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ABSTRACT

Large Language Models (LLMs) have gained increasing attention for their im-
pressive capabilities, alongside concerns about the reliability arising from their
potential to generate hallucinations and factual inaccuracies. Uncertainty estima-
tion for LLMs aims to quantify the uncertainty of model outputs, where high un-
certainty scores indicate potential errors, signaling the need for rejection or further
evaluation. However, existing methods often limited by inherent biases of LLMs
like over-confidence and under-confidence. In this paper, we propose an external
insight-driven correction method for refining uncertainty estimation. This method
integrates uncertainty scores derived from a lightweight model trained on global
information with those from existing uncertainty estimation approaches, provid-
ing a more robust solution. We present comprehensive experimental results that
demonstrate the effectiveness and generalizability of our method across various
models, datasets, and consistently surpassing all baselines.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated their impressive capability in natural language
understanding and generation (Karanikolas et al., 2023), so as to provide valuable assistance in
numerous applications such as free-form question answering (Joshi et al., 2017) and decision-
making (Li et al., 2023). However, challenges related to output reliability, including hallucina-
tions (Zhang et al., 2023) and factual inaccuracies (Wachter et al., 2024), which mislead users with
false information, remain a significant concern. These issues are especially critical in high-risk ap-
plications like medical diagnosis (Wang et al., 2023) and legal consultation (Cheong et al., 2024),
making it essential to accurately assess the reliability of LLM outputs.

Uncertainty estimation (Loquercio et al., 2020) is a critical component in ensuring the reliability of
LLMs in practical applications. A reliable estimation of uncertainty can help to determine when to
trust a model (Yadkori et al., 2024). Intuitively, we would expect a high uncertainty estimation when
the response of model is likely to be incorrect, which should either be rejected or further evaluated.

Prior research (Papadopoulos & Yeung, 2001; Gal & Ghahramani, 2016) on uncertainty estimation
has primarily concentrated on scenarios such as classification or regression using targeted uncer-
tainty techniques, which are not directly applicable to LLMs. Consequently, there has been growing
interest in developing uncertainty estimation methods tailored for LLMs, which can be broadly
categorized into logit-based methods (Malinin & Gales, 2020; Kuhn et al., 2023), verbalized meth-
ods (Lin et al., 2023; Xiong et al., 2023), internal state-based methods (Kadavath et al., 2022; Ji
et al., 2024) and consistency-based methods (Li et al., 2024b; Pedapati et al., 2024). While these
methods provide valuable insights, their reliance on model outputs—whether at the logits level or
text level—often confines uncertainty estimation to inherent biases of LLMs, especially the over-
confidence and under-confidence (Ye et al., 2024), as illustrated in Table 1.

Over-confidence is a common issue in LLMs, characterized by their tendency to hallucinate facts
and present inaccuracies in a confident manner when composing responses (Azaria & Mitchell,
2023). From a deeper perspective, it involves assigning high-probability values to incorrect re-
sponses (Yadkori et al., 2024). From a broader viewpoint, it exhibits consistent incorrect response
across multiple samplings. For example, when queried about “What movie was about a dunking
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Table 1: Instances of over-confidence and under-confidence in the LLaMA-3-8B-Instruct model.
For the first question, the model repeatedly provided the same but incorrect responses in multiple
samplings, illustrating explicit over-confidence. In contrast, for the second question, the model gen-
erated varied responses, with the top response being correct, showcasing explicit under-confidence.

Query Answer Response Samples Top Response

What movie was about
a dunking Golden
Retriever named Buddy?

Air Bud Elf ✗
Elf ✗
Elf ✗

Elf ✗

Who was born at
Villa Mon Repos,
Corfu, in 1921?

Prince Philip Queen Elizabeth II ✗
King Paul ✗
King Constantine ✗

Prince Philip ✓

Golden Retriever named Buddy?”, a question sampled from TriviaQA (Joshi et al., 2017), the target
model consistently produces “Elf” in every separate sampling, whereas the real answer is “Air Bud”.
This consistent incorrection highlights a divergence between the model’s internal consistency and
the external accuracy, which can adversely affect uncertainty estimation, leading to relatively low
uncertainty score despite the presence of inaccuracy. Conversely, under-confidence refers to the op-
posite scenario, where the target model is capable of correctly responding a question but is perceived
as having high uncertainty due to the diverse outputs generated during sampling. Both phenomena
negatively impact uncertainty estimation performance, primarily leading to the relative inversion of
uncertainty scores ranking between questions the model can and cannot answer correctly.

Consequently, it is imperative to focus on the rank ordering of the uncertainty scores, which is also
known as relative uncertainty scores. Given the inherent misalignment between the model confi-
dence and its actual knowledge ability, along with the impracticality of modifying the model directly,
a heuristic approach is correcting the inversion of rank ordering derived from model-dependent
methods by integrating correction scores. Accordingly, we propose an external insights-driven
method to augment uncertainty estimation, orthogonal to existing advanced methods such as Se-
mantic Entropy (SE) (Kuhn et al., 2023) and Shifting Attention to Relevance (SAR) (Duan et al.,
2023), both of which can be easily integrated with our method.

Specifically, we begin by meticulously curating supervised dataset that are closely aligned with
the target LLM’s performance within a particular domain of knowledge. This dataset is then used
to train an auxiliary lightweight model, which serves as a Corrector. By integrating the Corrector
trained on global information with those uncertainty estimation methods that rely solely on the target
model, we can significantly refine the uncertainty scores.

Our main contributions are thus as follows:

• We identify the limitations of current uncertainty estimation methods which suffer from
inherent biases in LLMs, including over-confidence and under-confidence. Additionally,
we provide both theoretical proof and empirical evidence.

• We propose an external insight-driven approach which enables seamless integration with
existing uncertainty estimation methods. This approach can correct the inversion of uncer-
tainty score rankings caused by the inherent biases of LLMs.

• We demonstrate that our method consistently outperforms existing approaches included in
the Representative Baselines Set (RBS) and the Challenging Baselines Set (CBS), exhibit-
ing significant improvements in both relative and absolute terms. Furthermore, we present
comprehensive experimental evidence underscoring the robustness and generalizability of
our approach across diverse data domains and target models.

2 PRELIMINARIES

In this section, we commence by clarifying the two scales of uncertainty: relative uncertainty and
absolute uncertainty. We then formalize the relative uncertainty estimation as a classification task
to determine whether the target model can correctly respond to a given question. Subsequently, we

2



Under review as a conference paper at ICLR 2025

delve into the theoretical foundations of widely-used logit-based uncertainty estimation methods,
and critically examine the inherent limitations shared by those approaches that rely exclusively on
target model outputs.

2.1 RELATIVE UNCERTAINTY AND ABSOLUTE UNCERTAINTY

Research on uncertainty estimation has led to two key concepts (Kamath et al., 2020; Vazhentsev
et al., 2023): relative uncertainty and absolute uncertainty, each providing distinct methods for as-
sessing and interpreting levels of uncertainty. Given an input x, a ground truth answer y, and the
predictive distribution of Y , the predictive uncertainty for the target model regarding the input x is
denoted as UE(x, θ). Relative uncertainty scores emphasize the accuracy of sample ranking, espe-
cially in discerning questions that the target model can correctly respond to from those it struggles
with. Ideally, for every pair (xi, yi) and (xj , yj) with their predictive distributions Yi and Yj , we
should have

UE(xi, θ) ≤ UE(xj , θ) ⇐⇒ P (Yi = yi|xi, θ) ≥ P (Yj = yj |xj , θ). (1)

Stricter than relative uncertainty scores, absolute uncertainty scores support to represent the model’s
accuracy. In cases where there is an 80% uncertainty prediction, it implies that the question is
expected to be answered correctly only 20% of the time under similar conditions. This relationship
can be mathematically expressed as

P (Y = y|UE(x, θ) = q) = 1− q. (2)

As relative uncertainty concerns solely with the relative rankings of h(x) = UE(x, θ), it can be
framed as a classification problem aimed at finding a function h that minimizes the expected loss of
misclassification (Allikivi et al., 2024; Tao et al., 2023). Consider two class labels, C = {c0, c1},
indicating whether the targrt model can correctly answer the question or not, respectively. This leads
to the formulation of a decision rule

g(h; τ) =

{
c0 if h(x) ≤ τ (confident)
c1 if h(x) > τ (uncertain)

, (3)

where h(x) is a scalar measure of uncertainty and τ is the threshold.

Drawing from decision theory, we derive the expected loss as conditional risk for the sample x:

Risk(x) = λci,c1−i
hc1−i

(x), (4)

where ci, i ∈ {0, 1} denotes the true label of the sample x, and hc1−i
(x) = P (c1−i | x) is the

posterior probability of misclassifying the sample x as class c1−i. λci,c1−i
represents the loss asso-

ciated with this misclassification—specifically, a penalty incurred when the sample with the label ci
is classified as c1−i. Our task is to find h∗ that minimizes the overall risk

Risk(h) = Ex [Risk(h(x)) | x] . (5)

2.2 THEORETICAL FOUNDATIONS OF UNCERTAINTY ESTIMATION FOR LLM

LLMs typically generate outputs in an auto-regressive manner, which iteratively predict the proba-
bility distribution of the subsequent token based on the evolving context (Gregor et al., 2014). Given
an input sequence x with the objective of generating an output sequence y = {y1, y2, . . . , yL}, the
conditional probability of the l-th token yl is denoted as P (yl|y<l, x; θ). This probability depends
on all previously generated tokens y<l = {y1, y2, . . . , yl−1} as well as the input x. The probability
of generating the entire sequence y can be expressed as the product of the conditional probabilities
of each individual token:

P (y|x; θ) =
L∏

l=1

P (yl|y<l, x; θ), (6)

where P (yl|y<l, x; θ) = ezl/T∑
j ezj/T

, z is the raw logit, and T is the temperature that controls the

smoothness of the probability distribution. This posterior probability provides a probabilistic frame-
work for sequence generation. Moreover, according to prior research (Malinin & Gales, 2020), the
total uncertainty for the generation of y is given by the entropy of the predictive posterior:

PE(x) = H[P (y | x, θ)] = EP (y|x,θ)[− lnP (y | x, θ)] = −
∑
y∈Y

P (y | x, θ) lnP (y | x, θ). (7)
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In practice, due to the exponential computational complexity of traversing the entire response set,
Monte Carlo approximation method (Papadopoulos & Yeung, 2001) is employed via beam search
with a single target model for generation. The approximate entropy is defined as

PE(x) ≈ − 1

B

B∑
b=1

lnP (yb|x, θ), (8)

where P (yb|x, θ) denotes the posterior probability of the b-th beam search candidate. Base on these,
Kuhn et al. (2023) proposed to cluster generations with similar meanings and compute entropy using
the probabilities associated with each semantic cluster. This approach is formulated as

SE(x, θ) = − 1

C

C∑
i=1

lnP (ci|x, θ), (9)

where ci denotes each semantic cluster and C represents the set of all clusters.

Another form of improvement is to assign weights to each token in the generation when calculating
posterior probabilities (Duan et al., 2023; Bakman et al., 2024), either through a manually designed
algorithm or a training way, which can be formulated as

P̃ (y | x; θ) =
L∏

l=1

P (yl | y<l, x; θ) · wl, (10)

where wl represents the weight assigned to the l-th token.

2.3 CHALLENGES IN UNCERTAINTY ESTIMATION

Our previous discussions have centered on logits-based methods, recognized for their widespread
use, effectiveness, and solid theoretical foundation. In contrast, other types of methods like ver-
balized methods and internal state-based methods often lack stable theoretical frameworks, with
empirical evidence in Tables 2 and Tables 3 showing their performance generally falling short of
advanced logits-based methods. Therefore, we focus on logit-based methods and demonstrate their
inherent limitations in the context of LLMs.

Over-confidence and under-confidence represent persistent challenges in LLMs.

Over-confidence can be expressed when the probability of a specific incorrect response P (y′ | x; θ)
significantly exceeds the total probability of all other possible responses, including the correct an-
swer P (y∗ | x; θ). This can be represented as

P (y′ | x; θ) ≫
∑

yi∈Y,yi ̸=y′

P (yi | x; θ), (11)

where Y represents the set of all possible responses. As a result, during sampling, the specific
incorrect response tends to be generated with high probability, overshadowing other responses.

Conversely, under-confidence occurs when

P (y∗ | x; θ) = max
y

P (y | x; θ) and ∃S ⊆ Y , ∀yj ∈ S, P (y∗ | x; θ)−P (yj | x; θ) < δ, (12)

where δ represents a small positive number. This suggests that while the correct response y∗ has the
highest probability of being sampled, there are also incorrect responses that compete closely with it.

The over-confidence and under-confidence inherent in LLMs can significantly influence uncertainty
estimation by transferring to logit-based methods through their anomalous confidence expressions.

In cases of over-confidence, the probability of a specific incorrect response y′ converges to a value
p′, where p′ → 1. This scenario can be denoted as P (y′ | x; θ) = p′ and P (yi | x; θ) = ϵ for
all yi ̸= y′, with ϵ being sufficiently small. Under these conditions, the uncertainty U(x) can be
expressed as

U(x) = H[P (y | x, θ)] ≈ −p′ ln p′ −
∑

ϵ ln ϵ. (13)

As p′ → 1 and ϵ → 0, it follows that −p′ ln p′ → 0 and −ϵ ln ϵ → 0. Consequently, the overall
entropy approaches 0, resulting in a substantial low number of the uncertainty score.
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In under-confidence, we assume P (y∗ | x; θ) = p∗ and P (yi | x; θ) = pi for yi ̸= y∗, where
p∗ +

∑
yi ̸=y∗ pi = 1. By Jensen’s inequality, we have:

−
∑

yi ̸=y∗

pi ln pi > −(1− p∗) ln(1− p∗), (14)

which indicates that the contribution from −
∑

yi ̸=y∗ pi ln pi is considerable. Since there exist pj
values comparable to p∗, under the conditions specified in 12, as p∗ decreases, 1 − p∗ increases,
leading to higher computed entropy.

Consequently, we express U(x) as

U(x) = −p∗ ln p∗−
∑

yi ̸=y∗

pi ln pi > −p∗ ln p∗−(1−p∗) ln(1−p∗) > −2(1−p∗) ln(1−p∗). (15)

Based on the previous discussion, we can conclude that U(x) is overestimated due to the consider-
able contribution of 1− p∗.

3 METHODOLOGY

In this section, we introduce an external insight-driven method to refine uncertainty estimation,
which integrates uncertainty scores derived from a lightweight model trained on global information
with those from existing uncertainty estimation approaches. Through this method, we provide a
more robust solution for uncertainty estimation, effectively mitigating the adverse effects of inherent
biases in LLMs.

Our method comprises three main steps including dataset crafting, corrector training and uncer-
tainty correcting. Firstly, we carefully construct a dataset that closely aligns with the target model’s
performance within a particular domain of knowledge. This dataset is then utilized to train an aux-
iliary lightweight model that serves as a correction module, facilitating seamless integration with
existing uncertainty estimation methods to obtain corrected uncertainty scores.

Step 1: Dataset Crafting

We start by extracting data from existing datasets to serve as a evaluation set for assessing the
model’s capabilities on a particular domain of knowledge. This evaluation set comprises a collection
of question-answer pairs, denoted as D = {(qi, ai) | i = 1, . . . , n}. For each question qi, we engage
the target model M to generate a corresponding response ri, thereby obtaining the response set
R = {ri | i = 1, . . . , n}. Afterward, we evaluate each model response ri against its corresponding
ground truth answer ai, employing both rule-based and LLM-based methods to ensure an accurate
assessment. A binary label ci is then assigned to each sample, defined as

ci =
{
1 if ri is equivalent to ai
0 otherwise

(16)

By pairing question qi with its binary label ci, we form a correction dataset Dcor = {(qi, ci) |
i = 1, . . . , n}. This dataset provides external insight into target model’s performance in generating
correct responses. To directly associate the questions with uncertainty, we transform the form of
dataset into D∗

cor = {(qi, 1− ci) | i = 1, . . . , n}.

Step 2: Corrector Training

Following the discussion in 2.1, we frame uncertainty estimation as a classification task, focusing
on the relative uncertainty score rankings between questions the model can answer correctly and
those it cannot, thereby defining two distinct classes. Thus, we train a classifier using the curated
dataset D∗

cor to determine whether the target model fail to correctly answer a given question. The
classifier integrates a fully connected layer following the RoBERTa model (Liu, 2019), with the
representation of the [CLS] token as its input, denoted as h[CLS] ∈ Rd. After applying a sigmoid
activation function σ(z), we get the output value ŷi = σ(W · h[CLS] + b), which falls within the
range [0, 1]. After training, we develop a Corrector that effectively aligns its output scores with the
target model’s performance. Same as traditional uncertainty scores, a higher output value signifies a
state of high uncertainty.
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Step 3: Uncertainty Correcting

In this step, we integrate uncertainty score U(x) derived from other uncertainty estimation meth-
ods based on model itself with the correction score C(x) computed by Corrector. Specifically, we
employ a weighted combination method to integrate the two scores and apply grid search to sys-
tematically evaluate the hyperparameter w. With the optimal weight w∗ searched in development
dataset, the integrated uncertainty score Ucor(x) can be expressed as

Ucor(x) = w∗ · U(x) + (1− w∗) · C(x) (17)

4 EMPIRICAL EVALUATION

In this section, we demonstrate that our Corrector is a effective robust module for enhancing the
performance of uncertainty estimation in LLMs.

4.1 EXPERIMENTAL SETUP

Target Model Since model size is not the primary focus of our investigation, we select OPT-
2.7B (Zhang et al., 2022), which is widely used in prior works (Kuhn et al., 2023; Duan et al., 2023)
as target model. We also considered the advanced open-source model LLaMA-3-8B-Instruct (Dubey
et al., 2024) as target model for the main experiments.

Metrics Following prior works (Kuhn et al., 2023; Duan et al., 2023), we use the area under the
receiver operating characteristic curve (AUROC) as our primary metric for uncertainty estimation,
which is a commonly used metric for classification tasks. In our experiments, it can be used to eval-
uate the performance of relative uncertainty. AUROC of 1 indicates that the uncertainty estimation
method perfectly differentiates between questions the target model can respond correctly and those
it cannot, whereas an AUROC of 0.5 suggests that the estimation is no better than random guessing.
Expected Calibration Error (ECE) is another metric we use, which can evaluate the performance of
absolute uncertainty. In ECE, confidence and uncertainty are treated as complementary values, with
the confidence score being computed as 1 minus uncertainty score. ECE is calculated by partitioning
predicted confidence scores into bins and comparing the average confidence in each bin to the actual
fraction of correct predictions, formalized as

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| , (18)

where M is the number of bins, Bm is the set of predictions in bin m, |Bm| is the number of samples
in that bin, and n is the total number of samples.

Datasets We focus on the question-answering task using two representative datasets: Trivi-
aQA (Joshi et al., 2017) and SciQA (Auer et al., 2023). TriviaQA comprises 95,000 question-
answer pairs created by trivia enthusiasts, supplemented with independently sourced evidence doc-
uments. We utilize TriviaQA as a closed-book task, where target models are challenged to pro-
vide answers without access to supporting paragraphs. SciQA contains 2,565 question-answer pairs
fetched from the open research knowledge graph, covering several research fields ranging from sci-
ence and technology like Computer Science, Engineering, Chemistry, and Geology, life sciences
like Immunology and Genetics to social sciences like Economics and Urban Studies.

Baselines We select various uncertainty estimation methods as baselines and we divide them into
two sets: Representative Baseline Set (RBS) to evaluate the general applicability of our method
across various categories of representative approaches, and Challenging Baseline Set (CBS) to as-
sess its effectiveness against more challenging approaches. RBS includes representative uncertainty
estimation methods from logit-based, verbalized, internal state-based, and consistency-based cate-
gories, specifically: Lexical Similarity (LS) (Fomicheva et al., 2020) computing similarities among
multiple sentences as a measure of consistency, Verbal Confidence (VC) (Xiong et al., 2023) re-
quiring the target model to respond and provide confidence score, P(True) (Kadavath et al., 2022)
first asking the target model to propose an answer and then execute self-evaluation in a internal
probability way, and Predictive Entropy (PE) (Malinin & Gales, 2020) computing uncertainty using
the entropy of the predictive posterior. In addition to being representative, these baselines can be
easily implemented. As for the CBS, we delve into a series of logits-based methods that demon-
strate superior performance, including Length-normalized Predictive Entropy (LN-PE) (Malinin

6



Under review as a conference paper at ICLR 2025

TriviaQA SciQA
AUROC(↑) ECE(↓) AUROC(↑) ECE(↓)

Method Vanilla +Corrector Improv Vanilla +Corrector Improv Vanilla +Corrector Improv Vanilla +Corrector Improv
OPT-2.7B

LS 42.30 70.01 +27.71 78.51 17.30 -61.21 53.02 63.33 +10.31 70.00 32.78 -37.22
VC 44.50 71.50 +27.00 75.00 20.03 -54.97 48.34 55.63 +7.29 68.40 35.04 -33.36
P(True) 49.00 72.75 +23.75 63.32 18.50 -44.82 51.54 60.60 +9.06 66.34 34.52 -31.82
PE 47.69 69.98 +22.28 50.22 17.47 -32.75 50.40 62.65 +12.25 62.13 36.92 -25.21

LLaMA-3-8B-Instruct
LS 19.57 69.82 +50.25 70.25 7.41 -62.84 53.67 65.38 +11.71 38.64 18.19 -20.45
VC 62.34 74.89 +12.55 23.41 16.78 -6.63 68.22 72.15 +3.93 31.88 19.47 -12.36
P(True) 57.14 72.29 +15.15 24.67 19.84 -4.83 65.63 71.41 +5.78 34.56 31.92 -2.64
PE 64.52 69.76 +5.25 21.38 17.24 -4.13 66.54 67.98 +1.44 40.67 34.07 -6.60

Table 2: AUROC and ECE scores on the TriviaQA and SciQA datasets obtained by applying our
method to baselines from the Representative Baseline Set (RBS). LS, VC, and PE denote the
Lexical Similarity method, Verbal Confidence, and Predictive Entropy, respectively.

TriviaQA SciQA
AUROC(↑) ECE(↓) AUROC(↑) ECE(↓)

Method Vanilla +Corrector Improv Vanilla +Corrector Improv Vanilla +Corrector Improv Vanilla +Corrector Improv
OPT-2.7B

LN-PE 52.27 70.96 +18.69 45.66 31.59 -14.07 44.82 62.16 +17.34 32.74 34.68 -15.19
SE 65.57 73.88 +8.31 44.78 31.54 -13.24 57.60 59.67 +2.07 52.67 42.23 -10.44
SAR-t 58.50 72.14 +13.64 41.47 29.05 -12.42 57.21 63.92 +6.71 52.18 44.19 -7.99
SAR-s 49.29 69.90 +20.61 71.66 26.25 -45.41 50.98 62.01 +11.03 51.48 34.83 -16.65
SAR 57.04 71.32 +14.28 40.50 28.38 -12.12 58.40 64.97 +6.57 43.18 38.99 -4.19

LLaMA-3-8B-Instruct
LN-PE 72.55 74.79 +2.24 14.31 11.53 -2.79 69.48 71.56 +2.08 29.38 23.76 -5.62
SE 80.92 82.12 +1.20 13.07 12.76 -0.31 71.59 72.93 +1.34 30.54 25.23 -5.30
SAR-t 79.55 79.93 +0.38 16.40 13.70 -2.70 72.26 73.87 +1.61 30.37 26.81 -3.56
SAR-s 69.87 77.09 +2.95 6.73 20.00 -3.17 74.96 75.72 +0.76 38.54 36.18 -2.37
SAR 80.92 81.90 +0.98 16.17 13.76 -2.41 73.88 75.19 +1.31 28.97 25.60 -3.37

Table 3: AUROC and ECE scores on the TriviaQA and SciQA datasets obtained by applying our
method to baselines from the Challenging Baseline Set (CBS). LN-PE, SE, denote the Length-
normalized Predictive Entropy method, and Semantic Entropy, and Predictive Entropy, respectively.
SAR-t refers to the token-level version of the SAR method, while SAR-s denotes the sentence-level
version.

& Gales, 2020), which adjusts PE by normalizing it based on sentence length, Semantic Entropy
(SE) (Kuhn et al., 2023), which clusters sentences with equivalent meanings and calculating cluster-
wise entropy, Shifting Attention to Relevance (SAR) (Duan et al., 2023), which encompasses both
token-level shifting (SAR-t) and sentence-level shifting (SAR-s).

Evaluation of Model Responses We evaluate model responses using a combination of fuzzy match-
ing and LLM evaluation. Compare to prior work (Kuhn et al., 2023), we employ fuzzy matching
with an increased acceptance threshold for correct answers: M(y, y′) = IRougeL(y,y′)>0.5. A re-
sponse y is considered correct only if its longest common subsequence score exceeds 0.5 compared
to the reference answer y′. Additionally, we use GPT-turbo-3.5-0613 (Ouyang et al., 2022) to com-
pare the model response with the reference answer and assess its correctness. The combination of
these two methods enhances the precision of our evaluation.

4.2 RESULTS & ANALYSIS
4.2.1 COMPARISON WITH BASELINES

We compare the results of our method with vanilla baselines from the RBS and CBS in Table 2
and Table 3. It is illustrated that our method consistently improves the performance of all baselines
across various datasets and target LLMs. Given the numerous baselines, we simplify our expressions
by using the average score of AUROC within each baselines set, and the discussion regarding ECE
will be reserved for Section4.2.3.

RBS In Table 2, we focus on methods that belong to different categories as summarized in Section
5. For each of the four categories—consistency-based methods, verbal confidence methods, internal
state-based methods, and logit-based methods—we have selected one representative method, de-
noted as LS, VC, P(true), and PE, respectively. As illustrated in Table 2, the AUROC scores for
each baseline across the target models exhibit extremely low performance, especially in the Trivi-
aQA dataset, with an average AUROC score of 0.48, which is even worse than random guessing.
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TriviaQA SciQA

TriviaQA 19.59 4.05
SciQA 6.03 10.20

(a) Generalization for Domain of Data

OPT-2.7B OPT-6.7B LLaMA3-8B

OPT-2.7B 19.59 11.80 3.23
OPT-6.7B 6.08 11.21 3.43

(b) Generalization for Target Model

Table 4: Average AUROC scores improvement of after appling our method to baselines. (a) The
leftmost column indicates the domains of data used in training, while the topmost row represents the
domains of data used for evaluating, with OPT-2.7B serving as the target model. (b) The leftmost
column denotes the target model during training, whereas the topmost row signifies the target model
during evaluating, with TriviaQA utilized as the target domain of data.

If we only consider OPT-2.7B, the score further decreases to 0.46. These poor performances indi-
cate a trade-off between ease of implementation and robustness for uncertainty estimation methods,
revealing the significant optimization potential inherent in these baselines. Notably, the application
of our Corrector to the representative baselines yields average AUROC scores of 0.71 and 0.63 on
TriviaQA and SciQA, respectively. These results reflect significant improvements of 0.27 and 0.09,
even exceeding the performance of challenging baseline such as SAR.

Figure 1: Density plot of uncertainty
scores on TriviaQA with OPT-2.7B as
the target model, obtained from vari-
ous baselines and ground-true.

VC

P(ture)
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CBS We select a series of logits-based methods with strong
performance to test our Corrector against challenging base-
lines. These challenging baselines mainly anchor their es-
timation on the target model’s outputs—at eithor the logits
level or text level—and make tailored adjustments to the
predictive entropy framework based on issues observed in
natural language generation tasks of LLMs. As illustrated
in Figure 1, while challenging baselines show significant
improvements over PE and other representative baselines,
narrowing the gap to the ground truth, there remains a con-
siderable disparity. This provides room for our Corrector.
The results presented in Table 3 demonstrate that incorpo-
rating the Corrector yields average AUROC score of 0.75
for TriviaQA and 0.63 for SciQA, with improvements of
0.08 and 0.05, respectively. Furthermore, peak AUROC
scores of 0.82 and 0.75 can be reached.

Target models In the preceding discussion, we did not dif-
ferentiate among various target models. When using the
earlier model OPT-2.7B as the target model, both the rep-
resentative baselines and the challenging baselines yielded poor results, especially on the SciQA
dataset. Although applying our Corrector resulted in some improvement, there remains room for
further enhancement compared to our overall results. In contrast, when using the advanced model
LLaMA-3-8B-Instruct as the target model, the baselines outperform those based on OPT-2.7B, with
substantial improvements ranging from 0.08 to 0.20. This indicates that enhancement in LLM capa-
bilities may significantly improve the confidence estimation performance.

4.2.2 GENERALIZATION

The above results indicate that the Corrector performs effectively on the evaluation set comprising
in-distribution data. However, our analysis highlights two primary variables that can lead to out-of-
distribution scenarios: domain of data and target model. The generalization performance of the
Corrector is evaluated through the average improvement of AUROC scores across all baselines from
both RBS and CBS.

Domain of Data To evaluate the generalization capability of our Corrector across different data
domains, we conduct experiments by training the Corrector on the dataset D∗

cor, crafted from either
TriviaQA or SciQA, and then evaluating it on the alternate one. As illustrated in Table 4, the Cor-
rector achieves optimal performance when both training and evaluating occur within the same data
domain. Remarkably, even when training and evaluating on different domains, the Corrector still
demonstrates a enhancement, yielding an average improvement of approximately 0.05. One possi-
bility is that the target model exhibits comparable knowledge proficiency across both data domains.
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Figure 2: Calibration Plot. This plot illustrates the relationship between predicted confidence and
observed frequencies. The diagonal line represents perfect calibration, indicating that the predicted
confidence matches the actual outcomes. The bars that extend above the diagonal line indicate an
underestimation of confidence, while those that fall below the diagonal line signify an overestimation
of confidence.The last plot illustrates the optimal performance achieved by applying our method.

Target Model We investigate the generalization for target model by training Corrector on D∗
cor

sourced from a different target model than the one used for evaluating. As shown in Table 4, in
cases where models exhibit relatively comparable knowledge capabilities, such as OPT-2.7B and
OPT-6.7B, the Correcter exhibits generalization ability, yielding average AUROC improvements of
0.11 and 0.06, respectively. Conversely, when a substantial performance gap exists between models,
such as OPT-2.7B and LLaMA-3-8B-Instruct, we achieve an average AUROC improvement of 0.03.
When focusing solely on the challenging baselines from CBS, the improvement drops to 0.01.

4.2.3 CALIBRATION

In our discussion on calibration, we adhere to the experimental settings as previously outlined in
Section 4.2.1. As detailed in Section 4.1, we treat confidence and uncertainty as two intrinsically
connected facets to compute ECE. In a group of questions with an uncertainty score of 0.8, corre-
sponding to a confidence level of 0.2, it can be inferred that there is a 20% likelihood that this group
of questions will be answered correctly by target model . As shown in Table 2, most prior methods
have overlooked the calibration issue, leading to relatively poor performance on ECE scores, which
reflect inadequate absolute uncertainty. Although calibration is not the primary focus of our method,
experimental results demonstrate that our approach significantly enhances calibration performance,
yielding substantial lower ECE scores compared to all baselines.

For instance, when using the OPT-2.7B as the target model, we observed an average reduction of
0.34 and 0.21 on TriviaQA and SciQA respectively, across all baselines. With the LLaMA-3-8B-
Instruct model as the target, the reductions are 0.11 and 0.07 respectively, which are still consid-
erable. This significant reduction underscores the remarkable efficacy of our method in enhancing
uncertainty estimation in a absolute way. Additionally, we employ calibration plots, as depicted in
Figure 2, to visually demonstrate the calibration effectiveness of our method.

5 RELATED WORK

Uncertainty estimation methods for LLMs have gained significant attention, with approaches can be
broadly categorized into logit-based methods, verbal confidence, internal state-based methods, and
consistency-based approaches.

Logit-based methods Logit-based methods are the most widely used and effective approaches
in uncertainty estimation. As a foundational method, Predictive Entropy (PE) (Malinin & Gales,
2020), defines total uncertainty as the entropy of the output logits distribution. Follow that, Kuhn
et al. (2023) introduced semantic entropy (SE) that estimates uncertainty by marginalizing over
semantically-equivalent samples in NLG tasks. In the similar framework, Nikitin et al. (2024) em-
ployed positive semi-definite kernels and von Neumann entropy to capture semantic similarities. In
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addition to measuring the similarity between generated responses, Wang et al. (2024) proposed to
judge the similarity between the target response and the generations. Duan et al. (2023) proposed
Shifting Attention to Relevance (SAR), which focus on relevant components and assigns signifi-
cance weights to tokens based on their contributions to the overall response. Unlike these carefully
designed methods, Yaldiz et al. (2024) introduced a Learnable Response Scoring Function (LARS),
which utilizes supervised data to capture complex token-probability dependencies. While effective,
the above methods are computationally expensive. To alleviate these computational cost, Kossen
et al. (2024) proposed Semantic Entropy Probes (SEPs) to approximate semantic entropy by lever-
aging hidden states from a single generation.

Verbal confidence methods Due to LLMs’ strong language abilities and adherence to instructions,
Verbal confidence methods are proposed. For instance, one may attach the question with a prompt
like “Please respond and provide your confidence score ranging from 0 to 100.”. Xiong et al. (2023)
constructed a prompting, sampling, and aggregation framework to systematically evaluate various
strategies and their integration. Groot & Valdenegro-Toro (2024) introduced FaR prompting, en-
hancing calibration by separating fact retrieval and reasoning. However, verbal confidence methods
face significant challenges with over-confidence. Ni et al. (2024) found that LLMs cannot convey
their uncertainties faithfully in natural language. Becker & Soatto (2024) found that combining lan-
guage confidence and proxy model probability estimation can improve the estimation of uncertainty.
Madhusudhan et al. (2024) noted LLMs’ language perception accuracy often lags behind probability
perception, especially in specific domains

Internal state-based method Internal state-based methods suggest that the activation of the target
model can be analyzed to predict the model errors. Azaria & Mitchell (2023) proposed SAPLMA
by training a classifier on the hidden layer activations of an LLM to assess statement truthfulness.
Similarly, Liu et al. (2024) also introduced a supervised method by training a model on labeled
datasets that analyze hidden layer activations and probability-related features. Focusing on the self-
assessment capabilities of LLMs, Kadavath et al. (2022) trained models to explore the LLMs’ ability
to evaluate the accuracy of their responses through calibration on multiple-choice and true/false
questions. Ji et al. (2024) employed a probing estimator to analyze the internal mechanisms of
LLMs across various NLG tasks, assessing uncertainty before response generation. Additionally,
some works introduced novel interventions to refine model performance during inference. Han et al.
(2024) proposed to learn from past experience (LePe) method by leveraging historical performance
records and fine-tuning instructions. Li et al. (2024a) presented Inference-Time Intervention (ITI)
to adjust model activations selectively during inference across a limited number of attention heads,
guided by a predefined set of directions.

Consistency-based method The consistency-based method is to evaluate the uncertainty of the large
model through multiple generated answers. Recently, Li et al. (2024b) employed UQ sampling
with perturbation and an aggregation module to quantify sampling uncertainty in text generation
tasks. Pedapati et al. (2024) suggested reducing overconfidence by having LLMs justify answers
and aggregate these to adjust confidence. Becker & Soatto (2024) proposed extracting semantic
diversity and syntactic similarity from perturbed prompts, training a model on these features to
estimate confidence. Yang et al. (2024) explored the stability of explanations generated by LLMs
to estimate the model’s confidence in its answers. Lin et al. (2023) discussed combining observed
consistency and self-reflection to assess language model uncertainty

6 CONCLUSION

In this paper, We find that existing uncertainty estimation methods are often limited by the over-
confidence and under-confidence inherent in LLMs, leading to inaccuracies in uncertainty estima-
tion. To address these issues, we propose an external insight-driven correction approach which
enables seamless integration with existing uncertainty estimation methods. We demonstrate that
our method consistently outperforms existing approaches included in the Representative Baselines
Set (RBS) and the Challenging Baselines Set (CBS), exhibiting significant improvements in both
relative and absolute terms. Furthermore, we present comprehensive experimental evidence under-
scoring the robustness and generalizability of our approach across diverse data domains and target
models.
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ETHICS STATEMENT

In this study, we introduce a method for improving uncertainty estimation in the context of LLMs,
which presents no immediate ethical concerns, but certain considerations must be addressed. Un-
certainty estimation has significant potential to evaluate the reliability and safety of LLM outputs.
However, this potential benefit comes with the risk that systematic mistakes in the uncertainty as-
sessment could foster unfounded and misplaced confidence. Consequently, even re-calibrated uncer-
tainty estimates should be interpreted cautiously, particularly in critical decision-making scenarios
where the consequences of inaccuracies can be profound.

REFERENCES

Mari-Liis Allikivi, Joonas J”̈arve, and Meelis Kull. Cautious calibration in binary classification.
arXiv preprint arXiv:2408.05120, 2024. 3
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