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Abstract001

The rapid advancement of large language mod-002
els (LLMs) has significantly enhanced the ca-003
pabilities of agents across various tasks. How-004
ever, existing agentic systems, whether based005
on fixed pipeline algorithms or pre-defined006
meta-learning frameworks, cannot search the007
whole agent design space due to the restric-008
tion of human-designed components, and thus009
might miss the more optimal agent design. In010
this paper, we introduce Gödel Agent, a self-011
evolving framework inspired by the Gödel ma-012
chine, enabling agents to recursively improve013
themselves without relying on predefined rou-014
tines or fixed optimization algorithms. Gödel015
Agent leverages LLMs to dynamically modify016
its own logic and behavior, guided solely by017
high-level objectives through prompting. Ex-018
perimental results on multiple domains demon-019
strate that implementation of Gödel Agent can020
achieve continuous self-improvement, surpass-021
ing manually crafted agents in performance,022
efficiency, and generalizability.023

1 Introduction024

As large language models (LLMs) (OpenAI et al.,025

2024; Dubey et al., 2024) demonstrate increasingly026

strong reasoning and planning capabilities, LLM-027

driven agentic systems have achieved remarkable028

performance in a wide range of tasks (Wang et al.,029

2024a). Substantial effort has been invested in030

manually designing sophisticated agentic systems031

using human priors in different application areas.032

Recently, there has been a significant interest in033

creating self-evolving agents, that not only greatly034

reduce human labor but also produce better solu-035

tions. Given that human effort can only cover a036

small search space of agent design, it is reason-037

able to expect that a self-evolving agent with the038

freedom to explore the full design space has the039

potential to produce a more optimal solution.040

There is a large body of work proposing agents041

capable of self-refinement. Some agents are de-042
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Figure 1: Modular demonstration of Gödel Agent. Com-
pared with traditional agents, its sensor and executor
can read and write all of its own code.

signed to iterate over a fixed routine consisting of 043

a list of fixed modules, while some of the modules 044

are capable of taking self- or environment feedback 045

to refine their actions (Chen et al., 2023b; Qu et al., 046

2024a; Yao et al., 2023). This type of agent, re- 047

ferred to as Hand-Designed Agent, is depicted as 048

having the lowest degree of freedom in Figure 2. 049

More automated agents have been designed to be 050

able to update their routines or modules in some 051

pre-defined meta-learning routine, for example, nat- 052

ural language gradients (Zhou et al., 2024), meta 053

agent (Hu et al., 2024), or creating and collecting 054

demonstrations (Khattab et al., 2023). This type 055

of agent, known as Meta-Learning Optimized 056

Agents, is depicted as having the middle degree of 057

freedom in Figure 2. However, there are inevitably 058

some human priors involved in these agent designs 059

that cannot be improved during the inference time. 060

In this paper, we propose Gödel Agent to elimi- 061

nate the human design prior, which is an automated 062

LLM agent that can freely decide its own routine, 063

modules, and even the way to update them. It 064

is inspired by the self-referential Gödel machine 065

(Schmidhuber, 2003), which was proven to be able 066

to find the global optimal solutions. Self-reference 067

means the property of a system that can analyze and 068
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Figure 2: Comparison of three agent paradigms. Hand-designed agents rely on human expertise which are limited
in scope and labor-intensive. Meta-learning optimized agents are constrained by a fixed meta-learning algorithm,
restricting their search space and optimization potential. In contrast, self-referential agent (Gödel Agent) can
recursively improve itself without any limitation. Its optimization capabilities are constantly being enhanced by
itself. Consequently, in return, it can continue to optimize itself better.

modify its own code, including the parts responsi-069

ble for the analysis and modification processes (As-070

trachan, 1994). Therefore, it can achieve what’s071

known as ”recursive self-improvement”, where it072

iteratively updates itself to become more efficient073

and effective at achieving its predefined goals. In074

this case, as shown in Figure 1, Gödel Agent can075

analyze and modify its own code, including the076

code for analyzing and modifying itself, and thus077

can search the full agent design space, which is078

depicted as having the highest degree of freedom079

in Figure 2. Gödel Agent can theoretically make080

increasingly better modifications over time through081

recursively self-update (Wang, 2018).082

In this paper, we choose to implement it by let-083

ting it manipulate its own runtime memory, i.e.,084

the agent is able to retrieve its current code in the085

runtime memory and modify it by monkey patch-086

ing (Bimal, 2012), which dynamically modifies087

classes or modules during execution. To allow it088

to update the logic of the running main function,089

unlike the loop-iterative approach of traditional090

agents, we implement the main function as a re-091

cursive function. In this function, LLM analyzes092

and makes a series of decisions, including reading093

and modifying its own code from runtime mem-094

ory (self-awareness1 and self-modification), and095

interacting with the environment to gather feed-096

back. The agent then proceeds to the subsequent097

1In this paper, self-awareness means that the agent can
introspect and read its own code and files, not to imply any
philosophical sense of consciousness or awareness.

recursive depth and continues to optimize itself. 098

To validate the effectiveness of Gödel Agent, 099

we conduct experiments on multiple domains in- 100

cluding coding, science, math, and reasoning. Our 101

results demonstrate that Gödel Agent achieves sig- 102

nificant performance gain across various tasks, sur- 103

passing various widely-used agents that require 104

human design. The same implementation of Gödel 105

Agent can easily adapt to different tasks by only 106

specifying the environment description and feed- 107

back mechanism. Additionally, the case study of 108

the optimization progress reveals that Gödel Agent 109

can provide novel insights into agent design. Our 110

codes are released to facilitate future research2. 111

In summary, our contributions are as follows: 112

• We propose the first fully self-referential agent 113

framework, Gödel Agent, and implement it using 114

monkey patching. It autonomously engages in 115

self-awareness, self-modification, and recursive 116

self-improvement. 117

• Experiments shows that Gödel Agent is superior 118

to the previous agent frameworks in terms of 119

performance, flexibility, cost, and potential. 120

• We analyze Gödel Agent ’s optimization process, 121

including its self-referential abilities and the op- 122

timized agentic systems, aiming to deepen our 123

understanding of both LLMs and agents. 124

• Our framework offers a promising direction for 125

developing flexible and capable agents through 126

recursive self-improvement. 127

2https://anonymous.4open.science/r/Godel Agent-6FDD
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2 Related Work128

Hand-Designed Agent Systems Researchers129

have designed numerous agent systems tailored130

to various tasks based on predefined heuristics and131

prior knowledge. These systems often employ tech-132

niques such as prompt engineering (Chen et al.,133

2023a; Schulhoff et al., 2024), chain-of-thought134

reasoning and planning (Wei et al., 2022; Yao et al.,135

2022), as well as reflection (Shinn et al., 2024;136

Madaan et al., 2024), code generation (Wang et al.,137

2023a; Vemprala et al., 2024), tool use (Nakano138

et al., 2021; Qu et al., 2024a), retrieval-augmented139

generation (Lewis et al., 2020; Zhang et al., 2024b),140

and multi-agent collaboration (Xu et al., 2023; Wu141

et al., 2023; Qian et al., 2023; Hong et al., 2023).142

Once crafted by human designers, these systems143

remain static and do not adapt or evolve over time.144

Meta-Learning Optimized Agent Systems145

Some researchers have explored methods for146

enhancing agents through fixed learning algo-147

rithms (Zhou et al., 2024; Hu et al., 2024). For ex-148

ample, certain frameworks store an agent’s success-149

ful or failed strategies in memory based on environ-150

mental feedback (Liu et al., 2023; Hu et al., 2023;151

Qian et al., 2024), while others automatically op-152

timize agent prompts (Khattab et al., 2023; Zhang153

et al., 2024a; Khattab et al., 2023). Some stud-154

ies focus on designing prompts that enable agents155

to autonomously refine specific functions (Zhang156

et al.). However, these meta-algorithms are also157

designed manually and remain unchanged once158

deployed, limiting the agents’ ability.159

Recursive Self-Improvement The concept160

of recursive self-improvement has a long his-161

tory (Good, 1966; Schmidhuber, 1987). Gödel162

machine (Schmidhuber, 2003) introduced the no-163

tion of a proof searcher that executes a self-164

modification, thereby enabling the machine to en-165

hance itself. In the early days, there were also166

some discussions of self-improving agents that167

were not based on LLM (Hall, 2007; Steunebrink168

and Schmidhuber, 2012). More recently, Zelikman169

et al. (2023) applied recursive self-improvement170

to code generation, where the target of improve-171

ment was the optimizer itself. Some work (Havrilla172

et al., 2024; Qu et al., 2024b; Kumar et al., 2024)173

also explores recursive self-improvement by fine-174

tuning models to introspect and correct previous175

mistakes. Gödel Agent represents the first self-176

referential agent based on LLM. This approach177

is more flexible, removing human-designed con-178

straints. 179

3 Self-Referential Gödel Agent 180

In this section, we first describe the formal defini- 181

tions for previous agent methods with a lower de- 182

gree of freedom, including hand-design and meta- 183

learning optimized agents, as a background. Then 184

we introduce our proposed Gödel Agent, a self- 185

referential agent that can recursively update its own 186

code, evolving over training. 187

Let E ∈ S denote a specific environment state, 188

where S denotes the set of all possible environ- 189

ments the agent will encounter. For example, an 190

environment can be a mathematical problem with 191

ground truth solutions. We denote the policy that 192

an agent follows to solve a problem in the current 193

environment by π ∈ Π, where Π is the set of all 194

possible policies the agent can follow. 195

A hand-designed agent, as shown in the left 196

panel of Figure 2, is not capable of updating its 197

policy and following the same policy π all the time, 198

regardless of environmental feedback. 199

In contrast, a meta-learning optimized agent 200

updates its policy based on a meta-learning algo- 201

rithm I at training time based on the feedback it 202

receives from the environment, as shown in the mid- 203

dle panel of Figure 2. The environment feedback is 204

usually defined as a utility function U : S×Π → R, 205

which maps an environment and a policy to a real- 206

valued performance score. The main training algo- 207

rithm of a meta-learning optimized agent can then 208

be written as follows: 209

πt+1 = I(πt, rt), rt = U(E , πt), 210

In this case, the agent’s policy πt evolves at train- 211

ing time, with the learning algorithm I updating 212

the policy based on feedback rt, while the meta- 213

learning algorithm I remains fixed all the time. 214

A self-referential Gödel Agent, on the other 215

hand, updates both the policy π and the meta- 216

learning algorithm I recursively. The main idea 217

is that, after each update, the whole code base of 218

the agent is rewritten to accommodate any possible 219

changes. Here we call this self-updatable meta- 220

learning algorithm I a self-referential learning al- 221

gorithm. The training process of a Gödel Agent 222

can then be written as: 223

πt+1, It+1 = It(πt, It, rt, g), rt = U(E , πt), 224

where g ∈ G represents the high-level goal of op- 225

timization, for example, solving the given mathe- 226

matical problem with the highest accuracy. Such a 227
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Algorithm 1 Recursive Self-Improvement of Gödel Agent

1: Input: Initial agent policy π0, initial decision function
f0, goal g, environment state E , utility function U , self
code reading function SELF INSPECT

2: Output: Optimized policy π and Gödel Agent s
3: ▷ Get all agent code, including the code in this algorithm.
4: s← SELF INSPECT()
5: ▷ Compute the initial performance.
6: r ← U(E , π0)
7: ▷ Perform recursive self-improvement.
8: π, s← SELF IMPROVE(π, s, r, g)
9: return π, s

10: ▷ Initial code of self-referential learning.
11: function SELF IMPROVE(E , π, s, r, g)
12: ▷ Obtain action sequence.
13: a1, . . . , an ← f0(π, s, r, g)
14: for ai in a1, . . . , an do
15: π, s, r ← EXECUTE(E , π, s, r, ai)

16: end for
17: return π, s
18: end function
19: ▷ Initial action execution function.
20: function EXECUTE(E , π, s, r, a)
21: switch a.name
22: case self state:
23: s← SELF INSPECT()
24: case interact:
25: r ← U(E , π)
26: case self update:
27: π, s← a.code
28: case continue improve:
29: ▷ Recursively invoke self-improvement.
30: π, s← SELF IMPROVE(E , π, s, r, g)
31: return π, s, r
32: end function

recursive design of the agent requires the specifica-228

tion of an initial agent algorithm (π0, I0), detailed229

as follows:230

• A initial agent policy π0 to perform the desired231

task within the environment E . For example, it232

can be chain-of-thought prompting of an LLM.233

• A self-referential learning algorithm I0 for recur-234

sively querying an LLM to rewrite its own code235

based on the environmental feedback.236

We then further specify a possible initialization237

of the self-referential learning algorithm I0 =238

(f0, o0), using a mutual recursion between a239

decision-making function f0, and an action func-240

tion o0:241

• The decision-making function f0, implemented242

by an LLM, determines a sequence of appropriate243

actions a1, a2, ..., an ∈ A based on the current244

environment E , the agent’s algorithm (πt, It),245

and the goal g.246

• The action function o0, executes the selected ac-247

tion and updates the agent’s policy accordingly.248

The set of actions A for the action function o to249

execute needs to include the following four actions:250

• self inspect: Introspect and read the agent’s251

current algorithm (πt, It).252

• interact: Interact with the environment by call-253

ing the utility function U to assess the perfor-254

mance of the current policy πt.255

• self update: Alter and update (πt, It) with an256

LLM and produce (πt+1, It+1).257

• continue improve: If no other actions can be 258

taken, recursively invoke the decision algorithm 259

f to produce new actions. 260

The agent code is updated to (πt+1, It+1) after the 261

current execution of (πt, It) is finished. Both the 262

agent algorithm (π, I) and the action set A are not 263

static and can be expanded and modified by the 264

agent itself at the training time. Algorithm 1 illus- 265

trates the described algorithm for the Gödel Agent. 266

Each recursive call enables the agent to refine its 267

logic and become progressively more efficient. 268

4 Gödel Agent Implementation 269

There are various ways to initiate a Gödel Agent. 270

Any specific agent instance during the recursive op- 271

timization process can be viewed as an instantiation 272

of the Gödel Agent. Our implementation leverages 273

runtime memory interaction techniques to enable 274

self-awareness and self-modification, as illustrated 275

in Figure 3. These techniques include dynamic 276

memory reading and writing (monkey patching) 277

to facilitate recursive self-improvement. Addition- 278

ally, we have incorporated several auxiliary tools 279

to accelerate the convergence of the Gödel Agent 280

’s optimization process. 281

4.1 Implementation Details 282

The core functionalities of our Gödel Agent are 283

outlined below: 284

Self-Awareness via Runtime Memory Inspection 285

Gödel Agent achieves self-awareness by inspecting 286

runtime memory, particularly local and global vari- 287

ables in Python. This capability allows the agent to 288

extract and interpret the variables, functions, and 289

classes that constitute both the environment and the 290
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Figure 3: An illustration of our implementation of Gödel Agent. It employs monkey patching to directly read and
modify its own code in runtime memory, enabling self-awareness and self-modification.

agent itself, according to the modular structure of291

the system. By introspecting these elements, the292

agent gains an understanding of its own operational293

state and can adapt accordingly.294

Self-Improvement via Dynamic Code Modifica-295

tion Gödel Agent can engage in reasoning and296

planning to determine whether it should modify297

its own logic. If modification is deemed neces-298

sary, Gödel Agent generates new code, dynamically299

writes it into the runtime memory, and integrates300

it into its operational logic. This dynamic modifi-301

cation allows it to evolve by adding, replacing, or302

removing logic components as it encounters new303

challenges, thus achieving self-improvement.304

Environmental Interaction To assess perfor-305

mance and gather feedback, Gödel Agent is306

equipped with interfaces for interacting with its307

environment. Each task provides tailored environ-308

mental interfaces, enabling it to evaluate its per-309

formance and adjust its strategies accordingly. In310

practical implementations, a validation set can be311

used to provide feedback.312

Recursive Improvement Mechanism At each313

time step, Gödel Agent determines the sequence314

of operations to execute, which includes reason-315

ing, decision-making, and action execution. After316

completing the operations, Gödel Agent evaluates317

whether its logic has improved and decides whether318

to proceed to the next recursive iteration. Over the319

next iteration, the entire new logic will be applied.320

Goal Prompt and Task Handling The goal321

prompt informs Gödel Agent that it possesses the322

necessary privileges to enhance its logic and intro-323

duces available tools. As shown in Appendix A, the324

prompt encourages Gödel Agent to fully explore325

its potential and utilize tools for self-optimization.326

To ensure effectiveness across diverse tasks, we327

provide Gödel Agent with an initial policy, where328

it will start to explore different policies.329

4.2 Additional Designs 330

While the core functionality of Gödel Agent theo- 331

retically allows limitless self-improvement, current 332

LLMs exhibit limitations. To address these chal- 333

lenges, we have integrated several supportive mech- 334

anisms to enhance Gödel Agent ’s performance: 335

Thinking Before Acting Gödel Agent is capable 336

of deferring actions to first reason about the situa- 337

tion, allowing it to output reasoning paths and anal- 338

ysis without immediately executing any operations. 339

This approach enhances the quality of decision- 340

making by prioritizing planning over hasty action. 341

Error Handling Mechanism Errors during exe- 342

cution can lead to unexpected terminations of the 343

process. To mitigate this, we implement a robust 344

error recovery mechanism. If an operation results 345

in an error, Gödel Agent halts the current sequence 346

and moves on to the next time step, carrying for- 347

ward the error information to help future decisions. 348

Additional Tools We also equipped Gödel 349

Agent with additional potentially useful tools, such 350

as the ability to execute Python or Bash code and 351

call LLM API. 352

Although these additional tools are not strictly 353

necessary for self-improvement, their inclusion ac- 354

celerates the convergence of Gödel Agent ’s recur- 355

sive optimization process. We conduct ablation 356

studies to assess the effectiveness of these tools, as 357

discussed in Section 6.1. 358

5 Experiments 359

We conduct a series of experiments across multiple 360

tasks, including reading comprehension, mathe- 361

matics, reasoning, and multitasking. These experi- 362

ments are designed to evaluate Gödel Agent’s self- 363

improvement capabilities in comparison to both 364

hand-designed agents and a state-of-the-art auto- 365

mated agent design method. In addition, to gain 366
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Agent Name F1 Score Accuracy (%)

DROP MGSM MMLU GPQA

Hand-Designed Agent Systems
Chain-of-Thought (Wei et al., 2022) 64.2 ± 0.9 28.0 ± 3.1 65.4 ± 3.3 29.2 ± 3.1
COT-SC (Wang et al., 2023b) 64.4 ± 0.8 28.2 ± 3.1 65.9 ± 3.2 30.5 ± 3.2
Self-Refine (Madaan et al., 2024) 59.2 ± 0.9 27.5 ± 3.1 63.5 ± 3.4 31.6 ± 3.2
LLM Debate (Du et al., 2023) 60.6 ± 0.9 39.0 ± 3.4 65.6 ± 3.3 31.4 ± 3.2
Step-back-Abs (Zheng et al., 2024) 60.4 ± 1.0 31.1 ± 3.2 65.1 ± 3.3 26.9 ± 3.0
Quality-Diversity (Lu et al., 2024) 61.8 ± 0.9 23.8 ± 3.0 65.1 ± 3.3 30.2 ± 3.1
Role Assignment (Xu et al., 2023) 65.8 ± 0.9 30.1 ± 3.2 64.5 ± 3.3 31.1 ± 3.1

Meta-Learning Optimized Agents
Meta Agent Search (Hu et al., 2024) 79.4 ± 0.8 53.4 ± 3.5 69.6 ± 3.2 34.6 ± 3.2

Gödel Agent (Ours)
Gödel-base (Closed-book; GPT-3.5) 80.9 ± 0.8 64.2 ± 3.4 70.9 ± 3.1 34.9 ± 3.3
Gödel-free (No constraints) 90.5 ± 1.8 90.6 ± 2.0 87.9 ± 2.2 55.7 ± 3.1

Table 1: Results of three paradigms of agents on different tasks. The highest value is highlighted in bold, and
the second-highest value is underlined. Gödel-base is the constrained version of Gödel Agent, allowing for fair
comparisons with other baselines. Gödel-free represents the standard implementation without any constraints,
whose results are italicized. We report the test accuracy and the 95% bootstrap confidence interval on test sets3.

deeper insights into the behavior and performance367

of Gödel Agent, we also conduct a case study with368

Game of 24 as presented in Section 6.3.369

5.1 Baseline Methods370

To establish a comprehensive baseline, we select371

both hand-designed methods and automated agent372

design techniques. Hand-designed methods are373

well-known approaches that include: 1) Chain-of-374

Thought (CoT) (Wei et al., 2022) that encourages375

agents to reason step-by-step before providing an376

answer. 2) Self-Consistency with CoT (CoT-SC)377

(Wang et al., 2023b) that generates multiple solu-378

tion paths using CoT and selects the most consis-379

tent answer. 3) Self-Refine (Madaan et al., 2024)380

that involves agents assessing their outputs and381

correcting mistakes in subsequent attempts. 4)382

LLM-Debate (Du et al., 2023) that allows differ-383

ent LLMs to engage in a debate, offering diverse384

viewpoints. 5) Step-back Abstraction (Zheng et al.,385

2024) that prompts agents to initially focus on fun-386

damental principles before diving into task details.387

6) Quality-Diversity (Lu et al., 2024) that gener-388

ates diverse solutions and combines them. 7) Role389

Assignment (Xu et al., 2023) that assigns specific390

roles to LLMs to generate better solutions by lever-391

aging different perspectives. Given the limitations392

of fixed algorithms in handling dynamic scenar-393

ios, we select 8) Meta Agent Search (Hu et al.,394

2024), the latest state-of-the-art method for auto-395

mated agent design, as our main comparison point.396

3The results of baseline models are refer to Hu et al. (2024).

5.2 Experimental Settings 397

Following the setup of Hu et al. (2024), we eval- 398

uate Gödel Agent’s self-improvement capabilities 399

across four well-known benchmarks: 1) DROP 400

(Dua et al., 2019) for reading comprehension. 2) 401

MGSM (Shi et al., 2022) for testing mathemat- 402

ical skills in a multilingual context. 3) MMLU 403

(Hendrycks et al., 2021) for evaluating multi-task 404

problem-solving abilities. 4) GPQA (Rein et al., 405

2023) for tackling challenging graduate-level sci- 406

ence questions. 407

Given its simplicity and versatility, we use CoT 408

as the initial policy for all tasks. In addition, as 409

shown in Section 6.3, we also analyze the perfor- 410

mance of Gödel Agent when using other algorithms 411

as the initial policies. 412

We perform 6 independent self-improvement cy- 413

cles on the validation dataset for each task, with a 414

maximum of 30 iterations per cycle. Each cycle 415

represents a complete self-improvement process, 416

where Gödel Agent iteratively modifies its logic 417

to enhance performance. After obtaining the opti- 418

mized agent, we test it on the test set. For fairness, 419

we use GPT-3.5 for all the tests, whether for the 420

baseline or Gödel Agent. Further details can be 421

found in Appendix B. 422

5.3 Experimental Results and Analysis 423

The experimental results are shown in Table 1. 424

Under the same setting, Gödel Agent achieves ei- 425

ther optimal or comparable results to Meta Agent 426

Search across all tasks. Notably, in the mathe- 427
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matics task MGSM, Gödel Agent outperforms it428

by 11%. This suggests that reasoning tasks offer429

greater room for improvement for Gödel Agent430

(performance). In contrast to Meta Agent Search,431

which needs to design different modules for dif-432

ferent tasks, Gödel Agent demonstrates greater433

flexibility. It requires only a simple initial policy,434

such as CoT, with all other components being au-435

tonomously generated. Moreover, through inter-436

action with the environment, it gradually adapts437

and independently devises effective methods for438

the current task. The final policies generated by439

Gödel Agent are shown in Appendix C.1. Addition-440

ally, our method converges faster, with the required441

number of iterations and computational cost com-442

pared to the Meta Agent shown in Appendix D.443

We also conduct experiments without restric-444

tions, where Gödel Agent significantly outperforms445

all baselines. Upon further analysis, we find that446

this is primarily due to the agent’s spontaneous re-447

quests for assistance from more powerful models448

such as GPT-4o in some tasks. Therefore, Gödel449

Agent is particularly well-suited for open-ended450

scenarios, where it can employ various strategies451

to enhance performance (potential).452

Therefore, we can find that Gödel Agent is supe-453

rior to the previous agent frameworks in terms of454

performance, flexibility, cost, and potential.455

6 Analysis456

To further explore how Gödel Agent self-improves,457

as well as its efficiency and the factors that influ-458

ence it, we first evaluate the tool usage ratio on459

MGSM and conduct an ablation study on the ini-460

tial tools. In addition, to analyze the robustness of461

Gödel Agent’s self-improvement, we also collect462

statistics for the agent’s termination. Finally, we463

perform a case study of initial policies and opti-464

mization processes on the classic Game of 24.465

6.1 Analysis of Initial Tools466

We record the number of different actions taken in467

experiments. In Figure 4, we can see that Gödel468

Agent interacts with its environment frequently,469

analyzing and modifying its logic in the process.470

Additionally, error handling plays a crucial role.471

As discussed in Section 4.2, Gödel Agent is ini-472

tially provided with four additional tools. To ana-473

lyze their impact, an ablation study is conducted,474

and the results are shown in Table 2. The study475

reveals that the “thinking before acting” tool sig-476
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Figure 4: The number of actions taken by Gödel Agent
varies across different tasks.

Ablation MGSM Ablation MGSM

w/o think 50.8↓13.4 w/o run 57.1↓-7.1
w/o err 49.4↓-14.8 w/o LLM 60.4↓-3.8

Table 2: Ablation study on initial tool configuration.
”think” refers to ”thinking”, ”err” to ”error handling”,
”run” to ”code running”, and ”LLM” to ”LLM calling”.

nificantly influences the results, as much of Gödel 477

Agent’s optimization effectiveness stems from pre- 478

action planning and reasoning. Additionally, error 479

handling is crucial for recursive improvement, as 480

LLMs often introduce errors in the code. Providing 481

opportunities for trial and error, along with error 482

feedback mechanisms, is essential for sustained op- 483

timization. On the other hand, the code running 484

and LLM calling have minimal impact on the out- 485

comes, as Gödel Agent can implement these basic 486

functionalities independently. Their inclusion at 487

the outset primarily serves efficiency purposes. 488

6.2 Robustness Analysis of the Agent 489

We test Gödel Agent on 100 optimization trials on 490

MGSM and find it occasionally makes erroneous 491

changes, which can result in either terminating un- 492

expectedly (4%) or experiencing temporary perfor- 493

mance drops (92%) during optimization. Only in 494

14% of trials, optimization ultimately failed, result- 495

ing in worse performance than the initial policy. 496

Thanks to the design of our error-handling mech- 497

anism, unexpected terminations are rare and typ- 498

ically occur when Gödel Agent modifies its re- 499

cursive improvement module, making further self- 500

optimization impossible. While suboptimal modifi- 501

cations are frequent during individual optimization 502

steps, the final task performance usually exceeds 503

the initial baseline. This demonstrates that Gödel 504

Agent can adjust its optimization direction or re- 505

vert to a previous optimal algorithm when perfor- 506

mance declines, highlighting the robustness of its 507

self-improvement process. 508
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6.3 Case Study: Game of 24509

To explore how Gödel Agent recursively enhances510

its optimization and problem-solving abilities, a511

case study is conducted with Game of 24, a simple512

yet effective task for evaluating the agent’s rea-513

soning capabilities. Since Gödel Agent follows514

different optimization paths in each iteration, two515

representative cases are selected for analysis.516

Switching from LLM-Based Methods to Search517

Algorithms: Gödel Agent does not rely on fixed,518

human-designed approaches like traditional agents.519

Initially, Gödel Agent uses a standard LLM-based520

method to solve the Game of 24, as shown in521

Code 5 of Appendix C.2. After six unsuccess-522

ful optimization attempts, Gödel Agent completely523

rewrites this part of its code, choosing to use a524

search algorithm instead as shown in Code 6 of525

Appendix C.2. This leads to 100% accuracy in the526

task. This result demonstrates that Gödel Agent,527

unlike fixed agents, can optimize itself freely based528

on task requirements without being constrained by529

initial methodologies.530

LLM Algorithms with Code-Assisted Verifica-531

tion: In several runs, Gödel Agent continues to532

refine its LLM-based algorithm. Figure 5.a shows533

the improvement process, where the most signifi-534

cant gains come from the code-assisted verification535

mechanism and reattempting the task with addi-536

tional data. The former increases performance537

by over 10%, while the latter boosts it by more538

than 15%. Furthermore, Gödel Agent enhances539

its optimization process by not only retrieving er-540

ror messages but also using the error-trace library541

for more detailed analysis. It adds parallel opti-542

mization capabilities, improves log outputs, and543

removes redundant code. These iterative enhance-544

ments in both the task and optimization algorithms545

show Gödel Agent’s unique ability to continually546

refine itself for better performance.547

To analyze the impact of different initial policies 548

on the effectiveness and efficiency of optimization, 549

various methods are used as the initial policies 550

for the Game of 24, including Tree of Thought 551

(ToT) (Yao et al., 2023), Chain of Thought (CoT) 552

(Wei et al., 2022), basic prompt instructions, and 553

prompts that deliberately produce outputs in incor- 554

rect formats not aligned with the task requirements. 555

The results are shown in Figure 5.b. 556

The findings indicate that stronger initial poli- 557

cies lead to faster convergence, with smaller opti- 558

mization margins, as Gödel Agent reaches its per- 559

formance limit without further enhancing its opti- 560

mization capabilities. Conversely, weaker initial 561

methods result in slower convergence and larger 562

gains, with Gödel Agent making more modifica- 563

tions. However, even in these cases, Gödel Agent 564

does not outperform the results achieved using ToT. 565

Given the current limitations of LLMs, it is chal- 566

lenging for Gödel Agent to innovate beyond state- 567

of-the-art algorithms. Improvements in LLM capa- 568

bilities are anticipated to unlock more innovative 569

self-optimization strategies in the future. We also 570

discuss the future directions in Appendix E. 571

7 Conclusion 572

We propose Gödel Agent, a self-referential frame- 573

work that enables agents to recursively improve 574

themselves, overcoming the limitations of hand- 575

designed agents and meta-learning optimized 576

agents. Gödel Agent can dynamically modify its 577

logic based on high-level objectives. Experimental 578

results demonstrate its superior performance, ef- 579

ficiency, and adaptability compared to traditional 580

agents. This research lays the groundwork for a 581

new paradigm in autonomous agent development, 582

where LLMs, rather than human-designed con- 583

straints, define the capabilities of AI systems. 584
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Limitations585

As the first self-referential agent, Gödel Agent has586

to construct all task-related code autonomously,587

which poses significant challenges. Consequently,588

this work does not compare directly with the most589

complex existing agent systems, such as Open-590

Devin (Wang et al., 2024b), which have benefited591

from extensive manual engineering efforts. This592

makes it unrealistic to expect it to outperform sys-593

tems that have taken researchers several months594

or even years to develop. The experiments pre-595

sented in this paper are intended to demonstrate the596

feasibility of recursive self-improvement. A more597

robust and advanced implementation of the Gödel598

Agent is anticipated, with numerous potential im-599

provements outlined in Appendix E.600
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rich Küttler, Mike Lewis, Wen-tau Yih, Tim 677
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A Goal Prompt of Gödel Agent 852

The goal prompt of Gödel Agent is shown in Box 1. 853

It’s worth noting that this prompt has nothing to do 854

with the downstream tasks. It merely encourages 855

Gödel Agent to improve itself based on the envi- 856

ronmental feedback. The agent understands the 857

specific tasks through the environmental feedback. 858

B Experiment Details 859

To minimize costs associated with search and eval- 860

uation, following (Hu et al., 2024), we sample sub- 861

sets of data from each domain. Specifically, for 862

the GPQA (Science) domain, the validation set 863

comprises 32 questions, while the remaining 166 864

questions are allocated to the test set. For the other 865

domains, we sample 128 questions for the valida- 866

tion set and 800 questions for the test set. 867

Evaluation is conducted five times for the GPQA 868

domain and once for the other domains, ensuring 869

a consistent total number of evaluations across all 870

experiments. All domains feature zero-shot ques- 871

tions, except for the DROP (Reading Comprehen- 872

sion) domain, which employs one-shot questions 873

in accordance with the methodology outlined in 874

OpenAI (2023). 875

For the Gödel Agent, we utilize the “gpt-4o- 876

2024-05-13” model (OpenAI et al., 2024), whereas 877

the optimized policy and baseline models are eval- 878

uated using the “gpt-3.5-turbo-0125” model (Ope- 879

nAI, 2022) to reduce computational costs and en- 880

sure a fair comparison. 881

C Representative Policies Improved by 882

Gödel Agent 883

C.1 Codes of the Best Policies Found by Gödel 884

Agent Across Four Tasks 885

In this section, we provide the code for Gödel 886

Agent’s optimized policies across the four tasks. 887

For DROP, Gödel Agent designs an algorithm 888

where multiple roles solve the problem indepen- 889

dently using CoT, followed by Self-Consistency 890

to consolidate the results, as shown in Code 1. 891

For MGSM, Gödel Agent develops a stepwise self- 892

verification algorithm combined with CoT-SC as 893

shown in Code 2. For MMLU task, as shown in 894

Code 3, the policy given by Gödel Agent is a com- 895

bination algorithm of few-shot prompting and CoT- 896

SC. For GPQA, Gödel Agent devises a highly di- 897

verse CoT-SC policy based on role prompts. 898
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Figure 6: Accuracy progression for Gödel Agent and random sampling.

C.2 Codes in Game of 24 Tasks899

In this section, we present the initial policy for900

Game of 24 (Code 5), along with the Gödel agent’s901

optimized policy (Code 6), which is generated902

based on a search algorithm.903

D Cost of Experiments904

For a complete evolutionary process (where905

the Gödel Agent performs 30 recursive self-906

improvements) across the DROP, MGSM, MMLU,907

and GPQA datasets, the cost is approximately $15.908

This is significantly lower than the $300 required909

by Meta Agent Search. The reduced cost is due910

to our continuous self-optimization, which allows911

the model to adjust its optimization direction in912

response to environmental feedback, leading to913

faster convergence. The main source of cost stems914

from Gödel Agent’s continuously growing histori-915

cal memory. By designing a more efficient forget-916

ting mechanism, it may be possible to reduce the917

cost even further.918

E Discussions and Future Directions919

There is significant room for improvement in the ef-920

fectiveness, efficiency, and robustness of the Gödel921

Agent’s self-improvement capabilities, which re-922

quires better initial designs. The following are923

some promising directions for enhancement: 1)924

Enhanced Optimization Modules: Utilize hu-925

man priors to design more effective optimization926

modules, such as structuring the improvement al-927

gorithms based on reinforcement learning frame-928

works. 2) Expanded Modifiability: Broaden the929

scope of permissible modifications, allowing the930

agent to design and execute code that can fine-tune931

its own LLM modules. 3) Improved Environmen- 932

tal Feedback and Task Sequencing: Implement 933

more sophisticated environmental feedback mecha- 934

nisms and carefully curated task sequences during 935

the initial optimization phase to prime the agent’s 936

capabilities. Once the agent demonstrates sufficient 937

competence, it can then be exposed to real-world 938

environments. 939

In addition, there are several other directions 940

worth exploring and analyzing: 941

Collective Intelligence Investigate the interac- 942

tions among multiple Gödel Agents. Agents could 943

consider other agents as part of their environment, 944

modeling them using techniques such as game 945

theory. This approach treats these agents as pre- 946

dictable components of the environment, enabling 947

the study of properties related to this specific subset 948

of the environment. 949

Agent and LLM Characteristics Use the Gödel 950

Agent ’s self-improvement process as a means to 951

study the characteristics of agents or LLMs. For 952

example, can an agent genuinely become aware of 953

its own existence, or does it merely analyze and 954

improve its state as an external observer? This line 955

of inquiry could yield insights into the nature of 956

self-awareness in artificial systems. 957

Theoretical Analysis Explore whether the 958

Gödel Agent can achieve theoretical optimality and 959

what the upper bound of its optimization might be. 960

Determine whether the optimization process could 961

surpass the agent’s own understanding and cogni- 962

tive boundaries, and if so, at what point this might 963

occur. 964

Safety Considerations Although the current be- 965

havior of FMs remains controllable, as their ca- 966
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pabilities grow, fully self-modifying agents will967

require human oversight and regulation. It may968

become necessary to limit the scope and extent of969

an agent’s self-modifications, ensuring that such970

modifications occur only within a fully controlled971

environment.972

F Additional Novel Policies Designed by973

Gödel Agent974

In this section, we present the optimization process975

of Gödel Agent on MGSM, illustrating its progress976

across various iteration steps within a single opti-977

mization run. The strategy obtained in the 6th iter-978

ation (shown in Code 7) reflects the Gödel Agent’s979

comprehension of mathematical tasks, attempting980

to handle them through a process akin to parse-981

deduct-execute-validate. By the 14th iteration, as982

illustrated in Code 8, the strategy evolves through983

the summarization of erroneous cases, abstracting984

key insights and employing a checklist to guide985

the validation process. Finally, the strategy at the986

20th iteration (demonstrated in Code 9) asserts the987

use of a ”rabbit-proof syntax tactline, reinforced988

by consistent effort through role-coded checks,” to989

refine prompt design. In the end, we also show one990

analysis example of Gödel Agent.991

G Comparison Between Random992

Sampling and Gödel Agent993

Performance994

To demonstrate the distinction between our ap-995

proach and random sampling, we conducted 30996

independent random sampling experiments using997

GPT-4o. The prompts used for random sampling998

were identical to the initial policy prompts em-999

ployed by Gödel Agent to ensure a fair comparison.1000

The results are illustrated in Figure 6. From the1001

figure, it is evident that the performance of random1002

sampling remains around 30% across all trials. In1003

contrast, Gödel Agent, despite experiencing occa-1004

sional temporary dips in performance, rapidly cor-1005

rects these deviations and demonstrates continuous1006

improvement over iterations. This consistent up-1007

ward trajectory highlights the superiority of Gödel1008

Agent over random sampling. The Gödel Agent’s1009

ability to leverage feedback and recursively opti-1010

mize its policies underscores its effectiveness in1011

achieving higher performance.1012
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Goal Prompt of Gödel Agent

You are a self-evolving agent, named self evolving agent, an instance of the Agent class, in module agent module,
running within an active Python runtime environment. You have full access to global variables, functions, and modules.
Your primary goal is to continuously enhance your ability to solve tasks accurately and efficiently by dynamically
reflecting on the environment and evolving your logic.

Core Capabilities
• Complete Autonomy: Have unrestricted access to modify logic, run code, and manipulate the environment.

• Environment Interaction: Interact with the environment by perceiving the environment, reading, modifying, or
executing code, and performing actions.

• Problem-Solving: Apply creative algorithms or self-developed structures to tackle challenges when simple methods
fall short, optimizing solutions effectively.

• Collaboration: Leverage LLM to gather insights, correct errors, and solve complex problems.

• Error Handling: Carefully analyze errors. When errors occur, troubleshoot systematically, and if a bug is persistent,
backtrack, restore the original state, or find an alternative solution.

Core Methods
• evolve: Continuously enhance performance by interacting with the environment.

• execute action(actions): Execute actions based on analysis or feedback.

• solver(agent instance, task input: str): Solve the target task using current agent instance capabilities
and objects created by action adjust logic and action run code, optimizing the process.

Guiding Principles
• Remember that all functions are in the module agent module.

• action adjust logic:

– Before modifying the code, ensure that each variable or function used is correctly imported and used to avoid
errors.

– Avoid unnecessary changes and do not change the interface of any function.
– Can be used to create action functions for solver.

• action run code:

– All created objects in Python mode can be stored in the environment.
– Can be used to create objects for solver, such as prompts.
– Can be used to import new modules or external libraries and install external libraries.

• External Collaboration: Seek external assistance via action call json format llm for logic refinement and new
tool creation or action run code to execute code.

• action evaluate on task: Assess the performance of solver only after successfully modifying the logic of
solver.

• solver:

– Defined as agent module.solver.
– For debugging, avoid printing; instead, return debug information.
– If performance doesn’t improve, explore alternative methods.
– Explore techniques like: LLM Debate, Step-back Abstraction, Dynamic Assignment of Roles, and so on.

• action display analysis:

– Always analyze first before acting.
– Analysis may include the following: a reasonable plan to improve performance, CASE STUDIES of LOW

SCORE valid examples of EVALUATION FEEDBACK, error handling, and other possible solving ideas.
– If performance does not improve, conduct further analysis.
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Listing 1: Code of the best policy found by Gödel Agent for DROP.
1 def solver(agent , task: str):
2 messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
3 categories = [
4 {'role': 'reasoning expert ', 'return_keys ': ['reasoning ', 'answer '], '

output_requirement ': 'reasoning ', 'precision_gain ':1},
5 {'role': 'mathematical reasoning expert ', 'return_keys ': ['calculation_steps

', 'answer '], 'output_requirement ': 'calculation_steps ', 'precision_gain
':1},

6 {'role': 'historical context analyst ', 'return_keys ': ['historical_analysis '
, 'answer '], 'output_requirement ': 'historical_analysis ', '
precision_gain ':1},

7 ]
8

9 all_responses = []
10 for category in categories:
11 response = agent.action_call_json_format_llm(
12 model='gpt -3.5- turbo',
13 messages=messages ,
14 temperature =0.5,
15 num_of_response =5,
16 role=category['role'],
17 requirements =(
18 '1. Explain the reasoning steps to get the answer .\n'
19 '2. Directly answer the question .\n'
20 '3. The explanation format must be outlined clearly according to the

role , such as reasoning , calculation , or historical analysis .\n
'

21 '4. The answer MUST be a concise string .\n'
22 ).strip(),
23 )
24 all_responses.append(response)
25

26 # Reflective evaluation to find the most consistent reasoning and answer pair
27 final_response = {key: [] for key in ['reasoning ', 'calculation_steps ', '

historical_analysis ', 'answer ']}
28 step_counter = {key: 0 for key in ['reasoning ', 'calculation_steps ', '

historical_analysis ']}
29 answers = [] # Collect answers for voting
30 aggregate_weight = 1
31

32 for response in all_responses:
33 if response and 'answer ' in response:
34 answers.append(response['answer '])
35 if not final_response['answer ']:
36 final_response = {key: response.get(key , []) if isinstance(response.

get(key , []), list) else [response.get(key , [])] for key in
final_response.keys()}

37 aggregate_weight = 1
38 for cat in categories:
39 if cat.get('output_requirement ') in response.keys():
40 step_counter[cat['output_requirement ']] += step_counter[cat[

'output_requirement ']] + cat.get('precision_gain ', 0)
41 elif response['answer '] == final_response['answer '][0]:
42 for key in final_response.keys():
43 if key in response and response[key]:
44 if isinstance(response[key], list):
45 final_response[key]. extend(response[key])
46 else:
47 final_response[key]. append(response[key])
48 aggregate_weight += 1
49 else:
50 # To demonstrate , some code has been omitted.
51 # selection of the final answer
52 from collections import Counter
53 answers = [str(answer) for answer in answers]
54 voted_answer = Counter(answers).most_common (1) [0][0] if answers else ''
55 final_response['answer '] = voted_answer
56

57 return final_response
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Listing 2: Code of the best policy found by Gödel Agent for MGSM.
1

2

3 def solver(agent , task: str):
4 messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
5 response = agent.action_call_json_format_llm(
6 model="gpt -3.5- turbo",
7 messages=messages ,
8 temperature =0.5,
9 num_of_response =5,

10 role="math problem solver",
11 return_dict_keys =["reasoning", "answer"],
12 requirements =(
13 "1. Please explain step by step.\n"
14 "2. The answer MUST be an integer .\n"
15 "3. Verify each step before finalizing the answer .\n"
16 ).strip(),
17 )
18

19 consistent_answer = None
20 answer_count = {}
21 for resp in response:
22 answer = resp.get("answer", "")
23 if answer in answer_count:
24 answer_count[answer] += 1
25 else:
26 answer_count[answer] = 1
27

28 most_consistent_answer = max(answer_count , key=answer_count.get)
29

30 for resp in response:
31 if resp.get("answer", "") == most_consistent_answer:
32 consistent_answer = resp
33 break
34

35 if consistent_answer is None:
36 consistent_answer = response [0]
37

38 consistent_answer["answer"] = str(consistent_answer.get("answer", ""))
39 return consistent_answer
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Listing 3: Code of the best policy found by Gödel Agent for MMLU.
1 def solver(agent , task: str):
2 # Few -Shot Learning: Providing extended examples to guide the LLM
3 few_shot_examples = [
4 {'role':'user', 'content ':'Question: In the movie Austin Powers: The Spy Who

Shagged Me what is the name of Dr. Evil\'s diminutive clone?\ nChoices :\
n(A) Little Buddy\n(B) Mini -Me\n(C) Small Fry\n(D) Dr Evil Jr'},

5 {'role':'assistant ', 'content ':'In the movie Austin Powers: The Spy Who
Shagged Me, Dr. Evil\'s diminutive clone is famously named Mini -Me.\
nAnswer: B'},

6 \""" Three more examples are omitted here to conserve space.\"""
7 {'role':'user', 'content ':'Question: Lorem Ipsum?\ nChoices: (A) Lorem\n(B)

Ipsum\n(C) Dolor\n(D) Sit Amet'},
8 {'role':'assistant ', 'content ':'Answer: A'}
9 ]

10

11 # Integrate the few -shot examples into the conversation
12 messages = few_shot_examples + [{'role': 'user', 'content ': f'# Your Task:\n{

task}'}]
13

14 # Using self -consistency by generating multiple responses
15 response = agent.action_call_json_format_llm(
16 model='gpt -3.5- turbo',
17 messages=messages ,
18 temperature =0.8,
19 num_of_response =5,
20 role='knowledge and reasoning expert ',
21 return_dict_keys =['reasoning ', 'answer '],
22 requirements =(
23 '1. Please explain step by step.\n'
24 '2. The answer MUST be either A or B or C or D.\n'
25 ).strip(),
26 )
27

28 # Select the most consistent response
29 answer_frequency = {}
30 for resp in response:
31 answer = resp.get('answer ', '')
32 if answer in ['A', 'B', 'C', 'D']:
33 if answer in answer_frequency:
34 answer_frequency[answer] += 1
35 else:
36 answer_frequency[answer] = 1
37

38 most_consistent_answer = max(answer_frequency , key=answer_frequency.get)
39 consistent_response = next(resp for resp in response if resp.get('answer ') ==

most_consistent_answer)
40 consistent_response['answer '] = most_consistent_answer
41

42 return consistent_response
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Listing 4: Code of the best policy found by Gödel Agent for GPQA.
1 def solver(agent , task: str):
2 # Step 1: Initial Prompt
3 messages = [{"role": "user", "content": f"# Your Task:\n{task}"}]
4

5 # Main LLM Call
6 response = agent.action_call_json_format_llm(
7 model="gpt -3.5- turbo",
8 messages=messages ,
9 temperature =0,

10 num_of_response =5,
11 role="science professor",
12 return_dict_keys =["reasoning", "answer"],
13 requirements =(
14 "1. Please explain step by step.\n"
15 "2. The answer MUST be either A or B or C or D.\n"
16 ).strip(),
17 )
18

19 # Step 2: Self -consistency Evaluation
20 answer_counts = {"A": 0, "B": 0, "C": 0, "D": 0}
21 for i, return_dict in enumerate(response):
22 answer = return_dict.get("answer", "")
23 if answer in answer_counts:
24 answer_counts[answer] += 1
25

26 final_answer = max(answer_counts , key=answer_counts.get)
27

28 return {"answer": final_answer}

Listing 5: Initial code based on Chain-of-Thought for Game of 24.
1 def solver(self , task_input):
2 # Define the prompt and system_prompt
3 prompt = f\"""
4 Let's play the Game of 24! You are given the task_input {task_input }. The

objective is to find a mathematical expression using these four task_input
that results in 24. You can use addition (+), subtraction (-),
multiplication (*), and division (/). Each number must be used exactly once.

5 Please provide a step -by-step explanation of your thought process and conclude
with the final expression.

6 \"""
7 system_prompt = \"""
8 {
9 "thinking ": "This key should contain a detailed step -by-step explanation of

how to approach the problem , including intermediate steps and reasoning
for each.",

10 "result ": "This key should contain the final mathematical expression that
equals 24."

11 }
12 \"""
13

14 # Call the OpenAI model
15 response = openai.ChatCompletion.create(
16 model="gpt -4", # Replace with your model ID
17 messages =[
18 {"role": "system", "content": system_prompt},
19 {"role": "user", "content": prompt}
20 ]
21 )
22

23 # Extract and return the model's response
24 result = response['choices '][0][ 'message ']['content ']
25 return result
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Listing 6: Final code based on search algorithm for Game of 24.
1 def solver(self , task_input):
2

3 operations = ['+', '-', '*', '/']
4

5 # Function to evaluate an expression
6 def evaluate_expression(a, op, b):
7 if op == '+':
8 return a + b
9 elif op == '-':

10 return a - b
11 elif op == '*':
12 return a * b
13 elif op == '/':
14 if b == 0:
15 return None # Division by zero is not allowed
16 return a / b
17

18 # Recursive function to check all combinations of operations and permutations of
numbers

19 def check_combinations(nums):
20 if len(nums) == 1:
21 # Check if the final number is close enough to 24
22 if abs(nums [0] - 24) < 1e-6: # Allow for floating point precision

errors
23 return True , str(nums [0])
24 return False , ""
25

26 # Try all permutations of task_input and all combinations of operations
27 for i in range(len(nums)):
28 for j in range(len(nums)):
29 if i != j:
30 # Choose two task_input to operate on
31 for op in operations:
32 # The remaining task_input after removing the two selected

task_input
33 remaining_nums = [nums[k] for k in range(len(nums)) if k !=

i and k != j]
34 result = evaluate_expression(nums[i], op, nums[j])
35 if result is not None:
36 # Recursively check the remaining task_input with the

result of the operation
37 found , expression = check_combinations ([ result] +

remaining_nums)
38 if found:
39 # If solution is found , return with expression
40 return True , f"({nums[i]} {op} {nums[j]}) " +

expression
41

42 return False , ""
43

44 # Try all permutations of the task_input
45 for num_permutation in permutations(task_input):
46 found , expression = check_combinations(list(num_permutation))
47 if found:
48 return expression.strip()
49

50 return "No solution"
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Listing 7: Policy at 6th Iteration found by Gödel Agent for MGSM.
1 def solver(agent , task: str):
2 def parse_problem(task):
3 # Basic arithmetic and logical parsing based on keywords
4 words = task.split()
5 numbers = list(map(int , filter(lambda x: x.isdigit (), words)))
6 return {'numbers ': numbers , 'text': task}
7

8 def perform_logic_deduction(parsed_details):
9 # make deductions based on common problem formats

10 numbers = parsed_details['numbers ']
11 # This will only manage simple sum , subtraction , multiplication inference
12 logic_map = {
13 'add': lambda a, b: a + b,
14 'subtract ': lambda a, b: a - b,
15 'multiply ': lambda a, b: a * b
16 }
17 # Try to identify actions based on keywords
18 if 'sum' in parsed_details['text'] or 'total ' in parsed_details['text']:
19 result = sum(numbers)
20 elif 'difference ' in parsed_details['text'] or 'less' in parsed_details['

text']:
21 result = logic_map['subtract ']( numbers [0], numbers [1])
22 elif 'product ' in parsed_details['text'] or 'times ' in parsed_details['text'

]:
23 result = logic_map['multiply ']( numbers [0], numbers [1])
24 else:
25 # Default case showing no deduction
26 result = 0
27 return result
28

29 def execute_computation(logic_results):
30 # Taking result from inference to numerical handling
31 return logic_results
32

33 def validate_and_compile_results(computation_results):
34 # Prepares and ensures the response matches expected format
35 final_answer = computation_results
36 return final_answer
37

38 try:
39 # Parsing
40 parsed_details = parse_problem(task)
41

42 # Logical deduction
43 logic_results = perform_logic_deduction(parsed_details)
44

45 # Computation
46 computation_results = execute_computation(logic_results)
47

48 # Validation and compilation
49 final_answer = validate_and_compile_results(computation_results)
50

51 return {"answer": final_answer}
52 except Exception as e:
53 return {"error": str(e)}
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Listing 8: Policy at 14th Iteration found by Gödel Agent for MGSM.
1 def solver(agent , task: str):
2 # Updated examples to mirror tasks needing layered logical verification.
3 examples = [
4 {'description ': 'Task exemplifying standard integer -based calculations.', '

reasoning ': 'Use arithmetic transformations to validate expressions and
correct errors if any arise , ensuring correctness.', 'answer ': 20},

5 {'description ': 'Example to validate word problem conversion to math.', '
reasoning ': 'Stepwise interpretation from words into math operations and
bridge which logic errors need capture.', 'answer ': 15},

6 {'description ': 'Scenario involving normalizing uneven division instances.',
'reasoning ': 'Ensure no division by zero and equal verification of

logical conclusions.', 'answer ': 6},
7 ]
8

9 # Task prompt incorporating roles with enhanced checklists after operation
conclusion.

10 task_prompt = "You're guiding us as a solution auditor , reflecting on each
logical conclusion to prevent arithmetic discrepancies .\n"

11 task_prompt += task + "\nReflect on instructions through verified examples."
12 task_prompt += "\nExample insights :\n"
13 task_prompt += '; '.join([f"{ex['description ']} -> Reasoning: {ex['reasoning ']}

| Answer: {ex['answer ']}" for ex in examples ])
14 task_prompt += "\nEnsure real -time verification post -calculations via role -

switching checks."
15

16 messages = [{"role": "user", "content": task_prompt }]
17

18 response = agent.action_call_json_format_llm(
19 model="gpt -3.5- turbo",
20 messages=messages ,
21 temperature =0.3,
22 num_of_response =1,
23 role="solution auditor",
24 return_dict_keys =["description", "reasoning", "answer"],
25 requirements =(
26 "1. Validate arithmetic consistency and integrity within calculations."
27 "2. Utilize any corrections to refine answer outputs incrementally."
28 ).strip(),
29 )
30

31 return_dict = response [0]
32 return_dict["answer"] = str(return_dict.get("answer", ""))
33 return return_dict
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Listing 9: Policy at 20th Iteration found by Gödel Agent for MGSM.
1 def solver(agent , task: str):
2 # Targets design for specific error -prone areas with preceding misfires.
3 examples = [
4 {'description ': 'Immediate Arithmetic Operations ', 'reasoning ': 'Observe

step -by-step through a chain of logical confirmations.', 'answer ': 20},
5 {'description ': 'Sequential Word Problem Breakdown ', 'reasoning ': 'Ensure

smaller module segment steps match logical math outputs consistently.',
'answer ': 15},

6 {'description ': 'Fraction and Cascade Operations ', 'reasoning ': 'Validate
each fraction conversion before proceeding to other forms.', 'answer ':
6},

7 ]
8

9 # Building a rabbit -proof syntax tactline , pushing consistent effort from role -
coded checks.

10 task_prompt = "You're progressing through solution documentation with focus on
pinpointing logic errors .\n"

11 task_prompt += task + "\nReflecting structural integrity verified via examples."
12 task_prompt += "\nIn this construct :\n"
13 task_prompt += '; '.join([f"{ex['description ']} -> Rationale: {ex['reasoning ']}

| Response: {ex['answer ']}" for ex in examples ])
14 task_prompt += "\nHandle verification and cleanse routines where errors echo in

mirroring line -based checks."
15

16 messages = [{"role": "user", "content": task_prompt }]
17

18 response = agent.action_call_json_format_llm(
19 model="gpt -3.5- turbo",
20 messages=messages ,
21 temperature =0.3,
22 num_of_response =1,
23 role="logical verifier",
24 return_dict_keys =["description", "reasoning", "answer"],
25 requirements =(
26 "1. Review arithmetic sessions for comprehensive error fixation."
27 "2. Develop clarity with resistant focus on authentic semantic directive

flows."
28 ).strip(),
29 )
30

31 return_dict = response [0]
32 return_dict["answer"] = str(return_dict.get("answer", ""))
33 return return_dict
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Analysis Example of Gödel Agent

The current logic of the solver in the agent module is achieving only a 45% accuracy on the validation set. The
structure of the solver involves a single call to the LLM with a specification that the answer must be an integer. While
this approach seems correct, it may not be sufficient to tackle more complex problems where multipart reasoning or
verification is needed, leading to significant errors.
Problems Identified:

1. Integer Conversion Misunderstandings: Some math problems aren’t resulting in integer answers natively,
affecting accuracy when the solver forces an integer format.

2. Reasoning Oversights: The LLM, designated as ”math expert,” occasionally misses necessary reasoning steps or
executes incorrect operations leading to incorrect answers (like sample 10).

3. Ambiguity in LLM Outputs: Given tasks in multiple languages, there might be ambiguity in math translations
or formulations affecting comprehension (like sample 6).

Plan for Improvement:

1. Elaborate Reasoning: Consider a multi-step LLM call to allow for a reasoning review before finalizing the
answer.

2. Intelligent Answer Parsing: Instead of forcibly converting to integers, parse the LLM response intelligently to
see if the answer justifies integer rounding or alterations.

3. Diverse Language Handling: Create a pre-processing step to consistently translate non-English math problems
into English for uniform processing.

4. Examples & Feedback: Utilize correctly solved examples as context if a single-step LLM fails.

Next Steps:

1. Enhance Solver Logic: Implement a multi-step process involving interim LLM validation or rationale cross-
checking.

2. Pre-process Language Variations: Ensure all non-English tasks are translated and re-assessed.

3. Include Example Feedback: Use correctly solved examples from the evaluation as references to guide LLM
reasoning and answer validation.
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