gaps calls for a

stochastic analysis of the problem.
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Our theory also leaves unexplained several optimisation pathologies—such as exploding updates
in Pre-LN—because it omits working with the gradient propagation. A companion gradient-flow
analysis is required for a complete picture and is the subject of ongoing work.

Practical limitations From a practical perspective, we make two key simplifications. (i) MLP
layers are omitted to focus purely on attention; and (ii) the query, key, and value matrices obey
restrictive assumptions. Although the intuition gained from these toy settings is instructive, the proofs
rely heavily on the simplifying hypotheses. Finally, in this work, we do not give any specific model
architecture to train and validate, which currently limits direct architectural recommendations we
could offer.

Addressing these limitations—tight metastability bounds, inclusion of MLP layers, gradient-flow
analysis, and empirical verification—constitutes fertile ground for future research.
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play an important role in developing norms that preserve the integrity of the
community. Reviewers will be specifically instructed to not penalize honesty
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and a complete (and correct) proof?

(b) Answer: [Yes]
(c) Justification: The settings we are studying are always stated in details. Proofs are

suspended to supplementary materials.
(d) Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any

theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

(a) Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims
and/or conclusions of the paper (regardless of whether the code and data are provided
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(b) Answer: [NA]
(c) Justification: The paper has no experiments to reproduce
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model. In
general, releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model),
releasing of a model checkpoint, or other means that are appropriate to the research
performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
i. If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
ii. If the contribution is primarily a new model architecture, the paper should

describe the architecture clearly and fully.
iii. If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results or a way
to reproduce the model (e.g., with an open-source dataset or instructions for how
to construct the dataset).

iv. We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibil-
ity. In the case of closed-source models, it may be that access to the model is
limited in some way (e.g., to registered users), but it should be possible for other
researchers to have some path to reproducing or verifying the results.
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5. Open access to data and code
(a) Question: Does the paper provide open access to the data and code, with sufficient

instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

(b) Answer: [NA]
(c) Justification: Paper does not include experiments requiring code.
(d) Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply
for not including code, unless this is central to the contribution (e.g., for a new
open-source benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guide-
lines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more
details.

• The authors should provide instructions on data access and preparation, including
how to access the raw data, preprocessed data, intermediate data, and generated
data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible,
they should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to
the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
(a) Question: Does the paper specify all the training and test details (e.g., data splits, hy-

perparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

(b) Answer: [NA]
(c) Justification: The paper does not include experiments
(d) Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

(a) Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

(b) Answer: [NA]
(c) Justification: There are no experiments
(d) Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, random drawing of some parameter, or
overall run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard

error of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.
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or figures symmetric error bars that would yield results that are out of range (e.g.
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• If error bars are reported in tables or plots, The authors should explain in the text
how they were calculated and reference the corresponding figures or tables in the
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8. Experiments Compute Resources
(a) Question: For each experiment, does the paper provide sufficient information on the

computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

(b) Answer: [NA]
(c) Justification: There are no experiments
(d) Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal

cluster, or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
(a) Question: Does the research conducted in the paper conform, in every respect, with the

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
(b) Answer: [Yes]
(c) Justification:
(d) Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that require
a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
(a) Question: Does the paper discuss both potential positive societal impacts and negative

societal impacts of the work performed?
(b) Answer: [NA]
(c) Justification: The paper is theoretical, thus its impact is limited to scientific advances

and has no immediate societal impact otherwise.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• The conference expects that many papers will be foundational research and not
tied to particular applications, let alone deployments. However, if there is a direct
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is being used as intended and functioning correctly, harms that could arise when
the technology is being used as intended but gives incorrect results, and harms
following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in addition
to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a
system learns from feedback over time, improving the efficiency and accessibility
of ML).

11. Safeguards
(a) Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language
models, image generators, or scraped datasets)?

(b) Answer: [Yes]
(c) Justification: We do not have experiments
(d) Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model
or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and make a
best faith effort.

12. Licenses for existing assets
(a) Question: Are the creators or original owners of assets (e.g., code, data, models), used

in the paper, properly credited and are the license and terms of use explicitly mentioned
and properly respected?

(b) Answer: [NA]
(c) Justification: Does not use existing assets
(d) Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include

a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms

of service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license
of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out
to the asset’s creators.
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13. New Assets
(a) Question: Are new assets introduced in the paper well documented and is the docu-

mentation provided alongside the assets?
(b) Answer: [NA]
(c) Justification: No new assets
(d) Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of

their submissions via structured templates. This includes details about training,
license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people
whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
(a) Question: For crowdsourcing experiments and research with human subjects, does

the paper include the full text of instructions given to participants and screenshots, if
applicable, as well as details about compensation (if any)?

(b) Answer: [NA]
(c) Justification: No crowdsourcing
(d) Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the country of
the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
(a) Question: Does the paper describe potential risks incurred by study participants,

whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements of
your country or institution) were obtained?

(b) Answer: [NA]
(c) Justification: Out of scope
(d) Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiv-
alent) may be required for any human subjects research. If you obtained IRB
approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and
the guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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is used only for writing, editing, or formatting purposes and does not impact the core
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(b) Answer: [NA]
(c) Justification: There are no such parts in our paper
(d) Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Symmetric initialization

This section supplements the results of Section 4.1 by establishing the ODE governing the evolution
of cosine similarity γ(t) and the magnitude r(t) for each normalization scheme. While Theorem 3.1
guarantees convergence to a point mass from almost all initial configurations, we need to ensure that
γ(t) → 1 from a symmetric initialization as it approximates a random initial configuration when
the embedding dimension d is large. Below, the ODEs governing the evolution of γ(t), that is the
form of γ̇(t) = 2⟨θ̇k(t), θ1(t)⟩ can be derived using basic substitutions and we omit these details.
Moreover, since, Mix-LN is simply a combination of Post-LN and Pre-LN, the initial and terminal
velocity in this case follow directly.

Post-LN. The ODE governing the evolution of the cosine similarity γ(t) was already derived
in (Geshkovski et al., 2025, Theorem 6.8). It is given by

γ̇(t) =
2eβγ(t)(1− γ(t))((n− 1)γ(t) + 1)

((n− 1)eβγ(t) + eβ)
.

At t = 0, γ(t) = 0 and it is known from the aforementioned theorem that γ(t) → 1 as t → ∞. In
fact we readily see from the ODE that γ(t) is monotonically increasing. Writing ε(t) = 1− γ(t), we
get ε̇(t) ∼ −2ε(t). It yields

γ̇(t) ∼t→0
2

eβ + n− 1
, γ̇(t) ∼t→∞ Ce−2t.

Pre-LN. The ODEs governing r(t) and γ(t) are given by

ṙ(t) =
(n− 1)eβγ(t)γ(t) + eβ

(n− 1)eβγ(t) + eβ

and

γ̇(t) =
2eβγ(t)(1− γ(t))((n− 1)γ(t) + 1)

r(t)((n− 1)eβγ(t) + eβ)
. (1)

Note that γ is increasing so γ(t) ≥ γ(0) = 0 for all positive t. Hence,

γ̇(t) ≥ 2e

r(t)neβ
(1− γ(t)) .

By Grönwall’s inequality, we get

1− γ(t) ≤ exp

(
− 2e

neβ

∫ t

0

ds

r(s)

)
But since ṙ ≤ 1, we have r(t) ≤ t+ r(0) and

∫ t

0
ds
r(s) → ∞ as t → ∞. Hence γ(t) → 1 and, in turn,

ṙ(t) → 1 so that3 r(t) ∼t→∞ t as t → ∞ by l’Hôpital’s rule.

Writing ε(t) = 1− γ(t), we get ε̇(t) ∼t→∞ −2ε(t)/r(t) ∼t→∞ −2ε(t)/t. It yields that

γ̇(t) ∼t→0
2

r(0)(eβ + n− 1)
, γ̇(t) ∼t→∞

C

t3
.

Peri-LN. The ODEs governing r(t) and γ(t) are given by

ṙ(t) =
(n− 1)eβγ(t)γ(t) + eβ√

e2β + 2(n− 1)eβ(1+γ(t))γ(t) + (n− 1)e2βγ(t)(1 + (n− 2)γ(t))

and

γ̇(t) =
2eβγ(t)(1− γ(t))((n− 1)γ(t) + 1)

r(t)
√
e2β + 2(n− 1)eβ(1+γ(t))γ(t) + (n− 1)e2βγ(t)(1 + (n− 2)γ(t))

3For two function a(t) and b(t) and T ∈ {0,∞}, we write a(t) ∼t→T b(t) if a(t)/b(t) → 1 as t → T .
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The argument follows the same lines as for Pre-LN. Indeed, we have

γ̇(t) ≥ 2e

r(t)eβ
√
1 + (n− 1)2

(1− γ(t)) ≥ 2e

r(t)neβ
(1− γ(t)) ,

and hence

1− γ(t) ≤ exp

(
− 2e

neβ

∫ t

0

ds

r(s)

)
.

To show that ṙ ≤ 1 in this case too, we employ a coarser approximation that is sufficient for our
purpose:

ṙ(t) ≤ neβ√
e2β + n− 1

≤ n .

It readily yields that γ(t) → 1 as t → ∞ and in turn that r(t) ∼t→∞ t. Hence,

γ̇(t) ∼t→0
2

r(0)
√
e2β + n− 1

, γ̇(t) ∼t→∞
C

t3
.

nGPT. The ODE governing γ(t) is given by

γ̇(t) =
2αte

βγ(t)(1− γ(t))((n− 1)γ(t) + 1)√
e2β + 2(n− 1)eβ(1+γ(t))γ(t) + (n− 1)e2βγ(t)(1 + (n− 2)γ(t))

, .

This is the same formula as Peri-LN where r(t) is replaced with α−1
t . Hence,

1− γ(t) ≤ exp

(
− 2e

neβ

∫ t

0

αsds

)
Assuming that αt is chosen such that the above integral diverges as t → ∞, we get that γ(t) → 1 as
t → ∞. It yields

γ̇(t) ∼t→0
2α0√

e2β + n− 1
, γ̇(t) ∼t→∞ Cαte

−2
∫ t
0
αsds.

LN-Scaling. The ODE governing γ(t) is given by

γ̇(t) =
2eβγ(t)(1− γ(t))((n− 1)γ(t) + 1)√

t+ 1((n− 1)eβγ(t) + eβ)

Observe that the cosine similarity evolves precisely as (1) but with predetermined magnitude r(t) =√
t+ 1. In particular, we get that γ(t) → 1 as t → ∞. We readily get

γ̇(t) ∼t→0
2

eβ + n− 1
, γ̇(t) ∼t→∞ C

e−4
√
t

√
t

.

B Proof of Theorem 4.2

Here we prove an upper bound on the initial attention vector. Assume β = 1, n log n ≥ d ≥ log2 n,
∥Q⊤K∥op, ∥V ∥op ≤ 1, i.i.d. random uniform θj . Then

P
(
∀j ∈ [n] ∥Aj(Θ(0))∥ ≤ C

log n

d

)
≥ 1− n−C .

Proof. Throughout this proof, C > 0 denotes a universal constant that may change from line to line.

Fix token j—without loss of generality, j = n—and work conditionally on θn. Define the random
variables:

Xk := θ⊤nQ
⊤Kθk , k = 1, . . . , n .

Our goal is to control the norm of the vector

An(Θ(0)) := V

∑n
k=1 e

Xkθk∑n
k=1 e

Xk
.
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Since we assume that ∥V ∥op ≤ 1, we may assume without loss of generality that V = Id.

Let w denote the probability vector given by wk ∝ eXk and observe that
n∑

k=1

wkθk =
1

n

n∑
k=1

θk +
1

n

n∑
k=1

Xkθk +

n∑
k=1

(
wk − 1

n
− Xk

n

)
θk. (2)

Since the θks are i.i.d. centered and subGaussian with variance proxy C/d, we get that with probability
at least 1− n−C ∥∥ 1

n

n∑
k=1

θk
∥∥ ≤ C

√
log n

n
(3)

Moreover, observe that for any k ≤ n, we have∥∥E 1

n

n∑
k=1

Xkθk
∥∥ ≤ C

d
.

Hence, by vector Hoeffding, with probability at least 1− n−C , we also have∥∥ 1
n

n∑
k=1

Xkθk
∥∥ ≤ C

d
+ C

√
log n

n
.

because we assumed n log n ≥ d.

We now control the third and last term in the right-hand side of (2). and observe that Xn is
deterministic and with norm at most 1. For k ≤ n− 1, the random variables Xk are i.i.d centered
and subGaussian with variance proxy C/d. Hence there exists an event E, with probability at least
1− n−C , on which

max
k≤n−1

|Xk| ≤ C

√
log n

d
.

Since n ≤ e
√
d, on E, it holds for all k ≤ n− 1,

|eXk − 1−Xk| ≤ C
log n

d
.

Moreover, we have that |Xn| ≤ 1 so that e−1 ≤ eXn ≤ e. Together, these bounds yield that

1 +Xk − C logn
d

n− 1 + e
≤ wk ≤

1 +Xk + C logn
d

n− 1 + e−1
, k ≤ n− 1 ,

so that ∣∣wk − 1

n
− Xk

n

∣∣ ≤ C
log n

nd

where we used the fact that n ≥
√
d. Moreover, using similar arguments, we also have∣∣wk − 1

n
− Xk

n

∣∣ ≤ 2 .

Put together, the last two displays yield∥∥∥ n∑
k=1

(
wk − 1

n
− Xk

n

)
θk

∥∥∥ ≤ C
log n

d
.

Combined together we get the claimed estimate.

C Proof of Theorem 4.3

Denote average θ̄ = 1
n

∑n
k=1 θk. Consider variance of tokens

V(t) := 1

n

n∑
k=1

∥θk − θ̄∥2 = 1− ∥θ̄∥2.
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Then

V ′(t) =
2

n

n∑
k=1

⟨θk − θ̄, θ̇k − 1

n

n∑
j=1

θ̇j⟩.

We immediately have
n∑

k=1

⟨θk − θ̄,
1

n

n∑
j=1

θ̇j⟩ = ⟨
n∑

k=1

θk − nθ̄,
1

n

n∑
j=1

θ̇j⟩ = 0.

Thus

V ′(t) =
2

n

n∑
k=1

⟨θk − θ̄, θ̇k⟩ =
2

n

n∑
k=1

⟨θk − θ̄,
1

sk
PkAk⟩.

Let’s decompose δk := Ak − θk to get

V ′(t) =
2

n

n∑
k=1

⟨θk − θ̄,
1

sk
Pkθ̄⟩+

2

n

n∑
k=1

⟨θk − θ̄,
1

sk
Pkδk⟩ = I1 + I2.

For the first term we write

n

2
I1 =

n∑
k=1

1

sk
⟨θk − θ̄, Pkθ̄⟩ =

n∑
k=1

1

sk
⟨−θ̄, θ̄ − ⟨θk, θ̄⟩θk⟩ =

n∑
k=1

1

sk
(⟨θk, θ̄⟩2 − ∥θ̄∥2).

Each term in the sum is non-positive, thus we can bound

1

maxk sk

n∑
k=1

(⟨θk, θ̄⟩2 − ∥θ̄∥2) ≥ n

2
I1 ≥ 1

mink sk

n∑
k=1

(⟨θk, θ̄⟩2 − ∥θ̄∥2).

The sum itself can be written as
n∑

k=1

(⟨θk, θ̄⟩2 − ∥θ̄∥2) =
n∑

k=1

⟨θk, θ̄⟩2 − n∥θ̄∥2 =

n∑
k=1

(⟨θk, θ̄⟩2 − ⟨θk, θ̄⟩),

since
∑n

k=1⟨θk, θ̄⟩ = n∥θ̄∥2 = n− nV(t). With a fixed sum of ⟨θk, θ̄⟩, the min/max sum of squares
⟨θk, θ̄⟩2 is achieved when they are equal/spread out, which gives us

1

maxk sk
(−2V + 2nV2) ≥ I1 ≥ 1

mink sk
(−2V + 2V2).

For the second term, we first upper bound the length of Pkδk. To this aim, consider

⟨Qθk,Kθi⟩−⟨Qθk,Kθj⟩ = ⟨θk, Q⊤K(θi−θj)⟩ ≤ ∥θk∥∥Q⊤K∥op∥θi−θj∥ ≤ ∥θi−θj∥ ≤
√
2δ.

Consequently,
1

ne−β
√
2δ

≥ eβ⟨Qθk,Kθj⟩∑n
t=1 e

β⟨Qθk,Kθt⟩
≥ 1

neβ
√
2δ
.

Which implies ∣∣∣∣wkj −
1

n

∣∣∣∣ = ∣∣∣∣ eβ⟨Qθk,Kθj⟩∑n
t=1 e

β⟨Qθk,Kθt⟩
− 1

n

∣∣∣∣ ≤ 1

n
(eβ

√
2δ − 1).

Therefore,

∥Pkδk∥ = ∥
n∑

j=1

(wkj −
1

n
)Pkθj∥ ≤ 1

n
(eβ

√
2δ−1)

n∑
j=1

∥Pkθj∥ ≤ 1

n
(eβ

√
2δ−1)

√
n

√∑
j

∥Pkθj∥2.

Finally, one has
n∑

j=1

∥Pkθj∥2 =

n∑
j=1

(1− ⟨θj , θk⟩2) ≤ n− 1

n
(

n∑
j=1

⟨θj , θk⟩)2

=n(1− ⟨θ̄, θk⟩2) ≤ n(1− (1− nV)2) ≤ 2n2V.
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Combined, we obtain an upper bound

|I2| ≤
2

n

n∑
k=1

1

sk
∥θk − θ̄∥∥Pkδk∥ ≤ 2

n

1

mink sk

1

n
(eβ

√
2δ − 1)

√
n
√
2n2V

n∑
k=1

∥θk − θ̄∥

≤ 2
1

mink sk
(eβ

√
2δ − 1)

√
2V(

n∑
k=1

∥θk − θ̄∥2)1/2 = 2
1

mink sk

√
2n(eβ

√
2δ − 1)V.

Thus, we obtain upper and lower bounds on V ′(t) = I1 + I2 in terms of V .

−2V + 2nV2

maxk sk
+

2
√
2n(eβ

√
2δ − 1)

mink sK
V ≥ V ′(t) ≥ −2V + 2V2 − 2

√
2n(eβ

√
2δ − 1)

mink sk
V. (4)

Let us also mention that
2δ = max

k,j
∥θk − θj∥2 ≤ 4max

k
∥θk − θ̄∥2 ≤ 4nV,

whereas
1− V = ⟨θ̄, θ̄⟩ ≥ 1− δ, i.e. V ≤ δ.

Therefore, the true local rate of clustering that we get from bounds (4) is defined by the main terms on
both sides −2V/maxk sk and −2V/mink sk. Moreover, as V → 0, min sk ∼ max sk, so we obtain
a tight rate of convergence. To establish the result we claimed, notice that for δ < 1

100n2β2 one has

2
√
2n(eβ

√
2δ − 1) ≤

√
2

3
√
n
, 2nV2 ≤ 2nδV,

giving us
−2 + 2nδ +

√
2/(3

√
n)

maxk sk
V ≥ V ′ ≥ −2−

√
2/(3

√
n)

mink sk
V. (5)

Finally, we finish the proof with trivial estimates on sk, that follow from the fact that all products
⟨θk, θj⟩ ≥ 1− δ and definitions.

• For Post-LN sk ≡ 1.
• for Pre-LN t ≥ sk ≥ (1− δ)t.

• for Peri-LN t ≥ sk ≥ (1− δ)3/2t

• for nGPT αt ≥ sk ≥ (1− δ)1/2αt

• for Mix-LN t ≥ sk ≥ (1− δ)(t− τ)

• for LN-Scaling sk ≡
√
t.

Substituted into the estimate (5), we obtain the claimed rates.
Remark 1. The true local rate of convergence of V as t → ∞ that we get from equation (4) is

• V = e−2t(1+o(1)) for Post-LN,

• V = e−2 log t(1+o(1)) for Pre-LN,

• V = e−2 log t(1+o(1)) for Peri-LN,

• V = e−2
∫ t
0
αsds(1+o(1)) for nGPT,

• V = e−2 log t(1+o(1)) for Mix-LN,

• V = e−4
√
t(1+o(1)) for LN-Scaling.

D Final convergence

In this section we prove Theorem 3.1 from the main text, that claims that under some assumptions,
for almost any initial configuration of particles, any normalized attention dynamics that we study
(that is Post-LN, Pre-LN, Peri-LN, nGPT, Mix-LN and LN-Scaling) converges to a single cluster.
First, let us outline the core of the proof.
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D.1 Proof Outline for Token Synchronization in Pre-LN

A conventional proof that all tokens converge to a single state consists of two stages. Showing that
there is some limiting configuration of tokens, and then verifying that the only possible limiting
configuration is the consensual one. We follow the same approach, but at each step we introduce
novel technical details due to our general point of view. For simplicity of exposition, in the outline
we follow Pre-LN case.

Existence of a Limit Point First, we demonstrate that the token dynamics indeed converge to a
limiting configuration. This step heavily depends on the system. Common approach leverages the
Łojasiewicz inequality, as seen in Geshkovski et al. (2025). It can be adopted to our setting, as we
will show later. Moreover, our proof extends the gradient case Q⊤K = V to a more general case,
extending the synchronization results by Geshkovski et al. (2025), Criscitiello et al. (2024), even in
Post-LN case.

Local behavior at the limiting point. Second, we must prove that any such limit point corresponds to
the synchronized state where all tokens are identical. The classical argument involves a local stability
analysis around the system’s critical points. One can typically show that any non-synchronized critical
points are unstable and that their basin of attraction has measure zero, making them insignificant as
final states. A comprehensive linearization analysis can be found in Criscitiello et al. (2024) that, in
particular, covers Post-LN dynamics with d ≥ 3. Together with a recent proof of synchronization for
d = 2 Polyanskiy et al. (2025), the stability of Post-LN system Jacobian is well-studied. We also
rely on this method, but first we need to resolve the fact that Pre-LN system is non-compact.

Transformation to compact state space. The Pre-LN state-space is non-compact, because both
empirically and theoretically tokens’ magnitude rj grows to infinity with t. This restricts the direct
study of the limiting point in that space. We can transform it to a compact state space by the following
trick, however. Consider a logarithmic time scale τ := ln t and modified scale variables qj := sj/t.
Applying the chain rule, we find the transformed dynamics:

dθj
dτ

=
1

qj
PjAj(Θ)

dqj
dτ

= ⟨θj , Aj(Θ)⟩ − qj .

This formulation is interesting in its own right. It reveals that the Pre-LN system evolves on a
logarithmic time scale, which may explain its observed stability advantages over Post-LN variants in
deep architectures. Furthermore, the dynamics are scaled by qj , which are driven toward ⟨θj , Aj(Θ)⟩,
the alignment between a token and its attention vector.

Crucially for our proof, this transformed system is still autonomous. This allows us to proceed with
the final step: a rigorous linearization analysis of its critical points. By showing that all critical points
corresponding to non-consensual states are unstable in the (θ, q, τ) frame, we can conclude that the
system must converge to the state where all tokens are identical.

In what follows we are going to cover all the proof steps in detail.

D.2 Generalized gradient descent convergence

First, we need to refine an important result of Łojasiewicz on convergence of gradient descent, so that
it fits our problem setting. We follow an approach similar to the one presented in Haraux (2012).
Lemma 1. For any t ≥ 0, let M(t) be a symmetric real matrix Cλ(t)I ≻ M(t) ≻ λ(t)I with
λ(t) > 0,

∫∞
0

λ(t)dt = ∞, and some constant C. Let energy function E(x) be analytic in an open
set U ⊂ RN . Consider a compact path x(t) ⊂ U that satisfies the following modified gradient
descent equation

ẋ = −M(t)∇xE(x).
Then, x(t) converges to a critical point of the energy function x(t) → x∗ such that ∇E(x∗) = 0.

Proof. Step I. Change of time. First, define a new time variable τ(t) =
∫ t

0
λ(s)ds. By assumption τ

monotonically grows to infinity as t → ∞. Moreover,
dx

dτ
=

dx/dt

dτ/dt
=

−M(t)∇xE(x)

λ(t)
.
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Take M̃(τ) = M(t(τ))/λ(t(τ)). Then

dx

dτ
= −M̃(τ)∇xE(x)

with CI ≻ M̃(τ) ≻ I . This change of time proves that it is sufficient to prove the Lemma in its
initial form under the assumption CI ≻ M(t) ≻ I , whereas λ(t) corresponds to time change.

Step 2. Now that we have CI ≻ M(t) ≻ I , let us follow a known approach to the proof of gradient
descent convergence. Consider the energy along the trajectory, i.e.

f(t) := E(x(t)).

Then
f ′(t) = (ẋ)⊤∇xE|x(t) = −(ẋ)⊤M−1ẋ ≤ −C−1|ẋ|2.

In particular, f ′(t) < 0, the energy is decreasing along the trajectory. Since E is bounded on a
compact trajectory, we get that f ′(t) ∈ L1([0,∞)). Because

|ẋ|2 ≤ C|f ′(t)|,

we get that ẋ ∈ L2([0,∞)). This implies that ẋ → 0, because ẋ is an absolutely continuous function
in L2([0,∞)).

Therefore, since M(t) ≻ cI , we get that ∇xE(x) → 0. For convergence to a point this is not enough,
but it already shows us that dist(x, E) → 0 where E = {a : ∇E(a) = 0}. Then, because the limit set
Γ of a compact trajectory x(t) is compact and connected, we can use uniform Łojasiewicz inequality.

To get x → x∗ we need to sharpen the estimate on ẋ. This is where the Łojasiewicz inequality is
used. It says that in some neighbourhood Ω of Γ and some constants V, α one has

|E(u)− V |α ≤ ∥∇E(u)∥.

We can assume V = 0 by shifting the energy function. In particular, it means that f(t) decreases to 0
as t → ∞. Moreover, because x(t) approaches Γ as t → ∞, we know that as t → ∞ it is true that

|E(x(t))|α ≤ ∥∇E(x(t))∥.

Therefore, from our assumption M(t) ≻ I we get

f ′(t) = (∇xE|x(t))⊤ẋ = −(∇xE|x(t))⊤M(t)∇xE|x(t) ≤ −∥∇xE(x(t))∥2 ≤ −|f(t)|2α.

Then
(f1−2α(t))′ = (1− 2α)f−2αf ′ ≥ (2α− 1).

Consequently, for β = 1/(2α− 1) one has

f(t) ≤ Kt−β .

We know that
|ẋ|2 ≤ C|f ′(t)| = −Cf ′(t).

Then ∫ 2t

t

|ẋ|2ds ≤ C(f(t)− f(2t)) ≤ CKt−β .

From this inequality and Cauchy-Schwarz we get∫ 2t

t

|ẋ|ds ≤ CKt(1−β)/2.

Finally, this estimate shows convergence of the path x(t) to some limiting point, because∫ ∞

1

|ẋ| ≤ CK

∞∑
n=0

2n(1−β)/2 < ∞.
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D.3 Proof of Theorem 3.1

In this appendix we provide a complete proof of Theorem 3.1. The argument follows the roadmap
outlined in Section D.1, with minor adjustments for each normalization scheme. For simplicity of
exposition, we first give a full analysis of Pre-LN. Then, we provide remarks on how to adapt the
proof for each normalization scheme. Thanks to our unified formulation of normalization in (NA),
the core proof applies verbatim across all schemes—the only variation lies in some technical details.
A forthcoming work will pursue that broader unification and extend the analysis beyond purely
architectural speed regulators.

For convenience, let us recall the object of study. We consider the evolution of particles θj on a unit
sphere Sd−1 governed by the ODE

θ̇j =
1

sj
PjAj , Aj =

n∑
k=1

eβ⟨Qθj ,Kθk⟩∑n
ℓ=1 e

β⟨Qθj ,Kθell⟩
V θk

with normalization factor sk evolving according to the following table.

Table 3: Speed regulation factors
sj(t) ṙj(t)

Post-LN 1 0
Pre-LN rj(t) ⟨θj(t), At

j(Θ(t))⟩
Mix-LN 1It≤τ + rj(t)1It>τ ⟨θj(t), At

j(Θ(t))⟩1It>τ

Peri-LN rj(t)∥At
j(Θ(t))∥ ⟨θj(t), At(θj(t))⟩/∥At

j(Θ(t))∥
nGPT α−1

t ∥At
j(Θ(t))∥ 0

LN-Scaling
√
t+ 1 0

Proposition 1. Consider monotonically growing to infinity time change τ(t). Then, normalized
attention dynamics with speed regulation factors sj(t) is equivalent to normalized attention dynamics
with speed regulation factors s̃j(τ) = sj(t(τ))/t

′(τ) in time τ .

Proof. This immediately follows from the definition

dθj
dτ

=
dθj
dt

t′(τ) =
1

sj(t(τ))/t′(τ)
PjAj(Θ).

This proposition shows that in the normalized attention dynamics we can divide sj by the same
factor, as long as it’s positive and its inverse integrates to infinity. This notion helps us reduce time
dependence in normalization dynamics.

Proof. Step 1. Time change

Consider evolution starting at time t = 1 and a time change τ := ln t so that dt/dτ = t. Moreover,
set qj(t) := rj(t)/t. Then, we rewrite Pre-LN in time τ as

θ̇j(τ) =
1

qj(τ)
PjAj(Θ(τ)), q̇j(τ) = ⟨θj(τ), Aj(Θ(τ))⟩ − qj(τ).

The function ⟨θj , Aj(Θ)⟩ is continuous and thus bounded on the compact. Then, all qj are upper
bounded from the equation, and thus evolve on a segment [0, Q]. This frame change is important, as
it allows us to study an autonomous system on a compact, whereas in the original coordinates one
usually has rj → ∞. Moreover, the condition

inf
j
lim inf
t→∞

ṙj > 0

implies that all magnitudes rj are lower bounded by some linear function at t → ∞, which translates
into

inf
j
inf
τ
qj(τ) > 0.
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Step 2. Gradient-like structure. We consider the event {infj infτ qj > 0}. It is enough to show
synchronization under this assumption to prove the result. First, to show the convergence of the
system to some limiting configuration of angles Θ∗, we use Lemma 1. For any trajectory Θ(τ) we
can write

θ̇j = − 1

qjZj
∇θjE(Θ)

with spherical gradient of the following energy function

E(Θ) = − 1

2β

∑
j,k

eβ⟨θj ,θk⟩.

To get convergence of a specific trajectory Θ(τ) to some critical point Θ∗, we need to verify that the
time-dependent matrix M(τ) with diagonal blocks 1

qjZj
satisfies the assumptions of Lemma 1. This

is true, because the blocks are uniformly bounded. Indeed, the function Zj is uniformly bounded as
continuous functions on a compact. Whereas qj are uniformly bounded on any trajectory we consider,
with {infj infτ qj > 0}.

Step 3. Local behavior We consider the event infj infτ qj > 0 and Θ(τ) → Θ∗. Our goal is to show
that when the limiting point is not θ∗1 = . . . = θ∗n, this event has probability zero. We can split the
event into a countable union with assumptions {qj(τ) ≥ 1

m}.

{inf
j
inf qj > 0} ⊂

⋃
m∈Z>0

{∀j ∈ [n] ∀τ > 0 qj ≥
1

m
}.

As we already mentioned, qj are bounded from above. This means that under the restriction qj ≥ 1
m ,

the combined state space of (Θ, q) is a compact manifold. Our goal is to show that the event

{∀j ∈ [n] ∀t > 0 qj >
1

m
} ∪ {∀j ∈ [n] θj → θ∗j |Θ∗is not synchronized}

has probability zero.

When we get an autonomous dynamical system on a compact manifold, and we study its convergence
to a limiting point, we need to study the Jacobian at that limiting point. Specifically, a well-
known stability argument that was already written down several times (see Criscitiello et al. (2024),
(Geshkovski et al., 2025, Lemma A.1)), employs central manifold theorem to show that basin of
attraction of unstable critical points has measure zero.

This argument applies to our case. Therefore, we move on to studying stability of critical points in
the next part.

Step 4. Unstable direction of the θ part

Consider the dynamics in the form

θ̇j = − 1

qj(τ)gj(Θ)
∇θjE(Θ), q̇j = fj(Θ)− qj ,

where gj = Zj and fj = ⟨θj , Aj(Θ)⟩ for Pre-LN. In order to show that all limiting points
(Θ∗, q∗), q∗ > 0 that are not fully synchronized (i.e. not all θj are equal) have measure zero
basin of attraction, we only need to check that they are all unstable. More specifically, that the
Jacobian matrix at any such point Θ∗, q∗ has an eigenvalue with a positive real part. Because of the
specific form of our system, the Jacobian has a convenient block form

J =

(
Jqq Jqθ
Jθq Jθθ

)
where Jqq = −In and Jθq = 0 because at the critical point ∇θjE(Θ∗) = 0. Therefore, it is enough
to show that Jθθ has a positive eigenvalue. Because of the gradient-like structure, Jθθ is the product
of two matrices – diag( 1

f1(Θ∗)g1(Θ∗) , . . . ,
1

fn(Θ∗)gn(Θ∗) ) and a symmetric Hessian of the energy
function E. The Hessian itself is unstable, this is an established result due to Criscitiello et al. (2024)
(for d ≥ 3) and Polyanskiy et al. (2025) (for d = 2) that together closed synchronization for Post-LN.

Surprisingly, this is enough for our cause, because of the following matrix property, that shows the
product of the diagonal matrix and unstable Hessian is again unstable. Note that the lemma is not
true without the symmetry assumption on A.
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Lemma 2. For a symmetric unstable matrix A and a symmetric positive-definite D, the product DA
is also unstable.

Proof. First, because D is symmetric positive-definite, there is a symmetric positive-definite square
root P , i.e. P 2 = D. Consider a symmetric matrix B = PAP . Notice that

P−1DAP = PAP = B,

thus matrices DA and B are similar, i.e. they share eigenvalues. On the other hand, by Sylvester’s
law of inertia, B and A have the same inertia, and in particular the number of positive eigenvalues.
Therefore, B has a positive eigenvalue, and so does DA.

Step 5. Basin of attraction of unstable critical points.

It is well-known that the set of unstable critical points of a dynamical system on a compact has
measure-zero basin of attraction (see for example (Geshkovski et al., 2025, Lemma A.1) for a proof
outline). Thus, we obtain that the event

{∀j ∈ [n] ∀t > 0 qj >
1

m
} ∪ {∀j ∈ [n] θj → θ∗j |Θ∗is not synchronized}

has measure zero.

For completeness, we include the proof here. Let Φτ (x0) be the flow for the system ẋ = F (x), where
x = (Θ, q). The vector field F (x) is smooth on the open domain where all qj > 0. For any fixed
m > 0, we consider the dynamics on the compact manifold

Mm := (Sd−1)n × [1/m,Q]n,

on which the flow is smooth. Let Km ⊆ Mm be the compact, forward-invariant set of initial
conditions whose trajectories remain in Mm.

Let Sns ⊂ Km be the set of non-synchronized critical points. By Step 4, every point x∗ ∈ Sns is
unstable. Let Am,ns ⊂ Km be the basin of attraction for Sns, i.e., the set of x0 ∈ Km such that

lim
τ→∞

Φτ (x0) ∈ Sns.

For any x∗ ∈ Sns, which lies in the interior of Mm, the Center-Stable Manifold Theorem applies. It
guarantees the existence of a local center-stable manifold W loc

cs (x
∗). The instability of x∗ implies that

dim(W loc
cs (x

∗)) ≤ dim(Mm)− 1,

so W loc
cs (x

∗) has measure zero. From the Center-Stable Manifold Theorem, there is a neighborhood
of x∗ such that any trajectory staying in this neighborhood has to enter and remain on W loc

cs (x∗).
By choosing a finite covering of the compact set Sns with respective neighborhoods of x∗, we get
that any initial condition x0 ∈ Am,ns has a trajectory Φτ (x0) that must eventually enter and remain
on some W loc

cs (x
∗
k), with a finite number of x∗

k, k ≤ K chosen from the covering. Thus, for some
N ∈ Z+, k ≤ K, we have

x0 = Φ−N (ΦN (x0)), where ΦN (x0) ∈ W loc
cs (x

∗
k).

Since Φ−N is a local diffeomorphism, it preserves the dimensionality. Manifold W loc
cs (x

∗
k) has

positive co-dimension, and thus its pre-image too, which implies that it has measure zero in Mm.
Consequently, measure of Am,ns is also zero, as a countable union of measure zero sets. Finally,
to completely finish, we need to map the set to t = 0, because τ = 0 corresponds to t = 1. This
is again a smooth backward flow that preserves measure zero set. We arrive at measure zero set in
initial coordinates (Θ(0), r(0)), because they are distributed with standard Gaussian r(0) ·Θ(0).

Remark 2. Here we describe modifications of the proof for each scheme.

• Post-LN No time change is required. The system is already autonomous and compact. Step
2 works with modified gradient descent from 1, because the modification matrix M(t) is
diagonal with blocks 1

Zj
, that are uniformly bounded. As such, we get convergence to some

critical point. Finally, we use existing analysis of the stability of the energy functional
together with 2 to establish synchronization.
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• Peri-LN For the Step 1 we use time change τ := ln t and also consider qj(t) := rj(t)/t. It
leads to the dynamics of the form

θ̇j =
1

qj∥Aj(Θ)∥
PjAj(Θ), q̇j =

⟨θj , Aj(Θ)⟩
∥Aj(Θ)∥

− qj .

The rest of the proof remains the same as Pre-LN, because this system satisfies gradient-like
structure of Step 2, we also use the assumption to separate qj from 0, and then show that all
critical points that are not synchronized have unstable direction in Step 4. The form of the
system and the Jacobian in Step 4 is written generally, to acomodate this case too.

• Mix-LN At infinity Mix-LN follows exactly Pre-LN, and the argument follows from the
proof of Pre-LN.

• nGPT Time change τ =
∫
α−1
t from Step 1 simplifies nGPT to the case αt ≡ 1. This

makes the original dynamics autonomous on a compact manifold. As such, it requires no
frame change, and we immediately move on to studying convergence and local behavior of
that system. Modified Łojasiewicz from Step 2 and analysis of the unstable direction of the
Jacobian from Step 4 follow similar steps. For the Jacobian, the only component is Jθθ, and
it is unstable from the same Lemma. The only complication for the system are points with
Aj = 0. They, however, break the original dynamics too, and can be excluded with careful
analysis.

• LN-Scaling Time change from Step 1 with τ = 2
√
t+ 1 reduces LN-Scaling to Post-LN.

E Simulation results with random weight matrices

Attention Update Formulation. To align our simulations with practical transformer architectures,
we now explicitly include the output projection matrix, W ∈ Rd×d, in the attention update. For
a multi-head configuration, the output of each head h is first computed and then concatenated,
after which the final projection is applied: Oh = softmax(βXQhK

T
h X

T )XVh, h = 1, . . . , nheads

Xt+1 = Concat(O1, . . . , Onheads)W where Qh,Kh, Vh ∈ Rd×dhead . The inclusion of the matrix W is
a linear transformation applied after the core softmax-driven interaction. While this is crucial for
model capacity in practice, it does not impact the theoretical dynamics description, which is why it
was omitted from the preceding theoretical analysis for notational simplicity.

Experimental Settings. We present simulation results illustrating the evolution of average token
cosine similarity. All plots show the mean trajectory averaged over 105 independent runs, with
shaded regions indicating the 90% confidence interval. Each run begins with a fresh draw of initial
token positions X from an isotropic distribution and random weight matrices. All simulations use a
context of n = 128 tokens. For the normalization methods Mix-LN and nGPT, we use parameters
τ = 0.25T and α ≡ 1, respectively.

Our plots vary several factors. The majority of our experiments use Kaiming initialization. In this
setting, we fix the number of heads to nheads = 1 (so dhead = d) to isolate the core dynamics. We
systematically vary the following parameters:

• Dimension (d): small (16), medium (128), and large (512).

• Temperature (β): low (β = 1), medium (β =
√
d), and high (β = 4

√
d).

• Weight Sampling: static (a single draw of Q,K, V,W fixed for all time steps) vs. re-
sampled (new matrices are drawn at each time step ∆t).

GPT-style Initialization: We conduct one experiment that mirrors the configuration of a small GPT-2
style model.

• It uses d = 768, nheads = 12 (implying dhead = 64), and a temperature of β =
√
dhead.

• Weights are drawn from a Gaussian distribution with variance σ2 = 0.02 and are held static.

Figures are arranged to facilitate comparison, with each caption specifying the experimental signature
⟨d, nheads, β,weights, init⟩.

29



(a) d = 512, nheads = 1, β =
√
d (medium), static

Kaiming weights. Case where d > n.
(b) d = 512, nheads = 1, β = 4

√
d (high), static

Kaiming weights. Case where d > n.

(c) d = 512, nheads = 1, β =
√
d (medium), re-

sampled Kaiming weights at each ∆t = 1.
(d) d = 16, nheads = 1, β = 1, static Kaiming
weights. Case where d < n.

(e) d = 128, nheads = 1, β =
√
d (medium), static

Kaiming weights. Case where d = n.
(f) d = 128, nheads = 1, β = 4

√
d (high), static

Kaiming weights. Case where d = n.

(g) NanoGPT-style: d = 768, nheads = 12
(dhead = 64), β =

√
dhead, static Gaussian weights

with σ = 0.02.

Figure 5: Evolution of average cosine similarity for tokens under the pure attention update.

30


	Introduction
	Normalized Attention Dynamics
	Attention
	Normalization.
	Speed regulation formulation

	Asymptotic clustering
	Initial and terminal token velocities
	Prelude: Symmetric initialization
	Initial velocity
	Terminal velocity

	Limitations
	Symmetric initialization
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Final convergence
	Proof Outline for Token Synchronization in Pre-LN
	Generalized gradient descent convergence
	Proof of Theorem 3.1

	Simulation results with random weight matrices

