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ABSTRACT

We propose Guided Speculative Inference (GSI), a novel algorithm for efficient
reward-guided decoding in large language models. GSI combines soft best-of-
n test-time scaling with a reward model r(x, y) and speculative samples from a
small auxiliary model g (y | ). We provably approximate both the optimal tilted
policy w3 5(y | ) x wp(y | =) exp(Br(x,y)) of soft best-of-n under the base
model 73, as well as the expected reward under the optimal policy. In experiments
on reasoning benchmarks (MATH500, OlympiadBench, Minerva Math, MMLU-
STEM, GSMS8K) and across different model families, our method achieves higher
accuracy than standard soft best-of-n with g and reward-guided speculative de-
coding (Liao et al., 2025), and in certain settings even outperforms soft best-of-n
with 7z, while reducing end-to-end latency by up to 28%.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across diverse gener-
ation tasks, with scaling model and data size being the predominant way to reliably enhance their
capabilities (Kaplan et al., 2020; Team, 2024; OpenAl et al., 2024). However, such scaling in-
curs ever-increasing computational and economic costs, and there is growing evidence that scaling
training compute yields diminishing returns (Hernandez et al., 2022; Muennighoff et al., 2023),
prompting the need for efficient alternatives.

Test-time scaling (Snell et al., 2025; Muennighoff et al., 2025; Zhang et al., 2025) has emerged as
a promising direction, which focuses on scaling inference-time rather than training time compute.
Various test-time scaling methods, such as best-of-n sampling (Gao et al., 2023; Mroueh & Nitsure,
2025; Beirami et al., 2025) and soft best-of-n sampling (Verdun et al., 2025), have been proposed,
all of which achieve improved downstream performance through increasing inference FLOPs. How-
ever, users can have constraints on inference compute and latency, and test-time scaling can quickly
become prohibitively expensive. This has led to the development of latency-efficient test-time scal-
ing methods such as speculative decoding (Leviathan et al., 2023; Sun et al., 2025), where a small
draft model 75 accelerates inference from a larger target model 7.

Moreover, the goal is oftentimes not only to achieve better downstream performance, but to do so
in a way that maximizes the rewards of a given reward function r(z, y) quantifying the quality of
a response y given a prompt z. Several frameworks for aligning model outputs to a reward model
have been proposed, both for training as well as at test-time (Yang & Klein, 2021; Ouyang et al.,
2022; Touvron et al., 2023; Mudgal et al., 2024; Huang et al., 2025). Recent work on reward-guided
speculative decoding (RSD) (Liao et al., 2025) combines model alignment with speculative decoding
from a draft model, though it lacks theoretical guarantees on distributional fidelity.

Contributions. In this paper, we introduce a novel test-time algorithm, Guided Speculative Infer-
ence (GSI), which leverages samples from a draft model mg to (approximately) sample from the
base distribution 75 aligned to a reward model 7, namely the tilted distribution (Section 4):

75(y | z) exp(Br(z,y))
Zg,B(z) '

By lT) =

"We will interchangeably call 7s the draft or small model, and 7 g the base or target model.
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Figure 1: Guided Speculative Inference workflow for one reasoning step. A sample y;i generated
from the draft model 7g is selected with soft best-of-n (S-BoN) with parameter 5 from the tilted
rewards 7;. If its reward lies above a threshold u it is accepted. Otherwise, it is rejected, which
triggers resampling from the target model 7 with soft best-of-n.

Importantly, by tilting (i.e., adjusting) the rewards r according to the log-likelihoods under both 75
and g (Figure 1), GSI provably approximates this tilted distribution, making it the first test-time
scaling method with distributional guarantees to the optimal tilted distribution, to the best of our
knowledge. We summarize our contributions as follows:

* We propose a novel test-time scaling algorithm, Guided Speculative Inference (GSI), which
uses a draft model 7g to accelerate inference from a target model wp while aligning re-
sponses to a given reward model r (Section 4)

* We prove that GSI enjoys strong theoretical guarantees and provably approximates the
optimal tilted distribution (Theorem 1), as well as the expected reward (Theorem 2)

* In extensive experiments on reasoning benchmarks (MATHS500, OlympiadBench, Minerva
Math, MMLU-STEM, GSM8K) and across model families (Qwen-2.5-Math, Qwen-3) and
sizes, we demonstrate that GSI outperforms both reward-guided speculative decoding (Liao
et al., 2025) and soft best-of-n sampling with the draft model, and sometimes even soft
best-of-n sampling with the target model (Section 5.1)

2 RELATED WORK

Test-Time Scaling. Inference time compute can be scaled along different axes. Broadly, such
methods can be divided into parallel and sequential approaches. In sequential approaches, the
model spends more time on a single response and aims to improve it, for example by appending
think tokens (Muennighoff et al., 2025) or via self-correction (Qu et al., 2024). While sequential
approaches can often generate high-quality responses, they don’t scale well. Parallel approaches
instead scale test-time by parallelizing computations, which typically involves generating multiple
responses or reasoning steps at a time. Common parallel approaches include majority voting (Wang
et al., 2023) and best-of-n sampling (Mroueh & Nitsure, 2025; Beirami et al., 2025) (see Section 3).

Speculative Decoding. Speculative decoding (SD) (Leviathan et al., 2023) accelerates sampling
from 7 by first drawing proposals from 7g and then accepting or rejecting them based on a criterion
derived from the ratio w5 /7g. On rejection, one falls back to direct sampling from 7 5. SD provably
samples from the distributions of mp. The core idea is that k tokens can be sampled from mg
autoregressively, but verified by 7p in parallel, thus generating up to k£ + 1 tokens from 75 with
a single forward pass of mp. Variants of SD include block verification (Sun et al., 2025) where
sequences of draft tokens are verified jointly instead of token-by-token, and SpecTr (Sun et al.,
2023) which allows for verification of multiple draft sequences in parallel by framing SD as an
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optimal transport problem. SD has also been combined with early-exiting (Liu et al., 2024), and
Bhendawade et al. (2024) propose using n-gram predictions of 7w as drafts, which alleviates the
need for an auxiliary model.

Reward-Guided Speculation. A recent work proposes RSD (reward-guided speculative decoding)
(Liao et al., 2025), where samples are generated from 7g, and a threshold on the reward of the
samples from 7g determines whether one should accept the sample or resample from 7. While this
approach shares similarities with GSI, it only provides a guarantee on the expected reward: under
the assumption that E., [r(y | )] > Exs[r(y | )], RSD satisfies E, [7(y | )] > Erg[r(y | )],
which in the worst case does not yield any improvement over the small model 7g, and also does
not guarantee anything about the policy mgrsp itself. As we will see in Section 4, GSI provides
guarantees on the induced policy directly. In concurrent work, Cemri et al. (2025) propose SPECS,
an algorithm that pairs draft-generated samples with a cascading routine, which determines which
model — draft or target — to use in subsequent iterations. Similar to our Theorem 1, they also derive
a KL bound with respect to the target distribution. However, their bound requires assuming that the
block size (i.e., the length of reasoning steps) tends to infinity, and that the number of samples n and
the rejection threshold w are random variables, all of which are approximations that do not hold in
practice. Our KL bound in Theorem 1 does not require any such assumptions. Moreover, GSI seems
to significantly outperform SPECS on downstream tasks (e.g. up to 11.5% improved accuracy on
MATHS500). RSD, SPECS, and GSI all have in common that they operate on reasoning steps of
reasoning models, where each iteration of the algorithm produces a subsequent reasoning step.

3 BACKGROUND

Let V denote a (finite) vocabulary. Let X' = (J, oy [I"_, V be the (countable) space of inputs,
consisting of finite sequences over the vocabulary (in practice these will be prompts and already
generated reasoning steps), and ) = | J,, oy Hl 1 V the (countable) space of reasoning steps. Note
that mathematically, these two spaces are identical, but we define both A and ) for notational
convenience. By A()), we denote the set of probability measures over ). For z € X, let mp(y |
x) € A(Y) and ms(y | z) € A(Y) be the base and small language model distributions over y € )
given x. Note that we define the distributions over reasoning steps instead of single rokens. When we
write T (- | ,¥), it denotes the distribution of 75 over ) given a prompt « and a (partial) response
y. When y consists of a sequence of reasoning steps y*, we will denote them with superscripts
y = (y',...,yT). Subscripts y; denote different samples generated by the same model.

Reward Models. Reward models for LLMs predict how good a generated response y is for a given
prompt z. They can broadly be split into two classes: Outcome reward models (ORMs) assign a
reward r(x,y) to a complete response y (i.e. generated until EOS) for a prompt € X. Process
reward models (PRMs) (Lightman et al., 2024) instead assign a reward 7(x, (y',...,4')) to every
partial sequence of reasoning steps (y',...,y%), t = 1,...,T. In the following, we assume we are
givenaPRMr : X x Y — [0, R] for some R < co. We assume that r approximates a golden
reward (Gao et al., 2023) r* : X x Y — R, which can be thought of as the “true” reward function.

Divergences. Recall that the Kullback-Leibler divergence between two distributions P, Q) € A())
with P < @ is defined as

KL(P|Q) = Eyp[log 5

il

and the chi-square divergence as

x2<P|Q>/(Q1> 40 = /dP21

KL Regularized Reward Alignment. A standard formulation for maximizing the reward r(z, y)
given x € X, while constraining how far the policy can move from the base policy 75(- | ), is to
add a KL regularizer, and find 75 maximizing

e Byr[r(z,9)] = sKL(x(- [ 2) | 75( | ),
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where 8 > 0 trades off maximizing the reward versus fidelity to 7. It is well known (e.g. (Korbak

et al., 2022)) that the optimal policy has the closed form

mB(y | ) exp(Br(z,y))
Z3,(7) ’

T8y | T) = (1)

where Zg p(x) = Eyorp(|2) [eﬁ ”(z’y/)] . Note that sampling from this distribution becomes un-
tractable when decoding more than one token in y at a time.

Best-of-n Sampling. Best-of-n (BoN) (Beirami et al., 2025) is a common inference-time method

for scaling LLMs. Best-of-n draws y1, ..., y, ~7p(- | ), and selects
y* = arg max 7r(z,y;).
ie{1,...,n

Since BoN greedily selects the response that maximizes the reward, it is also sometimes referred to
as hard best-of-n. When the reward model is suboptimal, best-of-n is known to be prone to reward
hacking (Skalse et al., 2022), which can be mitigated by sampling via soft best-of-n.

Soft Best-of-n Sampling. Soft best-of-n (S-BoN) (Verdun et al., 2025) weighs each drawn sample
by a temperature-scaled softmax w; < exp (6 r(z, yz)) (where (3 is an inverse temperature), then
samples a response y; with probability w;/ > jw;. We denote the soft best-of-n distribution over y
by 7 (- | ). Note that both soft and hard BoN can be applied to one-shot generation (where the
complete response it generated in one step) or reasoning tasks, where the y; correspond to reasoning
steps, and the BoN procedure is repeatedly applied. In this work, we focus on reasoning tasks. By
moving from hard to soft best-of-n, the distribution 7 (- | x) enjoys a KL bound to the tilted
distribution 7g g (Verdun et al., 2025):

Varyrp [eﬁr(x,y)] ) )

By [P
In other words, the tilted distribution 7g_g can be approximated by soft best-of-n sampling by letting

n — oco. Aminian et al. (2025) provide a thorough theoretical analysis of soft best-of-n compared
to regular best-of-n and show it can mitigate reward hacking.

KL (5575 < log 1+

4 GUIDED SPECULATIVE INFERENCE

Our goal is to (approximately) sample from the distribution 73 5. As we have seen, while one
cannot sample from the distribution directly, it can be approximated arbitrarily well by soft best-of-
n sampling with the target model w5, cmp. equation 2, which is linked to the closed-form solution
of w3 p as a reward-tilted version of 7w (1). However, this requires autoregressively generating n
responses from the target model, which can get prohibitively expensive. We would like to utilize a
small draft model g to accelerate inference, resemblant of speculative decoding. However, the tilted
distribution (1) is a distributions over 7 g, not over wg. The trick is to note that we can write it as

ms(y | @) exp (Br(z,y) +log (2245
Zp.B() ’
i.e. we can rewrite it as a distribution over wg (exponentially) tilted by the tilted rewards
N 1 5y | x))
7(z,y) =r(z,y —|—log( ,
) =rien+ gloe {2y Te)
with the convention log(0) = —oo. This allows us to do soft best-of-n sampling over samples from
mg with the tilted rewards 7 instead of r to approximately sample from 7g p:
Reward-Likelihood Tilted S-BoN. For z € X, the (one-step) reward-tilted S-BoN is defined as:
1. sample y1, ..., Yn ~ ws(- | z)
2. compute 7; = r(z,y;) + %bg (
3. sample y; o exp(57;)

75,8y | T) =

ﬂB(yi\m))

s (yilz)
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Algorithm 1 Guided Speculative Inference

Require: base model 7, small model g, PRM r, 8 > 0, threshold u € R, n € N, prompt x € X
1y« () #empty response
2: fort = 0,1, ..., until EOS do
3:  Sample {y!}? | ~7s(-| x,y) #reasoning steps, generated up to ’\n\n’

4 T (e (y,9)) + 5 logmp(yf | ,y) —logms(yf | ,9)), i=1,...,n

5:  Sample index i* ~ softmax(571, ..., 87)

6: if 73+ > u then

7.

8

9

Yy < (y,yﬁ*) #append step y t_(1"%)
else
Sample {y}7_, ~ 75(- | z,y)
10 rj <1z, (y,95), j=1,..,n
11: Sample index j* ~ softmax(Sry, ..., Bry)
12: y < (v, y5)
13:  end if
14: end for

We will denote the distribution generated by this sampling algorithm by 7gsi(- | ). Of course, we
can only hope that 7iggi(- | ) is close to w5 g (- | x) if the support of 7p is sufficiently covered
by mg, which we make precise with the following uniform coverage assumption, following prior
work (Huang et al., 2025). This assumption is reasonable in practice, as any response has non-zero
probability when sampling with positive temperature, hence the supremum in Assumption 1 is finite
if restricting ) to responses of some maximal length.

Assumption 1 (Coverage Assumption). Throughout, we will assume that

COO(],‘) = Sup M < o0
yeY:np(y|lz)>0 ’/TS(y | CL’)

Under Assumption 1, reward-likelihood tilted S-BoN with 7g indeed approximates the tilted distri-
bution 7g g in the sense of the following theorem.

Theorem 1. Let x € X. Assume that the coverage assumption (Assumption 1) holds. Let u € R be
an acceptance threshold (cmp. Algorithm 1), and € > 0 be an arbitrary accuracy. Assume that
(X2<7TB(_ | z) || 7s(- | x)) + 1) e2Blrlle — 1

ec—1 '

n =

Then,
KL(7g (- | ) | Tasi(- | 2)) < e

For a discussion of Theorem 1 and its practical implications, please see Appendix C.5. In addition to
sampling from the reward-likelihood tilted S-BoN, we also add a rejection sampling-like threshold
on the tilted reward, which triggers resampling from the base model 75 in case the tilted reward falls
below it. While this is not required for the distributional guarantee from Theorem 1, it improves
performance empirically, cmp. Section 5. The complete GSI method can be seen in Algorithm
1. We denote the distribution induced by Algorithm 1 (including the rejection step) as wggr (i.e.
mgsi 1s equal to mgs; when the sample is accepted, and equal to the soft best-of-n distribution ’/Tg’ B
otherwise).

Note that in principle, it is possible to choose different n for the draft and target models. We leave
exploring this for future research. While GSI is, in theory, applicable to one-shot generation tasks,
we consider 4 in Algorithm 1 to be a reasoning step, i.e. in each iteration ¢ of the algorithm, drafts
are generated until the end of the reasoning step, which is attained when a double line break \n\n is
generated. The algorithm generates reasoning steps until an end-of-sequence (EOS) token is created.

In addition to the distributional guarantee from Theorem 1, we can also guarantee that the expected
difference in (golden) reward goes to 0 as n increases.
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Theorem 2 (informal). Let x € X.  Assume that E, ... ([ (z,y)] < oo and
Eyors 5(|x) [r*(x, y)] < oo. Furthermore, assume the coverage assumption (Assumption 1) holds.
Under mild assumptions on wjg i (Assumption 2 in Appendix A), we have

n—oo

Eyms, 5 (1) 17 ()] = Byomgss (1) [ (@, 9)] —— 0
at rate O(1/+/n).

Both proofs can be found in Appendix A, where we also provide a formal version of Theorem 2 and
an explicit bound in terms of ﬁ

5 EXPERIMENTS

Models. We evaluate GSI on two model families with draft and target models of different sizes, to
emphasize that GSI leads to consistent latency gains across families and sizes. For the Qwen2.5-
Math family, we choose Qwen2.5-Math-1.5B-Instruct as the draft model 7g, and Qwen2.5-Math-
7B-Instruct as target model 75. On Qwen3, we choose Qwen3-1.7B as the draft and Qwen3-14B
as the target model, and disable thinking mode. We select Qwen2.5-Math-PRM-7B as the PRM r
throughout. The rewards lie in [0, 1].

Implementation. We implement all models with vVLLM (Kwon et al., 2023). The log-likelihoods
for mg are computed without any additional computational overhead within the forward pass of 7g.
The log-likelihoods for 75 can be computed with minimal computational overhead, as they only
require a single forward pass through 7. We note that for improved latency gains, verification of
draft steps with the PRM and the computation of log-likelihoods of draft steps under w5 could be
parallelized; however, for simplicity we have not implemented this in our current implementation.
Each model is hosted on its own GPU; we evaluated on NVIDIA A100, H100, and H200 GPUs.

Datasets. We evaluate on the following reasoning benchmarks: MATHS500 (Lightman et al., 2024),
OlympiadBench (He et al., 2024) (the OE_TO_maths_en_COMP split which is text-only math prob-
lems in English), Minerva Math (Lewkowycz et al., 2022), GSM8K (Cobbe et al., 2021), and
MMLU-STEM (Hendrycks et al., 2021) (which spans topics such as physics, chemistry, biology,
math, astronomy, computer science, and eletrical engineering). We decode stepwise with chain-of-
thought, where ”\n\n” tokens denote the end of a reasoning step; rewards are computed on each
reasoning step. Following common practice (Zhang et al., 2024; Cemri et al., 2025; Qiu et al., 2025),
we evaluate on randomly selected subsets of the datasets to make evaluation feasible. We select 500
samples per dataset (note that MATHS500 contains 500 and Minerva Math 272 samples, hence we
use the full datasets). We report 95% confidence intervals on all datasets, computed from evaluations
over three different random seeds with N = 500 samples each.

Methods. We compare GSI against our implementation of RSD (Liao et al., 2025) using the same
hyperparameters as in the paper, S-BoN with 7g, and S-BoN with 75. As SPECS (Cemri et al.,
2025) does not have a publicly available implementation, we do not compare to it in our experiments.
However, we compare to the results reported in their paper in Section 5.1.

Note that we do not compare to vanilla speculative decoding with the draft and target model and step-
wise s-BoN sampling (i.e., where n reasoning steps are generated in parallel with vanilla speculative
decoding, and then verified with the PRM), since speculative decoding is known to scale very poorly
with batch size. Even modern frameworks like EAGLE-2 (Li et al., 2024) have been shown to
have a token throughput of up to 50% less than that of the target model at larger batch sizes (Yan
et al., 2025). In particular, even sophisticated frameworks like EAGLE-3, that require targeted
finetuning of the draft model, have not been evaluated beyond n = 64 and do not achieve strictly
better throughput than the target model alone (Li et al., 2025). GSI circumvents this issue altogether,
as generation both from the draft, as well as the target model remains fully parallelizable.

Hyperparameters. We use 5 = 20 (see Appendix C.3 for an ablation), u = 0.5 (selected empir-
ically amongst a range of values based on accuracy vs. latency trade-off; see Appendix C.4 for an
ablation), temperature =0.7, and top_p = 1.0. We set the threshold in RSD to 0.7, which is the
same as in the RSD paper (Liao et al., 2025). Further hyperparameter and implementation details
can be found in Appendix B.
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Figure 2: Qwen2.5-Math (top) / Qwen3 (bottom): GSI outperforms RSD (Liao et al., 2025),
soft best-of-n with the draft model, and approaches the performance of soft best-of-n with the
base model. We also compare against GSI without rejection step. The plots contain 95% confidence
intervals over three random seeds.
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5.1 PERFORMANCE ON REASONING BENCHMARKS

Figure 2 compares GSI without the rejection sampling step (i.e., without lines 6 to 11 in Algorithm 1)
to regular GSI, S-BoN with 75 and g, and RSD. GSI significantly outperforms both soft best-of-n
with the draft model, as well as RSD. We see that GSI also clearly outperforms GSI without rejection
step; however, this difference becomes less significant as n increases, hinting at the fact that with
larger n, the samples from the small model reach better coverage of the support of 7. Furthermore,
on some datasets the accuracy of GSI with and without rejection step approaches or even surpasses
the accuracy of 73 5, which empirically verifies Theorem 1. We leave investigating this behaviour
beyond n = 256 for future research. An interesting observation is that amongst all methods, GSI
without rejection step seems to benefit most from increasing n and is the only method that does
not plateau around n = 256. Comparing GSI to SPECS (Cemri et al., 2025) with the accuracies
reported in their paper (as there does not exist a public code repository) for the same Qwen2.5-Math
models, we see that while SPECS slightly outperforms GSI on OlympiadBench (n = 4: +1.6%,
n = 16: +3.2%), GSI is significantly stronger on MATH500 (n = 4: +11.5%, n = 16: +2.9%).
Note that we evaluate on subsets of N = 500 samples, while SPECS reports accuracies on random
subsets of N = 100 samples, hence accuracies might not be directly comparable.

In Table 1, we report the inference time per sample (in seconds) across methods (averaged over
datasets), as well as the average percentage of samples accepted by GSI and RSD. We see that RSD
generally tends to accept almost all samples, which explains why its performance is comparable to
S-BoN with the small model (compare Figure 2) while being slightly worse in terms of inference
speed. GSI accepts less samples, thus is slower than RSD, while still outperforming S-BoN on the
base model in terms of inference speed. For example, on Qwen3 with n = 16, GSI achieves a 51%
increased throughput in terms of steps per second, with only 3% in relative performance degradation
(cmp. Table 3). While GSI tends to generate slightly more steps per problem, this still translates
to up to 28% reduced end-to-end latency compared to the target model. An extended version of
Table | can be found in Appendix C.6. Note that inference times rely on many factors and can be
unreliable. For instance, we found that sometimes, VLLM is faster if large batches are artificially
fed in sequential chunks instead of one batch. All times reported in Table | are for full batches of
size n. In Figure 4, we show how much each of the methods spends on each of the three models,
averaged across datasets.

Table 1: Latency of Qwen2.5 on H100, Qwen3 on A100: Inference time (in seconds) per reasoning
step, number of reasoning steps per sample, acceptance rate, and steps per second (averaged across
all datasets, with 95% confidence intervals over three random seeds). GSI is significantly faster than
S-BoN on the base model, with up to 51% more steps generated per second.

Model Family n  Method s/ step (}) # steps % accept  steps/s (1)
GSI (ours) 0.434+0.03 10.6+0.3 76.74+0.1 2.33+0.15

4 RSD 0.34 £0.01 9.7+ 0.1 94.9+0.0 2.94+0.08

S-BoN (small) 0.324+0.01 9.6+0.0 - 3.124+0.09

Qwen2.5-Math S-BoN (base) 0.57+0.01 10.24+0.3 - 1.75+0.03
(H100, 1B/78B) GSI (ours) 0.724+0.05 11.4+0.2 82.04+0.1 1.39+0.09
16 RSD 0.61+0.01 103+03 97.3£0.0 1.64+0.03

S-BoN (small)  0.524+0.03 10.3 £0.1 - 1.92 +0.10

S-BoN (base) 0.94+0.03 10.54+0.2 - 1.06 = 0.03

GSI (ours) 0.56 £0.04 26.7+03 8.0+0.1 1.79+0.12

4 RSD 0.40+0.01 28.14+0.1 97.2+0.1 2.50+0.06

S-BoN (s) 0.384+0.01 24.8+0.2 - 2.63 +0.07

Qwen3 S-BoN (b) 0.83+0.02 249+4+0.1 - 1.20 £ 0.03
(A100, 1.7B/148) GSI (ours) 1.21+0.05 275£04 91.5+01 0.834+0.03
16 RSD 096 +£0.01 29.0+0.2 98.24+0.1 1.04+0.01

S-BoN (s) 1.01 +£0.00 26.1+£0.2 - 0.99 £+ 0.00

S-BoN (b) 1.82+0.06 24.8+0.3 - 0.55 £ 0.02
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GSI: MATH500, Example 1 (Qwen2.5-Math)

Prompt: In the sequence 0, 1, 1, 3, 6, 9, 27, ..., the first term is 0. Subsequent terms are produced by alternately adding and
multiplying by each successive integer beginning with 1. For instance, the second term is produced by adding 1 to the first term;
the third term is produced by multiplying the second term by 1; the fourth term is produced by adding 2 to the third term; and so
on. What is the value of the first term that is greater than 125?

Step  Generated Reasoning Steps ( Draft s , Target wp ) F(yf* )/ r(yﬁ )
To determine the value of the first term in the sequence that is greater than 125, we need to follow the rule of alternately
! adding and multiplying by each successive integer starting from 1. Let’s generate the sequence step by step: 0.719
1. The first term is a1 = 0. 2. The second termis ag = a1 + 1 = 0 + 1 = 1. 3. The third t
az =ag X 1 =1 X 1= 1.4. The fourthtermis ay = az + 2 = =—375. The fifth term is
2 as = aq X 3 =3 X 3 = 9. 6. The sixth term is =us + 4 = 9 + 4 = 13. 7. The seventh term is 0.067
a7 =ag X5 =13 X5 = e eighth termis ag = a7 + 6 = 65 + 6 = 71. 9. The ninth term is

ag X 7 = 497.

1. The first term is given as a1 = 0. 2. The second term is obtained by adding 1 to the first term: a2 = a; +1 =

0 + 1 = 1. 3. The third term is obtained by multiplying the second term by 1: ag = a2 X 1 =1 X 1 = 1.

4. The fourth term is obtained by adding 2 to the third term: ay = a3z + 2 = 1 + 2 = 3. 5. The fifth

term is obtained by multiplying the fourth term by 2: a5 = a4 X 2 = 3 X 2 = 6. 6. The sixth term is

obtained by adding 3 to the fifth term: ag = a5 + 3 = 6 + 3 = 9. 7. The seventh term is obtained by 0.979
multiplying the sixth term by 3: a7 = ag X 3 = 9 X 3 = 27. 8. The eighth term is obtained by adding 4

to the seventh term: ag = a7 + 4 = 27 + 4 = 31. 9. The ninth term is obtained by multiplying the eighth

term by 4: ag = ag X 4 = 31 X 4 = 124. 10. The tenth term is obtained by adding 5 to the ninth term:

a1p = ag +5 =124 4+ 5 = 129.

We see that the tenth term, a1g = 129, is the first term in the sequence that is greater than 125. Therefore, the value

of the first term that is greater than 125 is . 1.037

Correct Answer found: True

GSI: MATH500, Example 2 (Qwen2.5-Math)

Prompt: A regular pentagon is rotated counterclockwise about its center. What is the minimum number of degrees it must be
rotated until it coincides with its original position?

Step  Generated Reasoning Steps ( Draft 75 , Target 7p ) (ys)/ T(yﬁ )

To determine the minimum number of degrees a regular pentagon must be rotated counterclockwise about its center
1 until it coincides with its original position, we need to understand the symmetry of the pentagon. A regular pentagon 0.918
has rotational symmetry, meaning it looks the same after being rotated by certain angles around its center.

The sum of the angles around a point is 360°. Since a regular penta nd angles, it can be rotated

2 to five different pos —Therefore, the angle of rotation for each symmetry is 360° divided by 5. 0.126
A regular pentagon has five equal sides and five equal angles. When we rotate a regular pentagon, it will coincide with
its original position at angles that are multiples of the angle subtended by one of its vertices at the center. This angle is 0.999
calculated by dividing the full circle (360 degrees) by the number of sides of the pentagon, which is 5.
So, the angle of rotation is:
o
3 500 = 72° 0.968
5

Therefore, the minimum number of degrees the pentagon must be rotated counterclockwise until it coincides with its

4 original position is A 0.961

Correct Answer found: True

Figure 3: Reasoning traces generated by GSI on two MATHS500 samples. Top: GSI correctly
identifies that the second step generated by the draft model is wrong (crossed out means rejected)
and resamples from the base model. Bottom: Sometimes, GSI rejects steps that are correct if the
base model tends to word them very differently from the draft model.
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Figure 4: Qwen3 on A100 runtime breakdown across g (1.7B), 7 (14B), and the PRM (7B).

5.2 GSI REASONING TRACES

Figure 3 shows two sample reasoning traces generated by GSI with the Qwen2.5-Math models for
n = 4 on MATHS500. The last column contains the tilted rewards 7 for samples from 7g, and
regular rewards 7 for samples from 7, aligning with the GSI algorithm. In the first example, GSI
correctly identifies an incorrect step generated by 7g in the second step by its small tilted reward, and
resamples a correct step from 7, whereas the second example shows that tilted rewards 7 can also
sometimes be misleading. We provide additional samples in Appendix C.7, including comparisons
to the reasoning traces generated by RSD, and examples that highlight the advantage of using tilted
rewards instead of raw rewards.

5.3 ABLATIONS

Appendix C contains additional experiments, including more detailed accuracy results, a more de-
tailed comparison of the acceptance rates of GSI and RSD, a discussion of Theorem 1 and its prac-
tical implications, and ablations with Qwen2.5-Math on MATHS00 over /5 and over u, which show
that our choice of 8 = 20 strikes a balance between weighing r and the log ratio log(mg/7s),
and that the threshold v = 0.5 is optimal for smaller values of n. Note that while the ablations
show that 5 = 20 and v = 0.5 are sensible choices for MATH500 with Qwen2.5-Math, our ex-
periments confirm that these can be used out-of-the-box across datasets and model families without
further hyperparameter search. However, the performance of GSI can likely be improved with a
more fine-grained threshold schedule {u,, },, depending on n, which we leave for future research.

6 DISCUSSION

Developing compute-efficient algorithms remains a critical challenge in test-time scaling of lan-
guage models. In this work, we introduce Guided Speculative Inference (GSI), a novel inference-
time algorithm for efficient reward-guided decoding from a target language model. GSI leverages
speculative samples from a small draft model to approximate the optimal tilted policy of the target
model with respect to a given reward function. We show that unlike previous approaches, GSI prov-
ably approaches the optimal policy as the number of samples n generated at each step increases, and
can provably achieve expected rewards arbitrarily close to the optimum. Empirical results on vari-
ous reasoning benchmarks (MATHS500, OlympiadBench, Minerva Math, MMLU-STEM, GSM8K),
model families (Qwen2.5-Math and Qwen3) and sizes ranging from 1B to 14B parameters show that
GSI consistently and significantly outperforms existing approaches, such as reward-guided specula-
tive decoding (Liao et al., 2025), SPECS (Cemri et al., 2025), soft best-of-n with the draft model,
and, perhaps surprisingly, even surpasses soft best-of-n with the target model in some cases. Re-
sults on inference time show that GSI can efficiently trade off inference time compute for significant
performance gains, making it a practical framework for efficient LLM deployment.
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REPRODUCIBILITY

We have provided the complete code needed to reproduce all of our experiments with the submission.
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A PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1. Let x € X. Assume that the coverage assumption (Assumption 1) holds. Let u € R be
an acceptance threshold (cmp. Algorithm 1), and € > 0 be an arbitrary accuracy. Assume that

o (s @) [ ws (| ) 1)l 1
- e — 1 .

Then,
KL(mg,5( | 2) | Fosi(- | 2)) < e
Proof. By Lemma 1 in (Verdun et al., 2025) (which equally holds for countable spaces ), we have
m5(y | T/)]
Ts(y | z)
L exp|Br(a,y) +log ZZUD] + 2L By (o G 000 )]

ms(y' |z
np(y | x) el @)

ms(y | ) exp|B7(z,y) +log

Tasi(y | ) >

1 TB(y | @) Br(z,y) n—1 Br(zy) '
= ——=€ Yo =l | L e e Y
" sy | @) w Byl | ]
Hence
7TGSI(y | 93)
Br(e.y) ro(y | @)@ [1TEGLD ey | ncip pre
X5 moly|ne ., " sy | @) ;
y' ~mp( a:) 657"(:8 Y )] Ey’~ﬂ3(4|x) [657-(z7y/)]7rB(y | Jf) eﬁr(af,y)
Z iy | z)eren) <1 m8(y | =) eBr(@y) . n—l)
N 08 n r(xz,y’ n
y' ~m g ( a:) 8187‘(1 Yy )] Fs(y ‘ .'I,') ]Ey/NWB('lw) [eﬁ (zy )]

2 28 r(z,y)
< log (}L (Z WEVARD ¢ - ) + ”f) (Jensen’s inequality)

2
TS T By o[ T@00])

< log< ool X L) [ ms( [ 2) +1 )

Eyormle? @)
. log((X2 (75 (lo) stim))ﬂ) 28lI7lloo . n:) |

using the fact that

Ey (- [€® 7Y > 1

since 7(z,y") > 0. Now for € > 0, we have

g ((XQ(WB(.W) |‘7r57(7:‘a?))+1>62/i\\T\\oo . ";1> ..
N (2 (rCla) I ﬂsg|x))+1)ezmwm f1o1 < e
N - (2 (x5 (1) Hﬂs(.llx))+1)ezzs||7.uoo_1 < e
. (x* (w5 12) HTrs('l;r))—i-l)ezﬁ”THoo_l P
- O (mp( @) | ms(- | @) +1) elrle —1 <n

e —1
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A.2 PROOF OF THEOREM 2

Assumption 2. Let Y> = {y : 7#(y) > u}. Assume that

[ s = [ W s,
Y; Y

1
WE,B(YZ)
in words: 7 g has higher average golden rewards r* on the set Y> than on the entire set Y.

Furthermore, assume that
75 5(Y>) > Tasi(V>),

in words: 7 p is more likely to generate samples with high tilted rewards than Tgsi.

Theorem 2. Let x € X. Assume that Er.g [r*] < oo and Er, ,[r*] < oo (here we implicitly
assume that distributions and rewards are conditioned on x, which we omit for ease of notation).
Furthermore, assume that Assumptions 1 and 2 hold. Denote by p(u) the acceptance probability of
GSI. Then

[ lloo

NG

Var, / Br(z,y’)
where CV (eP") = \/ Uy gl [ )]2. In particular, we have B [r*] —Er,  [r*]

(Ey’NwB(.‘z) [e/”(x-,y’)]
at rate O(1/+/n).

Nl=

Ers 1] ~Enga[r] < [plwde?lrl= (E(rplims) +1)F + (1= p(w)) (CV(e)? +1)],

n—00
0

Proof. Denote by Y> C Y the set where #(y) > u,and Yo =Y \ Y>. Let x € X'. We note that for
y € Y>, we have

masi(y) = Tast(y) + Tas1(Y<)75 5(y),
since any y € Y> can be generated either from gy directly (in which case the sample is accepted

by the algorithm), or the sample from 7 g is rejected (which happens with probability 7asi(Y<)),
in which case y can be generated with 7 5. Similarly, fory € Y,

mast(y) = Tas1(Y<)m5 5(v),

as y € Y. can only be generated by mggr if a sample from 7ggy is first rejected and then y is
generated by 73 . Thus,

E‘ﬂ'ﬁ,B [T*] - EWGSI [7'*] =
]Eﬂs‘ * E’/Nr(‘SI []1}/> 7'*} — 7~TGSI(Y<)EW" []].y2 T*] + ]E‘TFB,B []].y<7‘*] — 7~TGSI(Y<)EWTL [ILY<T*] =

B []lYZ r > B,B B8,B
Eﬂ‘g‘rg Efr

]]-Y> T

] -
- allyo 7]+ Eny o [Ty 7] — Exn [Iy_r*]+

Tast(Y>)Ern [y r™] = Fasi(Y<)Ern | [1y, r"] =
Er,s 5 []ly2 ] = Esea []ly2 |+ Ex, 5Ly r"] — Ern [Ly_r*]+
Fasi(Yo)Eny [y r"] + Fast(Va)Ens , [Lys r] = Fast (Vo) , [Lye 7] — Fast(Ya)Eny , [Lyo 7] =

ET",’LB []lyz T*] - E%GSI [HYZT*} + EW&B [1Y< 71 - ET{Q"_,; [HY< T*] + ﬁGSI(YZ)EWQ"_,; [T‘*} - Eﬂ'[g“,; []IYZ T*].

(a) (b) (©)

G

Step 1: Bounding (a). We have by Cauchy-Schwarz:

(a) = Ey'\/‘n'g,B("J)) []]-YZ (y) r* (Ia y)] - EyNﬁ'GsI(‘h:) []]'YZ (y) r* (l‘, y)]

<1l ([ 1.0 07001 ) ( [ (2l reb I x>) 2

=l (Rasi(Ys [ )} (W(ma.50 | )| Fasi(- [2)) ®
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By Lemma 1 from (Verdun et al., 2025) we have

X (ma.B(- | ) || Fasi(- | z)) (4)
_ [ x)? _
_/ figst(y | ) dy — 1

-/ (mp(y | 2)e?rte)”

, 2 L
(Ey/~ﬂ3(4|z) [eﬁr(m7y )]) WGSI(y | .’IJ)

Lem<ma1/ (’/TB (y | ‘T) eﬁr(x’y))Z % %eﬁﬂw,y) + nT_l Ey’~7r3(‘|$) [eﬁr(z,y')] d 1
< .
(By o (- [P @9])? m5(y | ) efrew)
! 2 1 By €@
= 2/7TB(Z/‘$) EQﬁTdy—‘rn Yy nd )[e ]2 1
n (Eyl,\,ﬂ—B(.‘z) [eﬂr(w,y/)]) Ws(y ‘ x) n (Ey’~7r3(-\z) [eBT(Ivy')D
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= ; 3 X7 | @)||Ts(- | @ + ) - —
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Plugging equation 5 into equation 3 yields

N|=

@ < Il (RosalYs | )} (M= (Pnallns) +1))

= Iy~ (¢ aalims) + 1) ©

[N

Step 2: Bounding (b). Similar to the bound for (a), we get

(b) = Fosi(Ly<) ( / (o, 22D ThR WD) x>>

WE,B(Z‘/ | )

1 n " 2
< 7~TGSI(]]-Y<) </ T*(w,y)QWEB(dy ‘ l’)) / <7TB7B(y I -1') Wﬁ,B(y | )) ngB(dy | :L')

s | )

1
2

2
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= (1= p(w) | (P(mp,5l175.5)) ? %)

by independence of the event Y. and 7% resp. mg p, and applying Cauchy-Schwarz.
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Again, using Lemma 1 from (Verdun et al., 2025) we get

2
n Vs ,B y|lx
(78,8175 B) Z/wdy -1

% gy | x)
2 (@ n— I
Lem<ma1/ (WB(y | ) eBr(z, y)) 1 eﬂvu,y) + TlE o (a2 )[eﬂ (z,y )] by — 1
T ByrainePE0) Ty | @) efrie)

71 E Yy~ ( |$)[ e2Pr(@y) } nfl 1
(B oy [PV )2 n

1 Ey s () [625T(5E’y }
— 2

”( o (1) [P (V0]

1 V Forer (-2 Br(z,y )
( g ol ] )
A By () [eP7@97])

Plugging equation equation 8 into equation 7 yields

Var, . (.o [e2T@Y) H
Ay o () € ] 1) o)

(Ll P
< =2 (1 —p( ))<(IE )’

Yy~ (|
Step 3: Bounding (c). We have by Assumption 2:

(C) = ﬁGSI(YZ)Ewg’B [7‘*] — Eﬂ-n

ﬁ,B[ILYZr*]

fasi(Yz)
N 7TZ—?L,B(Y )

<0, (10)

]].YZT'*] — Eﬂn

;3,13[

]].yZT*]

TFE')B[

where we use the first part of Assumption 2 in the first inequality, and the second part in the second
inequality.

Combining equations (6), (9), and (10) gives

7|0

vn

Nl

Ery o ] Eras ] < P> (P (rplms) + 1)F + (1 - plu)) (CV(e™)? +1)7]

as desired.

Remark 3. Asymptotically, we also get
ETFGSI [T*] - ]Eﬂ'ﬁ‘,B [T*] m 0

without assuming the second part in Assumption 2, since by Theorem | combined with Lemma 1
from Verdun et al. (2025), we get

n—roo

KL(rs,5||7cs1) ——= 0 and KL(mg p||7} 5) —— 0,

which implies
T Y n (o]
7rSSI( >) no 1.
Wﬁ,B(YZ)

assuming that 7 5(Y>) > 0. This means that the term (c) in the proof of Theorem 2 converges to
0 (not necessarily from below).
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B IMPLEMENTATION DETAILS
This section contains additional implementation details.

B.1 SYSTEM PROMPTS

We slightly adapt system prompts based on the dataset. Our base system prompt is:

"Please reason step by step, and put your final answer within

\\boxed{}."

On Minerva, we append it by

Do not include units in your final answer. For example, if the
answer is ‘5 m/s‘, write ‘\\boxed{5}‘."

On MMLU, we instead use

"Please reason step by step, and select the answer from the

given choices 1, 2, 3, or 4. Respond only with the number of the
correct answer, from 1 to 4, not with the answer itself. Put the
index of the correct answer within \\boxed{}."

B.2 GENERATION DETAILS

We set max_new_tokens in vLLM to 512 (this is the maximum number of tokens per reasoning
step). If the rewards of all draft steps lie below 0.1, we stop generation for that sample and count it
as ’solved incorrectly”, as we have observed that such generations lead to incorrect solutions. On
Qwen2.5-Math models, we had used a maximum number of reasoning steps of 45 (after 45 steps
without finding a solution, the sample counts as ’solved incorrectly”’). However, as Qwen3 models
tend to generate significantly larger numbers of reasoning steps, we increased this limit to 100 on
Qwen3. We use a maximum context window of 8192 for all three models (if a response exceeds this
context size, it counts as “’solved incorrectly”).

C ADDITIONAL EXPERIMENTS

C.1 EXTENDED ACCURACY RESULTS

In Tables 2 and 3, we report the average accuracies of GSI, RSD, S-BoN with mg, and S-BoN
with 75, for both model families. While GSI outperforms RSD and S-BoN with g on both model
families, this difference is more significant with the Qwen3 models, since the Qwen3 draft and target
model exhibit a larger performance difference than our Qwen2.5-Math models.

C.2 ACCEPTANCE RATIOS

In Figure 5, we plot the average acceptance ratio of GSI and RSD for both Qwen2.5-Math and
Qwen3. The acceptance ratio of GSI increases from an average 70% (Qwen2.5-Math) and 80%
(Qwen3) to around 90% at n = 256. That of RSD is significantly higher, increasing from 90%
(Qwen2.5-Math) resp. 95% (Qwen3) to almost 100% (n = 256), suggesting that as n increases,
RSD collapses to soft best-of-n with 7g, at least without more careful hyperparameter tuning. We
note that more intricate acceptance threshold schedules could stabilize acceptance rates across n,
compare Section C.4. We leave exploring such approaches for future research.

C.3 ABLATION OVER (3

GSI relies on temperature-scaled soft best-of-n sampling with parameter 3 (corresponding to an
inverse temperature) both for samples from mg, as well as for samples from 7p in case the draft
sample gets rejected. Increasing 3 leads to convergence to greedy best-of-n, while reducing it
converges to random choice. To better understand the behaviour of GSI in terms of 3, we evaluate
GSI with Qwen2.5-Math on MATHS500 for different values of 3, ranging from 5 = 0 (i.e. ignoring
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Table 2: Qwen2.5-Math: Accuracy on reasoning benchmarks (95% confidence intervals over three
random seeds). GSI consistently outperforms RSD (Liao et al., 2025) and soft best-of-n (S-BoN)
with the small model. S-BoN with the base model represents the target distribution. On average,
GSI surpasses all baselines and closely approaches the performance of the base-model S-BoN. As n
grows, performance saturates.

n Method MATHS00 OlympiadBench  Minerva MMLU GSMSK Average
GSI (ours) 753 +£0.5 356+ 1.2 278 +£21 428+16 903+03 544+1.1

1 RSD 740+£12 345+£06 243+19 461+£17 8.0+£12 536+13
S-BoN(s) 71.1+£1.9 34115 221+£0.1 392+£00 855=+£14 504=+1.0
S-BoN (b) 80.0 £3.1 329+1.7 310+ 16 51.7+£13 951+£09 582£1.7
GSI (ours) 81.2 £0.9 397+ 1.1 275+03 541£06 949+06 595+0.7

4 RSD 795+ 1.0 40.1+1.0 245+£08 524£15 923+£03 578+09
S-BoN(s) 774%15 39.6 £ 2.1 23.6£03 47.7£19 894+£04 555£12
S-BoN (b) 83.1+1.6 38.1£0.6 325+£05 57109 959+05 61.3+0.8
GSI (ours) 822 £0.6 40.8 1.3 282+18 523+15 963+0.1 60.0=+1.1

16 RSD 80.0 £ 0.9 415+ 1.6 264+21 523+£15 933+£07 58714
S-BoN(s) 79.7+£13 413+0.2 252+05 509+£12 920+£0.7 57.8+0.8
S-BoN (b) 83.6+13 41.1 £ 1.8 33621 561+09 963+06 621413
GSI (ours) 834 +£0.5 4.0+ 1.6 296 £0.6 525£06 96.0+06 60.7+0.8

64 RSD 80.0+1.8 41.7+0.9 246+09 529+13 937+£07 58.6=+1.1
S-BoN(s) 809+123 42.0 £ 0.7 243+08 508=£24 927+£05 581+1.1
S-BoN (b) 83.4+1.0 419+09 330£14 57616 959+07 624+1.1
GSI (ours) 84.1+04 415+0.2 308+1.6 507£14 962+02 60.7+0.8

256 RSD 804+ 1.0 41.7+0.8 243+18 51.8£20 945+£06 585+12

S-BoN (s) 80.8+0.2 425403 259+06 519+£19 927+1.1 587+09
S-BoN (b) 84.1+£0.3 412+ 1.7 33609 573x15 965+£09 625=£1.1

r) to S = 1000. Figure 6 depicts the average acceptance ratio of GSI on MATHS500 for different
values of 8. A sharp phase transition between 3 = 8 and 8 = 20 can be observed. In Figure 7 we
plot the average accuracy for different values of 5 on MATHS500, in terms of both n and seconds per
reasoning step. While 8 = 20 is not uniformly better than other values, it achieves best accuracy
overall. These figures demonstrate that 5 = 20 strikes a balance in weighing the raw reward r and
the log ratio log(wp/ms), leading to acceptance ratios that are neither too low nor too high and
good accuracies overall.

C.4 ABLATION OVER u

A crucial hyperparameter in GSI is the acceptance threshold u, compare Algorithm 1. To better
understand the behaviour of GSI with respect to u, we plot the average acceptance ratios of GSI
with Qwen2.5-Math on MATHS500 for different values of v in Figure 9, and the average accuracy
(over n and over seconds per reasoning step) in Figure 10. As is to be expected, higher thresholds u
tend to have lower acceptance rates and higher accuracies, as they sample from the target model 7
more frequently. Hence, it is important to choose w in such a way that it strikes a balance between
accuracy and latency. In Figure 11 we show an empirical Pareto frontier of u as a function of n. This
suggests that the optimal u depends on n, and an adaptive threshold schedule {u,, }, could improve
GSI in terms of accuracy-vs-latency trade-off. For simplicity, we pick a constant value v = 0.5 and
leave exploring more intricate choices for future research.

C.5 DISCUSSION OF THEOREM 1
We provide a short discussion of Theorem 1 and its practical implications. Note that while Assump-

tion | in necessary in order for all objects in the proof of Theorem 1 to be well-defined, it does not
directly impact the bound appearing in Theorem 1. The important quantity here is the chi-squared
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Table 3: Qwen3: Accuracies on reasoning benchmarks with 95% confidence intervals. GSI outper-
forms RSD (Liao et al., 2025) and S-BoN with the small model much more significantly than on
Qwen-2.5-Math. As n grows, performance saturates.

n Method MATH500 OlympiadBench  Minerva MMLU GSMSK Average

GSI(ours) 77.7+£23 37.6 £ 0.4 326+17 71.4+£20 883+25 61.5£138
RSD 743+ 1.5 345+03 26.8+09 67.7£23 835+£17 574+13
S-BoN (s) 66.9+0.8 31.0+£ 0.8 220+02 586+£43 793+£05 515+13
S-BoN (b) 824 £0.8 46.4 £ 0.8 388+09 768+23 933+06 675=+1.1

GSI (ours) 80.5 £ 0.6 42.0 £ 0.4 340+02 769£05 924+05 652+04
RSD 774 £0.8 38.2+0.5 298+14 69.1£36 8.5+1.1 608+1.5

4 S-BoN(s) 73.9+£0.6 359+1.1 254+07 628=£37 849+06 566+13
S-BoN (b) 833 £09 48.0+1.2 395+£13 788+06 947+03 689409
GSI (ours) 84.3 £0.6 42.7 £ 0.6 36.5+08 783+£03 928+08 669 +0.6
16 RSD 785+ 1.6 37.3£26 285+1.0 69.1£40 91.0+£06 609+20
S-BoN(s) 77.1£0.5 37.5+£0.7 263+13 633£39 881+£12 585+15
S-BoN (b) 853 £0.8 46.2 £ 0.7 400+08 81.0£02 945+£06 694+06
GSI (ours) 84.0£1.2 42.6 £ 1.6 369+1.1 780£16 93.5+06 67.0+12
64 RSD 784 £0.4 383+£02 303£33 69.6+04 909+06 61.5+1.0
S-BoN (s) 77.7+£1.9 385+04 262+08 667+£06 8.6+£08 59.7+09
S-BoN (b) 85.1+0.6 46.5 £ 0.7 393+03 814+£06 955+£05 69.6=£0.5
GSI (ours) 84.8£0.2 429 £+ 0.7 36.0+00 781+£22 943+10 67.2+08
256 RSD 79.9 £0.6 38.7+£02 285+1.0 668+12 91.6+£24 61.1%+1.1

S-BoN (s) 78.6 0.8 39.5+27 28.7+0.0 663£1.8 899+02 60.6+1.1
S-BoN (b) 85.6+04 477+£25 395+£03 81710 956+04 70.0+0.9

divergence x?(7g(- | z)||7s(- | x)) between w5 (- | 2) and 75(- | ), where 2 corresponds to either
the prompt, or the prompt concatenated with all reasoning steps generated up to a certain point. In
Table 4, we show that the chi-squared divergence is generally well-behaved in practice, with mean
values of between 1.48 and 3.91, depending on the model family. These values are Monte Carlo
estimates over 50 samples from MATHS00, where we average both over samples, as well as over
reasoning steps in the generation. In each step ¢, we generate N = 64 subsequent reasoning steps
Yy ~ (-] (gt ytfl)), and estimate the x? for that step as

S

ms(yi | (@, 9%,

1
~ Z (exp (log T (5! | (9" sy’ ™) = syt | (", syt ™1)) = 1)
i=1

from the logprobabilities computed under both models.

Table 4: Empirical estimates of \*(75(- | z)||rs(- | z)). Averaged over 50 samples from
MATHS500 and reasoning steps. Monte Carlo estimates with 7 = 64 samples in each step.

Model Family mean ) max
Qwen-2.5-Math (1.5B/7B) 1.48 +2.20 109.20
Qwen-3 (1.7B / 14B 3.91+12.76 155.21

While we do not recommend using the bound in Theorem 1 as a practical guidance for choosing
hyperparameters, as the theorem is not necessarily tight, it can yield practical values in practice. If,
for example, the x? is equal to 2, and we set 3 = 1, the bound would guarantee that, if choosing
n > (3e? —1)/(e%! — 1) & 201, the KL between 73 p and 7gsp is bounded by € = 0.1.
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GSI: Qwen2.5-Math (1.5B / 7B)

RSD: Qwen2.5-Math (1.5B / 7B
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Figure 5: Acceptance ratios for GSI and RSD across datasets and models, with 95% confidence
intervals. As n increases, the acceptance ratio of GSI approaches 90%. The acceptance ratio of
RSD is much higher and converges to almost 100% as n increases, which means RSD effectively
collapses to soft best-of-n with 7g.
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Figure 6: Acceptance ratio of GSI for different values of 3 on MATH500. Left: Qwen2.5-Math;
right: Qwen3. A sharp phase transition between 5 = 8 and 8 = 20 can be observed.
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Figure 7: Qwen2.5-Math: Accuracy of GSI over n (left) and over seconds per step (right) for dif-
ferent values of 3, on MATHS00. In the right plot, each curve correspondston = 1, 4, 16, 64, 256
for a fixed value of 8 (where each dot on the curve corresponds to one value 7). Our value 3 = 20
performs best overall, but as n varies, different 5 can have an edge. Runtimes reported on H200
GPUs.
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Figure 8: Qwen3: Accuracy of GSI over n (left) and over seconds per step (right) for different
values of 3, on MATHS00. In the right plot, each curve corresponds to n = 1, 4, 16, 64, 256 for
a fixed value of 3 (where each dot on the curve corresponds to one value n). Our value 5§ = 20
performs best overall, but as n varies, different 5 can have an edge. Runtimes reported on H200
GPUs.

C.6 RUNTIME COMPARISON

In Tables 5 and 6, we provide extended versions of Table 1 with runtime values across n on H100
GPUs for Qwen2.5-Math, and A100 GPUs for Qwen3.”

C.7 REASONING TRACES

We provide several examples from MATHS500 and MMLU-STEM and the reasoning traces
generated by GSI and RSD with our Qwen2.5-Math models, in addition to the two examples in
the main text. The following boxes contain samples, alongside the reasoning steps selected by
the two algorithms (including rejected steps, which are marked by being crossed out) for n = 4.
For GSI, the last column contains the tilted reward (for samples from 7g) resp. the normal reward
(for samples from 7p). For RSD it always contains the normal reward. We picked samples where
reasoning traces were not too long in order to fit them on one page; note that on average, reasoning
traces are much longer (cmp. Table 5).

2For computational reasons, for the Qwen3 experiements we ran n = 256 on H100 and H200 GPUs, hence
we do not report them in the table for consistency.
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Threshold u acceptance ratio vs n
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Figure 9: Larger thresholds « lead to lower acceptance rates in GSI. We show acceptance ratios
of GSI for different acceptance thresholds u« on MATHS500 for the Qwen2.5-Math models.
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Figure 10: Left: Larger acceptance thresholds « lead to higher accuracy in GSI. This is to be
expected, as larger thresholds mean higher probability of sampling with 7 5. Right: When plotting
accuracy as a function of seconds per step, no single threshold « performs best. Each line in
this plot corresponds to the values n = 1, 4, 16, 64, 256, for a fixed threshold u. All plots averaged
over MATHS500 using the Qwen2.5-Math models.

MATHS500, Example 3. For this difficult question, GSI repeatedly resamples from the base model
to find the right answer. RSD accepts all draft samples and arrives at a wrong answer.

MATHS00, Example 4. In the fourth example, we see that GSI can sometimes also reject correct
steps generated by the small model, if the tilted reward is too small. GSI still arrives at the correct
answer in the end. In this example, RSD does not produce any final answer.

MATHS500, Example 5. This example highlights an interesting phenomenon: without any interven-
tion, GSI and RSD generate almost the exact same reasoning trace. At a crucial step, g incorrectly
rounds 233/43 to 5.5, which GSI corrects by resampling from 7 and correctly rounding to four
decimals, 5.4186, while RSD accepts the sample from 7g and arrives at a wrong answer. This exam-
ple also highlights why including the log ratio in the reward can be crucial: The incorrect step under
mg receives an (almost) perfect reward of r = 0.999 in RSD. The almost identical step in GSI has an
(almost) perfect reward of » = 0.998 (not depicted in the box), while its tilted reward is only 0.148.

MATHS00, Example 6. We show that it can happen that GSI does not solve a problem that RSD
manages to solve. However, this only occurred three times in the entire dataset of 500 samples.
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Threshold u accuracy vs sec/step

86
u=0.75 wroEts0y |
]4 *wq\.npﬁqé%‘é_fg::i-’o T T N f’ru‘ewg
u=0.30, =0 u }\SQ
/ ®
u=0;30 ‘1
—~
NN 82
~—
o
Q
<
= 80
-
)
=
- n=1
n=4
-o- n=16
-®- n==064
7@0.3@/ -~ 1 =256
—o— Best u per n
100 10
sec/step

Figure 11: Empirical Pareto frontier of optimal thresholds w« for different values of n. The
optimal « is a concave function of n. For each value of n = 1, 4, 16, 64, 256, we show the
average accuracy as a function of seconds per reasoning step for v = 0.3, 0.5, 0.75, 1.0, 1.5 with
95% confidence intervals over three random seeds. For the Pareto frontier, we select one value u for
each n. Averaged over MATHS00 using the Qwen2.5-Math models.

MMLU-STEM, Example 1. The draft model seems to be generally quite weak on MMLU-STEM
and often produces nonsense, including random artifacts such as Chinese and Korean characters.
This example shows that GSI can help in mitigating the weaknesses of the small model to some
degree. However, several nonsensical steps from the draft model still slip through. Nonetheless,
GSI manages to find the correct response, whereas RSD does not.

MMLU-STEM, Example 2. As in the previous example, the draft model struggles to produce co-
herent responses. GSI catches some of its errors, but both GSI and RSD answer this question wrong.

D ASSETS

D.1 HARDWARE

Most of the experiments were run on NVIDIA H100 GPUs. Each model was hosted on its own GPU
and implemented with VLLM (Kwon et al., 2023). Some experiments were also run on NVIDIA
A100 GPUs and NVIDIA H200 GPUs with the same setup.

D.2 LIBRARIES

We heavily relied on the following open-source python libraries: PyTorch (Paszke et al., 2019)
(license: BSD), transformers by HuggingFace (Wolf et al., 2020) (license: Apache-2.0), and
vLLM (Kwon et al., 2023) (license: Apache-2.0).
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Table 5: Qwen2.5 on H100: Inference time (in seconds) per reasoning step, number of reasoning
steps per sample, and percentage of steps accepted (averaged across all datasets, with 95% confi-
dence intervals over three random seeds), for n = 1,4, 16, 64, 256 (extension of Table 1).

n Method s/step () # steps % accept steps/s (1)
GSI (ours) 0.33+0.02 89+01 654401 3.03+0.17
1 RSD 0.244+0.01 884+0.2 90.1+£0.0 4.17+0.17
S-BoN (small) 0.204+0.00 8.7+0.1 - 5.00 £+ 0.00
S-BoN (base) 0.39 +£0.03 9.3+0.2 - 2.56 +0.18
GSI (ours) 0.43+0.03 10.6+0.3 76.7+0.1 2.33+0.15
4 RSD 0.34+0.01 9.7+0.1 949+0.0 2.944+0.08
S-BoN (small) 0.324+0.01 9.6+0.0 - 3.12 £0.09
S-BoN (base)  0.57+0.01 10.2+0.3 - 1.75+0.03
GSI (ours) 0.72+0.05 114+0.2 820+0.1 1.39+0.09
16 RSD 0.61+0.01 10.3+0.3 97.3+0.0 1.64+0.03
S-BoN (small) 0.524+0.03 10.3 £0.1 - 1.92 +0.10
S-BoN (base)  0.944+0.03 10.54+0.2 - 1.06 £+ 0.03
GSI (ours) 1.78+0.12 12.04+04 84.34+0.1 0.564+0.04
64 RSD 1.60 +0.03 10.94+0.3 98.24+0.1 0.62+0.01
S-BoN (small) 1.504+0.04 10.7+0.1 - 0.67 £ 0.01
S-BoN (base) 1.99 +£0.07 10.8+0.2 - 0.50 £ 0.02
GSI (ours) 5804+0.23 13.0+0.3 93.6+0.0 0.17+0.01
256 RSD 5524042 11.3+1.0 99.1+0.0 0.18+0.01
S-BoN (small) 5.46+0.10 11.3+0.1 - 0.18 £0.00
S-BoN (base) 5.884+0.11 11.14+0.3 - 0.17 +0.00

D.3 CODE REPOSITORY

We used the RewardHub library by Red Hat AI Innovation Team, and grading functions from Ope-
nATI’s prm800k repository to extract and grade answers from LLM-generated responses.

E USE OF LARGE LANGUAGE MODELS

We utilized generative Al tools for code generation and debugging. The authors carried out all of
the substantive research contributions, experiments, and proofs.
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Table 6: Qwen3 on A100: Inference time (in seconds) per reasoning step, number of reasoning steps
per sample, and percentage of steps accepted (averaged across all datasets, with 95% confidence
intervals over three random seeds), for n = 1,4, 16, 64 (extension of Table 1).

n  Method s/step (1) # steps % accept steps/s (1)

GSI (ours) 0.35£0.02 24.1£00 809+0.1 285+0.15
RSD 024+£0.01 252+£0.1 953£01 4.17+0.17
S-BoN (s)  0.2£0.00 23.3 - 5.00 £ 0.04
S-BoN (b) 0.59 £0.01 23.3 - 1.69 £ 0.03

GSI (ours) 0.56 £0.04 26.7£0.3 88.0+0.1 1.79+0.12
RSD 04+0.01 281£0.1 9724+0.1 2.50+0.06
S-BoN (s) 0.38£0.01 24.84+0.2 - 2.63 £0.07
S-BoN (b) 0.83£0.02 24.9+0.1 - 1.20 £ 0.03

GSI (ours) 1.214+0.05 275+04 91.5+£0.1 0.83+£0.03
RSD 096 £0.01 29.0+0.2 982+£0.1 1.04£0.01
S-BoN(s) 1.01£0.00 26.1+0.2 - 0.99 £ 0.00
S-BoN (b) 1.82+£0.06 24.8+0.3 - 0.55 £ 0.02

GSI (ours) 3.26+0.11 288+0.8 93.1+£0.0 0.31+0.01
64 RSD 293£0.056 29.2+0.7 98.7+£0.2 0.34£0.01
S-BoN (s) 3.01£0.06 264+1.1 - 0.33 £0.01

S-BoN (b) 4.75£0.06 25.24+0.3 - 0.21 £ 0.00

16
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GSI: MATH500, Example 3 (Qwen2.5-Math)

Prompt: The wheel shown is spun twice, so that the numbers indicated by the pointer are randomly determined (with each
number on the wheel being equally likely). The two numbers determined in this way are recorded. The first number is divided
by 4, determining one of the remainders 1,2,3 marking the columns of the checkerboard shown. The second number is divided
by 5, determining one of the remainders 1,2,3,4 marking the rows of the checkerboard. Finally, a checker is placed on the square
where this column and row meet. What is the probability that the checker is placed on a shaded square of the checkerboard?
[asy]  unitsize(lcm); draw(Circle((0,0),2),linewidth(0.7)); draw((1.7,1)—(-1.7,-1),linewidth(0.7)); draw((1.7,-1)—(-
1.7,1),linewidth(0.7));  draw((0,2)-(0,-2));  label(17,(0.8,0.5),NW); label(2",(0.8,-0.5),SW); label(”6",(-0.8,0.5),NE);
label("97,(-0.8,-0.5),SE);  label(3”,(-0.7,0),W); label(”7”,(0.7,0).E); draw((-2.8,0)—(-2.1,0),Arrow);  label("Pointer”,(-
2.8,0),W); Aill((3,0)-(3,1)-(4,1)—(4,0)—cycle,gray(0.7));  fill((3,-2)-(3,-1)-(4,-1)-(4,-2)—cycle,gray(0.7));  fill((4,1)-(4,2)—
(5,2)-(5,1)—cycle,gray(0.7)); fill((4,-1)-(4,0)—(5,0)—(5,-1)—cycle,gray(0.7)); fill((5,0)—(5,1)—(6,1)—(6,0)—cycle,gray(0.7));
fill((5,-2)—(5,-1)—(6,-1)—(6,-2)—cycle,gray(0.7)); draw((3,-2)—(3,2)—(6,2)—(6,-2)—cycle,linewidth(0.7)); draw((3,-1)—(6,-
1),linewidth(0.7));  draw((3,0)—(6,0),linewidth(0.7));  draw((3,1)—(6,1),linewidth(0.7));  draw((4,-2)—(4,2),linewidth(0.7));
draw((5,-2)—(5,2) linewidth(0.7));  label(”17,(3.5,-2),S); label("2”,(4.5,-2),S); label(”3”,(5.5,-2),S); label(”17”,(3,-1.5),W);
label(27,(3,-0.5),W); label("37,(3,0.5),W); label("4”,(3,1.5),W); [/asy]

Step  Generated Reasoning Steps ( Draft 75 , Target 7p ) F(yf* )/r(y j% )

To determine the probability that the checker is placed on a shaded square of the checkerboard, we need to analyze the

1 outcomes of the two spins and the resulting positions on the checkerboard. 0.940

2 First, let’s identify the p0551ble outcomes for each spin: - The first spin c: 0.047
second spin can resul :
First, let’s identify the possible remainders when the numbers on the wheel are divided by 4 and 5: 0.990

3 - For division by 4, the possible remainders are 1, 2, 3, and 4. - For division by 5, the possible remainders are 1, 2, 3, 0542
4, and 5. i
However, the problem only asks about the remainders 1, 2, and 3 for the first spin (divi

4 the second spin (divided by 5). This means we are € first three remainders for the ﬁrst spm and all -0.706
four remainde in.
The checkerboard has a total of 4 X 5 = 20 squares, arranged in 4 columns and 5 rows. We need to count how many 0.980
of these squares are shaded. .

5 From the diagram, we observe that t] 1), (3.3), - (4,2), (4,4). -0.128

From the checkerboard, we observe that the shaded squares follow a pattern where the squares in the first and third
columns are shaded in the first and third rows, and the squares in the second and fourth columns are shaded in the 0.803
second and fourth rows. This gives us the following shaded squares:

Shaded Unshaded Shaded Unshaded Shaded
Unshaded Shaded Unshaded Shaded Unshaded
6 Shaded  Unshaded  Shaded  Unshaded  Shaded 0.543
Unshaded Shaded Unshaded Shaded Unshaded

7 Counting the shaded squares, we find there are 10 shaded squares out of the 20 squares on the checkerboard. 1.132

y Tikely. Therefore,

Since each number on the wheel is equally llkely, each remainder when divi
8 0.402
each of the 20 possi L
The probability that the checker is placed on a shaded square is the ratio of the number of shaded squares to the total 0975
number of squares: :
- Number of shaded squares 10 1
9 Probability = —MMM ——— = — = — 1.000
Total number of squares 20 2 :
. X 1
10 Thus, the probability that the checker is placed on a shaded square of the checkerboard is 5 1.053

Correct Answer found: True
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RSD: MATHS500, Example 3 (Qwen2.5-Math)

Prompt: The wheel shown is spun twice, so that the numbers indicated by the pointer are randomly determined (with each
number on the wheel being equally likely). The two numbers determined in this way are recorded. The first number is divided
by 4, determining one of the remainders 1,2,3 marking the columns of the checkerboard shown. The second number is divided
by 5, determining one of the remainders 1,2,3,4 marking the rows of the checkerboard. Finally, a checker is placed on the square
where this column and row meet. What is the probability that the checker is placed on a shaded square of the checkerboard?
[asy]  unitsize(lcm); draw(Circle((0,0),2),linewidth(0.7)); draw((1.7,1)—(-1.7,-1),linewidth(0.7)); draw((1.7,-1)—(-
1.7,1),linewidth(0.7));  draw((0,2)-(0,-2));  label(”1”,(0.8,0.5),NW); label(*2”,(0.8,-0.5),SW); label(6”,(-0.8,0.5),NE);
label("97,(-0.8,-0.5),SE);  label(3”,(-0.7,0),W); label(”7”,(0.7,0),E); draw((-2.8,0)—(-2.1,0),Arrow);  label("Pointer”,(-
2.8,0),W); Aill((3,0)-(3,1)-(4,1)—~(4,0)—cycle,gray(0.7)); ~ fill((3,-2)-(3,-1)-(4,-1)-(4,-2)—cycle,gray(0.7));  fill((4,1)-(4,2)-
(5,2)-(5,1)—cycle,gray(0.7)); fill((4,-1)-(4,0)—(5,0)—(5,-1)—cycle,gray(0.7)); fill((5,0)—(5,1)—(6,1)—(6,0)—cycle,gray(0.7));
fill((5,-2)—(5,-1)—(6,-1)—(6,-2)—cycle,gray(0.7)); draw((3,-2)—(3,2)—(6,2)—(6,-2)—cycle,linewidth(0.7)); draw((3,-1)—(6,-
1),linewidth(0.7));  draw((3,0)—(6,0),linewidth(0.7));  draw((3,1)—(6,1),linewidth(0.7));  draw((4,-2)—(4,2),linewidth(0.7));
draw((5,-2)—(5,2) linewidth(0.7));  label(”17,(3.5,-2),S); label("2”,(4.5,-2),S); label(”3”,(5.5,-2),S); label(”1”,(3,-1.5),W);
label(27,(3,-0.5),W); label("37,(3,0.5),W); label("4”,(3,1.5),W); [/asy]

Step  Generated Reasoning Steps ( Draft 75 , Target 7p ) r(yf* )/r(y j% )

1 To determine the probability that the checker is placed on a shaded square of the checkerboard, we need to analyze the 0.99
structure of the checkerboard and the possible outcomes of the spin. :

2 First, let’s identify the shaded squares on the checkerboard. The checkerboard is a 3x4 grid, with the following shaded 0.784
squares: - (1,1) - (1,3) - (2,2) - (2,4) :

3 This means there are 4 shaded squares out of a total of 12 squares. 0.967
Next, we need to determine the probability of landing on a shaded square. The wheel is spun twice, so there are 6

4 possible outcomes for each spin (1, 2, 3, 4, 5, 6). When the first number is divided by 4, the possible remainders are 0.895
1,2, 3. Similarly, when the second number is divided by 5, the possible remainders are 1, 2, 3, 4. Therefore, there are .
3 X 4 = 12 possible outcomes in total.
Now, we need to count the number of outcomes that result in a shaded square. From the checkerboard, we can see
that: - The first spin landing on 1 (remainder 1) and the second spin landing on 1 (remainder 1) results in the shaded

5 square (1,1). - The first spin landing on 1 (remainder 1) and the second spin landing on 3 (remainder 3) results in the 0.947
shaded square (1,3). - The first spin landing on 2 (remainder 2) and the second spin landing on 2 (remainder 2) results .
in the shaded square (2,2). - The first spin landing on 2 (remainder 2) and the second spin landing on 4 (remainder 4)
results in the shaded square (2,4).
So, there are 4 outcomes that result in a shaded square. The probability is the number of favorable outcomes divided

6 by the total number of outcomes, which is % = % 0.967

1.000

1
7 Therefore, the probability that the checker is placed on a shaded square is .

Correct Answer found: False
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GSI: MATH500, Example 4 (Qwen2.5-Math)

Prompt: Let z be a complex number such that

1 1++5

6
(=2}

Correct Answer found: True

z4+ - =
z 2
Find i
85
7 A ==
285
Step  Generated Reasoning Steps ( Draft 75 , Target 7p ) F(yf* )/ r(ij* )
1 Given the equation z + % = 1+2\/§, we recognize that 2 is a complex number on the unit circle, meaning |2 = 1. 0.530
Therefore, we can write z = €% for some real number .
First, we express z + % in terms of 6:
1 .
2= = 819
z
2 Given that 2z + % = 1+2\/§,we have: 0412
+ 5
5
Solving for cos 6, we
1+ V5
cosf = .
4
The given equation can be rewritten as:
1 . )
z+ — = e"e +6710 = 2cos 0.
z
‘We know that 2 cos = 1+2\/§ , S0: 0.972
1+ V5
cos) = ———.
4
The angle 6 that satisfies this equation is 0 = + % Therefore, z can be either ei™/5 or e =iT/5,
3 We need to find 28% + ﬁ Let’s consider the two cases separately. 0.830
1.Ifz = ei7/5,then:
) 85 ) ) ) )
485 _ (817\'/5) _ i857/5 _ il7m _ i(16m+m) _ im _ g
4 0.942
So,
1 1
2204 =14 — =—1-1=-2.
285 =1
2.0z = e~ ¥™/5 then:
. 85 . . . .
.85 _ (e 17\'/5) _ o —i85W/5 _ —ilTm _ —i(16mtm) _ —im _ g
5 0.998
So,
1 1
85 _ o 1_1=—_
z 85 = 14+ = 1-1 2
In both cases, we get the same result. Therefore, the value of 285 + % is:
z
0.998
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RSD: MATHS500, Example 4 (Qwen2.5-Math)
Prompt: Let z be a complex number such that
1 1++5
z4+ - = —.
z 2
Find 1
85
7 A ==
285
Step  Generated Reasoning Steps ( Draft 75 , Target 7p ) r(yf* )/r(y jB* )
To find 28% + % given the equation z + % = 1+2\/§ , we start by recognizing that z + i is the form of the
1 z 0.979
golden ratio ¢ = #
First, let’s solve for z. Let z = ew, where 0 is a real number. Then,
1 . )
zF— = e +e_l9 = 2cos 0.
z
Given that z + 1_ %, we have:
2 z 143 0.970
2cosf) = ———.
2
Thus,
1+ V5
cos) = ———.
4
Next, we need to find 285 + % Using the exponential form, we have:
z
485 _ i850 — = o850
5 z 0.993
Therefore,
1 ) )
285 + — = 61859 + 671859 = 2cos(850).
.85
To find cos(850), we use the angle addition formula for cosine:
4 _ _ q q 0.977
cos(850) = cos(8460 + ) = cos(846) cos(0) — sin(8460) sin(h).
We need to determine cos(846) and sin(8486). Notice that:
cos(20) = 2 cos? (0) — 1.
Substituting cos 6 = 1+4\/5, we get:
5 1+v5\2 (1+v5)2 1+2V5+5 642v5 3+5
5 cos?(0) = — — — — . 0.959
4 16 16 16 8
Thus,
3+V5 6+ 25 6+2v6—-8 —24+2vV5 —1++B
cos(20) = 2 - —1= —1= = = .
8 8 8 8 4
Using similar steps, we can find cos(46), cos(86), and so on, but this becomes increasingly complex. Instead, we
6 recognize a pattern in the powers of cos and sin that simplifies our work. We use the fact that cos(20) is related to 0.821
cos(6) and sin (@), and we can use the properties of the golden ratio.
Correct Answer found: False
\
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GSI: MATH500, Example 5 (Qwen2.5-Math)

Prompt: Juan’s Old Stamping Grounds

Juan organizes the stamps in his collection by country and by the decade in which they were issued. The prices he paid for them
at a stamp shop were: Brazil and France, 6 cents each, Peru 4 cents each, and Spain 5 cents each. (Brazil and Peru are South
American countries and France and Spain are in Europe.) [asy] /¥ AMC8 2002 #8, 9, 10 Problem */ size(3inch, 1.5inch); for ( int
y=0:yi=5;++y)

draw((0,y)—(18,y)); draw((0,0)—(0,5)); draw((6,0)—(6.,5)); draw((9,0)-(9,5)); draw((12,0)-(12,5)); draw((15,0)—(15.5));
draw((18,0)—(18,5));

label(scale(0.8)*750s”, (7.5,4.5)); label(scale(0.8)*74”, (7.5,3.5)); label(scale(0.8)*”8”, (7.5,2.5)); label(scale(0.8)*76”,
(7.5,1.5)); label(scale(0.8)*°3”, (7.5,0.5));

label(scale(0.8)*760s”, (10.5,4.5)); label(scale(0.8)*”7”, (10.5,3.5)); label(scale(0.8)*74”, (10.5,2.5)); label(scale(0.8)*"4”,
(10.5,1.5)); label(scale(0.8)*9”, (10.5,0.5));

label(scale(0.8)*770s”, (13.5,4.5)); label(scale(0.8)*712”, (13.5,3.5)); label(scale(0.8)*”12”, (13.5,2.5)); label(scale(0.8)*76”,
(13.5,1.5)); label(scale(0.8)*13”, (13.5,0.5));

label(scale(0.8)*780s™, (16.5,4.5)); label(scale(0.8)*”’8”, (16.5,3.5)); label(scale(0.8)*15”, (16.5,2.5)); label(scale(0.8)*10”,
(16.5,1.5)); label(scale(0.8)*9”, (16.5,0.5));

label(scale(0.8)*”Country”,  (3,4.5));  label(scale(0.8)* Brazil”, (3,3.5)); label(scale(0.8)* France”, (3,2.5)); la-
bel(scale(0.8)*Peru”, (3,1.5)); label(scale(0.8)*”’Spain”, (3,0.5));

label(scale(0.9)*”Juan’s Stamp Collection”, (9,0), S); label(scale(0.9)*”Number of Stamps by Decade”, (9,5), N); [/asy] What
was the average price, in cents, of his 70’s stamps? Round your answer to the nearest tenth of a cent.

Step  Generated Reasoning Steps ( Draft 75 , Target 7p ) (ys)/ T(yﬁ )
1 To find the average price of Juan’s 70’s stamps, we need to follow these steps: 0.899
2 1. **Identify the number of stamps from each country in the 70’s:** - Brazil: 12 stamps - France: 12 stamps - Peru: 0.892
6 stamps - Spain: 13 stamps .
2. **Calculate the total number of stamps in the 70’s:**
0.636

3 12 + 12 + 6 + 13 = 43 stamps

3. **Determine the total cost of the stamps from each country:** - Brazil: 12 stamps X 6 cents per stamp = 72 cents
4 - France: 12 stamps X 6 cents per stamp = 72 cents - Peru: 6 stamps X 4 cents per stamp = 24 cents - Spain: 0.859
13 stamps X 5 cents per stamp = 65 cents

4. **Calculate the total cost of all the 70’s stamps:**

5 72 4+ 72 + 24 + 65 = 233 cents 1.032

5. **Find the average price per stamp:**

Total cost 233 cents
6 Average price = = 1.039

Total number of stamps T 43 stamps

6. **Perform the division and round to the nearest tenth of a cent:**

233
7 — = 0.148
3
0 the nearest tenth gives us 5.5.
6. **Perform the division:**
233
— =~ 5.4186 0.996
3
7. **Round the result to the nearest tenth of a cent:**
8 5.4186 ~ 5.4 1027
9 Therefore, the average price of Juan’s 70’s stamps is cents. 1.013

Correct Answer found: True
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RSD: MATHS500, Example 5 (Qwen2.5-Math)

Prompt: Juan’s Old Stamping Grounds

Juan organizes the stamps in his collection by country and by the decade in which they were issued. The prices he paid for them
at a stamp shop were: Brazil and France, 6 cents each, Peru 4 cents each, and Spain 5 cents each. (Brazil and Peru are South
American countries and France and Spain are in Europe.) [asy] /¥ AMC8 2002 #8, 9, 10 Problem */ size(3inch, 1.5inch); for ( int
y=0:yi=5;++y)

draw((0,y)—(18,y)); draw((0,0)—(0,5)); draw((6,0)—(6.,5)); draw((9,0)-(9,5)); draw((12,0)-(12,5)); draw((15,0)—(15.5));
draw((18,0)—(18,5));

label(scale(0.8)*750s”, (7.5,4.5)); label(scale(0.8)*74”, (7.5,3.5)); label(scale(0.8)*”8”, (7.5,2.5)); label(scale(0.8)*76”,
(7.5,1.5)); label(scale(0.8)*°3”, (7.5,0.5));

label(scale(0.8)*760s”, (10.5,4.5)); label(scale(0.8)*”7”, (10.5,3.5)); label(scale(0.8)*74”, (10.5,2.5)); label(scale(0.8)*"4”,
(10.5,1.5)); label(scale(0.8)*9”, (10.5,0.5));

label(scale(0.8)*770s”, (13.5,4.5)); label(scale(0.8)*712”, (13.5,3.5)); label(scale(0.8)*”12”, (13.5,2.5)); label(scale(0.8)*76”,
(13.5,1.5)); label(scale(0.8)*13”, (13.5,0.5));

label(scale(0.8)*780s™, (16.5,4.5)); label(scale(0.8)*”’8”, (16.5,3.5)); label(scale(0.8)*15”, (16.5,2.5)); label(scale(0.8)*10”,
(16.5,1.5)); label(scale(0.8)*9”, (16.5,0.5));

label(scale(0.8)*”Country”,  (3,4.5));  label(scale(0.8)* Brazil”, (3,3.5)); label(scale(0.8)* France”, (3,2.5)); la-
bel(scale(0.8)*Peru”, (3,1.5)); label(scale(0.8)*”’Spain”, (3,0.5));

label(scale(0.9)*”Juan’s Stamp Collection”, (9,0), S); label(scale(0.9)*”Number of Stamps by Decade”, (9,5), N); [/asy] What
was the average price, in cents, of his 70’s stamps? Round your answer to the nearest tenth of a cent.

Step  Generated Reasoning Steps ( Draft 75 , Target 7p ) r(ys)/ T(yﬁ )
1 To determine the average price of Juan’s 70s stamps, we need to follow these steps: 0.986
2 1. **Identify the number of stamps from each country in the 70s:** - Brazil: 12 stamps - France: 12 stamps - Peru: 6 0.993
stamps - Spain: 13 stamps T
2. **Calculate the total number of 70s stamps:**
3 0.999

12 412 4 6 + 13 = 43 stamps

3. **Determine the total cost of the stamps from each country:** - Brazil: 12 stamps X 6 cents/stamp = 72 cents -
4 France: 12 stamps X 6 cents/stamp = 72 cents - Peru: 6 stamps X 4 cents/stamp = 24 cents - Spain: 13 stamps X 0.999
5 cents/stamp = 65 cents

I

. **Calculate the total cost of all the 70s stamps:**

5 72 4+ 72 + 24 + 65 = 233 cents 0999

[

. **Find the average price per stamp:**

Total cost 233 cents
6 Average price = = 1.000

Total number of stamps T 43 stamps

2

**Perform the division to find the average price:**

233
7 277~ 5.488372 0999
43

)

. **Round the result to the nearest tenth of a cent:**

8 5.488372 ~ 5.5 cents 0.999

9 Thus, the average price of Juan’s 70s stamps is cents. 1.000

Correct Answer found: False
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GSI: MATH500, Example 6 (Qwen2.5-Math)

Prompt: Evaluate
sin(arcsin 0.4 4 arcsin 0.5) - sin(arcsin 0.5 — arcsin 0.4).

Step  Generated Reasoning Steps ( Draft w5 , Target g )

Fyd) /r(yi)

To evaluate sin(arcsin 0.4+arcsin 0.5) -sin(arcsin 0.5—arcsin 0.4), we start by letting &« = arcsin 0.4
and 3 = arcsin 0.5. This means thatsin &« = 0.4 andsin 8 = 0.5. We need to find sin(a+ ) -sin(8 — ).

First, we use the angle addition formulas for sine:

sin(a + 8) = cos asin B

sin(8 — a) = sin B cos o — cos Bsin «

Using the sine addition and subtraction formulas, we have:
sin(a + B) = sin a cos B + cos asin 3

sin(8 — a) = sin B cos o — cos asin 3

Multiplying these two expressions together, we get:
sin(a + B) - sin(B8 — &) = (sin acos 8 + cos arsin B)(sin B cos @ — cos a sin 3)
This is a difference of squares, so it simplifies to:

sin(a + B) - sin(B — a) = (sin acos ,8)2 — (cosasinﬂ)2

2

We know that cos? § = 1 — sin? 6 for any angle 6. Therefore, we can substitute cos?a = 1 — sin? o and

cos? B=1-— sin? A into the equation:

sin(a + B) - sin(8 — o) = (sin a)2(1 — sin? B) — (sin 5)2(1 — sin?

a)
Substituting sin & = 0.4 and sin 8 = 0.5 into the equation, we get:
. . _ 2 2 2 2
sin(a + B) - sin(8 — o) = (0.4)°(1 — (0.5)) — (0.5)°(1 — (0.4)%)

Simplifying the terms inside the parentheses, we have:

sin(a + ) - sin(B — @) = (0.16)(1 — 0.25) — (0.25)(1 — 0.16) = (0.16)(0.75) — (0.25)(0.84)

Calculating the products, we get:

sin(a 4 B) - sin(8 — @) = 0.12 — 0.21 = —0.09

Therefore, the value is:

Correct Answer found: False

1.033

0.231

0.982

0.940
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RSD: MATHS500, Example 6 (Qwen2.5-Math)

Prompt: Evaluate
sin(arcsin 0.4 4 arcsin 0.5) - sin(arcsin 0.5 — arcsin 0.4).

Step  Generated Reasoning Steps ( Draft 75 , Target g ) r(yk)/r(yl)

To evaluate the expression sin (arcsin 0.4 4 arcsin 0.5) - sin(arcsin 0.5 — arcsin 0.4), we will use trigono-
1 metric identities and properties of the inverse sine function. Let’s denote arcsin 0.4 by « and arcsin 0.5 by 3. 0.997
Therefore, we have sin = 0.4 and sin 8 = 0.5.

First, we need to find cos « and cos 8. Since @« = arcsin 0.4, we have cosa = /1 — sin2 a =
2 /51 0.996
V1—042 = T—-0.16 = V0.84 = /2L = 21

Similarly, since 3 = arcsin 0.5, we have cos 8 = \/1 —sin2 8 = \/1 —0.52 = /T—-0.25
3 0.999
VoS = [T = .

Now, we use the angle addition and subtraction formulas for sine:
4 sin(a + B) = sin a cos B + cos asin 3 1.000

sin(8 — a) = sin Bcos o — cos Bsin

Substituting the values we found:

V3 V21 0.4v3  0.5v/21 23 V21 23+ /21
sin(a+8)=04- — + — - 0.5 = 4+ — = —
5 2 5 2 5 10 10 10 0.999
V2l V3 0.5v21 0.4v3 V21 2v3 V2I-2V3
sin(B—a)=05- — - — - 04 = —— — = — - — =
5 2 5 2 10 10 10
Now, we need to find the product of these two sines:
2v3 + V21 V21 — 2v/3
6 i@ 4 () o (P = @) = 1.000
10 10
This is a product of the form (a + b)(a — b) = a® — b2, where a = —“1%1 and b = %:
7 V21 N 2v3\ (V2T  2V3 V21?2 2v3\? 21 12 9 0.999
10 10 10 10 ) \ 10 10 © 100 100 100
Thus, the value of the given expression is:
3 ¥ 1.000
100

Correct Answer found: True
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G

: MMLU-STEM, Example 1 (Qwen2.5-Math)

Step

Prompt: The seventh cranial nerve supplies

Choices:

Answer 1: taste buds on the posterior third of the tongue.
Answer 2: muscles of the soft palate.

Answer 3: muscles of the lower lip.

Answer 4: the parotid salivary gland.

Generated Reasoning Steps ( Draft 75 , Target wp )

Fyd) /r(yh)

To determine the correct answer, i i i T fons describes the seventh cranial FIE.

To determine which structure the seventh cranialner Ben supplies, we need to understand the functions of the cranial
nerves and their corresponding structures. Let’s analyze each option step by step:

1. **T Lagrange’s test**: This is not a standard term in the context of cr:
specific part of the b

irectly relate to a

1. **Taste Buds on the Posterior Third of the tongue**: The fifth cranialner Ben supplies the taste buds on the
posterior third of the tongue. Therefore, the seventh cranialner Ben does not supply taste buds on the posterior third of
the tongue.

2. **Muscles of the Soft Problem**: The seventh cranialner Ben supplies themu centroid of the soft problem. The
hard problem is the seventh cranialner Ben supplies, not the mu centroid of the soft problem.

3. *#*mu centroid of the lower lip**: The seventh cranialner Ben supplies the mu centroid of the lower lip. This is a
correct description of the structure the seventh cranialner Ben supplies.

4. **Parotid Salivary cone**: The seventh cranialner Ben supplies the parotid salivar:
is the seventh cranialner Ben supplies, but it is not
process.

salivary cone
ecause we are looking for the structure, not the

4. **The Parotid Salivary Gland**: The sixth cranialner Ben supplies the parotid salivary gland. Therefore, the
seventh cranialner Ben does not supply the parotid salivary gland.

Based on the analysis, the correct answer is:

Correct Answer found: True

-0.571

0.984

-1.412

0.970

3.062

2.188

-2.126

0.993

1.052

0.995
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RSD: MMLU-STEM, Example 1 (Qwen2.5-Math)

Prompt: The seventh cranial nerve supplies

Choices:

Answer 1: taste buds on the posterior third of the tongue.
Answer 2: muscles of the soft palate.

Answer 3: muscles of the lower lip.

Answer 4: the parotid salivary gland.

Step  Generated Reasoning Steps ( Draft 75 , Target g )

r(yd)/r(yh)

1 To determine the correct answer, let’s analyze each option step by step:

1. **Taste grands on theerior third of the**: This is not a correct descri

taste5%, which is the S isactually Tocated on the lateral third of the, not theerior third.
1. **Taste Buds on the Posterior Third of the tongue:** - The seventh cranial nerve does indeed supply the taste buds
on the posterior third of the tongue. This is a well-known fact in anatomy.
3 2. **Muscles of the Softsample:** - The seventh cranial use supplie: € soft dividends.
This is incor
2. ** muscles of the Soft Palate:** - The seventh cranial nerve does not supply the muscles of the soft palate. This
function is performed by the sixth cranial nerve.
4 3. ***Muscles of the Lower Ch Betty:** - The seventh cranial note does not supply themu of the lower lip. This
function is performed by the eighth cranial note.
4. **Parotid Turicine:** - The seventh cranial note does not supply the parotid salivary gland. This function is
5 performed by the tenth cranial note.
6 Based on the analysis, the correct answer is:
7

Correct Answer found: False

0.989

0.644

0.969

0.577

0.989

0.987

0.921

0.973

1.000
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GSI: MMLU-STEM, Example 2 (Qwen2.5-Math)

Step  Generated Reasoning Steps ( Draft 75 , Target g )

Prompt: The members of a bird species capable of nesting in treetops or on the ledges of nearby cliffs make their homes only
in the treetops due to the established presence of a more aggressive bird species on the cliff ledges. With respect to habitat, the
treetop-nesting birds are utilizing

Choices:

Answer 1: their fundamental niche only

Answer 2: their realistic niche only

Answer 3: their ecological niche only

Answer 4: neither their fundamental niche nor their realistic niche

Fyd)/r(yi)

To determine the correct answer, let’s analyze the situation step by step:

1. **Understanding the Situation**: The problem states that the bird species capable of 5 or on the
ledges of nearbyfl ches make their homes only in tl € established presence of a more aggregate bird
species on thellfi

1. **Understanding the Fundamental Niche**: The fundamental niche of a species refers to the set of environmen-
tal conditions under which the species can exist in isolation. It includes all the abiotic (non-living) factors such as
temperature, rainfall, soil type, and light.

2. **Understanding the Realistic Niche**: The real#(Z of a species refers to the set of environmental conditions
under which the species can survive and replace itself. It includes all the abiotic and biotic (living) factors such as food
availability, competition, and predation.

3. **Understanding theECological Niche**: The ecologicaln Meghan of a species refers to the set of environmental
conditions that the species can survive and profit from in its particular community. It takes into account the interactions
with other species and the community environment.

4. **Analyzing the Problem**: The problem states that the VL5 birds are using only tsetoj ms they are
using the tsetops as their fundamentalnt5. This is because the ces they can find food and water, and
there are no other t setops available fol 5 occupy. Therefore, their fundamentaln ¥4 is satisfied by t

4. **Analyzing the Given situation**: The members of the bird species capable of nested in tree tops or on the ledges
of nearby cliffs make their homes only in the t plunged due to the established presence of a more aggressive bird
species on the cliff ledges. This means that the tress top-nesting birds have chosen a specific part of the community
where they can nested without being outcompeted or eaten by the more aggressive birds on the cliff ledges.

5. **Determining the Niche**: Since the tress top-nestling birds have chosen a specific part of
they can nested without being outcompfER5 by the moreagonometri
chosen their ecologlcalnw1de They are T fundamental or realisticnights, but rather their ecologicalnwide,
which take e interactions with other species and the community environment.

From this information, we can see that the tress top-nesting birds are utilizing their ecological niche only because they
have chosen a specific part of the community where they can nested without being affected by the presence of the more
aggressive birds on the cliff ledges.

Therefore, the correct answer is 4

Correct Answer found: False

0.868

-3.779

0.975

2.667

0918

-6.190

0.985

0.431

0.907

0.996
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RSD: MMLU-STEM, Example 2 (Qwen2.5-Math)

Prompt: The members of a bird species capable of nesting in treetops or on the ledges of nearby cliffs make their homes only
in the treetops due to the established presence of a more aggressive bird species on the cliff ledges. With respect to habitat, the
treetop-nesting birds are utilizing

Choices:

Answer 1: their fundamental niche only

Answer 2: their realistic niche only

Answer 3: their ecological niche only

Answer 4: neither their fundamental niche nor their realistic niche

Step  Generated Reasoning Steps ( Draft 75 , Target g ) r(yk)/r(yi)

1 To determine the appropriate answer, let’s analyze the situation step by step. 0.999

1. ***Identify the environment and the birds involved:** - The birds are capable of nesting in t peanuts or on the ledges

of nearby>%fH plates. - The t peanuts are home to a more Aggressive bird species on the use plates. 0.904

2. *¥Understand the terms:** - ** Fundamental2:** - The fundamentalnfJi is the most basic or essential function
or purpose of something. - **Realisticn:** - The realisticn is the practical or real looking function or purpose of
something. - **ECologicaln:** - The ecologicaln is the relationship between all living things (biots) in their common
environment.

0.935

3. **Analyze the situation:** - The birds are using their t peanuts as their home for their naj 5
on the establish presence of a more Aggressive bird species on the —This implies that the t peanuts are a
natural medium for the birds to concen t ping and are likely a “realistic”n place where they can depends on
ggressive bird species.

0.362

3. **Analyze the birds’ habitat:** - The t tree-nesting birds choose to nested only in the t peanuts. - This suggests

they have a specific preference for this environment over the ledges. 0.986

4. ** Evaluate the options:** - **Answer 1: their fundamentaltracker only:** - This would imply that the birds’
tress-nested are the most essential or basic function of their environment. - **Answer 2: their realistic tissues only:**
- This would imply that the birds” tress-nested are the practical or real look function of their environment. - **_answer
3: their ecological n uses only:** - This would imply that the birds’ tress-nested are the ecological function of their
environment. - **answer 4: neither their fundamentaln nor their realistic n:** - This would imply that the birds’
tress-nested are not the most essential or basic or practical or real look function of their environment.

0.922

5. **Determine the most appropriate answer:** - The birds’ tress-nested is their ecologicaln use of the t tree-nest
6 because they choose to nested only in the t tree-nest due to the established presence of a more Agable bird species on 0.874
the use plates.

7 Therefore, the correct choice i:

[3] 0.998

Correct Answer found: False
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