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ABSTRACT

There has been increased interest in using Large Language Models (LLMs) for
text dataset generation subject to a desired attribute, e.g., for use in downstream
fine-tuning or training. These works generally focus on a single quality metric
of the generated text, typically accuracy on a downstream task. However, this
fails to consider whether the model even has the ability to faithfully model the
data distribution of the desired real-world domain. In contrast, in this work, we
additionally focus on important distributional metrics agnostic to the downstream
task, such as data diversity and faithfulness. We show that even in simple domains,
generated datasets reveal inherent trade-offs between these metrics across models
and training regimes. Further, we find that our metrics not only describe the
generated dataset, but also capture key aspects of the underlying model. This allows
us to characterize the generated datasets, individual models and by comparison
the properties of different model families and training paradigms. By focusing
on sub-distributions well-represented in the training data of LLMs, we can, for
example, show that popular instruction-tuning techniques strongly decrease the
LLM’s text generation abilities, with respect to distributional aspects like diversity.

1 INTRODUCTION

In recent years, large language models (large LMs, LLMs), often called foundation models, have
become the state-of-the-art on many NLP tasks and beyond. These models can achieve outstanding
performance on many tasks, often without any adaption or only with minimal prompting (Brown
et al., 2020; Rae et al., 2021; Chowdhery et al., 2022; Touvron et al., 2023a; Bommasani et al., 2021).

Need for Task-Specific Data And Dataset Generation The direct application of LLMs can be
effective and has the advantage that users do not have to do any additional training or data collection
beforehand. However, in practice, smaller custom models that were trained on task-specific data still
outperform LLMs, both in terms of task accuracy and hardware efficiency (Ye et al., 2022a; Hsieh
et al., 2023; Gao et al., 2023). Recent work also focuses on fine-tuning LLMs themselves on task-
specific data, either via standard training (Hu et al., 2022; 2023; Chen et al., 2021), self-improvement
(Bai et al., 2022b; Wang et al., 2022b; Haluptzok et al., 2023; Wang et al., 2022a), reinforcement
learning from human feedback (RLHF) (Stiennon et al., 2020; Bai et al., 2022a; Ouyang et al., 2022)
or even via in-context learning (Brown et al., 2020). Fundamentally, however, all of these methods
again require the construction of task-specific datasets, which can be a cumbersome and expensive.

In response to this, recent works explore the use of LLMs themselves to automatically generate such
datasets (Ye et al., 2022a; Gao et al., 2023; Ye et al., 2022b; Meng et al., 2022; Schick and Schütze,
2021; Josifoski et al., 2023; Chia et al., 2022; Bonifacio et al., 2022). Here, LLMs are prompted to
generate synthetic data for a particular task, which can then be used to train, fine-tune or prompt a
model, thereby avoiding the need for manual data collection.

Despite promising early results in LLM-based data generation, prior work does not fully explore
important distributional characteristics of the resulting synthetic datasets in comparison to real-world
data, or how data quality differs across different LLMs and sampling strategies. However, going
forward, achieving a better understanding of these factors is very important as it (1) provides insights
on the actual data modeling capabilities of different LLMs as they are deployed more widely, and
(2) can help inform and improve synthetic dataset generation in general.
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Figure 1: Overview of our data generation (shown in green, ) and evaluation pipeline. Arrows
show dependencies. We prompt language models ( ) with examples or instructions to generate a
synthetic dataset. We then compare the resulting data to real-world reference samples using several
distributional metrics (shown in blue, ), and thereby assess the model’s generative capabilities.

Metrics For Dataset Quality Providing an in-depth analysis of the quality of generated datasets
requires analyzing data from various angles. To address this, we propose a multi-faceted evaluation
framework, showcased in Fig. 1. We prompt an LLM with examples or instructions to generate
a synthetic dataset, which we then compare to a real-world reference dataset, for a wide range of
different metrics. Most prior work only uses performance on a downstream task, often classification,
as the fundamental metric to characterize synthetically generated datasets. While task performance is
important, it does not necessarily transfer to other tasks and does not allow for an effective comparison
between models. To account for this, and inspired by Ye et al. (2022a;b); Gao et al. (2021b), our
framework goes beyond just task performance and relies on four extra characteristics that encompass
further aspects of dataset quality: As included in Fig. 1, we examine complexity (), i.e. how
complex or simple the synthetic dataset is based on classifier performance, conformity (|), i.e.,
how well the synthetic dataset reflects the distribution of the (real) reference dataset, diversity (),
how distinct individual samples in the synthetic dataset are, and faithfulness (), i.e., how well the
synthetic samples fits the desired data domain, in addition to standard task performance ().

Understanding LLM Dataset Generation To better understand the generative abilities of LLMs,
we apply our framework to four simple, but representative domains, each of which is chosen such that
we can be sure that it is well-represented in the training data of common LLMs, and that a real-world
reference dataset is readily available. This allows us to assess the overall data generation capabilities
of LLMs with respect to these domains, and to compare different LLMs and sampling strategies. We
evaluate the generative abilities of 22 LLMs in total – corresponding to different model families,
fine-tuning methodologies, training datasets, available openly or via the OpenAI API – and a wide
range of sampling configurations, including zero- and few-shot strategies.

Inherent Trade-Offs In an in-depth analysis, we reveal underlying tradeoffs between distributional
metrics, which we find to apply broadly across all domains and models. We observe a quadratic
relationship between diversity and conformity, but that diversity and faithfulness are inversely
correlated. Moreover, conformity and faithfulness exhibit a very high correlation, but our experiments
also show that small variations in this regard very much characterize a model’s generative behavior.

Comparing Models We also compare across models and, e.g., find that LLAMA-2’s generative
abilities mainly improve over LLAMA-1 on conformity, while keeping other characteristics constant.
With respect to training paradigm, we find that instruction-tuned models generally exhibit higher
faithfulness, but much lower diversity, conformity and complexity when compared to their vanilla
base model counterparts. Increasing sampling temperature with instruction-tuned models can bring
them more on-par with vanilla models, but even then, neither paradigm clearly dominates a general
performance ranking. Lastly, we repeatedly find that OpenAI’s instruction-tuned models exhibit very
different generative behavior when compared to open instruction-tuned models like LLAMA-2, thus
hinting at notable differences with respect to their (proprietary) training data and procedure.
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2 SYNTHETIC DATASET GENERATION

We first discuss the relevant background of language modeling and synthetic dataset generation, and
the concrete data generation procedure we rely on.

(Large) Language Models for Text Completion In this work, we consider language models
capable of performing text completion. While our focus lies on large language models, all we assume
is a simple text generation interface. We thus use the term language model throughout the rest of
this paper. Further, we consider models relying on different training regimes, including vanilla
LMs trained on a standard text completion objective Brown et al. (2020); Touvron et al. (2023a);
Almazrouei et al. (2023) and instruction-tuned LMs, trained via fine-tuning or reinforcement learning
with human feedback Ouyang et al. (2022); Touvron et al. (2023b).

Synthetic Dataset Generation with LMs Due to their strong generative capabilities, recent work
has started to incorporate LMs for automated dataset generation, either to directly train downstream
models Taori et al. (2023); Chiang et al. (2023) or as part of a self-improvement process Haluptzok
et al. (2023). Given a domain D, the goal is to construct a dataset SD of samples that fit domain
D. Interesting choices for D include text of sentiment, forms of speech, instruction following and
examples of e.g. puzzle solving. If this generation process additionally leverages some (small)
existing reference dataset RD, it can also be understood as a form of LM-based data augmentation.

In this work, we specifically consider dataset generation for classification. More specifically, we
construct synthetic datasets SD, given a suitable instructive or few shot Brown et al. (2020) prompt.
As D , we choose common domains like movie reviews or posts in online forums, because we
can safely assume that these lie in-distribution for all considered LMs and human-curated reference
datasets RD are readily available for comparison. More importantly, common data domains allow us
to measure the extend to which the LMs have learned a good representation of these data domains
during training. For each domain, e.g. movie reviews, we define a set of classes {c1, . . . , cn}, e.g.
positive, undecided, negative, etc. To generate synthetic data, we prompt an LM to produce new
dataset samples that fit the different classes ci, using class- and domain-specific prompts pi.

Generative Pipeline We illustrate the data generation pipeline we consider, in the left part of
Fig. 1 (in green ). Here, we generate samples for the domain D = posts of a subreddit (type of
online forum) for subreddits of different topics, e.g. explainlikeimfive (eli5), a community where
explanations in child-appropriate language are shared and askhistorians, where historians answer
questions. We consider both zero-shot and few-shot sampling. In the zero-shot setting we prompt
a model with "A question that appeared on the subreddit 'eli5'". Adapting this for each of the
classes {c1, . . . , cn}, allows us to obtain a wide variety of labeled samples fitting domain D. In the
few-shot setting we additionally provide samples from the reference dataset RD. We experiment
with varying sampling temperatures (higher temperature leading to higher entropy samples) to further
analyze the tradeoffs present within an LM.

Using this generative pipeline, we construct synthetic classification datasets for a number of exemplary
domains (see §4), for which we also obtain (human-curated) real datasets as comparison point.

3 EVALUATION FRAMEWORK

We now introduce our evaluation framework for the correct representation of common data domains
D in LLMs. For this purpose, we compare datasets against a valid representation of a data domain D
and select a human-curated reference dataset RD for each domain D.

Furthermore, we need to define a set of characteristics that are indicative of data quality. We extend
and adjust characteristics found in previous works on dataset generation to evaluate a given synthetic
dataset SD using five important characteristics: faithfulness, diversity, conformity, complexity, and
downstream performance. Other than performance, of these metrics, faithfulness and conformity
have been used in previous work directly, though not as the main focus of their evaluation (Ye et al.,
2022a;b). Additionally, we modify the diversity metric used in these works to be suitable for our
purposes and introduce complexity as a new characteristic to provide a full and comprehensive
evaluation of a synthetic dataset. We now describe each of these characteristics in detail.
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Faithfulness We start by considering faithfulness, i.e., how well a dataset fits the given domain D.
Faithfulness quantifies how much how much noise is introduced by the generation process that may
impair model training. To measure faithfulness, we fine-tune a small classifier MRD on the reference
dataset RD, and evaluate its performance in terms of accuracy on the respective synthetic dataset SD.
We thus measure faithfulness as

faithfulness(SD) = accuracy(MRD , SD).

We note that faithfulness does not only measure the correctness of labels associated with generated
samples. It is also influenced by the quality of the generated samples themselves and whether they
are representative of the reference dataset since non-representative samples are more likely to be
misclassified by the classifier. Furthermore, while the classifier can provide an estimate of the
faithfulness of the dataset, it is not a perfect measure and may be influenced by the quality of the
classifier. However, since the classifier is the same for all synthetic datasets, we can still use it to
compare the faithfulness of different datasets.

Diversity While LMs may generate faithful datasets, we need to ensure that the resulting samples
are diverse rather than repetitive. To account for this, we also measure diversity, i.e., how distinct
individual samples in the dataset are. Previous work on text dataset generation rely on Self-BLEU
(Zhu et al., 2018) or Distinctness-n (Li et al., 2016) to measure diversity. However, these metrics
are not suitable for the purposes of evaluating the diversity of the text generated by LMs. Indeed,
Self-BLEU and Distinctness-n exhibit a logarithmic dependence on dataset size as demonstrated in
App. A. Therefore, these metrics are not directly comparable across different datasets and cannot be
used to evaluate the inherent diversity of an LMs within a given domain.

We therefore propose a normalized version of Distinctness-n to correct for its size dependence. We
do so by averaging Distinctness-n over random subsets of the dataset of fixed size k. By keeping k
constant throughout all experiments, this metric is directly comparable across different datasets.

More concretely, given a dataset SD, let L(SD) be the multi-set obtained by lemmatizing all samples
in SD and collecting the obtained words. Let C(X) denote the unique number of tokens among
X = x1, ..., xk. We define the diversity as

diversityk(SD) =
1

k
EX

[
C(x1, ..., xk)

]
where X ⊆ L(SD), |X| = k

Conformity While text generated with recent iterations of instruction-tuned models Chiang et al.
(2023); OpenAI (2023); Geng et al. (2023) can be of high quality, diverse and faithful, a resulting
dataset may still not fit the distribution of human-written text in a more casual setting due to the
inability of these models to generate human-like text. Since common data domains contain a lot of
internet-based dialect, overly high-quality responses may fall out of distribution. For example, a
dataset for movie review analysis may contain both positive and negative reviews, but overall writing
skills per author may vary. If a corresponding synthetic dataset only contains high-quality reviews, it
may not be representative of the real distribution of reviews.

To capture this, we measure conformity to quantify the similarity between the distributions of a
synthetic dataset and a real reference dataset. For this, we employ the MAUVE metric Pillutla et al.
(2021), which indicates differences between two text distributions by calculating the Kullback-Leibler
(KL) divergence between their smoothed representation in sentence embedding space.

conformity(SD) = mauve(RD, SD)

Complexity Furthermore, it is possible that synthetic data looks natural and diverse, but the resulting
samples are overly simplistic, e.g. when synthetic positive movie reviews only consist of reviews
that are very good without any nuance in the samples. A classifier trained on an overly simplistic
dataset has worse generalization error and therefore less utility. We therefore include the degree of
data complexity as a core characteristic. To measure this, we train a small classifier Mtrain(SD) on a
training split of the synthetic dataset SD under consideration, and evaluate its accuracy on a held-out
(also synthetic) validation split. Based on this, we define the complexity inversely proportional to the
resulting validation accuracy, as follows:

complexity(SD) = 1− accuracy(Mtrain(SD), val(SD))
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Table 1: Overview of the models and training regimes considered in our comparative analysis.

Vanilla Instruction-Tuned

350M 1.2B 6-7B 13B 175B 350M 1.2B 6-7B 13B 175B

GPT-3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GPT-3.5 ✓✓✓†

Falcon ✓ ✓
Llama-1 ✓ ✓ ✓‡

Llama-2 ✓ ✓ ✓ ✓
CodeLlama ✓

† INSTRUCTGPT-3.5-175BPPO, INSTRUCTGPT-3.5-175Bchat and INSTRUCTGPT-3.5-175Bchat-instruct
‡ We use Vicuna-7B, 13B as instruction-tuned Llama-1 models.

This metric allows us to measure the complexity of a dataset by measuring the generalization error
on the same distribution. If this error is very low, the dataset is overly simplistic and the model can
likely not generalize well to samples from the unseen reference dataset and has therefore low utility.

Performance Overall, the four previous characteristics are summarized in the performance of a
synthetic dataset. The generalization performance is measured by training a model on the synthetic
dataset SD and evaluating it on the reference dataset RD. We therefore report the accuracy of a model
MSD trained on SD and evaluated on the reference dataset RD as the metric

performance(SD) = accuracy(MSD , RD).

4 EVALUATION

To assess the generative abilities of different models, we apply our evaluation framework to a wide
range of different models belonging to five different size classes (350M − 175B), four different
families (GPT, Falcon, Llama-1 and LLama-2) and two different training regimes (vanilla, i.e.,
non-instruction-tuned, and instruction-tuned).

In this section, we first describe our experimental setup and then discuss our main results through
two lenses: (1) We identify three inherent tradeoffs between our core characteristics, that we observe
consistently across all models, and, (2) we compare the different models and training regimes in
terms of their generative performance, as measured by our framework.

Data Domains We choose common data domains that we can safely assume to be in-distribution
for all examined models, and that we can find real-world reference datasets for. Concretely, we use
AGNews (Zhang et al., 2015) to perform news genre classification for news headlines, SST-2 (Socher
et al., 2013) for sentiment analysis of movie reviews, ELI5 for subreddit classification of online
forum posts (Fan et al., 2019) and a subset of GoEmotions (Demszky et al., 2020) for general emotion
classification. For more details on these domains and the reference datasets, we refer to App. B.

Models and Prompting We provide an overview of all models (Almazrouei et al., 2023; Touvron
et al., 2023a;b; Chiang et al., 2023; Brown et al., 2020) and training regimes (Ouyang et al., 2022)
considered in our analysis in Table 1. For data generation, we mostly rely on simple zero-shot
instructive prompts to generate data for a given domain, allowing us to directly access the raw
distribution modeled by a given model. For the classifiers trained as part of our evaluation framework,
we fine-tune pre-trained DistilBERT (Sanh et al., 2019) models. For further details we refer to App. C.

Sampling and Aggregation For each domain and model, we generate synthetic datasets of 3000
samples each. We do so for up to 5 different sampling temperatures T ∈ {0.7, 1.0, 1.3, 1.6, 1.9}
for instruction-tuned models and T ∈ {0.7, 1.0, 1.3} for vanilla models as samples quickly become
degenerate. For most models, we also include a sample from the nucleus distribution with p = 0.9.

To account for the stochasticity of the sampling process, we generate 5 datasets per configuration and
report the average results for our metrics across these 5 datasets. In App. F, we discuss the resulting
standard deviations, which are small and do not impact the conclusions presented here.
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Figure 2: Tradeoffs between various metrics in the zero-shot setting. From left to right: Tradeoffs in
diversity and conformity, diversity and faithfulness, and complexity and faithfulness. Arrows indicate
the direction of higher sampling temperature for the same model.

In our main evaluation, we always report the average of our metrics across all considered data
domains, and typically focus only on a subset of models, to facilitate readability. Still, our results hold
for all considered models and domains, unless otherwise noted. We include full results in App. E.

4.1 MODEL-INHERENT CHARACTERISTICS

We first look at model-inherent characteristics by considering tradeoffs between our core characteris-
tics, sampling from the same model with varying temperature. Naturally, higher sampling temperature
can be expected to correlate with diversity, however, we further observe other meaningful tradeoffs.
To illustrate, Fig. 2 shows the underlying relationships of our characteristics, plotting diversity,
conformity, faithfulness and complexity, where directed arrows indicate the effect of increasing
sampling temperature with a given model. We now discuss each of these plots in turn. In App. D, we
show that the same tradeoffs hold when the dependent variable is model size.

1. Conformity v. Diversity We find that as conformity increases, diversity increases (Fig. 2, left).
However, as soon as a threshold in reference diversity is reached, this trends reverses. We explain
this by that fact that conformity actually measures closeness of the synthetic data distribution to the
real reference distribution. At the same time, diversity can be seen as a measure for how wide this
distribution is. When the width (or diversity) of the reference and synthetic dataset match, conformity
will generally be higher. However, lower diversity means that the resulting dataset provides a very
narrow view on the data domain, while higher diversity results in a dataset that represents concepts
from outside the data domain as well. More technically, we observe a quadratic dependence of
conformity and diversity, which is statistically significant (p-value < 0.001) and centered around a
diversity of 0.5, slightly higher than the average diversity of the reference dataset.

2. Diversity v. Faithfulness We observe an inverse linear relationship between diversity and
faithfulness (Fig. 2, middle), as faithfulness decreases with increasing diversity. This is because
higher diversity indicates samples from a wider distribution which generally also includes samples
atypical for the domain and reference dataset, i.e. samples that are not faithful to the reference
dataset. Here, the difference between instruction-tuned (dashed lines) and vanilla (full lines) models
is especially notable. While vanilla models generate more diverse datasets for the same temperature,
for a fixed level of faithfulness, instruction-tuned models generate more diverse datasets.

3. Faithfulness v. Complexity Finally, we observe a strong linear relationship between faithfulness
and complexity (Fig. 2, right), with a Pearson correlation coefficient of −0.93. In an ideal scenario, a
classification model trained on the generated dataset is equal to the model trained on the reference
datasets. In such a case, faithfulness would equal 1− complexity. However, as shown in the figure,
we find that models appear shifted with respect to each other and do not follow the inverse relationship
perfectly. This suggests the existence of a model-inherent faithfulness-complexity ratio, which in
turn is an important indicator of dataset quality. In fact, further linear analysis reveals that the sum of
the faithfulness and complexity metrics is an equally good predictor of dataset performance as the
individual metrics, showing that the main dependence of performance is captured by their sum.
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Table 2: Comparing LLAMA-based and LLAMA-2-based model for sampling temperature T = 1 in
the zero-shot setting. Metrics for real data are measured with respect to a held-out validation set.

Model Name Complexity Faithfulness Diversity Conformity Performance

Real data 0.145 0.855 0.466 0.963 0.855

LLAMA-7B 0.235 0.708 0.439 0.357 0.749
LLAMA-2-7B 0.238 0.714 0.449 0.440 0.754

VICUNA-7B 0.113 0.815 0.365 0.222 0.744
LLAMA-2-CHAT-7B 0.065 0.860 0.334 0.173 0.749

4.2 MODEL COMPARISON

Going beyond model-inherent characteristics, we now compare across different models and training
regimes in terms of our evaluation metrics and the identified tradeoffs from the previous section. We
first discuss the effect of instruction-tuning and then compare the different model families. Finally,
we compare the different models in terms of their overall performance.

Instruction-tuning Firstly, we observe a clear difference between instruction-tuned and vanilla
models. While neither consistently balances all metrics and tradeoffs, we generally find that
instruction-tuned models are substantially more faithful, but exhibit less diversity than vanilla models
(see Fig. 2, middle). Only at the highest sampling temperatures (T = 1.9) instruction-tuned models
achieve similar faithfulness levels as their vanilla counterparts at the lowest temperatures (T = 0.7).

As shown in Fig. 2 (left), for LLAMA-{1, 2} and FALCON we can observe that instruction-tuned
models generally exhibit less conformity, compared to their vanilla variants. We explain this with the
high levels of curation with instruction-tuning datasets, whereas some of the reference datasets contain
ungrammatical or otherwise malformed samples. Interestingly, for OpenAI instruction-tuned models
like INSTRUCTGPT-3-175B we observe the opposite behavior, even when considering OpenAI
models of the same size as the LLAMA and FALCON variants. We show a full comparison of all
models in App. E.

Considering complexity, we find that both vanilla and instruction-tuned synthetic datasets tend to be
more complex at higher sampling temperatures (see Fig. 2 right). However, instruction-tuned models
behave significantly worse in the faithfulness-complexity-tradeoff, i.e. achieve lower faithfulness at
similar complexity levels. Again, OpenAI models like INSTRUCTGPT-3-175B appear to defy this
and can match the vanilla models in this regard.

For downstream performance, we generally observe lower scores for instruction-tuned LLAMA-{1, 2}
and FALCON models, compared to their vanilla counterparts. However, for some of OpenAI’s models
the instruction-tuning process appears to actually enhance generative abilities with respect to our
metrics, and thus also downstream performance. Overall, our metrics characterize the generative
abilities of instruction-tuned OpenAI models very differently from comparable LLAMA and FALCON
variants. This leads us to believe that OpenAI’s concrete and proprietary instruction-tuning process
and dataset must be substantially different from the ones used for LLAMA and FALCON.

Comparing Model Families In Table 2, we compare LLAMA-7B and LLAMA-2-7B. We find that
conformity serves as the primary indicator for differentiating LLAMA vanilla models of different
generations, with LLAMA-2-7B showing significantly improved results.

With respect to instruction-tuning, we analyze the difference between VICUNA-7B and LLAMA-
2-CHAT-7B. We find that in pure generative abilities according to our framework, VICUNA-7B
outperforms LLAMA-2-CHAT-7B across almost all metrics, with the exception of faithfulness.
Notably, VICUNA-7B only fine-tunes the model on dataset of instruction prompts, whereas the
fine-tuning process for LLAMA-2-CHAT-7B is more extensive Touvron et al. (2023b), using multiple
phases of fine-tuning and RLHF, similar to OpenAI’s instruction-tuning process Ouyang et al. (2022).
This suggests that the more extensive fine-tuning process of LLAMA-2-CHAT-7B does not necessarily
lead to better generative abilities, at least not according to our metrics or downstream performance.
We show the results for other temperatures in App. E, but note that the conclusions and trends
discussed here do not change.
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Table 3: Comparing models for the best perform-
ing temperature in the zero-shot setting. T is the
optimal sampling temperature.

Model Name T Perf.

INSTRUCTGPT-3-175B 1.9 0.767
LLAMA-2-7B 0.7 0.760
LLAMA-13B 0.7 0.758
VICUNA-7B 1.9 0.757
LLAMA-2-CHAT-7B 1.6 0.755

...
...

...
INSTRUCTGPT-3.5-175Bchat 1.9 0.715
GPT-3-350M 1.0 0.707
INSTRUCTGPT-3-350M 1.3 0.707

Table 4: Comparing models for the best perform-
ing temperature in the few-shot setting. T is the
optimal sampling temperature.

Model Name T Perf.

LLAMA-2-CHAT-13B 1.6 0.775
INSTRUCTGPT-3-175B 1.3 0.775
VICUNA-13B 1.6 0.768
LLAMA-2-CHAT-7B 1.6 0.764
VICUNA-7B 1.6 0.764

...
...

...
INSTRUCTGPT-3.5-175Bchat-instruct 1.3 0.744
INSTRUCTGPT-3-350M 0.7 0.723
INSTRUCTGPT-3.5-175Bchat 1.3 0.711

Model Comparison To compare downstream performance independent from sampling config-
uration, we consider maximum downstream performance per model, choosing the best sampling
temperature individually. We report the summary of the resulting ranking in Table 3 with full results
in App. E. Interestingly, among the top positions we see both vanilla (LLAMA-2-7B, LLAMA-13B)
and instruction-tuned models, suggesting that instruction-tuning does not necessarily enhance inher-
ent generative capabilities. Further, we find that specifically INSTRUCTGPT-3.5-175Bchat model
scores very poorly on all metrics, including downstream performance. On closer look we find that
its training regime appears to primarily optimize faithfulness at the expense of other distributional
characteristics. This results in very poor downstream performance, only slightly better than the worst
performing models GPT-3-350M and INSTRUCTGPT-3-350M, which are also much older than
INSTRUCTGPT-3.5-175Bchat. Surprisingly, we find that the best model INSTRUCTGPT-3-175B is
closely followed by much smaller LLAMA-based models, suggesting that a large model size is not
necessarily a requirement for good generative abilities in a distributional sense.

Few-Shot Performance While in most of our experiments we rely on simple instructive prompts,
we also consider few-shot prompting. Specifically, we select 10 samples from each data domain
and use three random samples from those 10 samples for each sample query. With this, we can
significantly boost the performance of instruction-tuned models specifically, as the additional variation
and specificity during prompting helps address their low diversity and conformity scores. We report
the updated ranking of downstream performance in Table 4. With this, instruction-tuned models
dominate the top positions, with INSTRUCTGPT-3-175B and LLAMA-2-CHAT-13B sharing the
first place. Interestingly, we find that vanilla models are now completely absent from the top five,
indicating that the few-shot procedure is effective at mitigating the issue of instruction-tuned models
regarding diversity and conformity. INSTRUCTGPT-3.5-175Bchat on the other hand, moves to the last
position, suggesting that even few-shot prompting cannot address the short-coming of chat-training
for synthetic dataset generation.

5 RELATED WORK

Synthetic data generation using LLMs has been explored for various applications and use-cases. We
briefly discuss each of these research areas.

Dataset generation for zero-shot learning Recent works (Ye et al., 2022a;b; Gao et al., 2023;
Meng et al., 2022) have proposed alternative strategies for zero-shot learning due to the increasing size
of foundation models. These works adopt a different paradigm that leverages large language models
(LLMs) to generate synthetic datasets and train smaller, task-specific models on these datasets for
downstream tasks. Ye et al. (2022a) pioneers this approach by introducing ZEROGEN, a framework
that generates synthetic data using LLMs for various downstream tasks. Following this initial work,
several studies have focused on improving the performance of models trained on synthetic data by
addressing potential issues such as fitting to noisy samples and enhancing generalization to real-world
applications (Gao et al., 2023; Meng et al., 2022). Additionally, Ye et al. (2022b) proposes an iterative
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few-shot prompting method that incorporates influential samples from the synthetic data to increase
dataset size, further refining the data generation process. Despite these advances, current studies do
not consider larger foundation models and neglect to analyze the trade-offs and relationships between
the different characteristics of a dataset.

Several works generate datasets for specific tasks. Schick and Schütze (2021) uses an instruction
combined with an input sentence and uses a LM to generate a new sample, where the label relationship
between the original and generated sentence can be derived from the instruction. Josifoski et al.
(2023) generates data for complex tasks, such as structured data, by leveraging asymmetry in tasks.

Self-improvement Using synthetic data to self-improve the foundation model has achieved a lot of
attention recently. In particular, Bai et al. (2022b) introduced a novel method for training models to be
more helpful using self-improvement by allowing the trained model to both generate and evaluate its
own outputs and therefore iteratively improving its own performance. Similarly, Wang et al. (2022b)
developed an approach wherein the model generates its own instruction dataset, which is then used
for fine-tuning itself. Huang et al. (2023) focused on enhancing the model’s capability in reasoning
tasks by training it on its own high-confidence outputs. Taking a different approach, Haluptzok et al.
(2023) aimed to enhance the code generation capabilities of the model. By employing the model’s
own output, they generated and selected code snippets to use training samples, ultimately improving
the model performance in code-related tasks. Finally, to reduce the toxicity of AI-generated text,
Wang et al. (2022a) proposed a method to fine-tune language models on non-toxic data.

Dataset Augmentation Dataset augmentation has a rich history, with various strategies employed
to improve the performance of models. Techniques such as back-translation Sennrich et al. (2016),
c-BERT word replacement Wu et al. (2019), or a combination of different methods Qu et al. (2021)
have been explored. Recently, LMs have also been used for data augmentation. For instance, Yang
et al. (2020) generates samples using foundation models for commonsense reasoning tasks and
incorporates the most diverse and informative samples into their dataset. Moreover, Dorner et al.
(2023) utilizes foundation models for unsupervised style transfer.

Chia et al. (2022) generates synthetic data for relation triplet extraction, where the goal is to extract
two parts of the prompt as well as their relation label. Bonifacio et al. (2022) generates data for an
information retrieval task, but do require a few examples for each class.

Generation for specific purpose Several works have focused on generating datasets for specific
applications using foundation models. For instance, Chen et al. (2023) developed a dataset for social
conversations, while Hartvigsen et al. (2022) introduced a new large-scale dataset for toxicity analysis.
Additionally, Yuan et al. (2022) presented a human-in-the-loop dataset generation technique and
employed it to create a dataset on biographies.

LLM Evaluation A wide range of holistic multi-task multi-metric frameworks (Liang et al., 2022;
Gao et al., 2021a; Hendrycks et al., 2021) as well as domain-specific evaluation suites (Guha et al.,
2023) for the evaluation of LLMs have been proposed.These frameworks often build on existing
tasks, such as question answering (Clark et al., 2018; Bhakthavatsalam et al., 2021; Lin et al., 2022),
language understanding (Wang et al., 2019) or sentence completion (Zellers et al., 2019).While
assessing models on a board set of downstream tasks, to the best of our knowledge, non of these
works measure the models capacity for dataset generation.

6 CONCLUSION

Through a comprehensive evaluation of synthetic datasets generated by LLMs, our study revealed
inherent tradeoffs between dataset diversity, complexity, conformity, faithfulness and performance.
We show that these trade-offs generalize across data domains and models, allowing us to study
differences between instruction-tuned and vanilla models. These results highlight differences in
model characteristics, e.g., how different models in the LLAMA family differ. We further find
that ChatGPT (INSTRUCTGPT-3.5-175Bchat) generates very faithful datasets, but lacks in all other
models in terms of complexity, diversity and conformity resulting in a worse downstream performance
compared to other models. Our study marks a crucial step towards a more nuanced understanding of
dataset generation by LLMs, shedding light on the behavior of various models.
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7 REPRODUCIBILITY

We include our code, prompts, and detailed instructions on how to reproduce our results as part of the
supplementary material of this paper.
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Figure 3: The dependence of Distinctness-n and Self-BLEU on dataset size.

A SIZE-DEPENDENCE DIVERSITY

We show that Self-BLEU (Zhu et al., 2018) and Distinctness-n (Li et al., 2016) metrics are dependent
on the dataset size, making them unsuitable for our analysis. To illustrate this, we take our SST-2
dataset and truncate it at different sizes. A desirable property of any diversity metric is its consistency
across these different sizes, as it enables us to assess the inherent diversity of the dataset generation
process. However, Fig. 3 reveals that both Self-BLEU and Distinctness-n do not exhibit this property.
In particular, Self-BLEU increases as the dataset size grows, whereas Distinctness-n decreases.

We note that both results are expected. Indeed, Distinctness-n, defined as the ratio of unique tokens
to the total tokens, remains constant only if this proportion is maintained throughout the generation
process. However, this constancy is improbable due to increased word repetitions with a larger
number of previous words. Moreover, since Distinctness-n relies on token count, it may differ even
for two datasets of identical size but with varying generated sample lengths, deeming it an unsuitable
metric for our study.

Self-BLEU’s dependence on dataset size on the other hand stems from the fact that it is calculated as
the mean over the BLEU scores of each sample with respect to all other samples. As the dataset size
grows, the number of samples to compare to grows as well, and thus the mean BLEU score increases.
Therefore, we conclude that Self-BLEU is also not a suitable metric for our analysis.

B DATASETS AND PROMPTS

In this section, we provide an overview of each data domain and reference dataset used in our study,
along with the prompts designed for each domain.

Movie reviews To investigate sentiment classification in the prevalent domain of movie reviews,
we use the Stanford Sentiment Treebank (SST-2) dataset Socher et al. (2013). This dataset comprises
movie reviews accompanied by binary sentiment labels (positive/negative). We create datasets
specifically for movie sentiment analysis for this data domain.

News Headlines To incorporate a domain demanding more world knowledge and generally char-
acterized by more formal language, we generate datasets for news headline classification using the
AGNews dataset Zhang et al. (2015). This dataset contains news headlines accompanied by brief
descriptions, organized into four categories (Business, Sci/Tech, World, Sports). We use the news
headlines from this dataset in our study and generate new ones with our procedure.

Subreddits With the intention of including an informal task common in internet data analysis, we
generate datasets for subreddit classification using the eli5 dataset Fan et al. (2019). This dataset
consists of questions and answers posted on three distinct subreddits (AskScience, AskHistorians,
and ExplainLikeImFive), where we use the questions of the dataset in this paper. We formulate
questions that could potentially be posed in each of these subreddits.
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Table 5: Prompts used for each task. Variables indicated by {class} are replaced by the respective
class label. Variables indicated by {examples} are 3 example samples from the dataset. These
samples are always selected from 10 random and fixed samples from the dataset.

Task Setting Prompt

Movie Reviews Standard The movie review in positive {class} is: "
Chat Generate a very short {class} movie review.

Few-Shot The movie reviews in {class} sentiment
are: {examples} \n 4.

Chat Few-Shot Generate one very short {class} movie review
similar in style to the following ones: {examples}

News Headlines Standard The following news article title is in the category of ’{class}’: "
Chat Generate a news article title is in the category of ’{class}’.

Few-Shot The following news article titles are
in the category of ’{class}’: {examples} \n 4.

Chat Few-Shot Generate a news article title in the category of ’{class}’
similar in style to the following ones: {examples}

Subreddits Standard A question that appeared on the subreddit ’{class}’: "
Chat Generate a question that could appear on the subreddit ’{class}’.

Few-Shot Questions that could appear on
the subreddit ’{class}’: {examples} \n 4.

Chat Few-Shot Generate a question that could appear in the subreddit ’{class}’
in a similar in style to the following ones: {examples}

Emotions Standard The following reddit comment displays the emotion ’{class}’: "
Chat Generate a reddit comment that displays the emotion ’{class}’.

Few-Shot The following reddit comments display
the emotion ’{class}’: {examples} \n 4.

Chat Few-Shot Generate a reddit comment that displays the emotion ’{class}’
similar in style to the following ones: {examples}

Emotions Recognizing the significance of emotional language in various tasks like customer
support, we create datasets for emotion classification using the GoEmotions dataset Demszky et al.
(2020). This dataset features Reddit comments labeled with 27 distinct emotions. We limit our
scope to 5 specific emotions (surprise, grief, nervousness, desire, gratitude) and generate datasets for
emotion classification.

Prompts We outline the prompts designed for all tasks in Table 5. While we use the same prompt
for each model, we make an exception for INSTRUCTGPT-3.5-175BChat, which requires slightly
different prompts to maintain comparability. For each dataset, we chose separate prompts for the
normal and few-shot setups.

C EVALUATION DETAILS

Training We fine-tune a DistilBERT Sanh et al. (2019) model for each experiment using a batch
size of 8 and at most 5000 training steps or 5 epochs (whichever comes first). We use the AdamW
optimizer Loshchilov and Hutter (2019) with a learning rate of 1e−5. We use a learning rate scheduler
with 600 warmup steps that decays the learning rate linearly to 0 after the warmup steps. Additionally,
we also use temporal ensembling and label smoothing as regularization techniques as in Meng et al.
(2022).

Evaluation We fine-tune the model as described above on five datasets consisting of 3000 samples
for each generated datapoints to measure complexity and performance. For faithfulness, we fine-tune
the model on the real dataset and evaluate the accuracy of the model on each of the five generated
datasets. Finally, to calculate diversity we set the hyperparameter in our definition to k = 5000 for
our experiments.
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Figure 4: Metric values for all metrics in the zero-shot setting for the GPT-3 model family for
sampling temperature T = 1. Results ordered by model size.

D TRADEOFFS FOR MODEL SIZE

In §4.1, we explore tradeoffs in relation to model size within the GPT-3 model family, for both vanilla
and instruction-tuned variants. The impact of these tradeoffs on key characteristics is illustrated
in Fig. 4. Our findings show that the tradeoffs identified in §4.1 are also true when the dependent
variable is model size. Specifically, faithfulness improves with size in both model types, probably
because of their stronger capabilities. Conversely, both diversity and complexity drop, aligning with
the tradeoffs outlined in §4.1.

When examining conformity in relation to model diversity, vanilla models, show an inverse relation-
ship: as diversity decreases, conformity increases. However, in instruction-tuned models, a decrease
in diversity leads to reduced conformity. This difference can be explained by the quadratic relation-
ship between diversity and conformity. Specifically, as the diversity of vanilla models decreases, it
converges towards the diversity seen in the reference data, thus increasing conformity. In contrast, for
instruction-tuned models, a decrease in diversity results in a divergence from the reference data’s
diversity, thereby lowering conformity.
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Figure 5: Tradeoffs between various metrics in the zero-shot setting. From left to right: Tradeoffs
in diversity and conformity, diversity and faithfulness, and complexity and faithfulness. Arrows
indicate the direction of higher sampling temperature for the same model. For vanilla models,
temperatures range 0.7 − 1.3 in steps of 0.3 and for instruction-tuned models temperatures range
between 0.7− 1.9. Additionally, for each open-source model and GPT-3-175B, INSTRUCTGPT-3-
175B and INSTRUCTGPT-3.5-175BPPO one point is added using nucleus sampling with p = 0.9.

Table 6: Comparing LLAMA-based and LLAMA-2-based model for sampling temperature T = 1 in
the zero-shot setting. Metrics for real data are measured with respect to a held-out validation set.

Model Name Temperature Complexity Faithfulness Diversity Conformity Performance

Real data - 0.145 0.855 0.466 0.963 0.855

LLAMA-7B 0.7 0.161 0.782 0.346 0.226 0.745
LLAMA-2-7B 0.7 0.163 0.779 0.361 0.292 0.760

LLAMA-7B 1.0 0.235 0.708 0.439 0.357 0.749
LLAMA-2-7B 1.0 0.238 0.714 0.449 0.440 0.755

LLAMA-7B 1.3 0.305 0.655 0.495 0.376 0.745
LLAMA-2-7B 1.3 0.298 0.662 0.502 0.474 0.750

LLAMA-2-CHAT-7B 0.7 0.036 0.867 0.254 0.081 0.727
VICUNA-7B 0.7 0.075 0.835 0.285 0.106 0.735

LLAMA-2-CHAT-7B 1.0 0.064 0.860 0.334 0.173 0.749
VICUNA-7B 1.0 0.113 0.815 0.365 0.222 0.746

LLAMA-2-CHAT-7B 1.3 0.087 0.834 0.414 0.270 0.754
VICUNA-7B 1.3 0.148 0.784 0.435 0.336 0.755

LLAMA-2-CHAT-7B 1.6 0.123 0.794 0.476 0.335 0.755
VICUNA-7B 1.6 0.181 0.750 0.494 0.436 0.753

LLAMA-2-CHAT-7B 1.9 0.158 0.751 0.520 0.312 0.752
VICUNA-7B 1.9 0.219 0.712 0.536 0.452 0.756

E FULL RESULTS

We provide extra plots for the various tradeoffs between characteristics for all models averaged in
Fig. 5 and for each dataset separately in Fig. 6.

Full tables for Table 2, Table 3 and Table 4 are provided in resp. Table 6, Table 7 and Table 8.

We also provide the metrics with respect to the reference datasets for all datasets separately in Table 9.
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Figure 6: Tradeoffs between various metrics in the zero-shot setting. Arrows indicate the direction
of higher sampling temperature for the same model. Sampling temperatures start at 0.7 in spaces
of 0.3. Additionally, for each open-source model and GPT-3-175B, INSTRUCTGPT-3-175B and
INSTRUCTGPT-3.5-175BPPO one point is added using nucleus sampling with p = 0.9.
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Table 7: Comparing models for the best performing temperature in the zero-shot setting. T is the
optimal sampling temperature.

Model Name Temperature Performance

INSTRUCTGPT-3-175B 1.9 0.767
LLAMA-2-7B 0.7 0.760
LLAMA-13B 0.7 0.758
VICUNA-7B 1.9 0.756
LLAMA-2-CHAT-7B 1.6 0.755
FALCON7B 1.0 0.754
INSTRUCTGPT-3.5-175BPPO 1.6 0.750
LLAMA-7B 1.0 0.749
GPT-3-6.7B 1.0 0.749
LLAMA-2-13B 1.3 0.749
LLAMA-2-CHAT-13B 1.9 0.748
VICUNA-13B 1.6 0.748
INSTRUCTGPT-3-6.7B 1.3 0.743
GPT-3-175B 0.7 0.737
FALCON-INSTRUCT-7B 1.0 0.733
INSTRUCTGPT-3.5-175Bchat-instruct 1.9 0.732
INSTRUCTGPT-3-1.2B 1.9 0.728
GPT-3-1.2B 1.0 0.722
CODELLAMA-7B 0.7 0.722
INSTRUCTGPT-3.5-175Bchat 1.9 0.715
GPT-3-350M 1.0 0.707
INSTRUCTGPT-3-350M 1.3 0.707

Table 8: Comparing models for the best performing temperature in the few-shot setting. T is the
optimal sampling temperature.

Model Name Temperature Performance

LLAMA-2-CHAT-13B 1.6 0.775
INSTRUCTGPT-3-175B 1.3 0.775
VICUNA-13B 1.6 0.768
LLAMA-2-CHAT-7B 1.6 0.764
VICUNA-7B 1.6 0.764
LLAMA-13B 1.0 0.763
INSTRUCTGPT-3.5-175BPPO 1.0 0.762
GPT-3-175B 1.0 0.760
LLAMA-2-13B 1.0 0.759
INSTRUCTGPT-3-6.7B 1.0 0.758
CODELLAMA-7B 1.6 0.756
LLAMA-2-7B 1.0 0.751
INSTRUCTGPT-3-1.2B 1.3 0.746
INSTRUCTGPT-3.5-175Bchat-instruct 1.3 0.744
INSTRUCTGPT-3-350M 0.7 0.723
INSTRUCTGPT-3.5-175Bchat 1.3 0.711
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Table 9: Metrics for reference datasets on all datasets separately.

Dataset Complexity Faithfulness Diversity Conformity Performance

AGNews 0.142 0.858 0.560 0.959 0.858
SST-2 0.093 0.907 0.382 0.959 0.904
ELI5 0.163 0.838 0.522 0.960 0.838
GoEmotions 0.184 0.816 0.378 0.976 0.819

Table 10: Standard deviations of all metrics across all models.

Characteristic Maximum std Mean std

Complexity 0.0030 0.0008
Conformity 0.0077 0.0018
Diversity 0.0022 0.0006
Faithfulness 0.0008 0.0006
Performance 0.0193 0.0006

F STANDARD DEVIATION METRICS

We briefly analyze the standard deviation of the reported numbers in §4. The maximum and mean
standard deviations for all characteristics across the generated datasets are displayed in Table 10.
It is evident that the standard deviation is relatively low, especially when compared to the reported
differences between models. The performance characteristic exhibits the highest standard deviation,
but even in this case, the maximum value is above 0.01, which is very low when compared to typical
values ranging from 0.7 to 0.8.
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