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Abstract

We introduce PhysGaia, a novel physics-aware dataset specifically designed for
Dynamic Novel View Synthesis (DyNVS), encompassing both structured objects
and unstructured physical phenomena. Unlike existing datasets that primarily focus
on photorealistic reconstruction, PhysGaia is created to actively support physics-
aware dynamic scene modeling. Our dataset provides complex dynamic scenarios
with rich interactions among multiple objects, where they realistically collide with
each other and exchange forces. Furthermore, it contains a diverse range of physical
materials, such as liquid, gas, textile, and viscoelastic substances, which moves
beyond the rigid bodies prevalent in existing datasets. All scenes in PhysGaia are
faithfully generated to strictly adhere to physical laws, leveraging carefully selected
material-specific physics solvers. To enable quantitative evaluation of physical
modeling, our dataset provides essential ground-truth information, including 3D
particle trajectories and physics parameters, e.g., viscosity. To facilitate research
adoption, we also provide essential integration pipelines for using state-of-the-
art 4D Gaussian splatting models with our dataset and report theirs results. By
addressing the critical lack of datasets for physics-aware modeling, PhysGaia will
significantly advance research in dynamic view synthesis, physics-based scene
understanding, and deep learning models integrated with physical simulation—
ultimately enabling more faithful reconstruction and interpretation of complex
dynamic scenes.

1 Introduction

Since the introduction of Neural Radiance Fields (NeRF), Novel View Synthesis (NVS) algorithms
based on deep learning have advanced rapidly. While early research primarily targeted static scenes,
recent efforts have extended the scope to dynamic scene understanding to better support diverse and
interactive AR/VR applications. This emerging direction, known as Dynamic Novel View Synthesis
(DyNVS), aims to reconstruct 4D scenes from input videos and synthesize photorealistic images at
novel viewpoints and time steps that are not seen during training.

The evolution of DyNVS has been closely tied to the development of suitable datasets. Early DyNVS
datasets [1H3] primarily provided multiview training videos and typically involved only limited
object motion. These datasets laid the foundation for early DyNVS research [2} 4-10], which
focused on modeling scene dynamics by deforming canonical geometries over time. Recently, to
better support AR/VR applications, datasets captured using handheld mobile devices have been
introduced [6} |11} [12]. These datasets consist of monocular videos, and recent research has focused
on mitigating overfitting under such conditions. Building on these datasets, subsequent work [[13H19]
has commonly adopted 4D Gaussian Splatting (4DGS) models, with a primary focus on resolving the
inherent ambiguities of monocular video reconstruction and achieving photorealistic rendering.
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(a) Liquid with FLIP solver: Hanok (left) and Ship (right)

(b) Gas with Pyro solver: Box-smoke (left) and Pisa (right)
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(d) Textile with Vellum solver: Lucy (left) and Basin (right)

Figure 1: Examples from the proposed physics-aware dataset, PhysGaia. They exhibit complex
physical interactions between multiple objects composed of diverse materials such as liquid, gas,
viscoelastic substance, and textile. This dataset will foster physics reasoning in dynamic scenes.

As DyNVS continues to advance, a natural next step is to move beyond photorealism and incorporate
physical realism—enabling models not only to render how scenes look, but also to reason about how
they behave. Recent pioneering works [20-24]] have begun exploring this direction by integrating
differentiable physics simulation into 4DGS frameworks. Despite this growing interest, current
research largely remains limited to 4D generation or simplified DyNVS scenarios [24, 23], often
restricted to single object or single material. Consequently, more complex senarios—such as multi-
object interactions or the modeling of diverse physical materials like liquids and gases—are still
significantly underexplored. In response, we introduce PhysGaia, a new benchmark designed to
support and accelerate research in these emerging and challenging directions.

Our contributions are summarized as follows:

* We introduce PhysGaia, a physics-aware dataset featuring rich interactions among multiple
objects and encompassing a wide range of physical materials, including liquids, gases,
textiles, and viscoelastic substances, as illustrated in Figurem

» PhysGaia provides essential ground-truth information, such as 3D particle trajectories and
physical parameters, enabling quantitative evaluation of physical modeling.

* We test existing state-of-the-art DyNVS methods on PhysGaia, revealing their fundamental
limitations in achieving physical realism and demonstrating the potential for improvement
in this field.
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Table 1: Comparison in existing Dynamic Novel View Synthesis (DyNVS) datasets. “# total scene”
denotes the number of scenes having test videos for DyNVS evaluation. “# physics” indicates the
number of scenes exhibiting physical phenomena like gas, liquid, viscoelastic, or textiles. Unlike
existing datasets, our dataset provides diverse scenes containing complex multi-object interactions.
Also, our dataset contains the ground-truth physics information such as physics parameters like
viscosity, and ground-truth 3D trajectories.

Datasets Scene Stats Physics Information Capture Type
# total scene  # physics Interaction Physics param. 3D Traj.
Plenoptic [1] 6 1(gas) No No No Multiview
D-NeRF [2] 8 1 (viscoelastic) No No No Monocular
NVIDIA Dynamic [3] 8 0 No No No Monocular
Nerfies [6] 4 0 No No No Monocular
HyperNeRF [11] 4 0 No No No Monocular
DyCheck [12] 7 1 (textile) No No No Monocular
NeRF-DS [48] 8 0 No No No Monocular
EvDNeRF [49] 6 0 No No No Multiview
Synthetic Soccer [50] 3 0 No No No Multiview
HDR-HexPlane [51] 8 0 No No No Multiview
" PhysGaia (Ours) |~ 17 17 Yes | Yes  Yes | Multiview/ Monocular -

The rest of this paper is organized as follows. Section [2]reviews related work and highlights the
uniqueness of our dataset. We discuss the main properties and potential research enabled by our
dataset in Section[3] Section[d]details material-specific physics solvers used for dataset construction
and methodologies for generating multi-object interaction scenarios. Section [5|shows our analysis,
including evaluations of existing 4DGS methods on PhysGaia, We conclude the paper in Section [6]

2 Related Work

2.1 Dynamic Novel View Synthesis

In recent years, significant advances have been made in novel view synthesis [26-31]]. Although this
field initially have focused on static scene reconstruction but now it extended to handling dynamic
scenes, which is known as Dynamic Novel View Synthesis (DyNVS). Early DyNVS methods were
built on Neural Radiance Fields (NeRF) [4H10], which usually modeled scene dynamics either by
implictly modeling with temporal inputs [4} |5] or directly estimating the time-wise deformation
of canonical geometry through auxiliary neural networks [6H10]. Following the emergence of
3D Gaussian Splatting (3DGS)[31]], recent DyNVS research has shifted toward Gaussian-based
representations, leading to the development of 4D Gaussian Splatting (4DGS) [16,32H43]]. In 4DGS,
an additional deformation network is employed to animate canonical Gaussian primitives over time,
enabling efficient and high-quality modeling of dynamic scenes.

Modeling dynamic scenes with 4DGS is now leaning towards incorporating physical laws to govern
motion. PhysGaussian [20] pioneers this by combining an MPM simulator with Gaussian Splatting,
where each Gaussian primitive is handled as a particle within the MPM’s particle-grid simulation.
This work has inspired many subsequent studies [25) 24} 144-47]] integrating physics-aware priors
into 4DGS; however, these efforts remain largely confined to generation tasks [44-47]], with only a
few addressing Dynamic Novel View Synthesis (DyNVS) [25] 24]. Even for DyNVS, methods are
typically limited to single objects or single materials, with most focusing on viscoelastic substances.
Consequently, exploring physics-aware DyNVS research with rich object interactions with diverse
physical materials remains underexplored, and we believe our dataset can serve as a foundation for
this direction.

2.2 4D Datasets for Dynamic Novel View Synthesis

TableT] provides a comparative overview of our dataset alongside existing multiview and monocular
DyNVS datasets. The initial DyNVS datasets [1H3] primarily employed multiview configurations
or captured scenes with very limited motion, typically involving mostly rigid objects. These early
datasets paved the way for research into DyNVS, with subsequent work [2}14H10] exploring paradigms
of deforming canonical geometries over time to model scene dynamics.
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Table 2: Comparison with physics-simulated datasets. “Multi-obj. Inter.” denotes multi-object
interaction. Unlike existing datasets, our PhysGaia offers rich object interactions, a diverse range
of physical materials, and access to accurate physics parameters and ground truth 3D trajectories,
making it a uniquely valuable resource for advancing physics-based understanding of dynamic scenes.

.. Materials Physics Information

Datasets Multi-obj. Inter. Liquids Gas Textile Viscoelastic Physicys params. 3D traj.
DNG [57] Yes v No Yes
CLOTH4D [58] Yes v No Yes
4D-DRESS [59] Yes v No Yes
Rasheed et al. [60] No v Yes No
Deng et al. [61] No v No No
PAC-NeRF [62] No v v Yes Yes
Spring-Gaus [25] No v Yes Yes
ScalarFlow [63] No v Yes Yes

" "PhysGaia (OQurs) | Yes | V2 v Yes Yes

. s

(a) PAC-NeRF [62] (b) Spring-Gaus [235] (c) ScalarFlow [63]

Figure 2: Visualization of datasets most similar to our PhysGaia. While all of these datasets address
physical phenomena, they are limited in several key aspects: limited coverage of physical materials,
overly simplified dynamics, and an absence of rich multi-object interactions.

To advance DyNVS toward practical AR/VR applications, more user-friendly datasets, often captured
using handheld mobile phones, were later introduced. Nerfies [6] pioneered handheld iPhone captures,
though its scenes remained largely static scenarios. HyperNeRF [11] then introduced more rapid and
varied motions, and DyCheck [12] further resolved camera teleportation issues seen in HyperNeRF.
These monocular datasets have motivated research mitigating overfitting to training videos in these
settings. Some approaches [13} [15} [14]] focus on leveraging additional priors such as diffusion
models [52], depth estimation model 53], and point trackers [54], while others [[16, (14} 18} 117 |19]
emphasize constraining deformation adopting techniques like motion factorization [55] or As-Rigid-
As-Possible (ARAP) regularization [56]. Nonetheless, the primary objective across these datasets
remains photorealistic reconstruction, with limited emphasis on physics-aware dynamic modeling ﬂ

Unlike these existing DyNVS datasets, our PhysGaia offers the scenes containing multi-object
interaction with diverse physics materials, as shown in Tablem Although some datasets [[1} 2} [12]]
include scenes with physical phenomena, these are very limited in number, not generated using
accurate physics solvers, and lack complex multi-object interactions. In this context, PhysGaia
occupies a unique position and holds strong potential to spur advancements in physics-aware dynamic
scene modeling.

2.3 4D Datasets from Physics Simulator

To provide a comprehensive comparison, we also compare our PhysGaia with the 4D datasets
generated via physics simulation, as summarized in Table 2] Since DyNVS tasks require multiview
RGB imagery, we focus on the existing datasets that offer such data. Figure [2] visualizes several
representative datasets, including PAC-NeRF [62], Spring-Gaus [25]], and ScalarFlow [63]].

Some existing datasets support multi-object interactions, but they either lack rich interaction dynamics
or are limited to a single type of material. For instance, clothed human datasets [S7H59] naturally
exhibit textile-body interactions, yet are restricted to textile materials and human-centric motions.
In terms of ground-truth physical information, a few datasets [62} 25| |63] provide both physical

"Note that some recent datasets have also been introduced, but they are typically tailored to specific scenarios,
such as event cameras [49], HDR rendering [51], specular lighting effects [48], or human motion capture [S0].
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(c) Splashing (non-locally rigid) (d) Specular Modeling (e) Refraction

Figure 3: Visualization of physics properties in PhysGaia. Alongside multi-object interactions,
PhysGaia also includes various physical phenomena like splashing, refraction, and specular effects.

parameters and 3D trajectories, but these datasets are also typically confined to single-material, do
not capture the kind of rich, multi-object interactions, as shown in Figure [2a] 2b] and 2c PAC-
NeRF [62]], for instance, focuses on liquids and viscoelastic materials; however, its liquid scenarios
are constrained to highly viscous flows, making them behaviorally similar to viscoelastic materials.
Spring-Gaus [23] is restricted to viscoelasticity, while ScalarFlow [63]] concentrates on gas. In
contrast, our PhysGaia directly tackles these limitations by providing rich object interactions, a
diverse range of physical materials, and access to accurate simulation parameters and trajectories,
which makes it a uniquely valuable dataset for advancing physics understanding of dynamic scenes.

3 Dataset Properties and Research Impact

We propose PhysGaia to advance physically realistic reconstruction in DyNVS, moving beyond
mere photorealism. As highlighted in Tables [[|and [2 within Section 2] our dataset uniquely features
complex multi-object interactions involving a diverse range of physical materials, distinguishing
it within the DyNVS landscape. We believe this comprehensive dataset holds significant potential
to enhance the understanding of physics in dynamic scenes. In this section, we detail the specific
properties of our dataset and discuss the future research directions it enables.

3.1 Dataset Properties

Complex scenarios with physics-aware dynamics Our PhysGaia dataset consists of 17 scenes
with multi-object interaction, as visualized in Figure [T} We further visualize the detailed examples in
Figure Bal and Figure [3b} which exhibit viscoelastic objects colliding leading rapid moving direction
change and rigid-liquid surface hitting leading splashing, respectively. To ensure the scenes adhere to
physical laws with accurately calculated force exchange among objects, we carefully select material-
specific solvers: FLIP for liquids, Pyro for gases, Vellum for textiles, and MPM for viscoelastic
materials. Further details on simulation configurations for handling multi-object interactions can be
found in Section [

Beyond multi-object interactions, our dataset also exhibits various physical phenomena, such as
non-locally rigid motion commonly observed in liquid and gas scenes, specular reflection, and
refraction, as shown in Figures [3d] and [3¢] respectively. These properties enhance the realism of
our dataset and enable a wide range of downstream tasks and research applications.

Providing physics parameters In contrast to real-world video datasets, where the ease of capture is
offset by inaccessible underlying physics, our simulated dataset offers complete access to all physical
information. This ground-truth includes 3D particle trajectories and physics parameters such as
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viscosity, Young’s modulus, Poisson’s ratio, and temperature for gas sceneﬂ This comprehensive
provision enables precise evaluation of physical reasoning in dynamic scenes, directly facilitating the
future research directions outlined in Subsection 3.2

Supporting diverse DyNVS tasks Our dataset uniquely supports both multiview and monocular
DyNVS. Unlike most multiview datasets [1}49H51]] with videos captured from fixed camera positions
like CCTYV, ours provides several moving monocular video sequences from independent trajectories
as training videos. This allows diverse training configurations; using full sequences corresponds
to multiview DyNVS task, while using a single sequence corresponds to monocular DyNVS task.
The monocular setup matches the DyCheck [12]] dataset, providing realistic handheld camera inputs
without synthetic teleportation. For evaluation, we employ two static cameras with a large baseline.

Customizability We provide the com-

plete simulation node graphs and their

exact parameter settings used to build |
our dataset. These graphs encompass all
relevant components, including physics
solvers, source geometries, camera posi- - ‘
tions, lights, materials, and texture controls. (a) RGB (b) Depth (c) Normal (d) Re-lighted
Thus, by modifying these nodes, users can
easily generate customized scenes or addi-
tional modalities such as depth maps, sur-
face normals, and re-lighted images tailored to their specific downstream tasks, as shown in Figure {]

Figure 4: Examples of diverse modalities that users can
generate from the provided simulation node graphs.

Accessibility Our PhysGaia benchmark is designed for research-friendly and easy access, providing
integration pipelines that enable the use of state-of-the-art 4D Gaussian Splatting models [14}[32H34]]
with our data. Furthermore, we include COLMAP-reconstructed point clouds for each scene. These
provisions aim to facilitate the adoption of our dataset by researchers working with state-of-the-art
DyNVS models.

3.2 Potential Research

This subsection highlights the potential impact of our PhysGaia dataset by outlining several promising
future research directions it uniquely enables.

Physical reasoning of dynamic scenes Since our PhysGaia dataset provides ground-truth physics
information, it facilitates precise evaluation of physical reasoning in dynamic scenes. For instance,
ground-truth physics parameters like viscosity can be used to evaluate inverse physics estimation
methods, where differentiable simulators are employed to optimize these parameters. Furthermore,
unlike existing 4DGS research that primarily focuses on photorealism and relies on ground-truth
RGB images, our dataset offers ground-truth 3D trajectories, enabling evaluation of the actual motion
of individual Gaussian primitives in 4DGS. We believe this unique feature establishes our dataset as
a valuable benchmark for developing and evaluating physics-aware DyNVS models.

Multi-object interaction While recent research integrates physics into DyNVS [24} 25]], it largely
remains limited to single materials and often single objects within scenes. As a result, the crucial
aspect of physics reasoning for interactions between multiple objects in DyNVS — particularly
the estimation of force exchange and deformation during contact — remains largely unexplored.
We believe our novel dataset, specifically designed with complex multi-object interactions, will
be instrumental in enabling significant future research in multi-physics modeling and adaptive
representations for handling hybrid scenes.

Integration of material-specific physics solver The dominant approach for integrating physics into
DyNVS algorithms currently involves adopting differentiable simulators [[64-69]], treating Gaussian
primitives as particles in simulators. However, we emphasize that different physical phenomena are
best captured by different physics solvers, a principle reflected in our dataset construction process

Note that temperature itself is very crucial component when adopting smoke-related simulator to physical
reasoning for buoyancy calculation
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detailed in Section[d] This can guide researchers seeking to integrate more appropriate solvers tailored
to specific material behaviors, such as fluids, cloth, smoke. For example, the FLIP [[70] solver excels
at simulating incompressible fluids due to its hybrid particle-grid representation, offering greater
stability and realism compared to purely particle-based SPH-based solver. Similarly, thermodynamic
effects like temperature and buoyancy are crucial for smoke simulation, typically represented using
voxel-based grids. Integrating such volumetric solvers into particle-based frameworks like Gaussian
splatting, however, remains a largely unexplored area.

4 Dataset Construction

This section details solver properties for liquids, gases, viscoelastic substances, and textiles, along with
some simulation details for dynamics with multi-object interactions. Please refer to our supplemental
document for other simulation configurations.

4.1 Common Setup

Simulator selection We select SideFX Houdini 20.5 as the foundation of our physics-informed
data-generation pipeline because it integrates multiple physics solvers within a unified procedural
environment. By sharing a common computational graph, it ensures consistent multi-material
interactions under uniform boundary conditions. We access simulation data such as particle positions
and flow fields on a per-frame basis via its Python API.

Rendering We render all frames at a resolution of 640 x 720, using NVIDIA OptiX denoiser and
path tracing with 256 samples per pixel. Scenes are illuminated with 1-3 point lights (intensity:
600-4000), shadows are disabled in textile-focused scenes like fube-flag to emphasize geometry.

4.2 Liquid

For liquid scenes, we adopt the Fluid-Implicit Particle (FLIP) solver [70], a hybrid particle-grid
method. FLIP maintains particle velocities throughout the simulation, using the grid solely to compute
and apply forces such as pressure and viscosity. This approach preserves fine-scale, high-frequency
particle velocities, crucial for modeling realistic and rapid liquid behavior while adhering to the
Navier—Stokes equations. Although the Material Point Method (MPM) [64]] solver can also model
fluids, its direct velocity aggregation onto the grid limits its ability to capture highly dynamic fluid
phenomena like splashing. While particle-only-based solver [[71] are another option, FLIP is generally
better suitable for incompressible fluids thanks to its hybrid grid-based representation.

Dynamic interactions For the ice and hanok scenes, where fluid spills onto fixed objects, we
adopt the surface operator to simulate multi-object interaction. Since the interaction occurs primarily
near the surface, this approach reduces computational overhead. In contrast, for the ship and cereal
scenes—where objects fall into liquid, causing both fluid and objects to move and influence each other
with force exchange—we use a dynamic operator to accurately model these more complex interactions.

4.3 Gas

For gas (smoke) simulation, we utilize the Pyro solver [72]], which models the temperature field
essential for accurately capturing buoyancy effects in gaseous materials. Pyro employs grid-based
representations of density, velocity, and temperature, ensuring compliance with the Navier—Stokes
equations governing fluid mechanics. Since the ground-truth motion is represented as a velocity field
and storing full velocity fields can require up to 2GB per frame, we provide a subsampled set of
particle trajectories per scene to facilitate efficient data storage and processing.

Dynamic interactions In the pisa scene, we reduced the voxel size from the default 0.1 to 0.05
to better capture the tower’s intricate details and added a lateral wind of speed 2 to wrap the plume
around it. For the other scenes involving this material, we used the default simulation settings.

4.4 Viscoelastic Substances

MPM |[64] extends FLIP [73] to handle solid mechanics and is ideal for simulating chunk-based,
viscoelastic substances like snow, jelly, and soil. It aggregates particle information on a grid, performs
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Table 3: Quantitative results of existing 4D Gaussian Splatting models on the proposed PhysGaia
dataset. While multiview setups generally offer better reconstruction performance than monocular
ones, even multiview results achieve PSNR scores below 30. This highlights the substantial difficulty
in reconstructing the complex multi-object interactions in our dataset.

Liquid Gas
Capture Type Method PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS |
D-3DGS [32] 227 0.87 0.22 21.9 0.89 0.16
Monocular 4DGS [33] 24.2 0.87 0.23 217 0.88 0.17
STG [34] 19.2 0.72 0.39 21.9 0.85 0.24
SOM [14] 18.2 0.71 0.54 20.5 0.83 0.28
D-3DGS [32] 222 0.87 0.24 237 0.91 0.13
Multiview 4DGS [33] 25.1 0.88 0.22 242 0.89 0.17
STG [34] 20.8 0.75 0.40 25.0 0.91 0.19
Viscoelastic materials Textile
Capture Type Method PSNR1  SSIMt  LPIPS| | PSNR{  SSIMt  LPIPS|
D-3DGS [32] 20.1 0.84 0.15 22.1 0.83 0.18
Monocular 4DGS [33] 19.5 0.82 0.18 24.9 0.84 0.18
STG [34] 13.6 0.63 0.40 21.9 0.84 0.21
SOM [14] 12.0 0.53 0.49 19.3 0.78 0.25
D-3DGS [32] 222 0.89 0.10 277 0.90 0.12
Multiview 4DGS [33] 21.0 0.85 0.15 26.6 0.87 0.15
STG [34] 17.2 0.70 0.36 21.1 0.81 0.25

computation, and reprojects to particles—making it effective for capturing deformation and internal
force propagation.

Dynamic interactions For the pancake scene, we reduce the grid size from the default 0.025 to
0.002 to more faithfully capture its thin-sheet dynamics, while other scenes use the default grid size.
To suppress spurious artifacts that can arise from aggregating particle properties onto the grid, we
increase the number of samples participating in node calculations by oversampling. The oversampling
scales are set to 6, 2, 4, and 2 for the bouncing balls, cow, jelly party, and pancake scenes, respectively.
Additionally, for the bouncing balls scene, we add a static bowl-shaped collider so that the falling
balls rebound off both one another and the bowl’s surface.

4.5 Textile

For textile materials, we adopt the Vellum solver [74], which is based on the Extended Position
Based Dynamics (XPBD) framework [75]]. XPBD improves upon classical Position Based Dynamics
(PBD) [76] by integrating a Lagrange multiplier and its update. This effectively decouples material
stiffness from the solver’s time-step size and iteration count, making it a widely used method for
simulating deformable objects, especially cloth.

Dynamic interactions To simulate interactions between objects and textiles—where both move and
exchange forces, as seen especially in the basin scene—we employ the shape match constraint. This
constraint helps maintain the overall shape of objects by driving points toward their rest configuration,
allowing the material to preserve its structural integrity while still interacting dynamically with textiles
and other objects. For the lucy scene, we increased the simulation sub-step count fivefold over the
default to robustly handle collisions with the statue’s complex geometry. To simulate wind-induced
fluttering in the flags, single-flag, and tube scenes, we applied external forces using a POP Wind node
that blows parallel to the ground plane.

5 Analysis

5.1 Existing Algorithms with PhysGaia

Implementation On the proposed PhysGaia dataset, we test the existing 4D Gaussian Splatting
baselines: D-3DGS [32]], 4DGS [33], STG [34]], and SOM [[14]. Except for SOM [14]], which is
specialized for monocular setup, all models were tested under both monocular and multiview setup.
For evaluation, we adopt standard image quality metrics: peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM) [[77]], and learned perceptual image patch similarity (LPIPS) [[78]].
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(a) GT image (b) D-3DGS [32] (c) 4DGS [33]] (d) STG [34] (e) SOM [[14]

Figure 5: Qualitative results of existing 4DGS methods on the ship and pancake scenes show that all
methods frequently exhibit needle-like artifacts and under-reconstruct dynamic elements.

Quantitative and qualitative results Table[3|shows average quantitative results across material
categories. While multiview setups generally offer better reconstruction performance than monocular
ones, even multiview results achieve PSNR scores below 30. This highlights the difficulty of
reconstructing complex multi-object interactions in our dataset, suggesting that incorporating physics-
aware priors is crucial for accurate capture, rather than relying solely on RGB image fitting. SOM [14]],
which typically performs well on other datasets, does not consistently lead on ours as much as we
expected. We presume its motion-factorization struggles with highly dynamic phenomena such
as splashing and multiple interacting objects. Also, its heavy reliance on external modules like
point trackers leads to performance drops when these modules fail in challenging scenes. Figure 3]
shows qualitative results with monocular settings; all methods show need-like artifacts and some
under-reconstruction of dynamic regions. Detailed results are available in the supplementary material.

5.2 Limitation on Physical Realism

We further analyze the inherent limitations of existing 4D
Gaussian Splatting methods. Since Gaussian Splatting is an
explicit representation, the motion of Gaussian primitives is
expected to closely follow the actual trajectories of the scene.
However, we observed that reconstructed trajectories often
deviate from the ground truth, especially in liquid and gas
scenes as shown in Figure[6] In such cases, photorealistic
appearance can be achieved without faithfully modeling true (a) 4DGS [33] (b) Ground truth
motion due to their color similarity, allowing Gaussian prim-

itives to remain near the surface and just fluctuate locally, Figure 6: (a) Trajectories of gaussian
rather than follow the actual upward movement. primitives from 4DGS [33] and (b) GT

6 Conclusion

We propose a novel physics-aware dataset, PhysGaia, specifically designed to understand physics in
dynamic scenes, particularly for Dynamic Novel View Synthesis (DyNVS). Comprising 17 diverse
scenes, our dataset captures complex multi-object interactions with a wide variety of materials. Each
scene is faithfully generated using material-specific physics solvers, ensuring adherence to physical
laws and providing rich ground-truth physics data including 3D particle trajectories and physics
parameters. This ground truth data uniquely enables the evaluation of physics reasoning. We also test
state-of-the-art DyNVS methods on PhysGaia, revealing their fundamental limitations in achieving
physical realism and highlighting significant potential for improvement. We believe PhysGaia will
be a critical resource that accelerates progress in physics-aware dynamic scene understanding.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [TODO]
Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: [TODO]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

¢ The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [TODO]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .
Justification: [TODO]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [TODO)]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our dataset follows CreativeCommons-BY-NC. Please check our supplemen-
tary document for the details.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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