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Abstract

We introduce PhysGaia, a novel physics-aware dataset specifically designed for1

Dynamic Novel View Synthesis (DyNVS), encompassing both structured objects2

and unstructured physical phenomena. Unlike existing datasets that primarily focus3

on photorealistic reconstruction, PhysGaia is created to actively support physics-4

aware dynamic scene modeling. Our dataset provides complex dynamic scenarios5

with rich interactions among multiple objects, where they realistically collide with6

each other and exchange forces. Furthermore, it contains a diverse range of physical7

materials, such as liquid, gas, textile, and viscoelastic substances, which moves8

beyond the rigid bodies prevalent in existing datasets. All scenes in PhysGaia are9

faithfully generated to strictly adhere to physical laws, leveraging carefully selected10

material-specific physics solvers. To enable quantitative evaluation of physical11

modeling, our dataset provides essential ground-truth information, including 3D12

particle trajectories and physics parameters, e.g., viscosity. To facilitate research13

adoption, we also provide essential integration pipelines for using state-of-the-14

art 4D Gaussian splatting models with our dataset and report theirs results. By15

addressing the critical lack of datasets for physics-aware modeling, PhysGaia will16

significantly advance research in dynamic view synthesis, physics-based scene17

understanding, and deep learning models integrated with physical simulation–18

ultimately enabling more faithful reconstruction and interpretation of complex19

dynamic scenes.20

1 Introduction21

Since the introduction of Neural Radiance Fields (NeRF), Novel View Synthesis (NVS) algorithms22

based on deep learning have advanced rapidly. While early research primarily targeted static scenes,23

recent efforts have extended the scope to dynamic scene understanding to better support diverse and24

interactive AR/VR applications. This emerging direction, known as Dynamic Novel View Synthesis25

(DyNVS), aims to reconstruct 4D scenes from input videos and synthesize photorealistic images at26

novel viewpoints and time steps that are not seen during training.27

The evolution of DyNVS has been closely tied to the development of suitable datasets. Early DyNVS28

datasets [1–3] primarily provided multiview training videos and typically involved only limited29

object motion. These datasets laid the foundation for early DyNVS research [2, 4–10], which30

focused on modeling scene dynamics by deforming canonical geometries over time. Recently, to31

better support AR/VR applications, datasets captured using handheld mobile devices have been32

introduced [6, 11, 12]. These datasets consist of monocular videos, and recent research has focused33

on mitigating overfitting under such conditions. Building on these datasets, subsequent work [13–19]34

has commonly adopted 4D Gaussian Splatting (4DGS) models, with a primary focus on resolving the35

inherent ambiguities of monocular video reconstruction and achieving photorealistic rendering.36
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(a) Liquid with FLIP solver: Hanok (left) and Ship (right)

(b) Gas with Pyro solver: Box-smoke (left) and Pisa (right)

(c) Viscoelastic substances with MPM solver: Pancake (left) and Jelly party (right)

(d) Textile with Vellum solver: Lucy (left) and Basin (right)

Figure 1: Examples from the proposed physics-aware dataset, PhysGaia. They exhibit complex
physical interactions between multiple objects composed of diverse materials such as liquid, gas,
viscoelastic substance, and textile. This dataset will foster physics reasoning in dynamic scenes.

As DyNVS continues to advance, a natural next step is to move beyond photorealism and incorporate37

physical realism—enabling models not only to render how scenes look, but also to reason about how38

they behave. Recent pioneering works [20–24] have begun exploring this direction by integrating39

differentiable physics simulation into 4DGS frameworks. Despite this growing interest, current40

research largely remains limited to 4D generation or simplified DyNVS scenarios [24, 25], often41

restricted to single object or single material. Consequently, more complex senarios—such as multi-42

object interactions or the modeling of diverse physical materials like liquids and gases—are still43

significantly underexplored. In response, we introduce PhysGaia, a new benchmark designed to44

support and accelerate research in these emerging and challenging directions.45

Our contributions are summarized as follows:46

• We introduce PhysGaia, a physics-aware dataset featuring rich interactions among multiple47

objects and encompassing a wide range of physical materials, including liquids, gases,48

textiles, and viscoelastic substances, as illustrated in Figure 1.49

• PhysGaia provides essential ground-truth information, such as 3D particle trajectories and50

physical parameters, enabling quantitative evaluation of physical modeling.51

• We test existing state-of-the-art DyNVS methods on PhysGaia, revealing their fundamental52

limitations in achieving physical realism and demonstrating the potential for improvement53

in this field.54
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Table 1: Comparison in existing Dynamic Novel View Synthesis (DyNVS) datasets. “# total scene”
denotes the number of scenes having test videos for DyNVS evaluation. “# physics” indicates the
number of scenes exhibiting physical phenomena like gas, liquid, viscoelastic, or textiles. Unlike
existing datasets, our dataset provides diverse scenes containing complex multi-object interactions.
Also, our dataset contains the ground-truth physics information such as physics parameters like
viscosity, and ground-truth 3D trajectories.

Datasets Scene Stats Physics Information Capture Type# total scene # physics Interaction Physics param. 3D Traj.

Plenoptic [1] 6 1(gas) No No No Multiview
D-NeRF [2] 8 1(viscoelastic) No No No Monocular

NVIDIA Dynamic [3] 8 0 No No No Monocular
Nerfies [6] 4 0 No No No Monocular

HyperNeRF [11] 4 0 No No No Monocular
DyCheck [12] 7 1(textile) No No No Monocular
NeRF-DS [48] 8 0 No No No Monocular
EvDNeRF [49] 6 0 No No No Multiview

Synthetic Soccer [50] 3 0 No No No Multiview
HDR-HexPlane [51] 8 0 No No No Multiview

PhysGaia (Ours) 17 17 Yes Yes Yes Multiview/ Monocular

The rest of this paper is organized as follows. Section 2 reviews related work and highlights the55

uniqueness of our dataset. We discuss the main properties and potential research enabled by our56

dataset in Section 3. Section 4 details material-specific physics solvers used for dataset construction57

and methodologies for generating multi-object interaction scenarios. Section 5 shows our analysis,58

including evaluations of existing 4DGS methods on PhysGaia, We conclude the paper in Section 6.59

2 Related Work60

2.1 Dynamic Novel View Synthesis61

In recent years, significant advances have been made in novel view synthesis [26–31]. Although this62

field initially have focused on static scene reconstruction but now it extended to handling dynamic63

scenes, which is known as Dynamic Novel View Synthesis (DyNVS). Early DyNVS methods were64

built on Neural Radiance Fields (NeRF) [4–10], which usually modeled scene dynamics either by65

implictly modeling with temporal inputs [4, 5] or directly estimating the time-wise deformation66

of canonical geometry through auxiliary neural networks [6–10]. Following the emergence of67

3D Gaussian Splatting (3DGS)[31], recent DyNVS research has shifted toward Gaussian-based68

representations, leading to the development of 4D Gaussian Splatting (4DGS) [16, 32–43]. In 4DGS,69

an additional deformation network is employed to animate canonical Gaussian primitives over time,70

enabling efficient and high-quality modeling of dynamic scenes.71

Modeling dynamic scenes with 4DGS is now leaning towards incorporating physical laws to govern72

motion. PhysGaussian [20] pioneers this by combining an MPM simulator with Gaussian Splatting,73

where each Gaussian primitive is handled as a particle within the MPM’s particle-grid simulation.74

This work has inspired many subsequent studies [25, 24, 44–47] integrating physics-aware priors75

into 4DGS; however, these efforts remain largely confined to generation tasks [44–47], with only a76

few addressing Dynamic Novel View Synthesis (DyNVS) [25, 24]. Even for DyNVS, methods are77

typically limited to single objects or single materials, with most focusing on viscoelastic substances.78

Consequently, exploring physics-aware DyNVS research with rich object interactions with diverse79

physical materials remains underexplored, and we believe our dataset can serve as a foundation for80

this direction.81

2.2 4D Datasets for Dynamic Novel View Synthesis82

Table 1 provides a comparative overview of our dataset alongside existing multiview and monocular83

DyNVS datasets. The initial DyNVS datasets [1–3] primarily employed multiview configurations84

or captured scenes with very limited motion, typically involving mostly rigid objects. These early85

datasets paved the way for research into DyNVS, with subsequent work [2, 4–10] exploring paradigms86

of deforming canonical geometries over time to model scene dynamics.87
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Table 2: Comparison with physics-simulated datasets. “Multi-obj. Inter.” denotes multi-object
interaction. Unlike existing datasets, our PhysGaia offers rich object interactions, a diverse range
of physical materials, and access to accurate physics parameters and ground truth 3D trajectories,
making it a uniquely valuable resource for advancing physics-based understanding of dynamic scenes.

Datasets Multi-obj. Inter. Materials Physics Information
Liquids Gas Textile Viscoelastic Physics params. 3D traj.

DNG [57] Yes X No Yes
CLOTH4D [58] Yes X No Yes
4D-DRESS [59] Yes X No Yes

Rasheed et al. [60] No X Yes No
Deng et al. [61] No X No No
PAC-NeRF [62] No X X Yes Yes

Spring-Gaus [25] No X Yes Yes
ScalarFlow [63] No X Yes Yes

PhysGaia (Ours) Yes X X X X Yes Yes

(a) PAC-NeRF [62] (b) Spring-Gaus [25] (c) ScalarFlow [63]

Figure 2: Visualization of datasets most similar to our PhysGaia. While all of these datasets address
physical phenomena, they are limited in several key aspects: limited coverage of physical materials,
overly simplified dynamics, and an absence of rich multi-object interactions.

To advance DyNVS toward practical AR/VR applications, more user-friendly datasets, often captured88

using handheld mobile phones, were later introduced. Nerfies [6] pioneered handheld iPhone captures,89

though its scenes remained largely static scenarios. HyperNeRF [11] then introduced more rapid and90

varied motions, and DyCheck [12] further resolved camera teleportation issues seen in HyperNeRF.91

These monocular datasets have motivated research mitigating overfitting to training videos in these92

settings. Some approaches [13, 15, 14] focus on leveraging additional priors such as diffusion93

models [52], depth estimation model [53], and point trackers [54], while others [16, 14, 18, 17, 19]94

emphasize constraining deformation adopting techniques like motion factorization [55] or As-Rigid-95

As-Possible (ARAP) regularization [56]. Nonetheless, the primary objective across these datasets96

remains photorealistic reconstruction, with limited emphasis on physics-aware dynamic modeling 1.97

Unlike these existing DyNVS datasets, our PhysGaia offers the scenes containing multi-object98

interaction with diverse physics materials, as shown in Table 1. Although some datasets [1, 2, 12]99

include scenes with physical phenomena, these are very limited in number, not generated using100

accurate physics solvers, and lack complex multi-object interactions. In this context, PhysGaia101

occupies a unique position and holds strong potential to spur advancements in physics-aware dynamic102

scene modeling.103

2.3 4D Datasets from Physics Simulator104

To provide a comprehensive comparison, we also compare our PhysGaia with the 4D datasets105

generated via physics simulation, as summarized in Table 2. Since DyNVS tasks require multiview106

RGB imagery, we focus on the existing datasets that offer such data. Figure 2 visualizes several107

representative datasets, including PAC-NeRF [62], Spring-Gaus [25], and ScalarFlow [63].108

Some existing datasets support multi-object interactions, but they either lack rich interaction dynamics109

or are limited to a single type of material. For instance, clothed human datasets [57–59] naturally110

exhibit textile-body interactions, yet are restricted to textile materials and human-centric motions.111

In terms of ground-truth physical information, a few datasets [62, 25, 63] provide both physical112

1Note that some recent datasets have also been introduced, but they are typically tailored to specific scenarios,
such as event cameras [49], HDR rendering [51], specular lighting effects [48], or human motion capture [50].
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(a) Multi-object interaction: Jelly party (b) Multi-object interaction: Ship

(c) Splashing (non-locally rigid) (d) Specular Modeling (e) Refraction

Figure 3: Visualization of physics properties in PhysGaia. Alongside multi-object interactions,
PhysGaia also includes various physical phenomena like splashing, refraction, and specular effects.

parameters and 3D trajectories, but these datasets are also typically confined to single-material, do113

not capture the kind of rich, multi-object interactions, as shown in Figure 2a, 2b, and 2c. PAC-114

NeRF [62], for instance, focuses on liquids and viscoelastic materials; however, its liquid scenarios115

are constrained to highly viscous flows, making them behaviorally similar to viscoelastic materials.116

Spring-Gaus [25] is restricted to viscoelasticity, while ScalarFlow [63] concentrates on gas. In117

contrast, our PhysGaia directly tackles these limitations by providing rich object interactions, a118

diverse range of physical materials, and access to accurate simulation parameters and trajectories,119

which makes it a uniquely valuable dataset for advancing physics understanding of dynamic scenes.120

3 Dataset Properties and Research Impact121

We propose PhysGaia to advance physically realistic reconstruction in DyNVS, moving beyond122

mere photorealism. As highlighted in Tables 1 and 2 within Section 2, our dataset uniquely features123

complex multi-object interactions involving a diverse range of physical materials, distinguishing124

it within the DyNVS landscape. We believe this comprehensive dataset holds significant potential125

to enhance the understanding of physics in dynamic scenes. In this section, we detail the specific126

properties of our dataset and discuss the future research directions it enables.127

3.1 Dataset Properties128

Complex scenarios with physics-aware dynamics Our PhysGaia dataset consists of 17 scenes129

with multi-object interaction, as visualized in Figure 1. We further visualize the detailed examples in130

Figure 3a and Figure 3b, which exhibit viscoelastic objects colliding leading rapid moving direction131

change and rigid-liquid surface hitting leading splashing, respectively. To ensure the scenes adhere to132

physical laws with accurately calculated force exchange among objects, we carefully select material-133

specific solvers: FLIP for liquids, Pyro for gases, Vellum for textiles, and MPM for viscoelastic134

materials. Further details on simulation configurations for handling multi-object interactions can be135

found in Section 4.136

Beyond multi-object interactions, our dataset also exhibits various physical phenomena, such as137

non-locally rigid motion commonly observed in liquid and gas scenes, specular reflection, and138

refraction, as shown in Figures 3c, 3d, and 3e, respectively. These properties enhance the realism of139

our dataset and enable a wide range of downstream tasks and research applications.140

Providing physics parameters In contrast to real-world video datasets, where the ease of capture is141

offset by inaccessible underlying physics, our simulated dataset offers complete access to all physical142

information. This ground-truth includes 3D particle trajectories and physics parameters such as143
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viscosity, Young’s modulus, Poisson’s ratio, and temperature for gas scene2. This comprehensive144

provision enables precise evaluation of physical reasoning in dynamic scenes, directly facilitating the145

future research directions outlined in Subsection 3.2.146

Supporting diverse DyNVS tasks Our dataset uniquely supports both multiview and monocular147

DyNVS. Unlike most multiview datasets [1, 49–51] with videos captured from fixed camera positions148

like CCTV, ours provides several moving monocular video sequences from independent trajectories149

as training videos. This allows diverse training configurations; using full sequences corresponds150

to multiview DyNVS task, while using a single sequence corresponds to monocular DyNVS task.151

The monocular setup matches the DyCheck [12] dataset, providing realistic handheld camera inputs152

without synthetic teleportation. For evaluation, we employ two static cameras with a large baseline.153

(a) RGB (b) Depth (c) Normal (d) Re-lighted

Figure 4: Examples of diverse modalities that users can
generate from the provided simulation node graphs.

Customizability We provide the com-154

plete simulation node graphs and their155

exact parameter settings used to build156

our dataset. These graphs encompass all157

relevant components, including physics158

solvers, source geometries, camera posi-159

tions, lights, materials, and texture controls.160

Thus, by modifying these nodes, users can161

easily generate customized scenes or addi-162

tional modalities such as depth maps, sur-163

face normals, and re-lighted images tailored to their specific downstream tasks, as shown in Figure 4.164

Accessibility Our PhysGaia benchmark is designed for research-friendly and easy access, providing165

integration pipelines that enable the use of state-of-the-art 4D Gaussian Splatting models [14, 32–34]166

with our data. Furthermore, we include COLMAP-reconstructed point clouds for each scene. These167

provisions aim to facilitate the adoption of our dataset by researchers working with state-of-the-art168

DyNVS models.169

3.2 Potential Research170

This subsection highlights the potential impact of our PhysGaia dataset by outlining several promising171

future research directions it uniquely enables.172

Physical reasoning of dynamic scenes Since our PhysGaia dataset provides ground-truth physics173

information, it facilitates precise evaluation of physical reasoning in dynamic scenes. For instance,174

ground-truth physics parameters like viscosity can be used to evaluate inverse physics estimation175

methods, where differentiable simulators are employed to optimize these parameters. Furthermore,176

unlike existing 4DGS research that primarily focuses on photorealism and relies on ground-truth177

RGB images, our dataset offers ground-truth 3D trajectories, enabling evaluation of the actual motion178

of individual Gaussian primitives in 4DGS. We believe this unique feature establishes our dataset as179

a valuable benchmark for developing and evaluating physics-aware DyNVS models.180

Multi-object interaction While recent research integrates physics into DyNVS [24, 25], it largely181

remains limited to single materials and often single objects within scenes. As a result, the crucial182

aspect of physics reasoning for interactions between multiple objects in DyNVS – particularly183

the estimation of force exchange and deformation during contact – remains largely unexplored.184

We believe our novel dataset, specifically designed with complex multi-object interactions, will185

be instrumental in enabling significant future research in multi-physics modeling and adaptive186

representations for handling hybrid scenes.187

Integration of material-specific physics solver The dominant approach for integrating physics into188

DyNVS algorithms currently involves adopting differentiable simulators [64–69], treating Gaussian189

primitives as particles in simulators. However, we emphasize that different physical phenomena are190

best captured by different physics solvers, a principle reflected in our dataset construction process191

2Note that temperature itself is very crucial component when adopting smoke-related simulator to physical
reasoning for buoyancy calculation
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detailed in Section 4. This can guide researchers seeking to integrate more appropriate solvers tailored192

to specific material behaviors, such as fluids, cloth, smoke. For example, the FLIP [70] solver excels193

at simulating incompressible fluids due to its hybrid particle-grid representation, offering greater194

stability and realism compared to purely particle-based SPH-based solver. Similarly, thermodynamic195

effects like temperature and buoyancy are crucial for smoke simulation, typically represented using196

voxel-based grids. Integrating such volumetric solvers into particle-based frameworks like Gaussian197

splatting, however, remains a largely unexplored area.198

4 Dataset Construction199

This section details solver properties for liquids, gases, viscoelastic substances, and textiles, along with200

some simulation details for dynamics with multi-object interactions. Please refer to our supplemental201

document for other simulation configurations.202

4.1 Common Setup203

Simulator selection We select SideFX Houdini 20.5 as the foundation of our physics-informed204

data-generation pipeline because it integrates multiple physics solvers within a unified procedural205

environment. By sharing a common computational graph, it ensures consistent multi-material206

interactions under uniform boundary conditions. We access simulation data such as particle positions207

and flow fields on a per-frame basis via its Python API.208

Rendering We render all frames at a resolution of 640× 720, using NVIDIA OptiX denoiser and209

path tracing with 256 samples per pixel. Scenes are illuminated with 1–3 point lights (intensity:210

600–4000), shadows are disabled in textile-focused scenes like tube-flag to emphasize geometry.211

4.2 Liquid212

For liquid scenes, we adopt the Fluid-Implicit Particle (FLIP) solver [70], a hybrid particle-grid213

method. FLIP maintains particle velocities throughout the simulation, using the grid solely to compute214

and apply forces such as pressure and viscosity. This approach preserves fine-scale, high-frequency215

particle velocities, crucial for modeling realistic and rapid liquid behavior while adhering to the216

Navier–Stokes equations. Although the Material Point Method (MPM) [64] solver can also model217

fluids, its direct velocity aggregation onto the grid limits its ability to capture highly dynamic fluid218

phenomena like splashing. While particle-only-based solver [71] are another option, FLIP is generally219

better suitable for incompressible fluids thanks to its hybrid grid-based representation.220

Dynamic interactions For the ice and hanok scenes, where fluid spills onto fixed objects, we221

adopt the surface operator to simulate multi-object interaction. Since the interaction occurs primarily222

near the surface, this approach reduces computational overhead. In contrast, for the ship and cereal223

scenes–where objects fall into liquid, causing both fluid and objects to move and influence each other224

with force exchange–we use a dynamic operator to accurately model these more complex interactions.225

4.3 Gas226

For gas (smoke) simulation, we utilize the Pyro solver [72], which models the temperature field227

essential for accurately capturing buoyancy effects in gaseous materials. Pyro employs grid-based228

representations of density, velocity, and temperature, ensuring compliance with the Navier–Stokes229

equations governing fluid mechanics. Since the ground-truth motion is represented as a velocity field230

and storing full velocity fields can require up to 2GB per frame, we provide a subsampled set of231

particle trajectories per scene to facilitate efficient data storage and processing.232

Dynamic interactions In the pisa scene, we reduced the voxel size from the default 0.1 to 0.05233

to better capture the tower’s intricate details and added a lateral wind of speed 2 to wrap the plume234

around it. For the other scenes involving this material, we used the default simulation settings.235

4.4 Viscoelastic Substances236

MPM [64] extends FLIP [73] to handle solid mechanics and is ideal for simulating chunk-based,237

viscoelastic substances like snow, jelly, and soil. It aggregates particle information on a grid, performs238
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Table 3: Quantitative results of existing 4D Gaussian Splatting models on the proposed PhysGaia
dataset. While multiview setups generally offer better reconstruction performance than monocular
ones, even multiview results achieve PSNR scores below 30. This highlights the substantial difficulty
in reconstructing the complex multi-object interactions in our dataset.

Capture Type Method Liquid Gas
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Monocular

D-3DGS [32] 22.7 0.87 0.22 21.9 0.89 0.16
4DGS [33] 24.2 0.87 0.23 21.7 0.88 0.17
STG [34] 19.2 0.72 0.39 21.9 0.85 0.24
SOM [14] 18.2 0.71 0.54 20.5 0.83 0.28

Multiview
D-3DGS [32] 22.2 0.87 0.24 23.7 0.91 0.13

4DGS [33] 25.1 0.88 0.22 24.2 0.89 0.17
STG [34] 20.8 0.75 0.40 25.0 0.91 0.19

Capture Type Method Viscoelastic materials Textile
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Monocular

D-3DGS [32] 20.1 0.84 0.15 22.1 0.83 0.18
4DGS [33] 19.5 0.82 0.18 24.9 0.84 0.18
STG [34] 13.6 0.63 0.40 21.9 0.84 0.21
SOM [14] 12.0 0.53 0.49 19.3 0.78 0.25

Multiview
D-3DGS [32] 22.2 0.89 0.10 27.7 0.90 0.12

4DGS [33] 21.0 0.85 0.15 26.6 0.87 0.15
STG [34] 17.2 0.70 0.36 21.1 0.81 0.25

computation, and reprojects to particles–making it effective for capturing deformation and internal239

force propagation.240

Dynamic interactions For the pancake scene, we reduce the grid size from the default 0.025 to241

0.002 to more faithfully capture its thin-sheet dynamics, while other scenes use the default grid size.242

To suppress spurious artifacts that can arise from aggregating particle properties onto the grid, we243

increase the number of samples participating in node calculations by oversampling. The oversampling244

scales are set to 6, 2, 4, and 2 for the bouncing balls, cow, jelly party, and pancake scenes, respectively.245

Additionally, for the bouncing balls scene, we add a static bowl-shaped collider so that the falling246

balls rebound off both one another and the bowl’s surface.247

4.5 Textile248

For textile materials, we adopt the Vellum solver [74], which is based on the Extended Position249

Based Dynamics (XPBD) framework [75]. XPBD improves upon classical Position Based Dynamics250

(PBD) [76] by integrating a Lagrange multiplier and its update. This effectively decouples material251

stiffness from the solver’s time-step size and iteration count, making it a widely used method for252

simulating deformable objects, especially cloth.253

Dynamic interactions To simulate interactions between objects and textiles–where both move and254

exchange forces, as seen especially in the basin scene–we employ the shape match constraint. This255

constraint helps maintain the overall shape of objects by driving points toward their rest configuration,256

allowing the material to preserve its structural integrity while still interacting dynamically with textiles257

and other objects. For the lucy scene, we increased the simulation sub-step count fivefold over the258

default to robustly handle collisions with the statue’s complex geometry. To simulate wind-induced259

fluttering in the flags, single-flag, and tube scenes, we applied external forces using a POP Wind node260

that blows parallel to the ground plane.261

5 Analysis262

5.1 Existing Algorithms with PhysGaia263

Implementation On the proposed PhysGaia dataset, we test the existing 4D Gaussian Splatting264

baselines: D-3DGS [32], 4DGS [33], STG [34], and SOM [14]. Except for SOM [14], which is265

specialized for monocular setup, all models were tested under both monocular and multiview setup.266

For evaluation, we adopt standard image quality metrics: peak signal-to-noise ratio (PSNR), structural267

similarity index measure (SSIM) [77], and learned perceptual image patch similarity (LPIPS) [78].268
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(a) GT image (b) D-3DGS [32] (c) 4DGS [33] (d) STG [34] (e) SOM [14]

Figure 5: Qualitative results of existing 4DGS methods on the ship and pancake scenes show that all
methods frequently exhibit needle-like artifacts and under-reconstruct dynamic elements.

Quantitative and qualitative results Table 3 shows average quantitative results across material269

categories. While multiview setups generally offer better reconstruction performance than monocular270

ones, even multiview results achieve PSNR scores below 30. This highlights the difficulty of271

reconstructing complex multi-object interactions in our dataset, suggesting that incorporating physics-272

aware priors is crucial for accurate capture, rather than relying solely on RGB image fitting. SOM [14],273

which typically performs well on other datasets, does not consistently lead on ours as much as we274

expected. We presume its motion-factorization struggles with highly dynamic phenomena such275

as splashing and multiple interacting objects. Also, its heavy reliance on external modules like276

point trackers leads to performance drops when these modules fail in challenging scenes. Figure 5277

shows qualitative results with monocular settings; all methods show need-like artifacts and some278

under-reconstruction of dynamic regions. Detailed results are available in the supplementary material.279

5.2 Limitation on Physical Realism280

(a) 4DGS [33] (b) Ground truth

Figure 6: (a) Trajectories of gaussian
primitives from 4DGS [33] and (b) GT

We further analyze the inherent limitations of existing 4D281

Gaussian Splatting methods. Since Gaussian Splatting is an282

explicit representation, the motion of Gaussian primitives is283

expected to closely follow the actual trajectories of the scene.284

However, we observed that reconstructed trajectories often285

deviate from the ground truth, especially in liquid and gas286

scenes as shown in Figure 6. In such cases, photorealistic287

appearance can be achieved without faithfully modeling true288

motion due to their color similarity, allowing Gaussian prim-289

itives to remain near the surface and just fluctuate locally,290

rather than follow the actual upward movement.291

6 Conclusion292

We propose a novel physics-aware dataset, PhysGaia, specifically designed to understand physics in293

dynamic scenes, particularly for Dynamic Novel View Synthesis (DyNVS). Comprising 17 diverse294

scenes, our dataset captures complex multi-object interactions with a wide variety of materials. Each295

scene is faithfully generated using material-specific physics solvers, ensuring adherence to physical296

laws and providing rich ground-truth physics data including 3D particle trajectories and physics297

parameters. This ground truth data uniquely enables the evaluation of physics reasoning. We also test298

state-of-the-art DyNVS methods on PhysGaia, revealing their fundamental limitations in achieving299

physical realism and highlighting significant potential for improvement. We believe PhysGaia will300

be a critical resource that accelerates progress in physics-aware dynamic scene understanding.301
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[23] Borycki, P., Smolak, W., Waczyńska, J., Mazur, M., Tadeja, S., Spurek, P.: Gasp: Gaussian349

splatting for physic-based simulations (2024) arXiv preprint arXiv:2409.05819.350

[24] Jiang, H., Hsu, H.Y., Zhang, K., Yu, H.N., Wang, S., Li, Y.: Phystwin: Physics-informed351

reconstruction and simulation of deformable objects from videos (2025) arXiv preprint352

arXiv:2503.17973.353

[25] Zhong, L., Yu, H.X., Wu, J., Li, Y.: Reconstruction and simulation of elastic objects with354

spring-mass 3d gaussians. In ECCV. (2024)355

[26] Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf:356

Representing scenes as neural radiance fields for view synthesis. In ECCV. (2020)357

[27] Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In ECCV. (2022)358

[28] Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-fidelity neural359

rendering at 200fps. In ICCV. (2021)360

[29] Wang, L., Zhang, J., Liu, X., Zhao, F., Zhang, Y., Zhang, Y., Wu, M., Yu, J., Xu, L.: Fourier361

plenoctrees for dynamic radiance field rendering in real-time. In CVPR. (2022)362

[30] Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multireso-363

lution hash encoding. In ACM TOG. (2022)364

[31] Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for real-time365

radiance field rendering. In ACM ToG. (2023)366

[32] Yang, Z., Gao, X., Zhou, W., Jiao, S., Zhang, Y., Jin, X.: Deformable 3d gaussians for367

high-fidelity monocular dynamic scene reconstruction. In CVPR. (2024)368

[33] Wu, G., Yi, T., Fang, J., Xie, L., Zhang, X., Wei, W., Liu, W., Tian, Q., Wang, X.: 4d gaussian369

splatting for real-time dynamic scene rendering. In CVPR. (2024)370

[34] Li, Z., Chen, Z., Li, Z., Xu, Y.: Spacetime gaussian feature splatting for real-time dynamic view371

synthesis. In CVPR. (2024)372

[35] Lin, Y., Dai, Z., Zhu, S., Yao, Y.: Gaussian-flow: 4d reconstruction with dynamic 3d gaussian373

particle. In CVPR. (2024)374

[36] Lu, Z., Guo, X., Hui, L., Chen, T., Yang, M., Tang, X., Zhu, F., Dai, Y.: 3d geometry-aware375

deformable gaussian splatting for dynamic view synthesis. In CVPR. (2024)376

[37] Guo, Z., Zhou, W., Li, L., Wang, M., Li, H.: Motion-aware 3d gaussian splatting for efficient377

dynamic scene reconstruction. In TCSVT. (2024)378

[38] Liang, Y., Khan, N., Li, Z., Nguyen-Phuoc, T., Lanman, D., Tompkin, J., Xiao, L.: Gaufre:379

Gaussian deformation fields for real-time dynamic novel view synthesis. In WACV. (2025)380

[39] Lei, J., Weng, Y., Harley, A., Guibas, L., Daniilidis, K.: Mosca: Dynamic gaussian fusion from381

casual videos via 4d motion scaffolds (2024) arXiv preprint arXiv:2405.17421.382

[40] Duan, Y., Wei, F., Dai, Q., He, Y., Chen, W., Chen, B.: 4d-rotor gaussian splatting: towards383

efficient novel view synthesis for dynamic scenes. In SIGGRAPH. (2024)384

[41] Waczynska, J., Borycki, P., Kaleta, J., Tadeja, S., Spurek, P.: D-miso: Editing dynamic 3d385

scenes using multi-gaussians soup. In NeurIPS. (2024)386

[42] Liu, Q., Liu, Y., Wang, J., Lyv, X., Wang, P., Wang, W., Hou, J.: Modgs: Dynamic gaussian387

splatting from casually-captured monocular videos. In ICLR. (2025)388

[43] Stearns, C., Harley, A., Uy, M., Dubost, F., Tombari, F., Wetzstein, G., Guibas, L.: Dynamic389

gaussian marbles for novel view synthesis of casual monocular videos. In SIGGRAPH. (2024)390

11



[44] Jiang, Y., Yu, C., Xie, T., Li, X., Feng, Y., Wang, H., Li, M., Lau, H., Gao, F., Yang, Y., et al.:391

Vr-gs: A physical dynamics-aware interactive gaussian splatting system in virtual reality. In392

SIGGRAPH. (2024)393

[45] Lin, Y., Lin, C., Xu, J., Mu, Y.: Omniphysgs: 3d constitutive gaussians for general physics-based394

dynamics generation. In ICLR. (2025)395

[46] Huang, T., Zhang, H., Zeng, Y., Zhang, Z., Li, H., Zuo, W., Lau, R.W.: Dreamphysics: Learning396

physics-based 3d dynamics with video diffusion priors. In AAAI. (2025)397

[47] Qiu, R.Z., Yang, G., Zeng, W., Wang, X.: Feature splatting: Language-driven physics-based398

scene synthesis and editing. In ECCV. (2024)399

[48] Yan, Z., Li, C., Lee, G.H.: Nerf-ds: Neural radiance fields for dynamic specular objects. In400

CVPR. (2023)401

[49] Bhattacharya, A., Madaan, R., Cladera, F., Vemprala, S., Bonatti, R., Daniilidis, K., Kapoor, A.,402

Kumar, V., Matni, N., Gupta, J.K.: Evdnerf: Reconstructing event data with dynamic neural403

radiance fields. In WACV. (2024)404

[50] Lewin, S., Vandegar, M., Hoyoux, T., Barnich, O., Louppe, G.: Dynamic nerfs for soccer scenes.405

In Multimedia Content Analysis in Sports. (2023)406

[51] Wu, G., Yi, T., Fang, J., Liu, W., Wang, X.: Fast high dynamic range radiance fields for dynamic407

scenes. In 3DV. (2024)408

[52] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis409

with latent diffusion models. In CVPR. (2022)410

[53] Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: Unleashing the411

power of large-scale unlabeled data. In CVPR. (2024)412

[54] Yang, Z., Du, Y., Sun, D., Jampani, V., Liu, C., Freeman, W.T., Tenenbaum, J.B., Wu, J.:413

Cotracker: Transformers for tracking any point. (2023) arXiv preprint arXiv:2303.06583.414

[55] Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factoriza-415

tion method. International Journal of Computer Vision (1992)416

[56] Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. TOG (2007)417

[57] Zhang, M., Wang, T.Y., Ceylan, D., Mitra, N.J.: Dynamic neural garments. TOG (2021)418

[58] Zou, X., Han, X., Wong, W.: Cloth4d: A dataset for clothed human reconstruction. In CVPR.419

(2023)420

[59] Wang, W., Ho, H.I., Guo, C., Rong, B., Grigorev, A., Song, J., Zarate, J.J., Hilliges, O.: 4D-421

DRESS: A 4d dataset of real-world human clothing with semantic annotations. In CVPR.422

(2024)423

[60] Rasheed, A.H., Romero, V., Bertails-Descoubes, F., Wuhrer, S., Franco, J.S., Lazarus, A.:424

Learning to measure the static friction coefficient in cloth contact. In CVPR. (2020)425

[61] Deng, Y., Yu, H.X., Wu, J., Zhu, B.: Learning vortex dynamics for fluid inference and prediction.426

In ICML. (2023)427

[62] Li, X., Qiao, Y.L., Chen, P.Y., Jatavallabhula, K.M., Lin, M., Jiang, C., Gan, C.: Pac-nerf:428

Physics augmented continuum neural radiance fields for geometry-agnostic system identification.429

In ICLR. (2023)430

[63] Marie-Lena Eckert, Kiwon Um, N.T.: Scalarflow: A large-scale volumetric data set of real-world431

scalar transport flows for computer animation and machine learning. In TOG. (2019)432

[64] Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials.433

Computer Methods in Applied Mechanics and Engineering (1994)434

12



[65] Hu, Y., Li, T.M., Anderson, L., Ragan-Kelley, J., Durand, F.: Taichi: a language for high-435

performance computation on spatially sparse data structures. In TOG. (2019)436

[66] Macklin, M.: Warp: A high-performance python framework for gpu simulation and graph-437

ics. https://github.com/nvidia/warp (March 2022) NVIDIA GPU Technology438

Conference (GTC).439

[67] Authors, G.: Genesis: A universal and generative physics engine for robotics and beyond (2024)440

[68] Hu, Y., Anderson, L., Li, T.M., Sun, Q., Carr, N., Ragan-Kelley, J., Durand, F.: Difftaichi:441

Differentiable programming for physical simulation. In ICLR. (2020)442

[69] Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A., Jiang, C.: A moving least squares443

material point method with displacement discontinuity and two-way rigid body coupling. In444

TOG. (2018)445

[70] Brackbill, J.U., Kothe, D.B., Ruppel, H.M.: Flip: A low-dissipation, particle-in-cell method for446

fluid flow. Computer Physics Communications (1988)447

[71] Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to448

non-spherical stars. Monthly Notices of the Royal Astronomical Society (1977)449

[72] SideFX Software: Pyro solver. https://www.sidefx.com/docs/houdini/pyro/450

intro.html (2012)451

[73] Brackbill, J.U.: Flip: A low-dissipation, particle-in-cell method for fluid flow. Journal of452

Computational Physics (1986)453

[74] SideFX Software: Vellum solver. https://www.sidefx.com/docs/houdini/454

vellum/overview.html (2017)455

[75] Macklin, M., Müller, M., Chentanez, N.: Xpbd: position-based simulation of compliant456

constrained dynamics. In Proceedings of the 9th International Conference on Motion in Games.457

(2016)458

[76] Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. Journal of459

Visual Communication and Image Representation (2007)460

[77] Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error461

visibility to structural similarity. In TIP. (2004)462

[78] Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of463

deep features as a perceptual metric. In CVPR. (2018)464

13

https://github.com/nvidia/warp
https://www.sidefx.com/docs/houdini/pyro/intro.html
https://www.sidefx.com/docs/houdini/pyro/intro.html
https://www.sidefx.com/docs/houdini/pyro/intro.html
https://www.sidefx.com/docs/houdini/vellum/overview.html
https://www.sidefx.com/docs/houdini/vellum/overview.html
https://www.sidefx.com/docs/houdini/vellum/overview.html


NeurIPS Paper Checklist465

1. Claims466

Question: Do the main claims made in the abstract and introduction accurately reflect the467

paper’s contributions and scope?468

Answer: [Yes]469

Justification: [TODO]470

Guidelines:471

• The answer NA means that the abstract and introduction do not include the claims472

made in the paper.473

• The abstract and/or introduction should clearly state the claims made, including the474

contributions made in the paper and important assumptions and limitations. A No or475

NA answer to this question will not be perceived well by the reviewers.476

• The claims made should match theoretical and experimental results, and reflect how477

much the results can be expected to generalize to other settings.478

• It is fine to include aspirational goals as motivation as long as it is clear that these goals479

are not attained by the paper.480

2. Limitations481

Question: Does the paper discuss the limitations of the work performed by the authors?482

Answer: [Yes]483

Justification: [TODO]484

Guidelines:485

• The answer NA means that the paper has no limitation while the answer No means that486

the paper has limitations, but those are not discussed in the paper.487

• The authors are encouraged to create a separate "Limitations" section in their paper.488

• The paper should point out any strong assumptions and how robust the results are to489

violations of these assumptions (e.g., independence assumptions, noiseless settings,490

model well-specification, asymptotic approximations only holding locally). The authors491

should reflect on how these assumptions might be violated in practice and what the492

implications would be.493

• The authors should reflect on the scope of the claims made, e.g., if the approach was494

only tested on a few datasets or with a few runs. In general, empirical results often495

depend on implicit assumptions, which should be articulated.496

• The authors should reflect on the factors that influence the performance of the approach.497

For example, a facial recognition algorithm may perform poorly when image resolution498

is low or images are taken in low lighting. Or a speech-to-text system might not be499

used reliably to provide closed captions for online lectures because it fails to handle500

technical jargon.501

• The authors should discuss the computational efficiency of the proposed algorithms502

and how they scale with dataset size.503

• If applicable, the authors should discuss possible limitations of their approach to504

address problems of privacy and fairness.505

• While the authors might fear that complete honesty about limitations might be used by506

reviewers as grounds for rejection, a worse outcome might be that reviewers discover507

limitations that aren’t acknowledged in the paper. The authors should use their best508

judgment and recognize that individual actions in favor of transparency play an impor-509

tant role in developing norms that preserve the integrity of the community. Reviewers510

will be specifically instructed to not penalize honesty concerning limitations.511

3. Theory assumptions and proofs512

Question: For each theoretical result, does the paper provide the full set of assumptions and513

a complete (and correct) proof?514

Answer: [NA]515
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Justification: [TODO]516

Guidelines:517

• The answer NA means that the paper does not include theoretical results.518

• All the theorems, formulas, and proofs in the paper should be numbered and cross-519

referenced.520

• All assumptions should be clearly stated or referenced in the statement of any theorems.521

• The proofs can either appear in the main paper or the supplemental material, but if522

they appear in the supplemental material, the authors are encouraged to provide a short523

proof sketch to provide intuition.524

• Inversely, any informal proof provided in the core of the paper should be complemented525

by formal proofs provided in appendix or supplemental material.526

• Theorems and Lemmas that the proof relies upon should be properly referenced.527

4. Experimental result reproducibility528

Question: Does the paper fully disclose all the information needed to reproduce the main ex-529

perimental results of the paper to the extent that it affects the main claims and/or conclusions530

of the paper (regardless of whether the code and data are provided or not)?531

Answer: [Yes]532

Justification: [TODO]533

Guidelines:534

• The answer NA means that the paper does not include experiments.535

• If the paper includes experiments, a No answer to this question will not be perceived536

well by the reviewers: Making the paper reproducible is important, regardless of537

whether the code and data are provided or not.538

• If the contribution is a dataset and/or model, the authors should describe the steps taken539

to make their results reproducible or verifiable.540

• Depending on the contribution, reproducibility can be accomplished in various ways.541

For example, if the contribution is a novel architecture, describing the architecture fully542

might suffice, or if the contribution is a specific model and empirical evaluation, it may543

be necessary to either make it possible for others to replicate the model with the same544

dataset, or provide access to the model. In general. releasing code and data is often545

one good way to accomplish this, but reproducibility can also be provided via detailed546

instructions for how to replicate the results, access to a hosted model (e.g., in the case547

of a large language model), releasing of a model checkpoint, or other means that are548

appropriate to the research performed.549

• While NeurIPS does not require releasing code, the conference does require all submis-550

sions to provide some reasonable avenue for reproducibility, which may depend on the551

nature of the contribution. For example552

(a) If the contribution is primarily a new algorithm, the paper should make it clear how553

to reproduce that algorithm.554

(b) If the contribution is primarily a new model architecture, the paper should describe555

the architecture clearly and fully.556

(c) If the contribution is a new model (e.g., a large language model), then there should557

either be a way to access this model for reproducing the results or a way to reproduce558

the model (e.g., with an open-source dataset or instructions for how to construct559

the dataset).560

(d) We recognize that reproducibility may be tricky in some cases, in which case561

authors are welcome to describe the particular way they provide for reproducibility.562

In the case of closed-source models, it may be that access to the model is limited in563

some way (e.g., to registered users), but it should be possible for other researchers564

to have some path to reproducing or verifying the results.565

5. Open access to data and code566

Question: Does the paper provide open access to the data and code, with sufficient instruc-567

tions to faithfully reproduce the main experimental results, as described in supplemental568

material?569
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Answer: [Yes]570

Justification: [TODO]571

Guidelines:572

• The answer NA means that paper does not include experiments requiring code.573

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/574

public/guides/CodeSubmissionPolicy) for more details.575

• While we encourage the release of code and data, we understand that this might not be576

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not577

including code, unless this is central to the contribution (e.g., for a new open-source578

benchmark).579

• The instructions should contain the exact command and environment needed to run to580

reproduce the results. See the NeurIPS code and data submission guidelines (https:581

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.582

• The authors should provide instructions on data access and preparation, including how583

to access the raw data, preprocessed data, intermediate data, and generated data, etc.584

• The authors should provide scripts to reproduce all experimental results for the new585

proposed method and baselines. If only a subset of experiments are reproducible, they586

should state which ones are omitted from the script and why.587

• At submission time, to preserve anonymity, the authors should release anonymized588

versions (if applicable).589

• Providing as much information as possible in supplemental material (appended to the590

paper) is recommended, but including URLs to data and code is permitted.591

6. Experimental setting/details592

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-593

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the594

results?595

Answer: [Yes]596

Justification: [TODO]597

Guidelines:598

• The answer NA means that the paper does not include experiments.599

• The experimental setting should be presented in the core of the paper to a level of detail600

that is necessary to appreciate the results and make sense of them.601

• The full details can be provided either with the code, in appendix, or as supplemental602

material.603

7. Experiment statistical significance604

Question: Does the paper report error bars suitably and correctly defined or other appropriate605

information about the statistical significance of the experiments?606

Answer: [NA]607

Justification: [TODO]608

Guidelines:609

• The answer NA means that the paper does not include experiments.610

• The authors should answer "Yes" if the results are accompanied by error bars, confi-611

dence intervals, or statistical significance tests, at least for the experiments that support612

the main claims of the paper.613

• The factors of variability that the error bars are capturing should be clearly stated (for614

example, train/test split, initialization, random drawing of some parameter, or overall615

run with given experimental conditions).616

• The method for calculating the error bars should be explained (closed form formula,617

call to a library function, bootstrap, etc.)618

• The assumptions made should be given (e.g., Normally distributed errors).619

• It should be clear whether the error bar is the standard deviation or the standard error620

of the mean.621
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• It is OK to report 1-sigma error bars, but one should state it. The authors should622

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis623

of Normality of errors is not verified.624

• For asymmetric distributions, the authors should be careful not to show in tables or625

figures symmetric error bars that would yield results that are out of range (e.g. negative626

error rates).627

• If error bars are reported in tables or plots, The authors should explain in the text how628

they were calculated and reference the corresponding figures or tables in the text.629

8. Experiments compute resources630

Question: For each experiment, does the paper provide sufficient information on the com-631

puter resources (type of compute workers, memory, time of execution) needed to reproduce632

the experiments?633

Answer: [Yes]634

Justification: [TODO]635

Guidelines:636

• The answer NA means that the paper does not include experiments.637

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,638

or cloud provider, including relevant memory and storage.639

• The paper should provide the amount of compute required for each of the individual640

experimental runs as well as estimate the total compute.641

• The paper should disclose whether the full research project required more compute642

than the experiments reported in the paper (e.g., preliminary or failed experiments that643

didn’t make it into the paper).644

9. Code of ethics645

Question: Does the research conducted in the paper conform, in every respect, with the646

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?647

Answer: [Yes]648

Justification: [TODO]649

Guidelines:650

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.651

• If the authors answer No, they should explain the special circumstances that require a652

deviation from the Code of Ethics.653

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-654

eration due to laws or regulations in their jurisdiction).655

10. Broader impacts656

Question: Does the paper discuss both potential positive societal impacts and negative657

societal impacts of the work performed?658

Answer: [NA] .659

Justification: [TODO]660

Guidelines:661

• The answer NA means that there is no societal impact of the work performed.662

• If the authors answer NA or No, they should explain why their work has no societal663

impact or why the paper does not address societal impact.664

• Examples of negative societal impacts include potential malicious or unintended uses665

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations666

(e.g., deployment of technologies that could make decisions that unfairly impact specific667

groups), privacy considerations, and security considerations.668

• The conference expects that many papers will be foundational research and not tied669

to particular applications, let alone deployments. However, if there is a direct path to670

any negative applications, the authors should point it out. For example, it is legitimate671

to point out that an improvement in the quality of generative models could be used to672
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generate deepfakes for disinformation. On the other hand, it is not needed to point out673

that a generic algorithm for optimizing neural networks could enable people to train674

models that generate Deepfakes faster.675

• The authors should consider possible harms that could arise when the technology is676

being used as intended and functioning correctly, harms that could arise when the677

technology is being used as intended but gives incorrect results, and harms following678

from (intentional or unintentional) misuse of the technology.679

• If there are negative societal impacts, the authors could also discuss possible mitigation680

strategies (e.g., gated release of models, providing defenses in addition to attacks,681

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from682

feedback over time, improving the efficiency and accessibility of ML).683

11. Safeguards684

Question: Does the paper describe safeguards that have been put in place for responsible685

release of data or models that have a high risk for misuse (e.g., pretrained language models,686

image generators, or scraped datasets)?687

Answer: [NA]688

Justification: [TODO]689

Guidelines:690

• The answer NA means that the paper poses no such risks.691

• Released models that have a high risk for misuse or dual-use should be released with692

necessary safeguards to allow for controlled use of the model, for example by requiring693

that users adhere to usage guidelines or restrictions to access the model or implementing694

safety filters.695

• Datasets that have been scraped from the Internet could pose safety risks. The authors696

should describe how they avoided releasing unsafe images.697

• We recognize that providing effective safeguards is challenging, and many papers do698

not require this, but we encourage authors to take this into account and make a best699

faith effort.700

12. Licenses for existing assets701

Question: Are the creators or original owners of assets (e.g., code, data, models), used in702

the paper, properly credited and are the license and terms of use explicitly mentioned and703

properly respected?704

Answer: [Yes]705

Justification: Our dataset follows CreativeCommons-BY-NC. Please check our supplemen-706

tary document for the details.707

Guidelines:708

• The answer NA means that the paper does not use existing assets.709

• The authors should cite the original paper that produced the code package or dataset.710

• The authors should state which version of the asset is used and, if possible, include a711

URL.712

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.713

• For scraped data from a particular source (e.g., website), the copyright and terms of714

service of that source should be provided.715

• If assets are released, the license, copyright information, and terms of use in the package716

should be provided. For popular datasets, paperswithcode.com/datasets has717

curated licenses for some datasets. Their licensing guide can help determine the license718

of a dataset.719

• For existing datasets that are re-packaged, both the original license and the license of720

the derived asset (if it has changed) should be provided.721

• If this information is not available online, the authors are encouraged to reach out to722

the asset’s creators.723

13. New assets724
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Question: Are new assets introduced in the paper well documented and is the documentation725

provided alongside the assets?726

Answer: [Yes]727

Justification: [TODO]728

Guidelines:729

• The answer NA means that the paper does not release new assets.730

• Researchers should communicate the details of the dataset/code/model as part of their731

submissions via structured templates. This includes details about training, license,732

limitations, etc.733

• The paper should discuss whether and how consent was obtained from people whose734

asset is used.735

• At submission time, remember to anonymize your assets (if applicable). You can either736

create an anonymized URL or include an anonymized zip file.737

14. Crowdsourcing and research with human subjects738

Question: For crowdsourcing experiments and research with human subjects, does the paper739

include the full text of instructions given to participants and screenshots, if applicable, as740

well as details about compensation (if any)?741

Answer: [NA]742

Justification: [TODO]743

Guidelines:744

• The answer NA means that the paper does not involve crowdsourcing nor research with745

human subjects.746

• Including this information in the supplemental material is fine, but if the main contribu-747

tion of the paper involves human subjects, then as much detail as possible should be748

included in the main paper.749

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,750

or other labor should be paid at least the minimum wage in the country of the data751

collector.752

15. Institutional review board (IRB) approvals or equivalent for research with human753

subjects754

Question: Does the paper describe potential risks incurred by study participants, whether755

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)756

approvals (or an equivalent approval/review based on the requirements of your country or757

institution) were obtained?758

Answer: [NA]759

Justification: [TODO]760

Guidelines:761

• The answer NA means that the paper does not involve crowdsourcing nor research with762

human subjects.763

• Depending on the country in which research is conducted, IRB approval (or equivalent)764

may be required for any human subjects research. If you obtained IRB approval, you765

should clearly state this in the paper.766

• We recognize that the procedures for this may vary significantly between institutions767

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the768

guidelines for their institution.769

• For initial submissions, do not include any information that would break anonymity (if770

applicable), such as the institution conducting the review.771

16. Declaration of LLM usage772

Question: Does the paper describe the usage of LLMs if it is an important, original, or773

non-standard component of the core methods in this research? Note that if the LLM is used774

only for writing, editing, or formatting purposes and does not impact the core methodology,775

scientific rigorousness, or originality of the research, declaration is not required.776
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Answer: [NA]777

Justification: [TODO]778

Guidelines:779

• The answer NA means that the core method development in this research does not780

involve LLMs as any important, original, or non-standard components.781

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/782

LLM) for what should or should not be described.783
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