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Abstract

Partial Bayesian neural networks (pBNNs) have been shown to perform competitively with
fully Bayesian neural networks while only having a subset of the parameters be stochastic.
Using sequential Monte Carlo (SMC) samplers as the inference method for pBNNs gives
a non-parametric probabilistic estimation of the stochastic parameters, and has shown im-
proved performance over parametric methods. In this paper we introduce a new SMC-based
training method for pBNNs by utilising a guided proposal and incorporating gradient-based
Markov kernels, which gives us better scalability on high dimensional problems. We show
that our new method outperforms the state-of-the-art in terms of predictive performance
and optimal loss. We also show that pBNNs scale well with larger batch sizes, resulting in
significantly reduced training times and often better performance.

1 Introduction

Bayesian Neural Networks (BNNs) are a class of machine learning models that incorporate uncertainty
quantification into deep learning. Previous research has shown the benefit Bayesian methods can bring to
certain problems within deep learning Gal et al. (2017). However, computing the exact posterior distributions
of BNNs is a difficult task as traditional methods such as Markov chain Monte Carlo (MCMC) Hastings (1970)
are computationally poorly suited to exploring high dimensional spaces and dealing with large amounts of
data. Parametric methods such as variational inference are better suited to these difficulties, but only give
an approximation to the posterior distribution. These spaces have been found to be highly complex Izmailov
et al. (2021a) and therefore variational methods often give a poor approximation of the posterior.

Sequential Monte Carlo (SMC) samplers Doucet et al. (2001) are an alternative to MCMC methods which
also provide an empirical estimate of the posterior distribution. SMC samplers are instantly parallelisable
Varsi et al. (2021b) and therefore can take advantage of the GPU resources commonly used in machine
learning to speed up the training process. MCMC methods often require a warm-up period to adapt the
hyperparameters, after which the chains can be parallelised. However, the hyperparameters must remain
fixed after this warm-up period to obey stationarity. This means that SMC samplers can be more flexible than
traditional MCMC methods when it comes to continual hyperparameter tuning. However, as a parametric
Bayesian method, SMC samplers still struggle with similar issues to MCMC in terms of dimensionality and
dataset size.

In recent years, partial Bayesian neural networks (pBNNs) have been proposed as a potential “model solution”
to the high dimensionality issue Sharma et al. (2023). pBNNs only consider a subset of the parameters to
be stochastic and despite this reduced dimensionality, have been shown to have comparable performance
to that of fully Bayesian neural networks (BNNs) Sharma et al. (2023). More formally, let f(x;θ,ψ) be a
neural network model governed by a set of deterministic parameters (ψ) and a set of stochastic parameters
(θ) initially generated from a prior distribution q0(θ). If we have a dataset (xn, yn)N

n=1 with a likelihood
function p(yn|θ,ψ), then our training procedure has two objectives; to learn the deterministic parameters
from the dataset and to compute the posterior distribution p(θ|y1:N ,ψ). It has been shown in previous
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work Sharma et al. (2023) that placing the uncertainty on the first layer of the pBNN empirically gives
the best output. This may be because the majority of the randomness is aleatoric and originates from the
data. Therefore it is difficult, when applying VI, to chose a parametric distribution to model the uncertainty
correctly. This difficulty motivates non-parametric modeling of the uncertainty.

Using MCMC for the stochastic parameters would be theoretically invalid, as the target necessarily changes
at each iteration due to the update in the deterministic parameters. SMC is a more flexible sampling
approach and is therefore more suited this type of problem where the target is iteration dependent and leads
us to the main motivation for studying and applying SMC samplers to pBNNs.

In this paper, we introduce gradient-based Markov kernels into the pBNN training process to help us more
efficiently navigate the high dimensional spaces encountered in neural networks (NNs). More specifically, we
introduce a new class of guided SMC samplers with gradient-based Markov kernels for training pBNNs. We
then analyse both performance and runtime of the different proposal methods using multiple batch sizes.
We demonstrate that we are able to use larger batch sizes without compromising performance, allowing for
significantly reduced training times.

The paper is structured as follows. We provide a basic background of how SMC samplers work and how to
apply them to a pBNN setting (Section 2). We then introduce the Guided Open Horizon SMC framework
and how to incorporate gradient-based Markov kernels which will be compared to the random walk (RW)
approach in later experiments (Section 3). The experimental set up, datasets and parameters are given
(Section 4). We discuss the performance of the approaches on loss, classification accuracy (where appropriate)
and runtime (Section 5). Finally, conclusions and further work suggestions are provided (Section 6).

2 Partial Bayesian Neural Network Training by Sequential Monte Carlo Samplers

2.1 Sequential Monte Carlo Samplers

SMC samplers are a subset of Bayesian inference algorithms which are often used when directly sampling from
the posterior distribution is difficult. At the heart, SMC samplers sample from a sequence of distributions
and approximate the distribution via a weighted set of samples (particles).

We aim to sample from a target distribution π(θ). We initially sample a set of J particles from a prior
distribution with corresponding weights

{θ(j)
0 , w(j)

0 }J
i=1 ∼ q0(·). (1)

Typically each particle is assigned an initial weight

w(j)
0 = π(θ(j)

0 )
q0(θ(j)

0 )
. (2)

After this initialisation, we start the main sampling loop, running for T iterations. At each new time step t,
the weights are normalised via

w̃(j)
t = w(j)

t∑J
j=1 w(j)

t

. (3)

In order to avoid particle degeneracy, we employ resampling into the SMC process. Resampling happens
when the effective sample size Jeff drops below a certain threshold. Typically this threshold is set to half
the number of samples. i.e. we resample when

J

2 > Jeff = 1∑J
i=1(w̃(j)

t )2
. (4)

Many different forms of resampling can be used such as stratified, residual Liu & Chen (1998) and systematic
Kitagawa (1996). In our implementation we have used the multinomial resampling method Douc et al. (2005).
If resampling occurs, the weights are then set to 1

J .
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Algorithm 1 SMC sampler for T iterations and J samples.

Sample {θ(j)
0 }J

j=1 from q0(·)
Set initial weights w(j)

0 using equation 2
for t = 1 to T do

for j = 1 to J do
Normalise weights using equation 3

end for
Calculate Jeff using equation 4
if Jeff < J/2 then

Resample [θ(1)
t ...θ

(J)
t ] with probability [w̃(1)

t ...w̃(J)
t ]

Reset all weights to 1
J

end if
for j = 1 to J do
θ

(j)
t ∼ qθ

t (·|θ(j)
t−1)

Update sample weights w(j)
t using equation 6

end for
end for

New particles are proposed using a Markov kernel

θ
(j)
t ∼ qθ

t (·|θ(j)
t−1) (5)

which is a chosen method used to propagate the samples generated at t − 1. The choice of this kernel will
be covered in later sections.

Once these new samples have been generated, we weight them according to the following update rule:

w(j)
t = w(j)

t−1
π(θ(j)

t )
π(θ(j)

t−1)
Lθ

t (θ(j)
t−1|θ(j)

t )
qθ

t (θ(j)
t |θ(j)

t−1)
, (6)

where Lθ
t (θt−1|θt) is denoted as the L-kernel, also known as the backward kernel. It is worth noting that

if resampling has occurred at the current iteration, then when performing the weight update, the previous
iteration weight is 1

J .

A thorough overview of this concept and SMC samplers as a whole can be found in Del Moral et al. (2006).
The pseudocode for an SMC sampler implementation can be found in Algorithm 1.

2.1.1 Gradient Based Proposals for SMC Samplers

The RW kernel is computationally efficient due its ability to propose new moves without gradient evaluations.
However, it has been shown to struggle in high dimensional spaces. Gradient based Markov kernels such
as the Metropolis adjusted Langevin algorithm (MALA) are also commonly used in the MCMC Roberts &
Tweedie (1996) literature and have also been adapted for use in SMC methods in recent years Rosato et al.
(2024).

MALA combines the Metropolis-Hastings acceptance criteria with Langevin dynamics, which utilises the
gradient information to propose new states in a way that efficiently explores the target distribution. Langevin
dynamics describes the evolution of a particle under both deterministic forces (gradient of the log-posterior)
and stochastic forces (Gaussian noise). The proposed state is computed as:

θ′ = θ + h2

2 ∇ log π(θ) + hP (7)

where h is the step size, ∇ log π(θ) is the gradient of the log-posterior at θ, and P ∼ N (0, I) is Gaussian
noise. The proposed state θ′ is accepted with a probability given by the Metropolis-Hastings acceptance
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Algorithm 2 SMC Sampler with Langevin Dynamics for K iterations and N samples.

Sample {θ(j)
0 }J

j=1 ∼ q0(·)
Set initial weights w(j)

0 to equation 2
for t = 1 to T do

for j = 1 to J do
Normalise weights using equation 3

end for
Calculate Jeff using equation 4
if Jeff < J/2 then

Resample [θ(1)
t ...θ

(J)
t ] with probability [w̃(1)

t ...w̃(J)
t ]

Reset all weights to 1
J

end if
for j = 1 to J do

P ∼ N (0, 1)
θ

(j)
t = θ

(j)
t−1 + h2

2 ∇ log π(θ(j)
t−1) + hP

Update sample weights w(j)
t using equation 6

end for
end for

criterion:
α(θ,θ′) = min

(
1,

π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

)
(8)

θ =
{
θ′ if u < α(θ,θ′),
θ otherwise.

(9)

where q(θ′|θ) is the proposal density of equation 7 and u is a random variable drawn from a uniform
distribution u ∼ U(0, 1). This step ensures that the Markov chain has the desired stationary distribution.

In our implementation of the SMC Sampler, we do not use the Metropolis criteria, instead relying on the
weight update to decide how much each particle contributes to the mean and variance estimate which
means we can forgo the accept/reject criteria normally implemented. Without the acceptance criteria the
distribution we are targeting would not be the stationary one. However, if we choose an L-kernel which
marginalises out the previous targeted distributions, we ensure that we draw samples from the posterior.
This allows us to use the unadjusted Langevin dynamics as a Markov kernel within the sequential importance
sampling framework. The weight update for an SMC Sampler with Langevin dynamics becomes equal to

w(j)
t = w(j)

t−1
π(θ(j)

t )
π(θ(j)

t−1)
LP

t (−P(j)∗)
qP

t (P(j)
t−1)

(10)

where Pt−1 is the Gaussian noise sampled at t−1 and P∗ is this noise having undergone an update step. The
use of this in an SMC context is given in Algorithm 2. The full justification of this proposal and details on
the L-kernel associated with it can be found here Rosato et al. (2024) and for completeness a brief derivation
is given in Appendix 1.

2.2 Stochastic Gradient and Open Horizon SMC

The SMC sampler in Algorithm 1 can be applied to sample the posterior distribution of the stochastic part
of the pBNN with π(θ,ψ) = p(yn|θ,ψ)q0(θ) ∝ p(θ | y1:N ,ψ). However, it remains to be shown how to
learn the deterministic part of the pBNN, in particular, when there is a large number of data-points D. We
introduce a scalable framework via Stochastic Gradient Sequential Monte Carlo (SGSMC) which uses the
stochastic approximation method to approximate the marginal log-likelihood.
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If we denote a batch size M where 1 ≤ M ≤ D then let SM := {SM (1), SM (2), . . . , SM (M)} be a set of
batch indices. We can then approximate our log-likelihood with respect to ψ as

log p(y1:N |ψ) ≈ N

M
log p(ySM

|ψ), (11)

by only considering the subset of data ySM
. Moreover, the SMC sampler also allows us to simultaneously

compute an approximation of the gradient of this approximation to the log-likelihood

N

M
∇ψ log p(ySM

|ψ) = N

M
Ep(θ|ySM

,ψ) [∇ψ log p(ySM
|θ;ψ)] ≈ N

M

J∑
j=1

w̃(j)∇ log p(ySM |θ(j);ψ). (12)

Note that this approximation is biased due to the presence of the normalised weights, w̃(j).

This stochastic gradient is computed using the subdataset ySM
, and the expectation is taken over the random

batch indices. The SGSMC algorithm iteratively updates the particles and weights using the stochastic
gradient approximation. At each iteration of the gradient optimisation, a subdataset is sampled, and then
the SMC sampler is applied on this subdataset to estimate the gradient and update the pBNN deterministic
parameters. However, the SGSMC algorithm when implemented naively is computationally demanding, and
it does not really sample the posterior p(θ | y1:N ,ψ). More specifically, at each iteration, the algorithm
sequentially loops over the data points in the subdata, and the posterior distribution we obtain is a crude
approximate p(θ | ySM

,ψ) on this subdata. This motivated Zhao et al. (2024) to come up with a so-called
open-horizon SMC (OHSMC) sampler to tackle these issues.

At its heart, OHSMC merges the loop of the stochastic optimisation for ψ and the loop of the SMC sampling
in a principled way. Specifically, at each iteration of OHSMC, the algorithm randomly samples a subdataset,
and then approximates the gradient equation 12 and the target posterior distribution concurrently. Crucially,
the OHSMC can process the subdataset in parallel, while SGSMC sequentially loops over the elements in the
subdataset. Empirically, OHSMC also provides better approximation to the target posterior distribution by
linking the posterior distribution estimates across iterations. Unlike SGSMC, which independently restarts
from the prior distribution at each step, OHSMC uses the posterior from the previous iteration as the starting
point for the next. This warm-start strategy improves computational efficiency and maintains continuity in
the posterior distribution estimation.

Both SGSMC and OHSMC significantly reduce the computational load by processing only subsets of the data,
making them suitable for large datasets. The algorithms can be adapted to various latent variable models,
enhancing their applicability across different domains. OHSMC offers practical advantages in implementa-
tion, particularly in environments like JAX and TensorFlow, by avoiding dynamic input size issues inherent
in SGSMC. Overall, the SGSMC and OHSMC methods provide robust, scalable solutions for Bayesian infer-
ence in large datasets, balancing computational efficiency with accuracy. However, there are a few challenges
in OHSMC which remain unsolved, laying the groundwork for our improvements.

3 Guided OHSMC

The main criticism of the original OHSMC is that it is based on a bootstrap version of Algorithm 1. Namely,
they invoke a Markov kernel that leaves invariant with respect to the previous posterior distribution. We
hereby adapt it in Algorithm 3 by making the Markov kernel leave invariant the current posterior distribution.
This gives us a guided improvement of the original OHSMC by incorporating information from the target
posterior distribution. Consequently, this guided version yields a more effective importance proposal leading
to better statistical efficiency, as evidenced in the new weight update equation 6. Another improvement
we deliver is better scalability in high-dimensional θ. Unlike Zhao et al. (2024) which essentially uses a
RW Markov kernel Metropolis et al. (1953) Givens & Raftery (1996), we propose to use gradient-based
Markov kernels, in particular, the unadjusted Langevin dynamics outlined in 2.1.1 to better explore the
high-dimensional latent space Girolami & Calderhead (2011); Neal (2012); Liu & Liu (2001). Moreover,
by using the unadjusted Langevin dynamics, it unlocks a cancellation of the forward and backward kernel
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Algorithm 3 Guided open-horizon sequential Monte Carlo (GOHSMC)

Require: Training data (xn, yn)N
n=1, number of samples J, initial parameters ψ0, prior distribution q0(·),

learning rate ϵ, and batch size M
Ensure: The MLE estimate ψt

Initialize samples {θ(j)
0 }J

j=1 ∼ q0(·)
Initialize weights according to equation 14
for t = 1, 2, . . . until convergence do

Draw sub dataset ySM
t

⊂ y1:N
Calculate Jeff using equation 4
if Jeff < J/2 then

Resample [θ(1)
t ...θ

(J)
t ] with probability [w̃(1)

t ...w̃(J)
t ]

Reset all weights to 1
J

end if
for j = 1 to J do

Propagate particles θ(j)
t ∼ qθ

t (·|θ(j)
t−1;ψt−1)

Update weight w(j)
t with equation 13

end for
Normalize weights using (3)
g(ψt−1) = N

M

∑J
j=1 w̃(j)

t ∇ log p(ySM
t

|θ(j)
t ;ψt−1)

Update parameter ψt = ψt−1 + ϵg(ψt−1)
end for

evaluations in the weight update equation 6, thanks to the reversibility of the Langevin process Dai et al.
(2022), so that the weight update is now tractable.

However, as our weight update is also conditional on the deterministic parameters, we have to alter it for
the pBNN context

w(j)
t = w(j)

t−1
π(θ(j)

t |ψt−1)
π(θ(j)

t−1|ψt−2)
LP

t (−P(j)∗)
qP

t (P(j)
t−1)

(13)

and

w(j)
0 = π(θ(j)

0 |ψ0)
qθ

0(θ(j)
0 )

(14)

where we note that there is no optimisation of the deterministic parameters, ψ0, upon initialisation.

4 Experiments

The following experiments were conducted using the JAX framework Bradbury et al. (2018) on an NVIDIA
A100 GPU. The stochastic parameters were initialised from a standard normal distribution N (0, I) and the
deterministic ones were initialised using JAX’s standard technique, Xavier initialisation Glorot & Bengio
(2010). To enhance generalisation, we did not apply any explicit regularization techniques such as dropout
or weight decay, or any data augmentation techniques so as to focus on the core performance of the model.

As a baseline we also compared against two other common Bayesian approaches; Variational Inference (VI)
Graves (2011) and Stochastic Gradient HMC (SGHMC) Chen et al. (2014). The full experimental set up
and parameters are given in the appendix section B.

4.1 UCI Regression Datasets

The first experiments we have undertaken are on two common UCI regression datasets; The Red Wine
Quality Dataset and the California Housing Dataset.
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Figure 1: Validation loss comparison between different methods on different batch sizes for the Red Wine
Quality and California Housing Dataset respectively, averaged over 5 runs.

The network architectures are simple feed forward networks with three dense layers, connected by a GeLU
activation function Hendrycks & Gimpel (2023). The only difference between the two networks used in each
experiment is the size of the first layer; the dimensionality of the first layers are 450 for CH and 240 for
RWQ. The first layers were sampled by the SMC samplers while the rest of the layers were optimised by the
Adam optimiser Kingma & Ba (2017) using a learning rate of 0.01. The RW scale and step size for the RW
and Langevin kernels respectively were 0.01, while each method used 100 samples.

Each experiment was run for 200 epochs with the weights giving the best validation loss saved for use on the
test dataset. We implemented a 60%, 30% and 10% train, validation and test split for both datasets and
averaged the results over 5 runs. Three different batch sizes were chosen for each dataset; 20, 50, 100 for
RWQ and 50, 100, 200 for CH. We gave larger batch sizes to the California runs due to its larger dataset.
The results of this experiment can be seen in Table 1.

Table 1: Comparison of Test Loss on UCI Regression Datasets

Markov Kernel Red Wine Quality California Housing
Batch Size 20 Batch Size 50 Batch Size 100 Batch Size 50 Batch Size 100 Batch Size 200

Random Walk 0.4388 (0.0324) 0.4474 (0.0327) 0.4455 (0.0277) 0.3546 (0.0217) 0.3473 (0.0203) 0.3418 (0.0199)
Langevin 0.4094 (0.093) 0.4096 (0.0146) 0.4083 (0.0144) 0.2962 (0.0122) 0.3032 (0.0167) 0.2989 (0.0156)
SGHMC 0.4213 (0.181) 0.4211 (0.0177) 0.4401 (0.0312) 0.2851 (0.0076) 0.2915 (0.0094) 0.3047 (0.0206)
VI 0.4478 (0.130) 0.4433 (0.0147) 0.4461 (0.0245) 0.4332 (0.0126) 0.4252 (0.0142) 0.4173 (0.0170)

4.2 Classification

Model performance was evaluated on test set accuracy and loss. Training was conducted for 30 epochs and
to ensure robustness, we performed 10 training runs with different random seeds for each kernel method,
reporting the mean and standard deviation of the test accuracy and loss. For both datasets the weights were
saved which corresponded with the best validation loss. These saved weights were then used at test time.
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4.2.1 MNIST

For the first classification experiment, we evaluate the Markov Kernels on the MNIST dataset LeCun et al.
(1998).

For the NN architecture we have chosen the LeNet-5 architecture Lecun et al. (1998). It consists of 2
convolutional layers followed by 2 dense layers and utilises the Tanh activation function. During training,
the Adam optimiser Kingma & Ba (2015) with a learning rate of 0.002 was used for the deterministic
parameters and we compare the results on three different batch sizes; 100, 500, 1000.

The first convolutional layer was chosen as the Bayesian layer which had a dimensionality of 160. Each
SMC Sampler used 100 samples and the step size/RW variance scale was set to 0.01. The results from this
experiment can be seen in Table 2.

Table 2: Comparison of Methods on MNIST with Different Batch Sizes

Markov Kernel MNIST
Batch Size 100 Batch Size 500 Batch Size 1000

Test Loss (std) Test Accuracy (std) Test Loss (std) Test Accuracy (std) Test Loss (std) Test Accuracy (std)
Random Walk 0.0532 (0.0076) 98.43% (0.15) 0.0422 (0.0024) 98.71% (0.09) 0.0377 (0.0020) 98.81% (0.09)
Langevin 0.0541 (0.0047) 98.42% (0.15) 0.0412 (0.0039) 98.73% (0.10) 0.0389 (0.0020) 98.79% (0.09)
SGHMC 0.0685 (0.0052) 97.88% (0.16) 0.0971 (0.0030) 96.99% (0.10) 0.1472 (0.0094) 95.63% (0.30)
VI 0.0780 (0.0046) 97.60% (0.13) 0.0530 (0.0038) 98.36% (0.07) 0.0511 (0.0034) 98.42% (0.06)

Figure 2: Validation loss and accuracy over the lifetime of each pBNN method and batch size for the MNIST
Dataset, averaged over 10 runs.

4.2.2 FashionMNIST

For our second classification experiment, we evaluate the methods on another common image classification
benchmark dataset in deep learning, the FashionMNIST dataset Xiao et al. (2017). This dataset consists of
70,000, 28 x 28, grayscale images depicted 10 different categories of fashion products. The training set has
60,000 data points and the test set has 10,000.

The NN architecture for this is a larger CNN than used in our MNIST experiment. It consists of a convolu-
tional layer succeeded by a batch normalisation Ioffe & Szegedy (2015) layer and a max pooling Nagi et al.
(2011) layer, this is then repeated with this second convolutional layer having a larger parameter size. This
is then followed by 2 dense layers and the ReLU activation function Agarap (2019) was used.
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The first convolutional layer was the chosen again as the Bayesian layer and had a dimensionality of 320.
The SMC Samplers share the same set up as the first experiment except 50 samples were used and we tested
it on the same 3 batch sizes; 100, 500 and 1000. The results from this experiment can be seen in Table 3.

Table 3: Comparison of Methods on FashionMNIST with Different Batch Sizes

Markov Kernel FashionMNIST
Batch Size 100 Batch Size 500 Batch Size 1000

Test Loss (std) Test Accuracy (std) Test Loss (std) Test Accuracy (std) Test Loss (std) Test Accuracy (std)
Random Walk 0.3121 (0.0089) 89.18% (0.47) 0.2913 (0.0088) 89.88 (0.0042) 0.2899 (0.0062) 90.11 (0.35)
Langevin 0.2858 (0.0076) 90.05% (0.38) 0.2794 (0.0076) 90.32% (0.23) 0.2758 (0.0074) 90.48% (0.43)
SGHMC 0.3803 (0.0155) 86.71% (0.71) 0.4068 (0.0103) 85.83% (0.37) 0.4742 (0.0087) 83.48% (0.45)
VI 0.4322 (0.0239) 84.31% (1.08) 0.3798 (0.0179) 86.39% (0.84) 0.3581 (0.0154) 87.21% (0.62)

Figure 3: Validation loss and accuracy over the lifetime of each pBNN method and batch size for the
FashionMNIST Dataset, averaged over 10 runs.

4.2.3 CIFAR10

For our final image classification experiment, we evaluate the methods on the CIFAR10 dataset Krizhevsky
(2009). For this task we used the ResNet20 architecture He et al. (2015) with feature response Singh &
Krishnan (2020), the same architecture used in Izmailov et al. (2021b). The network was trained for 200
epochs and we used a batch size of 100. We found that larger batch sizes led to sub optimal test metrics
and therefore decided to compare only on the smaller batch size.

The first layer has a dimensionality of 448 parameters and we used a step size/random walk scale of 0.01.
The rest of the parameters were trained using the AdamW optimiser Loshchilov & Hutter (2019) with a
cosine annealing schedule where the initial value of the learning rate is set to of 0.01 and we used 10 samples
for the SMC sampler. The results of these experiments can be found in table 4 and the validation loss plots
can be found in figure 4.

Table 4: Comparison of Methods on CIFAR10 with Different Batch Sizes

Markov Kernel CIFAR10

Test Loss (std) Test Accuracy (std)

Random Walk 0.4024 (0.0204) 87.02% (0.86)
Langevin 0.4007 (0.0120) 87.27% (0.58)
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Figure 4: Validation loss and accuracy over the lifetime of each pBNN method and batch size for the CIFAR10
Dataset, averaged over 5 runs.

Table 5: OOD Performance Metrics

Accuracy F1-Score Precision Recall Specificity AUROC
SGHMC 0.8871 ± 0.0973 0.8667 ± 0.1238 0.9392 ± 0.0152 0.8244 ± 0.1945 0.9497 ± 0.0025 0.9682 ± 0.0333
RW 0.9744 ± 0.0009 0.9751 ± 0.0009 0.9516 ± 0.0016 0.9997 ± 0.0005 0.9491 ± 0.0017 0.9994 ± 0.0006
VI 0.9737 ± 0.0008 0.9743 ± 0.0008 0.9503 ± 0.0015 0.9996 ± 0.0005 0.9477 ± 0.0016 0.9978 ± 0.0016
LV 0.9704 ± 0.0055 0.9710 ± 0.0056 0.9495 ± 0.0022 0.9936 ± 0.0115 0.9471 ± 0.0026 0.9966 ± 0.0045

4.2.4 Out-of-distribution Analysis

We also tested all four methods on a benchmark out-of-distribution (OOD) problem. We trained the larger
CNN outlined in the FashionMNIST experiment on the in distribution (ID) data (MNIST) data and then
introduce the out of distribution (OOD) samples (FashionMNIST) at test time. The model is evaluated on
its ability to distinguish between OOD samples ID samples (MNIST).

After training the network on MNIST, we use an energy-based Liu et al. (2021) detection method. We learn
an energy threshold using a validation dataset of OOD samples. After this, we create a mixed dataset of ID
and OOD samples and use the threshold learned at validation time to determine which data points are ID
or OOD. The results of these experiments can be found in table 5 and the AUROC curves can be found in
figure 5.

5 Discussion

Table 1 gives the test loss results for the regression datasets. We notice that Langevin consistently out-
performs the RW proposal for each batch size and dataset, with the results being more pronounced on the
housing dataset where the first layer dimensionality is larger than the wine dataset. The larger batch sizes
seem to have minimal effect on the test loss (and in fact we see a slight boost in the test loss on the housing
dataset) meaning that we can use fewer gradient calculations without effecting the performance of the model
which also results in faster training times.

Table 2, 3 and 4 show the test loss and test accuracy for the MNIST, FashionMNIST and CIFAR10 datasets
respectively. We can see that for both SMC methods, as the batch size increases the test accuracy increases
and the test loss decreases. For the other two Bayesian methods, we see the opposite happens in that the test
loss and accuracy decreases as the batch size increases. The RW Markov kernel marginally outperforms the
Langevin Markov kernel in terms of test accuracy on the MNIST dataset, while Langevin performs better
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Figure 5: AUROC curves for each method averaged over 5 runs.

on the FashionMNIST and CIFAR10 datasets. The reason for the better performance for large batch sizes
may be due to the fact that the larger batch gives a better approximation of the gradients over the full batch
when scaled. The reason Langevin performs better on the larger neural networks and regression network
could be due to the fact that the first layer sizes are larger than the MNIST architecture and Langevin is
able to more efficiently navigate these higher dimensionality probability spaces.

On the OOD problem, we can see in table 5 that the VI, RW and Langevin have very similar results. This
shows that despite the network not being fully bayesian, we see no drop off in performance in the unvertainty
task.

We can see clearly in Figure 2 that on the FashionMNIST dataset, the validation loss starts to increase which
may indicate an overfitting to the training data. This was the reason we saved the weights with the best
validation loss as was done in Zhao et al. (2024). Another option would be to introduce an early stoppage
routine LeCun et al. (2002) which is commonly employed in deep learning scenarios. The first option may
be better for our scenario as often in stochastic settings, there may be a time period when the samples move
to regions of higher loss before finding a better minimum, This can be seen clearly in validation loss plots in
Figures 1 and 2. One other option could be to calculate the validation loss after each batch is processed and
save the best weights from this, as was done in Zhao et al. (2024) however, this significantly increases the
training time, especially for smaller batches. Larger batch sizes seemed to dampen the effect of overfitting
to a certain extent, however if left for long enough without using one of the previously suggested methods,
the effect may worsen to a similar extent as the smaller batch sizes.

Tables 6 and 7 also show the average run times in seconds with standard deviations for the regression and
image classification datasets. As the batch size increases, the average training time decreases. We do see that
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RW is faster than Langevin due to the fewer gradient calculations, but as discussed before, this can come
at the cost of better test metric results. It is worth noting that Langevin uses the same number of gradient
computations as a standard frequentist neural network. Therefore, if the architecture is set up optimally,
it is possible to run pBNN’s in a comparable run time to non-Bayesian neural networks. In appendix C we
have provided results to show that when using a comparable runtime between RW and Langevin that the
results are very similar to if they are run for the same amount of epochs.

Table 6: Comparison of Training Times on UCI Regression Datasets in seconds

Markov Kernel Red Wine Quality California Housing
Batch Size 20 Batch Size 50 Batch Size 100 Batch Size 50 Batch Size 100 Batch Size 200

Random Walk 245 (3) 105 (3) 54 (2) 1254 (7) 635 (6) 322 (3)
Langevin 308 (5) 131 (4) 68 (3) 1616 (12) 817 (4) 416 (2)

Table 7: Comparison of Training Times on Classification Datasets in seconds

Markov Kernel MNIST Fashion MNIST
Batch Size 100 Batch Size 500 Batch Size 1000 Batch Size 100 Batch Size 500 Batch Size 1000

Random Walk 1386 (11) 505 (6) 407 (7) 1204 (5) 516 (6) 475 (7)
Langevin 1977 (15) 634 (8) 523 (9) 1745 (8) 751 (6) 718 (7)

6 Conclusion

In this paper we introduce gradient based proposals into the SMC sampler architecture for use in the
training of pBNNs. Specifically we have introduced Langevin dynamics as part of the Markov kernel and
have demonstrated on four benchmark datasets, that we can outperform the current state-of-the-art SMC
methods. This new proposal also allows us to use a larger batch size while gaining performance which in
turn can reduce the training time of pBNNs. It is also worth noting that as the dimensionality of the first
layer increased, the performance benefit of Langevin over RW was more pronounced. We also note that
although only the first layer is stochastic, it performs comparatively on the uncertainty quantification tasks
to full BNN techniques such as SGHMC and VI.

6.1 Limitations and Further Work

Memory and Runtime Limits Increased batch size comes at a memory cost. Further work on balancing
the training time cost and memory cost would be very useful for future research. Our current codebase is not
optimised to deal with larger Neural Networks such as ResNet He et al. (2015). Creating an optimised library
with an automated memory and runtime balancing feature would be invaluable in future pBNN research.
We have also not fully exploited the parallel nature of SMC samplers in our implementation. Using a parallel
resampling scheme Varsi et al. (2021a) could potentially reduce runtime.

Other Gradient Based Proposals So far, we have only introduced Langevin dynamics as a gradient
based proposal. However, there are other gradient based proposals that are also worth exploring such as
Hamiltonian Monte Carlo (HMC) Neal (2011). One potential problem with HMC is the need to tune both
the step size and the number of leapfrog steps. Two different approaches to solving this could be taken;
first, the No U-Turn algorithm could be used as a Markov kernel Devlin et al. (2024). This algorithm has a
U-turn termination criteria embedded into the algorithm which automatically tunes the number of leapfrog
steps the algorithm should run for. Second, an adaptive HMC Markov kernel could be used instead Buchholz
et al. (2020). A study to compare different gradient based Markov kernel methods would be interesting and
useful. All of these methods would involve using multiple gradient evaluations due to the many step leapfrog
process so there would be a greater computational overhead than the methods introduced in this paper. It
would then be interesting to investigate whether the increased computational cost is offset by the increased
performance of the more sophisticated approach.
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A Langevin L-kernel derivation for section 3

The following work gives the derivation for the L-kernel where we utilise the reverse momentum in the weight
update.

A.1 Proposal

Langevin dynamics for a single time step can be described via the following equation

θt = θt−1 + ϵ2

2 ∇ log π(θt−1) + ϵPt−1 (15)

This process is equivalent to the leapfrog integrator for a single timestep

Pt = Pt−1 + ϵ

2∇ log π(θt−1) (16)

θt = θt−1 + ϵP∗ (17)

And the proposal at the corresponding timestep can be written as qt(θt|θt−1). We would like the proposal
to reflect the stochastic momentum introduced and the Langevin dynamics. Therefore we must introduce a
change of variables from Pt−1 to θt. The change of variables can be described by

Y = g(X) (18)

pY (y) = pX(x)
∣∣∣∣dg(X)

dX

∣∣∣∣−1
(19)

In our case Y = θt, X = Pt−1 and g(X) = fLMC(θt−1, Pt−1), therefore our proposal can be rewritten from
a proposal on θ to a proposal on P:

qθ
t (θt|θt−1) = qθ

t (fLMC(θt−1, Pt−1)|θt−1)

= qP
t (Pt−1)

∣∣∣ dfLMC (θt−1,Pt−1)
dPt−1

∣∣∣−1 (20)

Where fLMC is the Langevin dynamics used to propagate our samples and
∣∣∣ dfLMC (θt−1,Pt−1)

dPt−1

∣∣∣−1
is the

determinant of the transformation from θt−1 −→ θt given our momentum Pt−1. The initial momentum is
usually sampled from a normal distribution

Pt−1 ∼ N (0,M) (21)

M is known as the mass matrix which governs the covariance of the distribution from which we pull our
momentum. In our implementation we have set this mass matrix to be the identity matrix. Therefore the
proposal can be given as

qθ
t (θt|θt−1) = N (Pt−1; 0,M)

∣∣∣ dfLMC (θt−1,Pt−1)
dPt−1

∣∣∣−1
(22)

A.2 L-kernels

Langevin is a reversible process, therefore the momentum which would take us from θt −→ θt−1 is the opposite
of the one that takes us originally from θt−1 −→ θt after the momentum update given by equation 16.
Therefore, we can rewrite the L-kernel Lθ

t (θt−1|θt) using the same change of variables process used in the
proposal (given by equation 19), but using the reverse momentum Pt.
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Lθ
t (θt−1|θt) = Lθ

t (fLMC(θt, −P∗)|θt)

= LP
t (−P∗)

∣∣∣ dfLMC (θt,−P∗)
dP∗

∣∣∣−1

= N (−P∗; 0,M)
∣∣∣ dfLMC(θt,−P∗)

dP∗

∣∣∣−1

(23)

Due to the reversible nature of the Langevin dynamics, the determinants in both the proposal 22 and L-kernel
23 are equivalent, and therefore cancel in the final weight update.

A.3 pBNN context

The gradient of the Langevin dynamics is conditioned on the deterministic parameters which are the same
for both the forwards and backwards moves.

θt = θt−1 + ϵ2

2 ∇ log π(θt−1|ψt−1) + ϵPt−1 (24)

Therefore we can simply define our proposal and L-kernel in the context of a pBNN respectively as

qθ
t (fLMC(θt−1, Pt−1)|θt−1,ψt−1) = qP

t (Pt−1|ψt−1)
∣∣∣ dfLMC (θt−1,Pt−1)

dPt−1

∣∣∣−1
(25)

However, the momentum is drawn from a Gaussian distribution independent of both θ and ψ. Therefore

qθ
t (fLMC(θt−1, Pt−1)|θt−1,ψt−1) = qP

t (Pt−1)
∣∣∣ dfLMC(θt−1,Pt−1)

dPt−1

∣∣∣−1

= N (Pt−1; 0,M)
∣∣∣ dfLMC (θt−1,Pt−1)

dPt−1

∣∣∣−1 (26)

Lθ
t (fLMC(θt, −P∗)|θt,ψt−1) = N (−P∗; 0,M)

∣∣∣ dfLMC (θt,−P∗)
dP∗

∣∣∣−1
(27)

B Experiment Parameters and Set Up

For all of the SMC experiments, a step size/RW scale of 0.01 was used. However, in order to achieve optimal
results on some of the experiments, the step size had to be altered for certain batches sizes when using
SGHMC and VI. These hyperparameters are outlined in tables 8 and 9.

Experiment Small Batch Size Medium Batch Size Large Batch Size
California Housing 0.001 0.001 0.001

Wine 0.01 0.01 0.01
MNIST 0.001 0.001 0.0005

FashionMNIST 0.001 0.001 0.0002
OOD 0.001 0.001 0.001

Table 8: Learning Rates for SGHMC Experiments
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Experiment Small Batch Size Medium Batch Size Large Batch Size
California Housing 0.001 0.001 0.001

Wine 0.001 0.001 0.001
MNIST 0.001 0.001 0.0002

FashionMNIST 0.001 0.001 0.0002
OOD 0.001 0.001 0.001

Table 9: Learning Rates for VI Experiments

C Comparable Runtime Comparison

We decided also to run the MNIST and FashionMNIST image classification experiments as before but this
time compare the different proposals using a comparable runtime. In order to do this we let the RW proposal
run again for 30 epochs and then adjusted the Langevin method so it ran for a similar amount of time as the
random walk proposal, resulting in it training for fewer epochs. The results can be found in tables 10 and
11 and the validation loss and accuracy curves for this runtime comparison can be found in figures 6 and 7.

Table 10: Comparison of Methods on MNIST with Different Batch Sizes

Method Batch Size 100 Batch Size 500 Batch Size 1000
Test Loss (std) Test Acc (std) Runtime (std) Test Loss (std) Test Acc (std) Runtime (std) Test Loss (std) Test Acc (std) Runtime (std)

Random Walk 0.0517 (0.0046) 98.45% (0.09) 1005.86s (9.70) 0.0422 (0.0024) 98.71% (0.09) 442.87s (10.60) 0.0377 (0.0020) 98.81% (0.09) 384.19s (10.98)
Langevin 0.0522 (0.0042) 98.42% (0.18) 1065.61s (14.78) 0.0426 (0.0025) 98.72% (0.09) 392.05s (13.23) 0.0378 (0.0037) 98.80% (0.12) 340.09s (13.20)

Table 11: Comparison of Methods on FashionMNIST with Different Batch Sizes

Method Batch Size 100 Batch Size 500 Batch Size 1000
Test Loss (std) Test Acc (std) Runtime (std) Test Loss (std) Test Acc (std) Runtime (std) Test Loss (std) Test Acc (std) Runtime (std)

Random Walk 0.3157 (0.0107) 88.96% (0.48) 890.66s (48.64) 0.2922 (0.0068) 89.76% (0.46) 425.65s (9.43) 0.2899 (0.0062) 90.11% (0.35) 393.46s (10.84)
Langevin 0.2815 (0.0078) 90.17% (0.29) 932.94s (10.52) 0.2789 (0.0038) 90.30% (0.18) 451.03s (9.89) 0.2763 (0.0066) 90.38% (0.30) 422.78s (10.73)
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Figure 6: Validation loss comparison between different methods for a fixed runtime on the MNIST dataset.

Figure 7: Validation loss comparison between different methods for a fixed runtime on the FashionMNIST
dataset.
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