
Gradient-Variation Online Adaptivity for
Accelerated Optimization with Hölder Smoothness

Yuheng Zhao1,2, Yu-Hu Yan1,2, Kfir Yehuda Levy3, Peng Zhao1,2

1 National Key Laboratory for Novel Software Technology, Nanjing University, China
2 School of Artificial Intelligence, Nanjing University, China

3 Electrical and Computer Engineering, Technion, Haifa, Israel

Abstract

Smoothness is known to be crucial for acceleration in offline optimization, and
for gradient-variation regret minimization in online learning. Interestingly, these
two problems are actually closely connected — accelerated optimization can be
understood through the lens of gradient-variation online learning. In this paper,
we investigate online learning with Hölder smooth functions, a general class en-
compassing both smooth and non-smooth (Lipschitz) functions, and explore its
implications for offline optimization. For (strongly) convex online functions, we
design the corresponding gradient-variation online learning algorithm whose regret
smoothly interpolates between the optimal guarantees in smooth and non-smooth
regimes. Notably, our algorithms do not require prior knowledge of the Hölder
smoothness parameter, exhibiting strong adaptivity over existing methods. Through
online-to-batch conversion, this gradient-variation online adaptivity yields an opti-
mal universal method for stochastic convex optimization under Hölder smoothness.
However, achieving universality in offline strongly convex optimization is more
challenging. We address this by integrating online adaptivity with a detection-
based guess-and-check procedure, which, for the first time, yields a universal
offline method that achieves accelerated convergence in the smooth regime while
maintaining near-optimal convergence in the non-smooth one.

1 Introduction

First-order optimization methods based on (stochastic) gradients are widely used in machine learning
due to their efficiency and simplicity [Nesterov, 2018; Duchi et al., 2011; Kingma and Ba, 2015].
It is well-known that the curvature of the objective function strongly influences the difficulty of
optimization. In particular, the optimal convergence rates differ significantly between smooth and
non-smooth objectives. For convex functions, the optimal rate in the non-smooth case is O(1/

√
T),

achievable by standard gradient descent (GD), where T denotes the total number of gradient queries.
In contrast, for smooth functions, GD only attains anO(1/T) rate, which exhibits a large gap with the
accelerated rate O(1/T 2) attained by the Nesterov’s accelerated gradient (NAG) method [Nesterov,
2018]. Similar acceleration phenomena also arise in the strongly convex setting.

The significant performance gap between smooth and non-smooth optimization has motivated the
study of universality in optimization [Nesterov, 2015]: an ideal universal method should adapt to both
unknown smooth and non-smooth cases, achieving optimal convergence in both regimes. Several
studies have explored adapting to a more challenging setting known as Hölder smoothness [Devolder
et al., 2014; Nesterov, 2015], which continuously interpolates between smooth and non-smooth

∗Correspondence: Peng Zhao <zhaop@lamda.nju.edu.cn>

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Table 1: Summary and comparison of the convergence rates of existing universal methods and ours for offline
(strongly) convex optimization. “Weak/strong universality” notations are defined in Definition 1. Let κ ≜ L/λ.
σ denotes the variance in the stochastic setting. The rate marked with † is non-accelerated in smooth functions.

Setting Convergence Rate Universality

Convex

O(LT 2 + σ√
T
) for L-smooth; O(1√

T
) for Lipschitz [Kavis et al., 2019] Weak

O
(

Lν

T (1+3ν)/2 + σ√
T

)
for (Lν , ν)-Hölder smooth [Rodomanov et al., 2024] Strong

O
(

Lν

T (1+3ν)/2 + σ√
T

)
for (Lν , ν)-Hölder smooth [Theorem 2] Strong

λ-Strongly
Convex

O
(
exp(−Tκ) ·

T
κ

)
for L-smooth and Lipschitz; Õ

(
1
λT

)
for Lipschitz [Levy, 2017] Weak†

O
(
exp(− T

6
√
κ
)
)

for L-smooth and Lipschitz; Õ
(

1
λT

)
for Lipschitz [Theorem 4] Weak

functions. Formally, a function ℓ : Rd → R is (Lν , ν)-Hölder smooth with respect to the ℓ2-norm,
where Lν > 0 and ν ∈ [0, 1], if

∥∇ℓ(x)−∇ℓ(y)∥2 ≤ Lν∥x− y∥ν2 , ∀x,y ∈ Rd. (1)

It can be observed that Lℓ-smoothness corresponds to (Lℓ, 1)-Hölder smoothness, while G-Lipschitz
continuity is (2G, 0)-Hölder smoothness. For convex and (Lν , ν)-Hölder smooth functions, the
optimal convergence rate is O(1/T (1+3ν)/2) and has been achieved by several recent methods [Nes-
terov, 2015; Li and Lan, 2025; Rodomanov et al., 2024]. However, progress in the strongly convex
setting remains limited, even adapting only between the smooth and non-smooth cases is still un-
resolved. Levy [2017] attained a non-accelerated rate in the smooth case and a suboptimal rate in
the non-smooth case. It remains open on how to achieve universality in the strongly convex setting,
particularly in obtaining an accelerated rate in the smooth regime.

Online-to-Batch Conversion. An important perspective for designing optimization algorithms is
the Online-to-Batch Conversion framework [Cesa-Bianchi et al., 2004], which reformulates an offline
optimization problem as a regret minimization task addressed by online learning algorithms. The key
advantage typically lies in the simplicity of the converted algorithm. More importantly, it allows one to
leverage the rich adaptivity results developed in online learning to enhance optimization performance.
In online learning, the goal is to minimize the regret over a sequence of T online functions, denoted by
REGT [Hazan, 2016]. For convex functions, the standard Online-to-Batch (O2B) conversion implies
that the convergence rate of the averaged iterate is REGT /T . Consequently, in the non-smooth case,
combining this conversion with an online algorithm achieving an optimal O(

√
T) regret directly

yields the optimal convergence rate for offline optimization of order O(1/
√
T).

In offline smooth optimization, achieving optimal convergence requires more refined conversion
techniques and adaptive online algorithms [Levy, 2017; Cutkosky, 2019]. Specifically, attaining the
optimal O(1/T 2) rate for smooth functions relies on an O2B conversion with stabilized gradient
evaluations [Cutkosky, 2019] and an online learning algorithm equipped with gradient-variation
adaptivity [Chiang et al., 2012; Zhao et al., 2020]. Notably, Kavis et al. [2019] achieved optimal rates
in both smooth and non-smooth cases without requiring prior knowledge of smoothness, thereby
attaining universality. A concise technical discussion can be found in the lecture note [Zhao, 2025].

However, a gap persists in online-to-offline methods under general Hölder smoothness settings.
Furthermore, for strongly convex functions, achieving universality remains far from complete, even
when focusing solely on smooth and non-smooth cases. These challenges motivate our study
of gradient-variation online learning with Hölder smoothness and the development of effective
conversion techniques to offline optimization.

Our Contributions. Our contributions are mainly two-fold, summarized as follows.

(i) For convex functions, we study gradient-variation online learning with Hölder smoothness, achiev-
ing an O(

√
VT + LνT

1−ν
2) regret that seamlessly interpolates between the optimal guarantees in

smooth and non-smooth regimes. Leveraging this adaptivity through O2B conversion, we achieve
universality for stochastic convex optimization with Hölder smoothness, matching the optimal
result [Rodomanov et al., 2024] obtained using arguably more sophisticated techniques.

2

(ii) For strongly convex functions, we develop an O
(
1
λ log VT + 1

λL
2
ν(log T)

1−ν
1+ν
)

gradient-variation
regret with Hölder smoothness that recovers the optimal results in both smooth and non-smooth
scenarios. Achieving universality in offline strongly convex optimization presents additional chal-
lenges. We address this by integrating online adaptivity with a detection-based guess-and-check
procedure. Combined with a carefully designed O2B conversion, for the first time, we provide a
universal method for strongly convex optimization that achieves accelerated convergence in the
smooth regime while maintaining near-optimal convergence in the non-smooth one.

The convergence rates of the existing universal methods and our newly obtained results are summa-
rized in Table 1. Our work opens a new avenue for converting gradient-variation online adaptivity
to offline optimization, and recent progress in gradient-variation online learning [Zhao et al., 2024;
Yan et al., 2024] suggests possible further opportunities. Moreover, we hope it will inspire broader
efforts to integrate online adaptivity into offline methods, which may not only advance the pursuit of
universality and other forms of adaptivity in offline optimization but also shed light on the design and
understanding of modern optimizers in deep learning [Cutkosky et al., 2023; Chen and Hazan, 2024].

Organization. The rest is organized as follows. Section 2 introduces the problem setup and prelimi-
naries. Section 3 presents our results for convex functions in both online and offline settings. Section 4
considers the strongly convex scenario, where achieving universality in offline optimization is partic-
ularly challenging. Section 5 concludes the paper. All proofs are in the appendices.

2 Problem Setups and Preliminaries

This section provides preliminaries. Section 2.1 introduces the problem setup of offline (stochastic)
first-order optimization. Section 2.2 covers online learning and its gradient-variation adaptivity.
Section 2.3 introduces online-to-batch conversion and its advanced variants.

Notations. We use [N] to denote the index set {1, 2, . . . , N}. The shorthand
∑
t stands for

∑
t∈[T],

and we define
∑b
i=a ci = 0 whenever a > b. The Bregman divergence associated with a convex

regularizer ψ : X → R is defined as Dψ(x,y) ≜ ψ(x)− ψ(y)− ⟨∇ψ(y),x− y⟩. By default, ∥·∥
denotes the ℓ2-norm. We use a ≲ b to indicate a = O(b), and use Õ(·)-notation to suppress poly-
logarithmic factors in the leading terms.

2.1 Offline Optimization: Acceleration and Universality

Consider the optimization problem over a convex feasible domain X ⊆ Rd,

min
x∈X

ℓ(x), (2)

where ℓ : X → R is a convex objective. We assume the algorithm has access to a gradient oracle
denoted by g(·), and consider two settings:

(i) Deterministic setting: g(·) returns the exact gradient, i.e., g(x) = ∇ℓ(x).
(ii) Stochastic setting: g(·) provides an unbiased estimate of the gradient, E[g(x) | x] = ∇ℓ(x), and

satisfies the standard bounded-variance condition, E[∥g(x)−∇ℓ(x)∥2 | x] ≤ σ2,∀x ∈ X .

Suppose the algorithm is allowed T queries to the gradient oracle and outputs a final solution x†
T . We

focus on the convergence rates of the sub-optimality gap, i.e., ℓ(x†
T)−minx∈X ℓ(x) ≤ εT .

It is well known that smoothness plays a central role in accelerated convergence [Nesterov, 2018].
Consider the deterministic setting as an example. For convex functions, the optimal convergence rate
is O(1/

√
T) for Lipschitz objectives, which can be accelerated to O(1/T 2) when the objective is

smooth. For strongly convex functions, the optimal rate improves from O(1/T) in the Lipschitz case
to O(exp(−T/

√
κ)) for smooth objectives, where κ ≜ Lℓ/λ denotes the condition number.

Prior research has aimed to develop a single algorithm that can adaptively achieve (optimal) guarantees
without prior knowledge of whether the objective is smooth or non-smooth. In addition, several
studies have extended this adaptivity to the broader setting of Hölder smoothness. This adaptability,
known as universality in optimization methods [Nesterov, 2015], has attracted considerable attention
in recent years [Levy, 2017; Kavis et al., 2019; Rodomanov et al., 2024; Kreisler et al., 2024].

In this paper, to clearly distinguish the degrees of adaptability of optimization methods to different
smoothness levels, we introduce the following definitions of weak/strong universality.

3

Definition 1 (Weak/Strong Universality). An optimization method is said to be universal if it can
automatically adapt to an unknown level of smoothness of the objective function. Specifically,
(i) Weak universality: it simultaneously adapts to smooth and non-smooth (Lipshcitz) functions;

(ii) Strong universality: it simultaneously adapts to (Lν , ν)-Hölder smooth functions for ν ∈ [0, 1].

It is infeasible to rely on the knowledge of smoothness parameter L or Lipschitz continuity constant
G when developing weakly universal methods, and likewise on ν or Lν when devising strongly
universal methods. In essence, universality demands that the optimization method can automatically
adapt to various scenarios, with weak universality adapting to two cases (smooth and Lipschitz) and
strong universality extending to broader Hölder smoothness.

2.2 Online Optimization: Regret and Gradient-Variation Adaptivity

Online Convex Optimization (OCO) [Hazan, 2022] is a versatile online learning framework, typically
modeled as an iterative game between a player and the environment. At iteration t ∈ [T], the player
chooses a decision xt from a convex feasible domain X ⊆ Rd. Simultaneously, the environment
reveals a convex function ft : X → R, and the player incurs a loss ft(xt). The player then receives
the gradient information to update xt+1, aiming to optimize the regret defined as

REGT ≜
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (3)

For Lipschitz online functions, the minimax optimal regret bounds are O(
√
T) for convex func-

tions [Zinkevich, 2003] and O(1λ log T) for λ-strongly convex functions [Hazan et al., 2007]. When
the functions are smooth, we can further obtain problem-dependent regret guarantees, which enjoy
better bounds in easy problem instances while maintaining the same minimax optimality in the
worst case [de Rooij et al., 2014; Foster et al., 2015]. Among many problem-dependent quantities,
a particular one called gradient variations draws much attention [Chiang et al., 2012; Yang et al.,
2014], which is defined to capture how the gradients of online functions evolve over time,

VT ≜
T∑
t=2

sup
x∈X
∥∇ft(x)−∇ft−1(x)∥2. (4)

It is established that optimal gradient-variation regret for convex and λ-strongly convex functions are
O(
√
VT) and O(1λ log VT) [Chiang et al., 2012], respectively. There has been significant subsequent

development in more complex environments [Zhao et al., 2020, 2024; Sachs et al., 2023; Yan et al.,
2023, 2024; Xie et al., 2024]. Gradient-variation online learning has gained significant attention
due to its impact on analyzing trajectory dynamics and its fundamental connections to various
optimization problems. It has been proved essential for fast convergence in minimax games [Syrgkanis
et al., 2015; Zhang et al., 2022] and bridging adversarial and stochastic convex optimization [Sachs
et al., 2022; Chen et al., 2024]. Recent results also demonstrate its important role in accelerated
optimization [Cutkosky, 2019; Kavis et al., 2019; Joulani et al., 2020b].

2.3 Online-to-Batch Conversion: Stabilization

Consider the optimization problem of minx∈X ℓ(x) with access to a (stochastic) gradient oracle g(·).
This problem can be solved using online algorithms with online-to-batch conversion. A basic example
is as follows: we define the online function ft(x) ≜ ⟨g(xt),x⟩ and ensure that for any x⋆ ∈ X :

E

[
ℓ

(
1

T

T∑
t=1

xt

)]
− ℓ(x⋆) ≤

1

T
E

[
T∑
t=1

⟨g(xt),xt − x⋆⟩

]
≤ 1

T
E [REGT] .

Hence, for convex objectives, if the online algorithm achieves a regret bound of O(
√
T), the corre-

sponding offline optimization method directly attains a convergence rate of O(1/
√
T).

To achieve accelerated rates in smooth optimization, advanced conversion methods and adaptive
online algorithms are required. The key insight is to evaluate the gradient on weighted averaged
iterates, which introduces a stabilization effect [Wang and Abernethy, 2018; Cutkosky, 2019].

4

Algorithm 1 Stabilized Online-to-Batch Conversion
Input: Online learning algorithm AOL, weights {αt}Tt=1 with αt > 0.
1: Initialization: x1 ∈ X .
2: for t = 1 to T do
3: Calculate xt =

1
α1:t

∑t
s=1 αsxs with α1:t ≜

∑t
s=1 αs, receive g(xt)

4: Construct ft(x) ≜ αt⟨g(xt),x⟩ to AOL as the t-th iteration online function
5: Obtain xt+1 from AOL
6: end for
Output: xT = 1

α1:T

∑T
t=1 αtxt

Stabilized Online-to-Batch Conversion [Cutkosky, 2019]. Algorithm 1 summarizes the con-
version. Given an online learning algorithm AOL and a sequence of positive weights {αt}Tt=1, the
conversion operates as follows: At each iteration t, it computes a weighted average of past decisions
xt = 1

α1:t

∑t
s=1 αsxs with α1:t ≜

∑t
s=1 αs. It then queries the gradient g(xt), and constructs

the online function ft(x) ≜ αt⟨g(xt),x⟩. This function ft(·) is passed to the online algorithm
AOL to obtain the next decision xt+1. After T iterations, the conversion outputs the final decision
xT = 1

α1:T

∑T
t=1 αtxt. The conversion ensures the following inequality holds for all x⋆ ∈ X :

E [ℓ(xT)]− ℓ(x⋆) ≤
1

α1:T
E

[
T∑
t=1

αt⟨g(xt),xt − x⋆⟩

]
=

E [REGα
T]

α1:T
, (5)

where the expectation is taken over gradient randomness, and REGα
T ≜

∑T
t=1 αt⟨g(xt),xt − x⋆⟩ is

the weighted regret of the online learning algorithm AOL.

This conversion of Eq. (5) enables accelerated convergence for convex and smooth optimization. For
example, by setting αt = t and leveraging gradient-variation online adaptivity to obtain an O(1)
weighted regret, Kavis et al. [2019] ultimately achieved a convergence rate of O(1/T 2).

3 Convex Optimization with Hölder Smoothness

We achieve the gradient-variation regret bound with Hölder smoothness in Section 3.1, then apply
our method to obtain the universal method for stochastic convex optimization in Section 3.2.

3.1 Gradient-Variation Online Learning with Hölder Smoothness

We aim to establish gradient-variation regret for online learning with convex and (Lν , ν)-Hölder
smooth functions {ft}Tt=1. A commonly used bounded domain assumption is required [Hazan, 2022].

Assumption 1 (Bounded Domain). The feasible domain X ⊆ Rd is non-empty and closed with the
diameter bounded by D, that is, ∥x− y∥2 ≤ D for all x,y ∈ X .

We leverage the optimistic online gradient descent (optimistic OGD) [Chiang et al., 2012] as our
algorithmic framework for gradient-variation online learning. Optimistic OGD is similar to online
gradient descent [Zinkevich, 2003], e.g., x̂t+1 = x̂t − η∇ft(x̂t), but a key difference lies in the
point where the gradient ∇ft(·) is evaluated. In optimistic OGD, the gradient is computed at a point
xt, which is updated one step ahead of x̂t using a prediction Mt ∈ Rd for the upcoming gradient. To
this end, optimistic OGD maintains two decision sequences {xt}Tt=1, {x̂t}Tt=1, and updates by

xt = ΠX [x̂t − ηtMt] , x̂t+1 = ΠX [x̂t − ηt∇ft(xt)] , (6)

where ηt > 0 is a time-varying step size, and ΠX [y] ≜ argminx∈X ∥x− y∥2 is Euclidean projection.

We first review the derivation of the O(
√
VT) gradient-variation bound under the L-smoothness as-

sumption on {ft}Tt=1. By setting Mt = ∇ft−1(xt−1), optimistic OGD yields the following classical
gradient-variation analysis [Chiang et al., 2012]:

REGT ≲
1

ηT
+

T∑
t=1

ηt∥∇ft(xt)−∇ft−1(xt−1)∥2 −
T∑
t=2

1

ηt−1
∥xt − xt−1∥2. (7)

5

Given the smoothness parameterL, derivingO(
√
VT) from Eq. (7) is straightforward by appropriately

setting the step size ηt. On the right-hand side, the second term
∑
t ηt∥∇ft(xt)−∇ft−1(xt−1)∥2

is an adaptivity term measuring the deviation between the two gradients, and the last one is a negative
stability term. The adaptivity term can be bounded by ∥∇ft(xt)−∇ft−1(xt)∥2 + ∥∇ft−1(xt)−
∇ft−1(xt−1)∥2, where the first part can be converted to the desired gradient variation Eq. (4) and the
second part is bounded by L2∥xt − xt−1∥2 under standard L-smoothness assumption, and thus can
be canceled out by the negative term in Eq. (7) by clipping the step size to ηt ≲ 1/L. Therefore, most
existing gradient-variation techniques require the prior knowledge of the smoothness parameter L.

Let us return to gradient-variation online learning with (Lν , ν)-Hölder smoothness. Unfortunately
we cannot directly apply the definition in Eq. (1) as we did with standard smoothness, because
it would yield ∥∇ft−1(xt)−∇ft−1(xt−1)∥2 ≤ L2

ν∥xt − xt−1∥2ν , which mismatches with the
negative term. To this end, we present a key lemma regarding Hölder smoothness as a kind of
inexact smoothness [Devolder et al., 2014], which has a similar form to standard smoothness except
for an additional corruption term. The proof is in Appendix A.2.

Lemma 1. Suppose the function f is (Lν , ν)-Hölder smooth. Then, for any δ > 0, denoting by

L = δ
ν−1
1+ν L

2
1+ν
ν , it holds that for all x,y ∈ Rd:

∥∇f(x)−∇f(y)∥2 ≤ L2∥x− y∥2 + 4Lδ. (8)

When smoothness holds, i.e., ν = 1, Lemma 1 recovers the standard smoothness assumption when δ
approaches 0. When functions are G-Lipschitz, i.e., ν = 0 and Lν = 2G, by treating the right-hand
side as a function for δ and calculating the minimum, the lemma results in ∥∇ft(x)−∇ft(y)∥2 ≲ G2,
providing an upper bound that depends only on G.

In the next step, applying Lemma 1 encounters another severe issue: the parameter L in Lemma 1 is
algorithmically unavailable, preventing us from explicitly setting the step size clipping ηt ≲ 1/L.
This is because the Hölder smoothness parameters Lν and ν are unknown, and δ is chosen based on
theoretical considerations and thus exists only in the analysis.

To handle this problem, inspired by Kavis et al. [2019], we adopt the following AdaGrad-style step
sizes [Duchi et al., 2011] which allows us to perform virtual clipping in the analysis:

ηt+1 ∝
1√
At
, where At ≜ ∥∇f1(x1)∥2 +

t∑
s=2

∥∇fs(xs)−Ms∥2. (9)

The rationale behind is that, since ηt+1 in Eq. (9) is non-increasing, it will eventually become smaller
than 1/L after certain rounds, i.e., for t > τ , thereby achieving implicit clipping. On the other
hand, for t ≤ τ , the relation ητ+1 ∝ 1/

√
Aτ ≳ 1/L implies that

√
Aτ remains small. Hence, the

uncancelled gradient-variation summation in Eq. (7), which is bounded by
√
Aτ , is at most a constant.

Putting everything together, we establish the gradient-variation regret with the proof in Appendix A.3.

Theorem 1. Consider online learning with convex and (Lν , ν)-Hölder smooth functions. Under
Assumption 1, optimistic OGD in Eq. (6) with M1 = 0,Mt = ∇ft−1(xt−1) for all t ≥ 2, and step
sizes ηt = D

2
√
At−1

with At defined in Eq. (9) for all t ∈ [T], ensures the following regret bound:

REGT ≤ O
(
D
√
VT + LνD

1+νT
1−ν
2 +D∥∇f1(x1)∥

)
. (10)

Theorem 1 implies optimal guarantees for both smooth and Lipschitz functions even in terms of the
dependence on the domain diameter D: (i) when online functions are L-smooth, i.e., (L, 1)-Hölder
smooth, our result recovers the optimal bound of O(D

√
VT + LD2) [Chiang et al., 2012]; and (ii)

when online functions are G-Lipschitz, i.e., (2G, 0)-Hölder smooth, our result also recovers the
worst-case minimax optimal guarantee O(GD

√
T) [Zinkevich, 2003].

Remark 1. We emphasize that our algorithm is strongly universal (as defined in Definition 1), since
it does not require knowledge of the Hölder smoothness parameters. In fact, even when restricted to
gradient-variation online learning with smooth functions, our results imply an algorithm achieving an
optimal O(D

√
VT + LD2) regret without requiring prior knowledge of the smoothness parameter L,

unlike previous works that depend on it [Chiang et al., 2012; Yan et al., 2023; Zhao et al., 2024]. ◁

6

3.2 Implication to Offline Convex Optimization

In this section, we achieve acceleration for offline convex and (Lν , ν)-Hölder smooth optimization in
the stochastic setting, as defined in Section 2.1. This is accomplished by leveraging the effectiveness
of the gradient-variation adaptivity presented in Section 3.1 and combining it with the stabilized
online-to-batch conversion [Cutkosky, 2019]. The proof can be found in Appendix A.4.
Theorem 2. Consider the optimization problem minx∈X ℓ(x) in the stochastic setting, where the
objective ℓ is convex and (Lν , ν)-Hölder smooth, under Assumption 1. Using the online-to-batch
conversion (Algorithm 1) with weights αt = t for all t ∈ [T], and choosing the online algorithm AOL
as optimistic OGD Eq. (6) with following configurations:

• setting the optimism as M1 = 0, Mt = αtg(x̃t) with x̃t =
1
α1:t

(
∑t−1
s=1 αsxs + αtxt−1);

• setting the step size as ηt = D

2
√
At−1

with At defined in Eq. (9).

Then we obtain the following last-iterate convergence rate for any x⋆ ∈ X :

E [ℓ(xT)]− ℓ(x⋆) ≤ O
(
LνD

1+ν

T
1+3ν

2

+
σD√
T

+
D∥∇ℓ(x1)∥

T 2

)
.

Theorem 2 achieves strong universality due to its adaptivity to Hölder smoothness, matching the
best-known result of Rodomanov et al. [2024], while our analysis is arguably much simpler due to
explicitly decoupling the two algorithmic components — adaptive step sizes and gradient evaluation
on weighted averaged iterates. For L-smooth and G-Lipschitz functions, our result recovers the
optimal rates of O(LD2/T 2 + σD/

√
T) and O((G+ σ)D/

√
T), respectively.

Remark 2. We have achieved strong universality in constrained stochastic optimization. However,
the unconstrained setting presents additional challenges and remains less explored, especially with
strong universality in unconstrained stochastic optimization still an open question [Rodomanov
et al., 2024]. Although there have been some partial advancements in this area. In the deterministic
setting, strong universality has been achieved: Orabona [2023] attained an O(Lν∥x⋆∥1+ν/T (1+ν)/2)
rate, while Li and Lan [2025] obtained an accelerated O(Lν∥x⋆∥1+ν/T (1+3ν)/2) rate with the pre-
specified accuracy. In the stochastic setting, progress has been limited to weak universality and
sub-optimality [Ivgi et al., 2023; Kreisler et al., 2024]. To the best of our knowledge, achieving strong
universality in unconstrained and stochastic optimization remains an open question. We leave the
extension of our method to unconstrained optimization as an interesting future direction. ◁

4 Strongly Convex Optimization with Hölder Smoothness

This section focuses on strongly convex optimization with Hölder smoothness. Section 4.1 establishes
gradient-variation regret bounds for online learning, Section 4.2 obtains a weakly universal method
for offline optimization, and Section 4.3 develops an optimization algorithm that does not require the
smoothness parameter or strong convexity curvature.

4.1 Gradient-Variation Online Strongly Convex Optimization with Hölder Smoothness

In this part, we study online optimization with strongly convex and Hölder smooth functions. In
Theorem 3, we demonstrate that optimistic OGD, when properly configured, achieves the gradient-
variation regret guarantee. The proof is provided in Appendix B.1.
Theorem 3. Consider online learning with λ-strongly convex and (Lν , ν)-Hölder smooth functions.
Under Assumption 1, optimistic OGD in Eq. (6) with M1 = 0, Mt = ∇ft−1(xt−1) for all t ≥ 2,
and step size ηt = 6

λt for all t ∈ [T], ensures the following regret bound:

REGT ≤ O

(
Ĝ2

max

λ
log

(
1 +

VT

Ĝ2
max

)
+
L2
νD

2ν

λ
(log T)

1−ν
1+ν +

∥∇f1(x1)∥2

λ

)
,

where Ĝ2
max ≜ maxt∈[T−1] supx∈X ∥∇ft(x)−∇ft+1(x)∥2.

Theorem 3 recovers best-known results under both smoothness and Lipschitzness: O(Ĝ
2
max

λ log(1 +

VT /Ĝ
2
max) +

1
λL

2D2) for L-smooth functions [Chen et al., 2024] and O(G
2

λ log T) for G-Lipschitz
functions [Hazan et al., 2007; Abernethy et al., 2008], respectively.

7

4.2 Implication to Offline Strongly Convex Optimization

In this part, we develop a weakly universal algorithm for deterministic strongly convex optimization.
This is done by leveraging the gradient-variation adaptivity with an online-to-batch conversion
tailored for strongly convex optimization, and a carefully designed smoothness detection scheme.

We first introduce the motivation of our solution. As explained in Section 2.3, the online-to-batch con-
version transforms the convergence rate into the regret divided by the total weight α1:T =

∑T
t=1 αt.

To minimize regret, we employ an online algorithm with gradient-variation adaptivity, which lever-
ages smoothness to convert the adaptivity term, allowing the positive term to be canceled out by the
corresponding negative term. Now, let us consider the λ-strongly convex and Lℓ-smooth case. By tai-
loring an online-to-batch conversion specifically for strongly convex optimization, i.e., Lemma 5, the
cancellation between the positive and negative terms hinges on analyzing the following expression:

2α2
t

λα1:t

∥∥∇ℓ(xt)−∇ℓ(xt−1)
∥∥2 − α1:t−1Dℓ(xt−1,xt), (11)

If we directly use the smoothness property ∥∇ℓ(x)−∇ℓ(y)∥2 ≤ 2LℓDℓ(y,x) [Nesterov, 2018,
Theorem 2.1.5] to bound the positive term, we would need αt to satisfy 4κα2

t ≤ α1:tα1:t−1, where
κ ≜ Lℓ/λ. However, as we aim to design a universal algorithm that adapts to both smooth and
non-smooth settings, the design of αt must not rely on the smoothness parameter Lℓ.

Then, we design a novel smoothness-detection scheme. First, denoting the empirical smoothness
parameter at the t-th iteration by Lt ≜

∥∇ℓ(xt)−∇ℓ(xt−1)∥
2Dℓ(xt−1,xt)

, where Lt ≤ Lℓ, we proceed to analyze
the cancellation between the following two terms:

Eq. (11) =
(

4β2
tLt

λ(1 + βt)
− 1

)
α1:t−1Dℓ(xt−1,xt),

where we define βt ≜ αt/α1:t−1 for simplicity. Ideally, the cancellation holds if βt ≤
√
λ/(4Lt).

However, a challenge remains: Lt is obtained only after βt has been determined. This arises from
the use of optimistic OGD as the online algorithm in the online-to-batch conversion, requiring an
additional update step that integrates βt information before computing xt and consequently Lt.

To this end, we designed a method that first guesses a βt, and then decides whether to adjust the
guess based on the observed Lt. Specifically, if the guessed βt fails to meet the requirements
βt ≤

√
λ/(4Lt), we discard the current xt, halve βt, and recompute xt. We then repeat this guess-

and-check procedure until the requirement is satisfied. As long as we can ensure a reasonable lower
bound for βt, the number of wasted updates will be logarithmic, which will only add a multiplicative
constant factor to the final bound. The simplest design is to explicitly define a lower bound β̄ for
βt, which acts as a safeguard to guarantee a convergence rate in non-smooth scenarios. For the
Lℓ-smooth case, our mechanism implicitly provides an adaptive lower bound 1

2

√
λ/(4Lℓ). This

arises from the fact that when βt ≤
√
λ/(4Lℓ), we directly obtain βt ≤

√
λ/(4Lt) since Lℓ ≥ Lt.

In this case, βt will no longer be decreased.

To conclude, there are three key ingredients in our solution: (i) online-to-batch conversion tailored for
strongly convex optimization (i.e., Lemma 5), (ii) the guess-and-check smoothness detection scheme,
and (iii) a one-step variant of optimistic OGD as the online algorithm (i.e., Lemma 11). We provide
the convergence guarantee in Theorem 4 with the proof in Appendix B.3.
Theorem 4. Consider the optimization problem minx∈X ℓ(x) in the deterministic setting, where the
objective ℓ is λ-strongly convex andG-Lipschitz. Then Algorithm 2 with β1 = 1, β̄ = exp(1

T lnT)−1
ensures that

ℓ(xτ)− ℓ(x⋆) ≤ O
(
G2

λ
min

{
exp

(
−T
6
√
κ

)
,
log T

T

})
,

without the knowledge of G or the smoothness parameter Lℓ, where κ ≜ Lℓ/λ denotes the condition
number, and we define Lℓ ≜∞ if ℓ is non-smooth.

Theorem 4 demonstrates the weak universality of Algorithm 2, meaning that it maintains the respective
near-optimal convergence rates in both smooth and non-smooth cases, without knowledge of the
parameters Lℓ or G. However, a slight issue arises similar to that in Levy [2017]: to achieve
universality, both our method and theirs depend on the Lipschitz continuity of ℓ, even though the

8

Algorithm 2 Universal Accelerated Strongly Convex Optimization
Input: Strong convexity curvature λ, β1 and threshold β̄, oracle queries budget T and x1 ∈ X .
1: Initialization: α1 = 1,x1 = x1,M1 = 0, index t = 1, oracle queries count c = 1.
2: while c < T do
3: Construct gt = αt∇ℓ(xt) + λαt(xt − xt), set βt+1 = βt
4: while c < T do
5: Set αt+1 = βt+1α1:t, calculate x̃t+1 = 1

α1:t+1
(α1:txt + αt+1xt) ▷ Guess procedure

6: Construct Mt+1 = αt+1∇ℓ(xt) + λαt+1(xt − x̃t+1)
7: Update xt+1 = ΠX [xt − ηt(gt −Mt +Mt+1)] with ηt = 1

λα1:t

8: Calculate xt+1 = 1
α1:t+1

(α1:txt + αt+1xt+1), query ∇ℓ(xt+1), count c← c+ 1

9: if βt+1 = β̄ then: t← t+ 1, break
10: Calculate Lt+1 ≜ ∥∇ℓ(xt)−∇ℓ(xt+1)∥2

2Dℓ(xt,xt+1)
▷ Check procedure

11: if βt+1 ≤
√

λ
4Lt+1

then: t← t+ 1, break

12: else βt+1 = max{βt+1

2 , β̄}
Output: xτ with τ = t the final iteration.

specific parameter is not required. We conjecture that Lipschitz continuity might be a necessary
condition for universality in strongly convex optimization. Further investigation is needed.

Additionally, our algorithm Algorithm 2 is highly flexible and can achieve better theoretical guarantees
when more information about smoothness is available. For further details, see Corollary 1.

Remark 3. To the best of our knowledge, Levy [2017] achieved the previously best-known uni-
versal results for strongly convex optimization, in which an adaptive normalized gradient descent
is employed with online-to-batch conversion weights inversely proportional to the square of the
gradient norm. In the deterministic setup, the author achieved an O((log T)/T) convergence rate for
the Lipschitz function, and an O(exp(−T/κ) · T/κ) rate for smooth and Lipschitz objectives. Our
work improves upon their result by designing a weakly universal algorithm with the first accelerated
rate of O(exp(−T/(6

√
κ))) for smooth and Lipschitz functions. However, our method relies on a

smoothness detection scheme based on the observed gradients, which only works in the deterministic
setting for now. Extending it to the stochastic setting remains challenging. ◁

Remark 4. Designing a strongly universal, i.e., adapting to Hölder smoothness, method for strongly
convex optimization is still an open problem. Notably, given the Hölder smoothness parame-
ters, Devolder et al. [2013] have established a sample-complexity-based rate that can recover the
(near-)optimal rate for smooth and non-smooth cases, which may serve as a starting point. ◁

4.3 Grid Search for the Unknown Strong Convexity Curvature

Algorithm 2 shows strong adaptivity to the unknown smoothness parameter Lℓ, and in this part, we
further enhance its adaptivity by removing the strong convexity curvature λ as the algorithmic input.2

We consider the strongly convex optimization minx∈Rd ℓ(x) in the deterministic setting, where ℓ(x)
is Lℓ-smooth and λ-strongly convex, but the algorithm does not know Lℓ and λ.

For this setting, the best-known result is achieved by Lan et al. [2023], who obtained the optimal
sample complexity with a pre-specified target error ε. However, their sample complexity bound, when
translated into a convergence rate for the sub-optimality gap, is expressed as O(exp(−T/(882

√
κ)))

and thus not optimal (see further details in Remark 6). Whereas we design an algorithm achieving an
exp(−T/((1 + 4

√
2κ)⌈2 log2 T ⌉)) convergence rate, with only the oracle queries budget T as input.

Algorithm 3 outlines the main procedures. Essentially, it runs multiple instances of Algorithm 2 to
search for the strong convexity parameter λ by selecting the output with the smallest loss. Notably, a
proper choice of the search range for λ is critical for success. In our algorithm, this range is derived

2In online learning, adapting to unknown curvature is known as “universal online learning”, where a widely
adopted technique is to run multiple base algorithms for exploration and use a meta algorithm for exploitation.

9

Algorithm 3 Universal Accelerated Strongly Convex Optimization, Search Method
Input: Total oracle queries budget T .
1: Initialization: M = ⌈2 log2 T ⌉,x0 ∈ X = Rd and λ̂ = ∥∇ℓ(a)−∇ℓ(b)∥

∥a−b∥ with any a,b ∈ Rd.
2: for i = 1, 2, . . . ,M do
3: Run Algorithm 2 with

(
λi = 2−i · λ̂, β1 = 1, β̄ = 0, Ti =

T
M ,x1 = x0

)
, receive xi.

4: end for
Output: xi⋆ with i⋆ = argmin0≤i≤M{ℓ(xi)}.

through rigorous analysis by carefully exploiting properties of smoothness and strong convexity,
rather than imposing assumptions about the upper or lower bounds of λ. The following theorem
provides the convergence rate, with the proof provided in Appendix B.4.

Theorem 5. Consider the optimization problem minx∈Rd ℓ(x) in the deterministic setting, where
ℓ(·) is λ-strongly convex and Lℓ-smooth. Denoted by κ ≜ Lℓ/λ. Then, Algorithm 3 guarantees

ℓ(xi⋆)− ℓ(x⋆) ≤ O
(
∥∇ℓ(x1)∥2

λ
exp

(
−T

(1 + 4
√
2κ)⌈2 log2 T ⌉

))
,

which is achieved without the knowledge of Lℓ and λ.

Remark 5. The limitation of both Theorem 5 and Lan et al. [2023] is that neither algorithm can
guarantee convergence in the non-smooth case, i.e., when Lℓ = ∞. However, our result has an
advantage in terms of the convergence rate. The result of Lan et al. [2023], when translated into the
convergence rate for the sub-optimality gap, is expressed as O(exp(−T/(882

√
κ))), with a notably

large denominator 882 in the exponent. Consequently, despite the log T factor in our Theorem 5,
it remains highly competitive and even surpasses Lan et al. [2023] when T ≤ 8.7× 1019. Further
details can be found in Appendix B.4.

Remark 6. We note that when expressing exponential convergence, the use of asymptotic notation
differs between convergence rate and sample complexity. To understand this, let us reconsider
the sample complexity T ≤ α log(β/ε) = O(log(β/ε)) required to achieve the target error ε and
the corresponding convergence rate ε ≤ β exp(−T/α) = O(exp(−T/α)), where α, β are two
constants. It can be observed that the constant α in the asymptotic notation for sample complexity has
an exponential impact on the convergence rate. In contrast, the constant β in the asymptotic bound
of the convergence rate influences the sample complexity only logarithmically. Thus in this case,
achieving optimal sample complexity does not necessarily guarantee optimal convergence rate.

5 Conclusion

In this work, we explore gradient-variation online learning with Hölder smoothness and its impli-
cations to offline optimization. For online learning with Hölder smoothness, we establish the first
gradient-variation regret bounds for (strongly) convex online functions, seamlessly interpolating
between the optimal regret rates in the smooth and non-smooth regimes. For offline optimization, we
develop a series of universal optimization methods by leveraging gradient-variation online adaptivity,
stabilized online-to-batch conversion, and carefully designed components such as detection-based
procedures and grid search tailored specifically for strongly convex cases. Our convergence rates
match the existing optimal universal results for convex optimization and significantly improve upon
non-accelerated rates for strongly convex optimization.

An important open problem is designing gradient-variation online adaptivity and extending its
implications to offline optimization in the unconstrained setting. Another interesting direction is to
further develop offline optimization algorithms by leveraging insights from adaptive online learning.

Acknowledgments

This research was supported by NSFC (62361146852).

10

References
J. D. Abernethy, P. L. Bartlett, A. Rakhlin, and A. Tewari. Optimal stragies and minimax lower

bounds for online convex games. In Proceedings of the 21st Annual Conference on Learning
Theory (COLT), pages 415–424, 2008.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. IEEE Transaction on Information Theory, 50(9):2050–2057, 2004.

G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm using
bregman functions. SIAM Journal on Optimization, 3(3):538–543, 1993.

S. Chen, Y.-J. Zhang, W.-W. Tu, P. Zhao, and L. Zhang. Optimistic online mirror descent for bridging
stochastic and adversarial online convex optimization. Journal of Machine Learning Research, 25
(178):1 – 62, 2024.

X. Chen and E. Hazan. Open problem: Black-box reductions & adaptive gradient methods. Proceed-
ings of Machine Learning Research vol, 196:1–8, 2024.

C.-K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin, and S. Zhu. Online optimization with
gradual variations. In Proceedings of the 25th Conference on Learning Theory (COLT), pages
6.1–6.20, 2012.

A. Cutkosky. Anytime online-to-batch, optimism and acceleration. In Proceedings of the 36th
International Conference on Machine Learning (ICML), pages 1446–1454, 2019.

A. Cutkosky, H. Mehta, and F. Orabona. Optimal stochastic non-smooth non-convex optimization
through online-to-non-convex conversion. In Proceedings of the 40th International Conference on
Machine Learning (ICML), pages 6643–6670, 2023.

S. de Rooij, T. van Erven, P. D. Grünwald, and W. M. Koolen. Follow the leader if you can, Hedge if
you must. Journal of Machine Learning Research, 15(1):1281–1316, 2014.

O. Devolder, F. Glineur, and Y. Nesterov. First-order methods with inexact oracle: the strongly
convex case. CORE Discussion Papers, 2013016:47, 2013.

O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization with
inexact oracle. Mathematical Programming, 146:37–75, 2014.

J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

D. J. Foster, A. Rakhlin, and K. Sridharan. Adaptive online learning. In Advances in Neural
Information Processing Systems 28 (NIPS), pages 3375–3383, 2015.

E. Hazan. Introduction to Online Convex Optimization. Foundations and Trends in Optimization, 2
(3-4):157–325, 2016.

E. Hazan. Introduction to Online Convex Optimization. MIT Press, 2nd edition, 2022.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2-3):169–192, 2007.

M. Ivgi, O. Hinder, and Y. Carmon. DoG is SGD’s best friend: A parameter-free dynamic step size
schedule. In Proceedings of the 40th International Conference on Machine Learning (ICML),
volume 202, pages 14465–14499, 2023.

P. Joulani, A. György, and C. Szepesvári. A modular analysis of adaptive (non-)convex optimization:
Optimism, composite objectives, variance reduction, and variational bounds. Theoretical Computer
Science, 808:108–138, 2020a.

P. Joulani, A. Raj, A. Gyorgy, and C. Szepesvári. A simpler approach to accelerated optimization:
iterative averaging meets optimism. In Proceedings of the 37th International Conference on
Machine Learning (ICML), pages 4984–4993, 2020b.

11

A. Kavis, K. Y. Levy, F. R. Bach, and V. Cevher. UniXGrad: A universal, adaptive algorithm with
optimal guarantees for constrained optimization. In Advances in Neural Information Processing
Systems 32 (NeurIPS), pages 6257–6266, 2019.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd International Conference
on Learning Representations (ICLR), 2015.

I. Kreisler, M. Ivgi, O. Hinder, and Y. Carmon. Accelerated parameter-free stochastic optimization.
In Proceedings of 37th Conference on Learning Theory (COLT), pages 3257–3324, 2024.

G. Lan, Y. Ouyang, and Z. Zhang. Optimal and parameter-free gradient minimization methods for
convex and nonconvex optimization. arXiv preprint arXiv:2310.12139, 2023.

K. Levy. Online to offline conversions, universality and adaptive minibatch sizes. In Advances in
Neural Information Processing Systems 30 (NIPS), pages 1613–1622, 2017.

T. Li and G. Lan. A simple uniformly optimal method without line search for convex optimization.
Mathematical Programming, pages 1–38, 2025.

H. Luo and R. E. Schapire. Achieving all with no parameters: AdaNormalHedge. In Proceedings of
the 28th Annual Conference Computational Learning Theory (COLT), pages 1286–1304, 2015.

H. B. McMahan and M. J. Streeter. Adaptive bound optimization for online convex optimization. In
Proceedings of the 23rd Conference on Learning Theory (COLT), pages 244–256, 2010.

Y. Nesterov. Universal gradient methods for convex optimization problems. Mathematical Program-
ming, 152(1):381–404, 2015.

Y. Nesterov. Lectures on Convex Optimization, volume 137. Springer, 2018.

F. Orabona. Normalized gradients for all. arXiv preprint arXiv:2308.05621, 2023.

A. Rodomanov, X. Jiang, and S. U. Stich. Universality of adagrad stepsizes for stochastic optimization:
Inexact oracle, acceleration and variance reduction. In Advances in Neural Information Processing
Systems 37 (NeurIPS), pages 26770–26813, 2024.

S. Sachs, H. Hadiji, T. van Erven, and C. A. Guzmán. Between stochastic and adversarial online
convex optimization: Improved regret bounds via smoothness. In Advances in Neural Information
Processing Systems 35 (NeurIPS), pages 691–702, 2022.

S. Sachs, H. Hadiji, T. van Erven, and C. Guzman. Accelerated rates between stochastic and
adversarial online convex optimization. ArXiv preprint, arXiv:2303.03272, 2023.

V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire. Fast convergence of regularized learning
in games. In Advances in Neural Information Processing Systems 28 (NIPS), pages 2989–2997,
2015.

J. Wang and J. D. Abernethy. Acceleration through optimistic no-regret dynamics. In Advances in
Neural Information Processing Systems 31 (NeurIPS), pages 3828–3838, 2018.

J. Wei and L. Chen. Accelerated over-relaxation heavy-ball method: Achieving global accelerated
convergence with broad generalization. In Proceedings of the 13rd International Conference on
Learning Representations (ICLR), 2025.

Y.-F. Xie, P. Zhao, and Z.-H. Zhou. Gradient-variation online learning under generalized smoothness.
In Advances in Neural Information Processing Systems 37 (NeurIPS), pages 37865–37899, 2024.

Y.-H. Yan, P. Zhao, and Z.-H. Zhou. Universal online learning with gradient variations: A multi-layer
online ensemble approach. In Advances in Neural Information Processing Systems 36 (NeurIPS),
pages 37682–37715, 2023.

Y.-H. Yan, P. Zhao, and Z.-H. Zhou. A simple and optimal approach for universal online learning
with gradient variations. In Advances in Neural Information Processing Systems 37 (NeurIPS),
pages 11132–11163, 2024.

12

T. Yang, M. Mahdavi, R. Jin, and S. Zhu. Regret bounded by gradual variation for online convex
optimization. Machine Learning, 95(2):183–223, 2014.

M. Zhang, P. Zhao, H. Luo, and Z.-H. Zhou. No-regret learning in time-varying zero-sum games. In
Proceedings of the 39th International Conference on Machine Learning (ICML), pages 26772–
26808, 2022.

P. Zhao. Lecture 9. Optimism for Acceleration, 2025. URL https://www.pengzhao-ml.com/
course/AOptLectureNote/. Lecture Note for Advanced Optimization.

P. Zhao, Y.-J. Zhang, L. Zhang, and Z.-H. Zhou. Dynamic regret of convex and smooth functions. In
Advances in Neural Information Processing Systems 33 (NeurIPS), pages 12510–12520, 2020.

P. Zhao, Y.-J. Zhang, L. Zhang, and Z.-H. Zhou. Adaptivity and non-stationarity: Problem-dependent
dynamic regret for online convex optimization. Journal of Machine Learning Research, 25(98):1 –
52, 2024.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML), pages 928–936,
2003.

13

https://www.pengzhao-ml.com/course/AOptLectureNote/
https://www.pengzhao-ml.com/course/AOptLectureNote/

A Omitted Details for Section 3

In this section, we first provide some useful lemmas for Hölder smoothness, then give the proofs of
theorems in Section 3.

A.1 Useful Lemmas for Hölder Smoothness

This part provides several useful lemmas for Hölder smoothness.
Lemma 2 (Lemma 1 of Nesterov [2015]). Let convex function f : X → R over the convex set X be

(Lν , ν)-Hölder smooth.3 Then for any δ > 0, denoting by L = δ
ν−1
1+ν L

2
1+ν
ν , for all x,y ∈ X :

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ L

2
∥x− y∥2 + δ. (12)

Lemma 3 (Theorem 1 of Devolder et al. [2014]). If convex function f : X → R over the convex set
X satisfies that, there exists positive constants L and δ such that, for all x,y ∈ X :

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ L

2
∥x− y∥2 + δ, (13)

then for all x,y ∈ X :

1

2L
∥∇f(x)−∇f(y)∥2 ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩+ δ. (14)

Lemma 4 (Theorem A.2. of Rodomanov et al. [2024]). If convex function f : Rd → R over Rd
satisfies that, there exists positive constants L and δ such that, for all x,y ∈ Rd:

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ L

2
∥x− y∥2 + δ, (15)

then for all x,y ∈ Rd:

∥∇f(x)−∇f(y)∥2 ≤ 2LDf (x,y) + 2Lδ. (16)

A.2 Proof of Lemma 1

Proof. Since f is (Lν , ν)-Hölder smooth, by combining Lemma 2 and Lemma 3, for any δ > 0,

denoting by L = δ
ν−1
1+ν L

2
1+ν
ν , for all x,y ∈ X :

1

2L
∥∇f(x)−∇f(y)∥2

(14)
≤ f(y)− f(x)− ⟨∇f(x),y − x⟩+ δ

(12)
≤ L

2
∥x− y∥2 + 2δ. (17)

Multiplying both sides of the inequality by 2L completes the proof.

A.3 Proof of Theorem 1

Proof. Applying Lemma 10 with comparators ut = x⋆ = argminx∈X
∑T
t=1 ft(x) for all t ∈ [T],

REGT =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x⋆) ≤
T∑
t=1

⟨∇ft(xt),xt − x⋆⟩

≤
T∑
t=1

ηt+1∥∇ft(xt)−Mt∥2 +
D2

ηT+1
−

T∑
t=2

1

8ηt+1
∥xt − xt−1∥2

≤ 3D
√
AT −

T∑
t=2

1

8ηt+1
∥xt − xt−1∥2, (18)

where At ≜ ∥∇f1(x1)∥2 +
∑t
s=2∥∇fs(xs)−Ms∥2, and we apply Lemma 12 in the last line.

3Though X is supposed to be closed in Nesterov [2015], this lemma holds for X = Rd with the same proof.

14

If
√
AT ≤ 2LD, we finish the proof trivially, so in the following, we assume

√
AT > 2LD.

Define t0 that, if
√
A1 > 2LD, let t0 = 1, otherwise let t0 = min{t : t ∈ [T − 1],

√
At+1 > 2LD}.

Then we have
√
At0 ≤ ∥∇f1(x1)∥+ 2LD, while for all t0 + 1 ≤ t ≤ T it holds that

√
At > 2LD.

Because all online functions are (Lν , ν)-Hölder smooth and applying Lemma 1, we show the
following decomposition for α

√
AT with constant α > 0. For any δ > 0 that only exists in analysis,

denoting by L = δ
ν−1
1+ν L

2
1+ν
ν :

α
√
AT ≤ α

√
At0 + α

√√√√ T∑
t=t0+1

∥∇ft(xt)−∇ft−1(xt) +∇ft−1(xt)−∇ft−1(xt−1)∥2∗

≤ α
√
At0 + α

√
2VT + α

√√√√2L2

T∑
t=t0+1

∥xt − xt−1∥2 + 8L

T∑
t=t0+1

δ

≤ α
√
At0 + α

√
2VT + α2L+

L

2

T∑
t=t0+1

∥xt − xt−1∥2 + α
√
8LδT .

With this decomposition, we prove the regret bound in the following with α = 3D:

REGT ≤ 3D
√
At0 + 3D

√
2VT + 9LD2 +

T∑
t=t0+1

(
L

2
− 1

8ηt+1

)
∥xt − xt−1∥2 + 3D

√
8LδT

≤ 3D
√
2VT + 15LD2 + 3D∥∇f1(x1)∥+ 3D

√
8LδT .

Then by choosing δ = LνD
1+νT− 1+ν

2 (that only exists in analysis), we obtain

REGT ≤ O
(
D
√
VT + LνD

1+νT
1−ν
2 +D∥∇f1(x1)∥

)
,

which completes the proof.

A.4 Proof of Theorem 2

Proof. With optimistic OGD as the online algorithm, by defining ft(x) ≜ ⟨αtg(xt),x⟩, we have:

T∑
t=1

αt⟨g(xt),xt − x⋆⟩ =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x⋆)
(18)
≤ 3D

√
AT −

T∑
t=2

1

8ηt+1
∥xt − xt−1∥2.

Now we trivially assume
√
AT > 4LD, and define t0 ∈ [T − 1] that, if

√
A1 > 4LD, let t0 = 1,

otherwise let t0 = min{t : t ∈ [T−1],
√
At+1 > 4LD}. Then we have

√
At0 ≤ ∥∇f1(x1)∥+4LD,

while for all t0 + 1 ≤ t ≤ T it holds that
√
At > 4LD. Continuing with our previous inequality:

T∑
t=1

αt⟨g(xt),xt − x⋆⟩

≤ 3D
√
At0 + 3D

√√√√ T∑
t=t0+1

α2
t ∥g(xt)− g(x̃t)∥2 −

T∑
t=2

1

8ηt+1
∥xt − xt−1∥2

≤ 3D
√
At0 + 3D

√√√√ T∑
t=t0+1

3α2
t ∥∇ℓ(xt)−∇ℓ(x̃t)∥2 −

T∑
t=2

1

8ηt+1
∥xt − xt−1∥2

+ 3D

√√√√ T∑
t=t0+1

3α2
t ∥∇ℓ(xt)− g(xt)∥2 + 3D

√√√√ T∑
t=t0+1

3α2
t ∥∇ℓ(x̃t)− g(x̃t)∥2,

15

where we use ∥a + b + c∥2 ≤ 3∥a∥2 + 3∥b∥2 + 3∥c∥2 for any a,b, c ∈ Rd. Now by taking
expectation and using Jensen’s inequality, i.e., Ex[

√
x] ≤

√
Ex[x], we have

E

[
T∑
t=1

αt⟨g(xt),xt − x⋆⟩

]

≤ E

3D
√√√√ T∑
t=t0+1

3α2
t ∥∇ℓ(xt)−∇ℓ(x̃t)∥2 −

T∑
t=2

1

8ηt+1
∥xt − xt−1∥2


+ 3D∥∇ℓ(x1)∥+ 12LD2 + 12

√
2σDT

3
2 ,

where we apply E[∥g(x)−∇ℓ(x)∥2 | x] ≤ σ2. By Lemma 1 and the definitions of xt, x̃t,

α2
t ∥∇ℓ(xt)−∇ℓ(x̃t)∥2

(8)
≤ α2

tL
2∥xt − x̃t∥2 + 4α2

tLδ =
α4
tL

2

α2
1:t

∥xt − xt−1∥2 + 4α2
tLδ

≤ 4L2∥xt − xt−1∥2 + 4t2Lδ.

Then we have

3D

√√√√ T∑
t=t0+1

3α2
t ∥∇ℓ(xt)−∇ℓ(x̃t)∥2 −

T∑
t=2

1

8ηt+1
∥xt − xt−1∥2

≤ 6D

√√√√3L2

T∑
t=t0+1

∥xt − xt−1∥2 −
T∑
t=2

1

8ηt+1
∥xt − xt−1∥2 + 12

√
2D
√
LδT

3
2

≤ 27LD2 +

T∑
t=t0+1

(
L− 1

8ηt+1

)
∥xt − xt−1∥2 + 12

√
2D
√
LδT

3
2

≤ 27LD2 + 12
√
2D
√
LδT

3
2 .

Therefore, by combining the above inequalities we obtain

E [ℓ(xT)]− ℓ(x⋆) ≤
1

α1:T
E

[
T∑
t=1

αt⟨g(xt),xt − x⋆⟩

]

≤ 6D∥∇ℓ(x1)∥+ 78LD2

T 2
+

24
√
2D
√
Lδ + 24

√
2σD√

T
.

Then by setting δ = LνD
1+νT

−(3+3ν)
2 , we achieve the convergence rate of

E [ℓ(xT)]− ℓ(x⋆) ≤ O
(
LνD

1+ν

T
1+3ν

2

+
σD√
T

+
D∥∇ℓ(x1)∥

T 2

)
,

which completes the proof.

B Omitted Details for Section 4

In this section, we give the proofs of theorems in Section 4.

B.1 Proof of Theorem 3

Proof. We apply Lemma 9 with ut = x⋆ = argminx∈X
∑T
t=1 ft(x):

REGT =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x⋆) =

T∑
t=1

⟨∇ft(xt),xt − x⋆⟩ −
T∑
t=1

Dft(x⋆,xt)

≤
T∑
t=1

⟨∇ft(xt),xt − x⋆⟩ −
λ

4

T∑
t=1

∥x⋆ − xt∥2 −
1

2

T∑
t=1

Dft(x⋆,xt)

16

(23)
≤

T∑
t=1

1

2ηt

(
∥x⋆ − x̂t∥2 − ∥x⋆ − x̂t+1∥2

)
− λ

4

T∑
t=1

∥x⋆ − xt∥2︸ ︷︷ ︸
TERM-A

+

T∑
t=1

ηt∥∇ft(xt)−∇ft−1(xt−1)∥2︸ ︷︷ ︸
TERM-B

− 1

2

T∑
t=1

Dft(x⋆,xt)︸ ︷︷ ︸
TERM-C

.

In the second line above, we use Dft(x,y) ≥ λ
2 ∥x− y∥2 by the λ-strong convexity of ft.

We first investigate TERM-A. Since ηt = 6
λt ,

TERM-A ≤ ∥x⋆ − x̂1∥2

2η1
+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

)
∥x⋆ − x̂t∥2 −

λ

4

T∑
t=1

∥x⋆ − xt∥2

≤ λ

12

T−1∑
t=1

(
∥x⋆ − x̂t+1∥2 − 2∥x⋆ − xt∥2

)
≤ λ

6

T−1∑
t=1

∥xt − x̂t+1∥2

≤ λ

6

T−1∑
t=1

η2t ∥∇ft(xt)−∇ft−1(xt−1)∥2 ≤ TERM-B,

where in the second line we use x̂1 = x1. And in the last line above we apply Lemma 7 [Chiang
et al., 2012]. Then by combining TERM-A, TERM-B and TERM-C together and applying Lemma 4

with arbitrary δ > 0 that only exists in analysis, and denoting by L = δ
ν−1
1+ν L

2
1+ν
ν , we obtain:

REGT ≤
T∑
t=1

12

λt
∥∇ft(xt)−∇ft−1(xt−1)∥2 −

1

2

T∑
t=1

Dft(x⋆,xt)

≤
T∑
t=1

12

λt
∥∇ft(xt)−∇ft(x⋆) +∇ft(x⋆)−∇ft−1(x⋆) +∇ft−1(x⋆)−∇ft−1(xt−1)∥2

− 1

2

T∑
t=1

Dft(x⋆,xt)

≤
T∑
t=1

36

λt
∥∇ft(x⋆)−∇ft−1(x⋆)∥2 +

T∑
t=1

(
144L

λt
− 1

2

)
Dft(x⋆,xt) +

T∑
t=1

144Lδ

λt

≤
T∑
t=1

36

λt
sup
x∈X
∥∇ft(x)−∇ft−1(x)∥2 +

T∑
t=1

(
144L

λt
− 1

2

)
Dft(x⋆,xt) +

144Lδ(1 + lnT)

λ
.

The first two terms can be well controlled by two technical lemmas (Lemma 13, Lemma 14), hence:

REGT ≤
36Ĝ2

max

λ
ln

(
1 +

VT

Ĝ2
max

)
+

72Ĝ2
max

λ
+

36∥∇f1(x1)∥2

λ

+
144LLνD

1+ν

λ
ln

(
1 +

288L

λ

)
+

144Lδ(1 + lnT)

λ
,

where we define Ĝ2
max ≜ maxt∈[T−1] supx∈X ∥∇ft(x) − ∇ft+1(x)∥2, and use the property of

(Lν , ν)-Hölder smooth function ft that Dft(x,y) ≤ LνD1+ν [Nesterov, 2015]. Solving the trade-

off: Lδ lnT = LLνD
1+ν with L = δ

ν−1
1+ν L

2
1+ν
ν , we obtain δ = LνD

1+ν(lnT)−1 and arrive at:

REGT ≤
36Ĝ2

max

λ
ln

(
1 +

VT

Ĝ2
max

)
+

72Ĝ2
max

λ
+

36∥∇f1(x1)∥2

λ

+
144L2

νD
2ν(lnT)

1−ν
1+ν

λ
ln

(
1 +

288LνD
ν−1(lnT)

1−ν
1+ν

λ

)
+

144L2
νD

2ν(1 + lnT)
1−ν
1+ν

λ

17

= O

(
Ĝ2

max

λ
log

(
1 +

VT

Ĝ2
max

)
+
L2
νD

2ν

λ
(log T)

1−ν
1+ν +

∥∇f1(x1)∥2

λ

)
,

where ln(1 + 288Lν(lnT)
(1−ν)/(1+ν)/(λD1−ν)) = O(1), because it only consists of the logarithm

of the constant Lν/(λD1−ν), and we treat the log log T factor as a constant, following previous
studies [Luo and Schapire, 2015; Zhao et al., 2024].

B.2 Useful Lemmas for Theorem 4

In this subsection, we provide the proofs of some useful lemmas for Theorem 4.
Lemma 5 (Online-to-batch Conversion for Strongly Convex Functions). Let the objective ℓ(·) : X →
R be λ-strongly convex. By employing the online-to-batch conversion algorithm with online function
ft(x) ≜ αt⟨∇ℓ(xt),x⟩+ λαt

2 ∥x− xt∥2, we have, for any x⋆ ∈ X :

ℓ(xT)− ℓ(x⋆) ≤
1

α1:T

T∑
t=1

(ft(xt)− ft(x⋆)− α1:t−1Dℓ(xt−1,xt)) , (19)

where Dℓ(x,y) ≜ ℓ(x)− ℓ(y)− ⟨∇ℓ(y),x− y⟩ is the Bregman divergence associated with ℓ for
any x,y ∈ X .

Proof. This lemma is the variant of the stabilized online-to-batch conversion [Cutkosky, 2019] for
strongly convex functions. We start from the equality:

ℓ(xT)− ℓ(x⋆) =
α1ℓ(x1)

α1:T
+

T∑
t=2

α1:tℓ(xt)− α1:t−1ℓ(xt−1)

α1:T
− ℓ(x⋆)

=
1

α1:T

T∑
t=1

αt(ℓ(xt)− ℓ(x⋆)) +
1

α1:T

T∑
t=2

α1:t−1(ℓ(xt)− ℓ(xt−1))

≤ 1

α1:T

T∑
t=1

αt

(
⟨∇ℓ(xt),xt − x⋆⟩ −

λ

2
∥xt − x⋆∥2

)

+
1

α1:T

T∑
t=2

α1:t−1 (⟨∇ℓ(xt),xt − xt−1⟩ − Dℓ(xt−1,xt))

=
1

α1:T

T∑
t=1

αt

(
⟨∇ℓ(xt),xt − x⋆⟩ −

λ

2
∥xt − x⋆∥2

)

+
1

α1:T

T∑
t=2

αt⟨∇ℓ(xt),xt − xt⟩ −
1

α1:T

T∑
t=2

α1:t−1Dℓ(xt−1,xt)

≤ 1

α1:T

T∑
t=1

αt

(
⟨∇ℓ(xt),xt − x⋆⟩+

λ

2
∥xt − xt∥2 −

λ

2
∥xt − x⋆∥2

)
− 1

α1:T

T∑
t=2

α1:t−1Dℓ(xt−1,xt)

=
1

α1:T

T∑
t=1

(ft(xt)− ft(x⋆)− α1:t−1Dℓ(xt−1,xt)) ,

where in the inequality we use the definition of λ-strong convexity and Bregman divergence, after
which we use the property of α1:t−1(xt−1 − xt) = αt(xt − xt) in Theorem 1 of Cutkosky [2019].
The second inequality is by directly adding the positive term λαt

2α1:T
∥xt − xt∥2.

Lemma 6. For the settings in Theorem 4, βt is non-increasing with a lower bound β̄. Denoting by t0
the minimum iteration satisfying βt0 = β̄, otherwise let t0 = τ + 1. Algorithm 2 ensures:

ℓ(xτ)− ℓ(x⋆) ≤
∥∇ℓ(x1)∥2

λ
∏τ
t=2(1 + βs)

+

τ∑
t=t0

2β̄2

λ(1 + β̄)τ−t+2

∥∥∇ℓ(xt)−∇ℓ(xt−1)
∥∥2. (20)

18

Proof. With ft(x) ≜ αt⟨∇ℓ(xt),x⟩+ λαt

2 ∥x− xt∥2, by Lemma 5 we have:

ℓ(xτ)− ℓ(x⋆) ≤
1

α1:τ

τ∑
t=1

(ft(xt)− ft(x⋆)− α1:t−1Dℓ(xt−1,xt)) .

By Lemma 11, with the definitions ηt = 1
λα1:t

, Mt = αt∇ℓ(xt−1) + λαt(xt−1 − x̃t), x̃t =
1
α1:t

(
∑t−1
s=1 αsxs + αtxt−1), we arrive at
τ∑
t=1

(ft(xt)− ft(x⋆))−
τ∑
t=1

α1:t−1Dℓ(xt−1,xt)

≤
τ∑
t=1

⟨∇ft(xt),xt − x⋆⟩ −
λ

2

τ∑
t=1

αt∥xt − x⋆∥2 −
τ∑
t=1

α1:t−1Dℓ(xt−1,xt)

≤
τ∑
t=1

ηt∥∇ft(xt)−Mt∥2 −
τ∑
t=1

1

4ηt
∥xt − xt+1∥2

−
τ∑
t=1

α1:t−1Dℓ(xt−1,xt) +

τ∑
t=2

(
1

2ηt
− 1

2ηt−1
− λαt

2

)
∥xt − x⋆∥2

=

τ∑
t=2

α2
t

λα1:t

∥∥∇ℓ(xt)−∇ℓ(xt−1) + λ(xt − xt−1 − xt + x̃t)
∥∥2 − τ∑

t=2

1

4ηt−1
∥xt − xt−1∥2

−
τ∑
t=1

α1:t−1Dℓ(xt−1,xt) +
α1

λ
∥∇ℓ(x1)∥2 (by setting ηt = 1

λα1:t
)

≤
τ∑
t=2

2α2
t

λα1:t

∥∥∇ℓ(xt)−∇ℓ(xt−1)
∥∥2 + τ∑

t=2

2α2
tλ

α1:t

∥∥∥(1− αt
α1:t

)
(xt − xt−1)

∥∥∥2
−

τ∑
t=2

λα1:t−1

4
∥xt − xt−1∥2 −

τ∑
t=1

α1:t−1Dℓ(xt−1,xt) +
α1

λ
∥∇ℓ(x1)∥2

≤
τ∑
t=2

2α2
t

λα1:t

∥∥∇ℓ(xt)−∇ℓ(xt−1)
∥∥2 − τ∑

t=1

α1:t−1Dℓ(xt−1,xt) +
α1

λ
∥∇ℓ(x1)∥2

+

τ∑
t=2

(
2α2

tα
2
1:t−1λ

α3
1:t

− λα1:t−1

4

)
∥xt − xt−1∥2

≤
τ∑
t=2

2α2
t

λα1:t

∥∥∇ℓ(xt)−∇ℓ(xt−1)
∥∥2 − τ∑

t=1

α1:t−1Dℓ(xt−1,xt) +
α1

λ
∥∇ℓ(x1)∥2,

where the last inequality is because βt ≤ 1 and consequently

2α2
tα

2
1:t−1λ

α3
1:t

− λα1:t−1

4
= 2α1:t−1λ

(
β2
t

(1 + βt)3
− 1

8

)
≤ 0.

Algorithm 2 ensures that for all t ≥ 2, βt > 1
2

√
λ

4Lℓ
, and either βt > β̄ or βt = β̄. When βt > β̄, it

holds that βt ≤
√

λ
4Lt

due to the algorithm design, then we have

2α2
t

λα1:t

∥∥∇ℓ(xt)−∇ℓ(xt−1)
∥∥2 − α1:t−1Dℓ(xt−1,xt)

=

(
4Ltα

2
t

λα1:tα1:t−1
− 1

)
α1:t−1Dℓ(xt−1,xt) =

(
4Ltβ

2
t

λ(1 + βt)
− 1

)
α1:t−1Dℓ(xt−1,xt) ≤ 0.

Since βt is non-increasing, denoting by t0 the minimum iteration satisfying βt0 = β̄, otherwise let
t0 = τ + 1. Then for all t ≥ t0, βt = β̄. Finally, we arrive at

ℓ(xτ)− ℓ(x⋆) ≤
α1∥∇ℓ(x1)∥2

λα1:τ
+

τ∑
t=t0

2α2
t

λα1:tα1:τ

∥∥∇ℓ(xt)−∇ℓ(xt−1)
∥∥2

19

=
∥∇ℓ(x1)∥2

λ
∏τ
t=2(1 + βs)

+

τ∑
t=t0

2β̄2

λ(1 + β̄)τ−t+2

∥∥∇ℓ(xt)−∇ℓ(xt−1)
∥∥2,

which finishes the proof.

B.3 Proof of Theorem 4 and Corollary

Proof of Theorem 4. We do not know whether ℓ(x) is smooth or non-smooth, but it is Lipschitz con-
tinuous with unknown constantG. We have max1<t≤τ∥∇ℓ(xt)−∇ℓ(xt−1)∥2 ≤ 4G2. By Lemma 6,

ℓ(xτ)− ℓ(x⋆) ≤
∥∇ℓ(x1)∥2

λ
∏τ
t=2(1 + βs)

+
8G2β̄2

λ

τ∑
t=t0

1

(1 + β̄)τ−t+2

≤ 2∥∇ℓ(x1)∥2

λ(1 + max{1/(4
√
κ), β̄})τ

+
8G2β̄

λ
· 1 {t0 ≤ τ} . (21)

By choosing β̄ = exp(1
T lnT)− 1, we conduct the following case-by-case study:

Case of 1
4
√
κ
≥ β̄. Then since for all t ≥ 2, βt > 1

4
√
κ

, we have t0 = τ + 1 by definition, then the
second term in (21) becomes zero. In this case, we have

ℓ(xτ)− ℓ(x⋆) ≤ O
(
∥∇ℓ(x1)∥2

λ
min

{
exp

(
−τ

1 + 4
√
κ

)
,
(
1 + β̄

)−τ})
.

Moreover, the total gradient queries number T ≤ τ + ⌊log2(4
√
κ)⌋, then we arrive at

ℓ(xτ)− ℓ(x⋆) ≤ O
(
∥∇ℓ(x1)∥2

λ
min

{
exp

(
−T + log2(4

√
κ)

1 + 4
√
κ

)
,
(
1 + β̄

)−T+log2(4
√
κ)
})

≤ O
(
∥∇ℓ(x1)∥2

λ
min

{
exp

(
−T

1 + 4
√
κ

)
,
1

T

(
1 + β̄

)log2(1/β̄)
})

≤ O
(
∥∇ℓ(x1)∥2

λ
min

{
exp

(
−T
6
√
κ

)
,
1

T

})
,

where in the last inequality we use (1 + x)1+log2(1/x) < 3 for all x > 0.

Case of 1
4
√
κ
< β̄. In this case, by (21) we have:

ℓ(xτ)− ℓ(x⋆) ≤ O
(
∥∇ℓ(x1)∥2

λ

(
1 + β̄

)−τ
+
G2β̄

λ

)
.

Moreover, the total gradient queries number T ≤ τ + ⌈log2(1/β̄)⌉, then we arrive at

ℓ(xT)− ℓ(x⋆) ≤ O
(
∥∇ℓ(x1)∥2

λ

(
1 + β̄

)−T+⌈log2(1/β̄)⌉ +
G2β̄

λ

)
≤ O

(
∥∇ℓ(x1)∥2

λT
+
G2 log T

λT

)
,

where we use (1+x)1+log2(1/x) < 3 for all x > 0 and β̄ = exp(1
T lnT)−1 ≤ 5

4T lnT . Additionally,
the exponential rate, that is exp(−T

6
√
κ
) > exp(− 4

6T β̄) ≥ exp(− 5
6 lnT) = 1

T 5/6 = Ω(log TT), is
dominated. Finally, combining these two cases, we obtain

ℓ(xτ)− ℓ(x⋆) ≤ O
(
G2

λ
min

{
exp

(
−T
6
√
κ

)
,
log T

T

})
,

which finishes the proof.

When the optimization problem is easier, i.e., with additional informations, we can use Algorithm 2
framework to obtain better convergence rates, as provided in Corollary 1.

20

Corollary 1. Consider the optimization problem minx∈X ℓ(x) in the deterministic setting, where
the objective ℓ is λ-strongly convex. In the following two cases:

(i) If ℓ is known to be Lℓ-smooth, then Algorithm 2 with β1 = β̄ =
√
λ/(4Lℓ) ensures that

ℓ(xτ)− ℓ(x⋆) ≤ O
(
∥∇ℓ(x1)∥2

λ
exp

(
−T

1 + 2
√
κ

))
,

where κ ≜ Lℓ/λ denotes the condition number.
(ii) If ℓ is smooth but the smoothness parameter Lℓ remains unknown, then Algorithm 2 with

β1 = 1, β̄ = 0 ensures that

ℓ(xτ)− ℓ(x⋆) ≤ O
(
∥∇ℓ(x1)∥2

λ
exp

(
−T

1 + 4
√
κ

))
.

Interestingly, in the first case of Corollary 1, where Lℓ is known, our convergence rate matches Wei
and Chen [2025, Theorem 1.1]. Moreover, their “over-relaxation” update form coincides with the
one-step update variant of our optimistic OGD online algorithm.

Proof. The first case. We are given the smoothness parameter Lℓ. By Lemma 6, since βt ≡√
λ/(4Lℓ) ≤

√
λ/(4Lt) for all t ≥ 2, we have t0 = τ + 1 by definition, and τ = T , therefore

ℓ(xT)− ℓ(x⋆) ≤
2∥∇ℓ(x1)∥2

λ
(
1 +

√
λ/(4Lℓ)

)T ≤ O(∥∇ℓ(x1)∥2

λ
exp

(
−T

1 + 2
√
κ

))
,

where we use (1 + x−1)−T = (1− 1/(1 + x))T ≤ exp(−T/(1 + x)) for all x > 0.

The second case. We know that ℓ is smooth but do not know the exact smoothness parameter Lℓ.

With β̄ = 0, we have 1
4
√
κ
≤ βt ≤

√
λ

4Lt
for all 2 ≤ t ≤ τ . By Lemma 6 with t0 = τ + 1,

ℓ(xτ)− ℓ(x⋆) ≤
∥∇ℓ(x1)∥2

λ
∏τ
t=2(1 + βs)

≤ 2∥∇ℓ(x1)∥2

λ(1 + 1/(4
√
κ))τ

≤ 2∥∇ℓ(x1)∥2

λ
exp

(
−τ

1 + 4
√
κ

)
,

where we use (1 + x−1)−τ = (1− 1/(1 + x))τ ≤ exp(−τ/(1 + x)) for all x > 0. Moreover, the
total gradient queries number T ≤ τ + ⌊log2(4

√
κ)⌋, substituting into the above inequality,

ℓ(xτ)− ℓ(x⋆) ≤
2∥∇ℓ(x1)∥2

λ
exp

(
−T

1 + 4
√
κ

)
exp

(
log2(4

√
κ)

1 + 4
√
κ

)
<

3∥∇ℓ(x1)∥2

λ
exp

(
−T

1 + 4
√
κ

)
,

where we use exp
(

log2 x
1+x

)
< 1.5 for all x > 0. This case is proved.

B.4 Proof of Theorem 5 and Discussions

Proof of Theorem 5. For any x ∈ X , we have ℓ(x) − ℓ(x⋆) ≤ ∥∇ℓ(x)∥∥x − x⋆∥ ≤ 1
λ∥∇ℓ(x)∥

2

because ℓ(x) is λ-strongly convex, and ∇ℓ(x⋆) = 0. Hence when κ > T 2, the convergence rate of
1
λ∥∇ℓ(x)∥

2 exp(−T√
κ
) ≥ 1

λe∥∇ℓ(x)∥
2 becomes vacuous. Therefore, without loss of generality, we

assume κ < T 2.

Moreover, by calculating the curvature estimate λ̂ = ∥∇ℓ(a)−∇ℓ(b)∥
∥a−b∥ with any a,b ∈ Rd, we have

λ ≤ λ̂ ≤ Lℓ. Combining with κ < T 2 implies that λ ∈
[
λ̂/T 2, λ̂

]
.

Denoting by M = ⌈2 log2 T ⌉, and λi = 2−i · λ̂ for i ∈ [M], there exists i⋆ ∈ [M] that λi⋆ ≤
λ ≤ 2λi⋆ . Then ℓ(·) is also λi⋆-strongly convex with condition number being 2κ. Substituting
into Theorem 4 with Ti = T

M , we have

ℓ(xi⋆)− ℓ(x⋆) ≤ O
(
∥∇ℓ(x1)∥2

λ
exp

(
−T

(1 + 4
√
2κ)⌈2 log2 T ⌉

))
.

The proof is finished.

21

Comparison with Lan et al. [2023] We compare our result in Theorem 5 with the sample complex-
ity bound for optimizing the gradient norm established in Theorem 5.1 of Lan et al. [2023], that is, with
C1 =

√
2(3+16

√
2cA), cA = 4 as they provided, T ≤ (4+8

√
5C1)

√
κ log2(∥∇ℓ(x1)∥/ε)+O(1).

First, we reformulate their result as follows:

(i) After translating their result into the convergence rate of the gradient norm, it turns out to be
O
(
exp(−T ·(ln 2)

(4+8
√
5C1)

√
κ
)
)
. Substituting the constants implies:

∥∇ℓ(xT)∥ ≤ O
(
exp

(
−T

1766
√
κ

))
.

(ii) Applying ℓ(xT)− ℓ(x⋆) ≤ 1
λ∥∇ℓ(xT)∥

2, we obtain a sub-optimality bound given by

ℓ(xT)− ℓ(x⋆) ≤ O
(
exp

(
−T

882
√
κ

))
. (22)

Then we consider when our rate in Theorem 5 is better than Eq. (22). Solving the following condition:

(1 + 4
√
2κ)⌈2 log2 T ⌉ ≤ (1 + 4

√
2)⌈2 log2 T ⌉

√
κ ≤ 882

√
κ,

implies that T ≤ 8.7× 1019.

C Supporting Lemmas

In this section, we provide supporting lemmas for this paper.

C.1 Lemmas for Optimistic OGD Algorithms

In this part, we provide useful lemmas for optimistic OGD and its one-step variant.
Lemma 7 (Proposition 7 of Chiang et al. [2012]). Consider the following two updates: (i) x =
argminx∈X {⟨g,x⟩+Dψ(x, c)}, and (ii) x′ = argminx∈X {⟨g′,x⟩+Dψ(x, c)}, where the regu-
larizer ψ : X → R is λ-strongly convex function with respect to ∥·∥, we have λ∥x−x′∥ ≤ ∥g−g′∥∗.
Lemma 8 (Bregman proximal inequality, Lemma 3.2 of Chen and Teboulle [1993]). Consider
the following update: x = argminx∈X {⟨g,x⟩+Dψ(x, c)},where the regularizer ψ : X → R is
convex function, then for all u ∈ X , we have ⟨g,x− u⟩ ≤ Dψ(u, c)−Dψ(u,x)−Dψ(x, c).
Lemma 9 (Theorem 1 of Zhao et al. [2024]). Under Assumption 1, Optimistic OGD specialized
at Eq. (6), that starts at x̂1 ∈ X and updates by

xt = ΠX [x̂t − ηtMt] , x̂t+1 = ΠX [x̂t − ηt∇ft(xt)] ,
ensures that
T∑
t=1

⟨∇ft(xt),xt − ut⟩ ≤
T∑
t=1

⟨∇ft(xt)−Mt,xt − x̂t+1⟩︸ ︷︷ ︸
TERM-A

+

T∑
t=1

1

2ηt

(
∥ut − x̂t∥2 − ∥ut − x̂t+1∥2

)
︸ ︷︷ ︸

TERM-B

−
T∑
t=1

1

2ηt

(
∥xt − x̂t+1∥2 + ∥xt − x̂t∥2

)
︸ ︷︷ ︸

TERM-C

, (23)

where u1, . . . ,uT ∈ X are arbitrary comparators.
Lemma 10. Under Assumption 1, Optimistic OGD specialized at Eq. (6) with non-increasing step
sizes ηt, ensures that
T∑
t=1

⟨∇ft(xt),xt−ut⟩ ≤
T∑
t=1

ηt+1∥∇ft(xt)−Mt∥2+
D2 +DPT
ηT+1

−
T∑
t=2

1

8ηt+1
∥xt−xt−1∥2, (24)

where PT ≜
∑T
t=2∥ut − ut−1∥ is the path length.

22

Lemma 11 (One-step Variant of Optimistic OGD, [Joulani et al., 2020a]). Under Assumption 1, the
one-step variant of optimistic OGD that starts at x1 ∈ X and updates by

xt+1 = ΠX [xt − ηt(∇ft(xt)−Mt +Mt+1)] , (25)

ensures that, for all u ∈ X :

T∑
t=1

⟨∇ft(xt),xt − u⟩ ≤
T∑
t=1

(
⟨∇ft(xt)−Mt,xt − xt+1⟩ −

1

2ηt
∥xt − xt+1∥2

)

+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

)
∥xt − u∥2 + 1

2η1
∥x1 − u∥2.

Proof of Lemma 10. By Lemma 9, we consider each term:

TERM-A ≤
T∑
t=1

ηt+1∥∇ft(xt)−Mt∥2∗ +
T∑
t=1

(
1

4ηt+1
− 1

4ηt

)
∥xt − x̂t+1∥2 +

T∑
t=1

1

4ηt
∥xt − x̂t+1∥2

≤
T∑
t=1

ηt+1∥∇ft(xt)−Mt∥2∗ +
D2

4ηT+1
+

T∑
t=1

1

4ηt
∥xt − x̂t+1∥2,

TERM-B ≤ D2

2η1
+

T∑
t=2

(
1

2ηt
∥ut − x̂t∥2 −

1

2ηt
∥ut−1 − x̂t∥2 +

1

2ηt
∥ut−1 − x̂t∥2 −

1

2ηt−1
∥ut−1 − x̂t∥2

)

≤ D2

2η1
+

T∑
t=2

1

2ηt

(
∥ut − x̂t∥2 − ∥ut−1 − x̂t∥2

)
+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

)
D2

≤ D2

2ηT
+

T∑
t=2

1

2ηt
∥ut − ut−1∥ · ∥ut − x̂t + ut−1 − x̂t∥

≤ D2

2ηT+1
+
DPT
ηT+1

,

TERM-C ≥
T∑
t=1

1

4ηt
∥xt − x̂t+1∥2 +

T∑
t=2

1

4ηt−1

(
∥xt−1 − x̂t∥2 + ∥xt − x̂t∥2

)
≥

T∑
t=1

1

4ηt
∥xt − x̂t+1∥2 +

T∑
t=2

(
1

8ηt−1
− 1

8ηt

)
∥xt − xt−1∥2 +

T∑
t=2

1

8ηt
∥xt − xt−1∥2

≥
T∑
t=1

1

4ηt
∥xt − x̂t+1∥2 −

D2

8ηT
+

T∑
t=2

(
1

8ηt
− 1

8ηt+1

)
∥xt − xt−1∥2 +

T∑
t=2

1

8ηt+1
∥xt − xt−1∥2

≥
T∑
t=1

1

4ηt
∥xt − x̂t+1∥2 −

D2

4ηT+1
+

T∑
t=2

1

8ηt+1
∥xt − xt−1∥2,

where we apply Assumption 1 and the condition that ηt is non-increasing. Combining TERM-A,
TERM-B and TERM-C finishes the proof.

Proof of Lemma 11. By Lemma 8 with ψ(x) = 1
2η∥x∥

2, the update Eq. (25) implies for all u ∈ X :

⟨∇ft(xt)−Mt +Mt+1,xt+1 − u⟩ ≤ 1

2ηt

(
∥u− xt∥2 − ∥u− xt+1∥2 − ∥xt − xt+1∥2

)
.

Then by rearranging and taking summation from t = 1 to T , we arrive at:

T∑
t=1

⟨∇ft(xt),xt − u⟩

23

≤
T∑
t=1

⟨∇ft(xt)−Mt,xt − xt+1⟩+ ⟨M1,x1⟩ − ⟨MT+1,xT+1⟩+
T∑
t=1

⟨Mt+1 −Mt,u⟩

+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

)
∥xt − u∥2 + 1

2η1
∥x1 − u∥2 −

T∑
t=1

1

2ηt
∥xt − xt+1∥2

≤
T∑
t=1

(
⟨∇ft(xt)−Mt,xt − xt+1⟩ −

1

2ηt
∥xt − xt+1∥2

)

+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

)
∥xt − u∥2 + 1

2η1
∥x1 − u∥2,

where we define M1 ≜ 0 and MT+1 ≜ 0.

C.2 Useful Lemmas

This part provides some useful lemmas for mathematical analysis.
Lemma 12 (McMahan and Streeter [2010]). Suppose non-negative sequence {at}Tt=1 and constant
δ > 0, then we have

T∑
t=1

at√
δ +

∑t
s=1 as

≤ 2

√√√√δ +

T∑
t=1

at. (26)

Lemma 13. Suppose non-negative sequence {at}Tt=1. Define amax = maxt∈[T] at and assume
amax > 0, then we have

T∑
t=1

at
t
≤ amax ln

(
1 +

1

amax

T∑
t=1

at

)
+ 2amax.

Lemma 14. Suppose A > 0 and non-negative sequence {bt}Tt=1 and denote by bmax =
maxt∈[T] bt > 0. Then it holds that

T∑
t=1

(
A

t
− 1

)
bt ≤ bmax ·A ln(1 +A).

Proof of Lemma 13. Define τ = ⌈ 1
amax

∑T
t=1 at⌉ ∈ [T]. We have

τ∑
t=1

at
t
≤ amax

τ∑
t=1

1

t
≤ amax

(
1 +

∫ τ

x=1

1

x
dx

)
≤ amax ln

(
1 +

1

amax

T∑
t=1

at

)
+ amax.

If τ < T , we also have

T∑
t=τ+1

at
t
≤ 1

τ

T∑
t=τ+1

at ≤
amax∑T
t=1 at

T∑
t=1

at = amax.

Proof of Lemma 14. Define τ = min{T, ⌊A⌋} and trivially assume τ ≥ 1, then we have

1

bmax

T∑
t=1

(
A

t
− 1

)
bt ≤

τ∑
t=1

(
A

t
− 1

)
≤ A

(
1 +

∫ τ

s=1

1

s
ds

)
− τ = A+A ln τ − τ,

whose maximum is A lnA ≤ A ln(1 +A).

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have claimed the paper’s contribution in both the abstract and the introduc-
tion part.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This paper clearly outlines the assumptions that may be required for the
theorems and regards some of them as limitations (such as bounded domain assumption or
deterministic setting), and discusses the future areas for improvement in the corresponding
sections.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

25

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The problem setups and assumptions are provided in Section 2. We provide
theoretical guarantees in Section 3, Section 4 and Section ??, and all the corresponding
proofs can be found in Appendix A, Appendix B and Appendix ??.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

26

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is a purely theoretical work, and we do not find specific societal
impacts that should be highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

28

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not include experiments (data or models), and thus poses no
such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

29

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

30

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem Setups and Preliminaries
	Offline Optimization: Acceleration and Universality
	Online Optimization: Regret and Gradient-Variation Adaptivity
	Online-to-Batch Conversion: Stabilization

	Convex Optimization with Hölder Smoothness
	Gradient-Variation Online Learning with Hölder Smoothness
	Implication to Offline Convex Optimization

	Strongly Convex Optimization with Hölder Smoothness
	Gradient-Variation Online Strongly Convex Optimization with Hölder Smoothness
	Implication to Offline Strongly Convex Optimization
	Grid Search for the Unknown Strong Convexity Curvature

	Conclusion
	Omitted Details for Section 3
	Useful Lemmas for Hölder Smoothness
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

	Omitted Details for Section 4
	Proof of Theorem 3
	Useful Lemmas for Theorem 4
	Proof of Theorem 4 and Corollary
	Proof of Theorem 5 and Discussions

	Supporting Lemmas
	Lemmas for Optimistic OGD Algorithms
	Useful Lemmas

