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Abstract
Diffusion probabilistic models (DPMs) are a new
class of generative models that have achieved
state-of-the-art generation quality in various do-
mains. Despite the promise, one major drawback
of DPMs is the slow generation speed due to
the large number of neural network evaluations
required in the generation process. In this pa-
per, we reveal an overlooked dimension—model
schedule—for optimizing the trade-off between
generation quality and speed. More specifically,
we observe that small models, though having
worse generation quality when used alone, could
outperform large models in certain generation
steps. Therefore, unlike the traditional way of
using a single model, using different models in
different generation steps in a carefully designed
model schedule could potentially improve genera-
tion quality and speed simultaneously. We design
OMS-DPM, a predictor-based search algorithm,
to optimize the model schedule given an arbitrary
generation time budget and a set of pre-trained
models. We demonstrate that OMS-DPM can find
model schedules that improve generation qual-
ity and speed than prior state-of-the-art methods
across CIFAR-10, CelebA, ImageNet, and LSUN
datasets. When applied to the public checkpoints
of the Stable Diffusion model, we are able to ac-
celerate the sampling by 2× while maintaining
the generation quality.

1. Introduction
Diffusion probabilistic models (DPMs) (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2020b) are a recently
emerging paradigm of generative models, which learns an
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Figure 1. Generation quality v.s. latency on CIFAR-10. The hori-
zontal axis is the time cost of generating a batch of images evalu-
ated on a single NVIDIA A100 GPU (10 NFEs is approximately
equivalent to 1400ms latency). The DPMs with model schedules
derived by OMS-DPM achieves a significantly better trade-off
than existing DPMs (Song et al., 2020a; Lu et al., 2022; Bao et al.,
2022; Liu et al., 2022; Watson et al., 2022).

iterative denoising process to transform gaussian noise to
clean data. DPMs have already outperformed (Dhariwal
& Nichol, 2021) other alternatives like variational autoen-
coders (VAEs) (Kingma & Welling, 2013) and generative
adversarial networks (GANs) (Goodfellow et al., 2020) on
both generation quality and likelihood estimation. DPMs
have been successfully applied to various tasks, includ-
ing image generation (Ho et al., 2020; Dhariwal & Nichol,
2021), super-resolution (Li et al., 2022; Saharia et al., 2022),
video generation (Ho et al., 2022), speech generation (Kong
et al., 2020; Chen et al., 2020), and point cloud completion
and generation (Luo & Hu, 2021).

However, one major drawback of DPMs is the slow sam-
pling speed. Specifically, the generation process of DPMs
can be viewed as solving diffusion stochastic differential
equations (SDEs) or ordinary differential equations (ODEs)
using time-dependent score functions of data distributions
(Song & Ermon, 2019; Song et al., 2020b). Neural networks
(NNs) are trained to evaluate the score function. To solve
the differential equations, DPMs usually need to discretize
the continuous sample trajectories to hundreds or thousands
of steps, each with one NN inference. This causes the un-
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bearably slow sampling speed (up to 1000 times slower than
GANs (Goodfellow et al., 2020; Song et al., 2020a)), mak-
ing DPMs impractical for real-time applications. Prior work
tackles this problem mostly by proposing better denoising
formation, including noise schedule, discretization scheme,
and solver formula (Song et al., 2020a;b; Liu et al., 2022;
Zhang & Chen, 2022; Lu et al., 2022; Watson et al., 2021;
Nichol & Dhariwal, 2021; Bao et al., 2022).

In this paper, we point out a new dimension for improving
the trade-off between generation quality and speed—the
model schedule. The key observation is that smaller models,
though having worse generation quality when used alone,
could outperform large models in certain denoising steps.
Hence, unlike the common practice of using a single model,
using different models for different denoising steps could
potentially lead to benefits in both generation quality and
speed. Therefore, the model schedule, the model assign-
ments to each of the denoising steps, is an important factor
to consider in DPMs.

Since the training and sampling of DPMs can be decoupled
(Song et al., 2020a;b), using public pre-trained DPMs (e.g.,
Stable Diffusion (Rombach et al., 2022)) instead of training
from scratch has become prevalent across academia and
industry, and we expect to see more pre-trained DPMs to
come in the future. Therefore, among all research directions
around model schedule, we study the following problem:

Given a set of pre-trained DPM models and a generation
time budget, how can we find the model schedule that

optimizes the generation quality?

The problem is challenging due to the large search space that
grows exponentially with respect to the number of steps. To
address the challenge, we propose a method to Optimize the
Model Schedule for Diffusion Probabilistic Model through
predictor-based search (OMS-DPM). Our predictor takes the
model schedule as input and predicts the generation quality.
The predictor is trained with a small amount of data and can
generalize to unseen model schedules. Equipped with the
predictor, we employ an evolutionary algorithm to quickly
explore the space and derive the well-performing model
schedules under a wide range of generation time budgets.

Our contributions are as follows.

• Sec. 3: We point out an overlooked dimension—model
schedule—for optimizing both the generation quality and
sampling speed of DPMs. Specifically, we reveal the
phenomenon where globally better models do not neces-
sarily perform better on each individual denoising step,
and using different models at different steps can lead to a
significant improvement in generation quality and speed.
• Sec. 4: We propose an actionable method, OMS-DPM,

to decide the model schedule that optimizes the gener-

ation quality given an arbitrary generation time budget.
As OMS-DPM focuses on a novel optimizing dimension
(i.e., the model schedule), it is orthogonal and compatible
with existing methods that accelerate DPM sampling, in-
cluding DDIM (Song et al., 2020a) and DPM-Solver (Lu
et al., 2022). Specifically, OMS-DPM supports searching
the special parameters in these methods such as step-
skipping in DDIM and the solver order in DPM-Solver.
• Sec. 5: We experimentally validate OMS-DPM across

a wide range of datasets, including CIFAR-10, CelebA,
ImageNet-64 and LSUN-Church, and show that OMS-
DPM can achieve significantly better trade-offs on gener-
ation quality and speed than the baselines (Fig. 1). For
example, we are able to obtain model schedules that si-
multaneously achieve better FID (3.19 v.s. 3.56) and
sampling speed (2.8× times faster) than using a single
model (Ho et al., 2020) with DPM-Solver on CIFAR-10.
To further demonstrate the practical value, we apply
OMS-DPM on the 4 public checkpoints of the popu-
lar Stable Diffusion.1 OMS-DPM is able to accelerate
the sampling by over 2× while maintaining the gener-
ation quality on text-to-image generation task on MS-
COCO 256×256 dataset (Lin et al., 2014). We have
open-sourced our code at https://github.com/
jsttlgdkycy/OMS-DPM to allow the community to
use OMS-DPM.

2. Background and Related Work
2.1. Diffusion Probabilistic Models

Given a D-dimension random variable x0 ∈ RD, Diffusion
Probabilistic Models (DPMs) (Sohl-Dickstein et al., 2015;
Ho et al., 2020) learns its distribution q(x0). DPMs define a
forward diffusion process for xt (Song et al., 2020b):

dxt = f(xt, t)dt+ g(t)dwt, (1)

where wt is a standard Wiener process, and x0 ∼ q(x0). f
and g determines the noise magnitudes in xt. The reverse
diffusion process from T to 0 is:

dxt = [f(t)xt − g2(t)∇xlogq(xt)]dt+ g(t)dwt, (2)

where xT ∼ q(xT ) and wt is a reverse time standard Wiener
process. This SDE has an equivalent probability flow ODE:

dxt = [f(t)xt −
1

2
g2(t)∇xlogq(xt)]dt, (3)

A NN (usually an U-net) is trained to learn ∇xlogq(xt).
Then we can generate data by solving the reverse SDE or
the ODE. Most DPM methods use one single NN to evaluate
the score term. While some work proposes to uses multiple
NNs for function evaluation at different timesteps (Jing

1https://huggingface.co/CompVis
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et al., 2022; Balaji et al., 2022), they need to train the NNs
only at their corresponding timesteps. In contrast, our work
can utilize existing pre-trained NNs without inducing extra
training cost.

2.2. Training-Free Samplers

To solve this ODE, one should first define f and g (i.e., noise
schedule) and train neural networks (Nichol & Dhariwal,
2021). We often use αt and σt to denote the noise schedule,
which has a relationship with f and g as follows:

f(t) =
dlogαt

dt
, g2(t) =

dσ2
t

dt
− 2

dlogαt

dt
σ2
t . (4)

Their ratio αt/σt is called the signal-to-noise ratio (SNR).
Then [0, T ] is discreted to timesteps [t0, t1, · · · , tN ], (i.e.,
discretization scheme). Finally solver formula is applied to
compute each xti at timestep ti in order (Song et al., 2020a;
Liu et al., 2022; Zhang & Chen, 2022; Lu et al., 2022).
A training-free sampler only involves the last two parts of
this solving process by utilzing pre-trained models. Many
training-free samplers (Song et al., 2020a; Liu et al., 2022;
Zhang & Chen, 2022; Lu et al., 2022) have been designed
to achieve better trade-offs between the number of function
evaluations (NFEs) and generation quality. They can be
applied to any existing network (e.g., ϵθ(xt, t)) without
retraining. The following are two common samplers, both
of which are compatible with our OMS-DPM.

DDIM (Song et al., 2020a) is one of the most popular sam-
plers. Its solver formula is:

xt =
√
αt

xs −
√
1− αsϵθ(xs, s)√

αs

+
√
1− αt − σ2

sϵθ(xs, s) + σsϵs,

(5)

where ϵs ∼ N (ϵ|0, I). There is no restriction on the value
of s and t. However, big step sizes (small step numbers)
often lead to large errors. When σs is set to zero, this solver
is called DDIM.

DPM-Solver (Lu et al., 2022) gives a solver formula from
xs to xt with a taylor expansion form :

xt =
αt

αs
xs − αt

k−1∑
n=0

ϵ(n)(xλs , λs)

∫ λt

λs

e−λ (λ− λs)
n

n!
dλ

+O((λt − λs)
k+1).

It takes k NFEs to compute all derivatives. Besides, it
applies a discretization scheme of uniform log(SNR), per-
forming better than linear steps and quadratic steps.

2.3. AutoML

AutoML methods aim at automatically deciding for the opti-
mal machine learning system respect to specific conditions

such as task, dataset, and hardware. The research problems
in the AutoML field include model selection, hyperparame-
ter tuning and neural architecture design (Yang et al., 2019;
Jaderberg et al., 2017; Zoph & Le, 2016). This work mainly
focus on the automatic optimization of the proposed model
schedule, including model selection and sampling schedule
design for DPMs.

2.3.1. PREDICTOR-BASED NEURAL ARCHITECTURE
SEARCH

Neural Architecture Search (NAS) is an important sub-task
of AutoML. NAS searches for suitable architectures un-
der certain tasks and constraints (Zoph & Le, 2016; Elsken
et al., 2019). One of the most challenging issues in NAS
is the slow evaluation, due to the heavy computation bur-
den of training and testing an architecture. Predictor-based
NAS (Luo et al., 2018; Ning et al., 2020) is proposed to ac-
celerate the evaluation phase, where a predictor is trained on
a small number of architecture-performance pairs and can
efficiently evaluate new architectures. In our problem, the
evaluation of a DPM is expensive due to the slow sampling
speed, and we borrow some ideas from NAS to propose a
predictor-based method to accelerate the model schedule
search.

3. Model Schedule: A New Dimension in DPM
Design

Getting better trade-offs between the generation quality and
speed of DPMs is an important problem that has drawn
much attention. Since the only unknown term in Eq. (2) or
Eq. (3) is the score term (i.e., ∇xlogq(xt)), one can mod-
ify the sampling process after getting a pre-trained model
used to estimate the score. Therefore, a lot of studies (Song
et al., 2020a; Lu et al., 2022) have been focused on de-
signing training-free samplers for the generation process,
aiming to reduce the NFEs for generating high-quality sam-
ples. Different from existing studies, our work reveals a
new dimension—model schedule—for training-free opti-
mization of the DPMs’ generation quality and speed. In this
section, we discuss the motivation behind model schedule.

We start with a (perhaps surprising) observation that smaller
models can actually outperform larger models at a wide
range of denoising steps. We train a set of DPM models with
different sizes on CIFAR-10 (Fig. 2). Unsurprisingly, using
a single network with smaller latency across all steps leads
to worse sample quality due to the lower model capacity
(Fig. 2a). But the surprising observation is that the ranking
of denoising ability is not consistent across the whole time
axis (Fig. 2b). For example, architecture 1 with the worst
overall generation quality actually outperforms most of the
other models in the late denoising process. This observation
also corroborates recent findings that different denoising
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(a) Basic information of model zoo. The
horizontal axis stands for the latency these
neural architectures take to generate a
batch of 128 images, testing on a sin-
gle A100 GPU. The vertical axis stands
for FID evaluated on 10k images gener-
ated through a 90-step DPM-Solver sam-
pler (Lu et al., 2022) using these architec-
tures alone as the score function estimator.
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(b) Denoising loss on CIFAR-10 test set.
The horizontal axis stands for different
steps. The vertical axis stands for the de-
noising loss (lower is better, normalized
for each step for better visualization). The
models do not have a consistent ranking
across all steps. A smaller model (thus
having a smaller latency) could outperform
larger models in some denoising steps.

5.4 5.6 5.8 6.0 6.2
FID

0

1

2

3

4

5

6

7

nu
m

be
r

Best single model FID

(c) Histogram of FIDs obtained by ran-
domly combining models as the score func-
tion estimators for a 90-step DPM-Solver
sampler (Lu et al., 2022). The red line in-
dicates the best FID achieved by a single
model in the model zoo (i.e., the lowest y-
axis values of all points in Fig. 2a). This il-
lustrates the value of mixing different mod-
els in the generation process of DPMs.

Figure 2. The importance of model schedule in DPM design.

steps perform different tasks (Yang et al., 2022; Choi et al.,
2022).

This phenomenon sheds light on a new opportunity to im-
prove the trade-off between denoising loss and generation
latency. For example, if we replace the late denoising pro-
cess of architecture 6 with architecture 1, we will get a
smaller overall (denoising) loss and a smaller generation
latency simultaneously, compared to using architecture 6
alone across all steps. Although a smaller denoising loss
does not always indicate better generation quality (e.g., in
FID) (Watson et al., 2021; Kim et al., 2021), we hypothesize
that mixing different models across different steps could
also benefit the trade-off between generation quality and
latency. As a proof of concept, we randomly pick models in
each of the denoising steps (Fig. 2c). We can obtain a model
(with FID ≈ 5.4) that outperforms the model with the best
generation quality in the model zoo (i.e., architecture 6) in
terms of both generation quality and speed.

The phenomenon illustrated in Fig. 2 opens up new interest-
ing research questions, including understanding when and
why a DPM model would favor a specific denoising step,
and how we can magnify it during training in an optimal
way for the purpose of fast generation (e.g., by tuning loss
weights (Song et al., 2021)). Given that using public pre-
trained DPMs (e.g., stable diffusion (Rombach et al., 2022))
(instead of training new models from scratch) has become a
popular paradigm, we study the following research question:
assuming that we already have a set of pre-trained models,
how we can decide the sequence of models to use, namely
model schedule, to achieve the best trade-off between gener-

ation quality and latency.

4. OMS-DPM: Optimizing the Model Schedule
4.1. Problem Definition: Model Schedule Optimization

Suppose we have a pre-trained model zoo α with N mod-
els: α = {a1, a2, · · · , aN}, where all ais are neural net-
works trained to predict noise (Ho et al., 2020) or its vari-
ants (Sec. 2). Denote the inference latency of model ai
as li, the sampling time of the M -step DPM with a model
schedule as1 , as2 , · · · , asM placed on diffusion timesteps
t1, t2, · · · , tM can be estimated as

∑M
m=1 lsm , where sm ∈

{1, · · · , N} is the model zoo index for the m-th denoising
step. Giving a generation time budget C as the constraint,
we aim to decide the number of sampling steps M and the
model schedule that optimizes the sample quality:

argmin
M≤L,

as1 ,as2 ,··· ,asM
,

t1,t2,··· ,tM

F([(as1 , t1), (as2 , t2), · · · , (asM , tM )]),

s.t.
M∑
i=1

lsi < C (6)

where F([(as1 , t1), (as2 , t2), · · · , (asM , tM )]) refers to the
sample quality score (e.g., FID) of using as1 , as2 , · · · , asM
at timesteps t1, t2, · · · , tM respectively. L is the upper limit
on the number of steps M . Note that the models are applied
in the order of asM , asM−1

,· · · ,as1 to transform pure noises
to data, i.e., t1 < t2 < · · · < tM .

The flexible optimization space in Eq. (6) contains several
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Figure 3. Illustration of two example model schedules.

dimensions: (1) The number of diffusion steps M . (2) The
value of timesteps ti (i.e., the discretization scheme). (3)
The model asi to apply at step ti.

For deciding the timestep values, previous studies empiri-
cally discretize the timesteps linearly (Song et al., 2020a)
or following the uniform logSNR principle (Lu et al., 2022).
Song et al. (2020a) also propose a sub-sequence selection
procedure that produces quadratically discretized timesteps.
To solve Eq. (6), we follow previous empirical principles
to discretize the timesteps beforehand: We designate the
values for all L timesteps t1 · · · tL according to an empirical
discretization scheme (linear (Song et al., 2020a) for DDIM
experiments, and uniform logSNR (Lu et al., 2022) for DPM-
Solver experiments). In order to support M ≤ L timesteps,
we introduce a special type of model into the model zoo, null
model, denoted as a0. If a0 is selected at a certain timestep,
this timestep is unused in the reverse generation process.
In this way, our optimization space contains a vast number
of flexible timestep discretizations that are different from
the manually designed ones in the literature. For instance,
Fig. 3 illustrates two model schedules that can be derived
from our optimization space, which have different timestep
discretizations and different model choices.

After conducting the L-step discretization and introducing
the null model, the optimization variables of problems are
{s′l}l=1,··· ,L, where s′l ∈ {0, 1, · · · , N}. The size of this
optimization space is (N + 1)L, which is extremely large,
e.g., about 1084 when L = 100 and N = 6.

Challenges. One simple idea is to use the model with the
smallest loss on each timestep. However, as indicated in
(Watson et al., 2021), loss values are not a good indication
of the generation quality. To verify this, we run a 90-step
DPM-Solver with the models with the minimal denoising
loss at each step in Fig. 2b. This gives an FID of 8.56, worse
than the random model schedules in Fig. 2c. A brute-force
search method is also impractical due to the large search
space and the evaluation overhead of F . For example, it
takes about 1 GPU hour to generate 5k samples (256×256
resolution), for evaluating only a single model schedule.

Search Space
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Figure 4. Our overall workflow contains 3 steps: (1) Prepare the
data for predictor training. (2) Train the predictor. (3) Conduct the
predictor-based evolutionary search. The inputs of our workflow
include model zoo, solver type, and budget. Budget is only used in
the search phase and does not affect the predictor training phase.

4.2. Predictor-based Model Schedule Optimization

To circumvent the above challenges, we propose to Opti-
mize the Model Schedule for Diffusion Probabilistic Model
through predictor-based search (OMS-DPM). We train a
performance predictor that takes the model schedule as in-
put and predicts its generation quality. This predictor can
evaluate each model schedule in <1 GPU second, enabling
us to solve the optimization problem efficiently. We’ll first
go through the workflow of our method in Sec. 4.2.1, and
then elaborate on the predictor design in Sec. 4.2.2.

4.2.1. OVERALL WORKFLOW

As shown in Fig. 4, we use the given model zoo2 and ODE
solver to (1) prepare the predictor training data and (2)
use these data to train a performance predictor of model
schedules. Then, for any given platform or budget, we can
(3) run a predictor-based search to derive a suitable DPM.
In the predictor-based search, the predictor will be used
to evaluate model schedules sampled by an evolutionary
algorithm. We will pick the model schedule with the best
predicted score while satisfying the budget constraint.

Training Data Preparation. To prepare the data for predic-
tor training, we randomly sample Ns (where the superscript
s stands for schedule) model schedules [q1, · · · , qNs ] from
the optimization space and evaluate their FID scores F(qi).
The sampling distribution for model schedules is designed
to make the resulting sample quality scores diverse enough.
To accelerate this phase, we only sample a few images to
evaluate the FID. See App. C for the details. From this pro-
cess, we get Ns pairs of model schedules and FID scores
{(qi,F(qi))}i=1,··· ,Ns .

Predictor Training. Compared with the absolute quality,

2See App. B on how the model zoos can be obtained.
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Figure 5. The predictor takes a model schedule q as input and
predicts the generation quality P (q). The predictor consists of a
model embedder, a timestep embedder, and a sequence predictor.

the relative rankings of the model schedules are more impor-
tant for guiding the search. Therefore, we adopt a pair-wise
ranking loss (Ning et al., 2020) to train the predictor:

loss =

Ns∑
i=1

∑
j,F (qj)>F (qi)

max(0,m− (P(qj)− P(qi))),

where m is the hinge compare margin. The ranking loss
drives the predictor to preserve the relative ordering of pre-
dictions {P (qi)} according to the true FID scores {F (qj)}.
When predicting for an unseen model schedule, the lower
the predicted score of a model schedule q is, the better
generation quality we expect q to achieve.

Predictor-Based Evolutionary Search. Thanks to the pre-
dictor, we can use any search algorithm without incurring
additional DPM training or evaluation overhead. We find
that a simple evolutionary algorithm (Real et al., 2019) is
sufficient for providing significant improvement. The algo-
rithm iteratively modifies the current best model schedules
(evaluated by the predictor) in the hope of finding better
ones. The complete algorithm is provided in App. C.8.

Our OMS-DPM also supports searching the special parame-
ters of the sampler (e.g., solver order in DPM-Solver); see
App. C.2 for the details.

4.2.2. PREDICTOR DESIGN

Our predictor takes a model schedule q parametrized as
[s′1, s

′
2, · · · , s′L] as input and outputs a score for that sched-

ule. As shown in Fig. 5, the predictor consists of a model
embedder, a timestep embedder, and a sequential predictor.

Model Embedder. The model embedder maps a model
choice s′l ∈ {0, 1, · · · , N} to a dM-dimension continuous

embedding EmbMl ∈ RdM
(M stands for model). Each

model corresponds to a row in the globally trainable embed-
ding matrix O ∈ R(N+1)×dM

.

Timestep Embedder. The denoising functionality at each
step is not only related to the model choice, but also the cur-
rent timestep. Therefore, besides the model embedding, it is
a logical choice to add timestep embedding as an additional
input to our predictor. Our timestep encoder is an MLP that
gets the sinusoidal embedding vector (Vaswani et al., 2017;
Ho et al., 2020) from a single timestep scalar tl and outputs
the embedding EmbTl ∈ RdT

(T stands for timestep).

Sequence Predictor. After getting the model embed-
dings [EmbM1 , · · · ,EmbML ] and the timestep embeddings
[EmbT1 , · · · ,EmbTL ], we concatenate them at each timestep
l to get Featl = (EmbMl | EmbTl ). Then the sequence
[Feat1, · · · ,FeatL] is input into an LSTM. The output fea-
tures of the LSTM are averaged across timesteps and fed
into an MLP to get the final score P(q).

5. Experiments
In this section, we first show the results of OMS-DPM
with two popular samplers, DPM-Solver (Lu et al., 2022)
and DDIM (Song et al., 2020a), on CIFAR-10, CelebA,
ImageNet-64, and LSUN-Church datasets (Sec. 5.1). We
then demonstrate the practical value of OMS-DPM with
Stable Diffusion (Sec. 5.2). Ablation studies are provided
in Sec. 5.3. We provide our empirical insights in Sec. 5.4.
The model zoo information and experimental settings can
be found in App. B and App. C.

Baselines. We use three types of baselines as listed be-
low. Baseline (1) uses a single model across all timesteps
and adopts common sampler settings (including timestep
schedules or DPM-solver orders). Specifically, we first com-
pute the steps S of using model ai according to S(C, i) =
ceil(C/li) at each constraint C, where li means the latency
of ai and ceil means upper rounding. We report the best FID
among all models and in the model zoo using all sampler
settings at every budget constraint C. Complete results and
implementation details can be found at App. C.9. Baseline
(2) is the model schedule with the best FID under budget
constraint C in the training set. Baseline (3) is a randomly
generated model schedule under budget constraint C. We
run this process for 3 random seeds. The comparison with
baseline (1) can illustrate the importance of mixing models,
while the comparison with baseline (2) and (3) can illustrate
the necessity of using a predictor and a search algorithm.

For our OMS-DPM, we run the search process with 3 ran-
dom seeds and report the mean FID and the standard de-
viation. Information about the predictor can be found in
Tab. 11. All predictors achieve a high Kendall’s Tau (KD)
with unseen validation data, indicating their reliability.
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Budget/ms Baseline Type Ours
(1) (2) (3)

7.0× 103 3.56 3.33 9.33±0.17 3.25±0.01
4.0× 103 3.61 3.33 11.77±0.53 3.14±0.02
2.5× 103 3.93 3.64 13.61±0.37 3.19±0.05
1.4× 103 5.23 6.40 17.42±2.09 3.48±0.06
0.7× 103 8.73 10.68 24.11±3.91 6.08±0.00

(a) Results on CIFAR-10

Budget/ms Baseline Type Ours
(1) (2) (3)

7.0× 103 2.49 2.41 2.89±0.06 2.13±0.03
5.0× 103 2.49 2.79 3.64±0.29 2.12±0.03
3.0× 103 2.40 2.76 6.27±0.64 2.17±0.03
1.5× 103 2.78 3.07 7.75±0.94 2.42±0.06
0.65× 103 4.79 6.19 11.27±2.08 3.53±0.22

(b) Results on CelebA

Budget/ms Baseline Type Ours
(1) (2) (3)

12.0× 103 12.99 13.03 19.88±1.62 12.86±0.08
8.0× 103 13.44 13.38 25.77±2.21 13.01±0.10
5.0× 103 14.00 14.33 30.79±1.44 13.64±0.13
2.0× 103 18.20 19.25 37.70±2.58 16.77±0.31
0.8× 103 29.59 43.21 47.62±2.13 23.94±0.00

(c) Results on ImageNet-64

Budget/ms Baseline Type Ours
(1) (2) (3)

35× 103 11.97 10.79 22.53±0.84 9.30±0.01
25× 103 12.02 10.79 40.55±7.02 9.30±0.01
15× 103 12.03 10.84 47.87±14.31 9.39±0.11
10× 103 13.23 10.84 68.53±14.28 9.25±0.00
4× 103 32.23 32.57 135.05±11.59 13.94±0.00

(d) Results on LSUN-Church

Table 1. FIDs of our searched schedules on four datasets with DPM-Solver. Budget stands for the time cost limit of generating a batch of
images. We report our results against three baselines mentioned before: (1) Using a single model in the model zoo and changing the NFE
to meet the budget constraint. (2) The best schedule in the training set of the predictor. (3) Random sampling from the search space.

5.1. The Effectiveness of OMS-DPM

Tabs. 1 and 2 show the results with DPM-Solver and DDIM
respectively. The key takeaways are:

The importance of model schedules. We can see that
baseline (2) outperforms baseline (1) in many cases. This
further confirms the observation in Fig. 2c where mixing
multiple models in the generation process is better than the
current practice of using a single model.

The importance of the predictor and the search algo-
rithm in OMS-DPM. We see that our OMS-DPM always
outperforms baseline (2) and baseline (3) by a large margin.
These benefits indicate that our predictor is able to general-
ize from the limited training set, and the search algorithm
is able to find a better model schedule that outperforms the
best one in the training set.

The robustness of OMS-DPM across datasets, budgets,
and samplers. Our OMS-DPM always outperforms base-
line (1) across all datasets, budgets, and both samplers. For
example, under DPM-Solver, OMS-DPM achieves a sig-
nificant boost under low budgets (e.g., 6.08 v.s. 8.73 on
CIFAR-10, 23.94 v.s. 29.59 on ImageNet-64, 13.94 v.s.
32.23 on LSUN-Church). As the budget increases and more
NFEs can be used for the generation, the FID will decrease
and converge to a value. We can see that OMS-DPM can fur-
ther lower the converging FID of DPM-Solver by properly
mixing models (e.g., 3.14 v.s. 3.56 on CIFAR-10, 9.25 v.s.
11.97 on LSUN-Church). Fig. 1 provides a comparison to

more state-of-the-art methods, where we report the results
of DDIM and DPM-Solver with our own implementation
and take other results from the original paper (Bao et al.,
2022; Liu et al., 2022; Watson et al., 2022). We see that
OMS-DPM clearly achieves the best tradeoffs between gen-
eration quality and speed. These results demonstrate that
OMS-DPM is robust across datasets and budgets, and works
well with state-of-the-art samplers.

5.2. Results with Stable Diffusion

To further demonstrate the practical value of OMS-DPM,
we test OMS-DPM on the text-to-image generation task
using Stable Diffusion (Rombach et al., 2022). We use the
four officially released models to construct the model zoo,
and choose DPM-Solver as the sampler. We test our FID
on MS-COCO 256×256 validation set (Lin et al., 2014).
Because the four models share the same architecture and
thus have the same latency, the time cost only depends on
the number of timesteps, and we show NFE as the time cost
budget. Detailed settings can be found at App. C.

Practical value of OMS-DPM. Tab. 3 shows that OMS-
DPM can achieve a better FID with 12 steps than the best
single model with 24 steps. Given the popularity of Stable
Diffusion, OMS-DPM can potentially save a significant
amount of computation resources for the community.

More insights on model schedule and more use cases of
OMS-DPM. Note that the 4 checkpoints used here are from
different training iterations of the same model. Therefore,
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Budget/ms Baseline Type Ours
(1) (2) (3)

9.0× 103 4.29 4.19 7.67±0.26 3.80±0.06
6.0× 103 4.73 4.54 8.86±0.78 4.07±0.06
3.0× 103 6.42 7.10 13.14±1.19 5.20±0.01
1.5× 103 10.01 9.72 15.55±1.02 8.24±0.20
0.75× 103 16.11 14.75 22.04±6.07 12.34±0.31

(a) Results on CIFAR-10

Budget/ms Baseline Type Ours
(1) (2) (3)

15× 103 4.61 4.51 5.97±1.32 3.62±0.06
10× 103 4.75 4.73 7.49±0.86 3.71±0.04
7.0× 103 5.03 5.75 8.21±0.64 3.99±0.06
4.0× 103 5.64 7.01 10.34±0.77 4.75±0.03
1.5× 103 7.32 10.31 12.21±2.22 7.07±0.13

(b) Results on CelebA

Budget/ms Baseline Type Ours
(1) (2) (3)

20× 103 14.74 14.78 20.08±0.63 14.67±0.07
15× 103 15.12 14.81 23.84±0.65 14.78±0.08
10× 103 16.12 16.42 26.77±2.01 15.16±0.10
5× 103 19.47 20.57 33.11±2.51 18.07±0.16
2× 103 26.91 30.48 40.44±0.87 25.10±0.52

(c) Results on ImageNet-64

Budget/ms Baseline Type Ours
(1) (2) (3)

55× 103 11.72 11.24 23.33±1.04 10.95±0.08
40× 103 11.73 11.65 31.22±0.70 10.98±0.11
25× 103 12.05 13.15 40.59±9.16 11.10±0.22
10× 103 14.77 17.80 50.28±13.17 13.70±0.20
4× 103 25.27 67.49 57.97±4.55 23.03±0.67

(d) Results on LSUN-Church

Table 2. FIDs of our searched schedules on four datasets with DDIM.

Budget/NFE Baseline Type Ours
(1) (2)

9 13.01 13.01 12.90
12 12.11 11.37 11.34
15 11.92 11.13 10.72
18 11.88 11.13 10.68
24 11.81 11.13 10.57

Table 3. FID on MS-COCO 256×256. All FIDs in the table are
calculated between 30k images in validation set and 30k generated
images guided with the same captions.

this experiment generalizes our insights in Sec. 3: the phe-
nomenon in Fig. 2b happens for different models with the
same neural architecture, and mixing checkpoints from a
single training process with OMS-DPM is also beneficial.
This insight could lead to broader use cases of OMS-DPM:
since it is common to save multiple checkpoints during the
training process, any developer or user of DPMs can use
OMS-DPM to boost the generation speed and quality.

5.3. Ablation Study

We study the influences of model zoo size and the predictor
training data size using DPM-Solver on CIFAR-10.

Model Zoo Size N . Tab. 4 shows the FID results of OMS-
DPM with different model zoo sizes. We can see that using
the largest model zoo with N = 6 achieves the best re-
sults, and we see an improvement over the baseline across
all model zoo sizes. Nevertheless, the N = 2 results are

Budget/ms Manner Model Zoo Size

2 4 6

7.0× 103
Baseline (2) 3.44 3.68 3.33

Search 3.37±0.01 3.49±0.02 3.25±0.01

4.0× 103
Baseline (2) 3.57 3.59 3.33

Search 3.36±0.02 3.42±0.00 3.14±0.02

2.5× 103
Baseline (2) 3.63 3.59 3.64

Search 3.29±0.01 3.39±0.04 3.19±0.05

1.4× 103
Baseline (2) 6.01 6.58 6.40

Search 3.99±0.01 3.67±0.03 3.48±0.06

0.7× 103
Baseline (2) 28.15 13.88 10.68

Search 6.05±0.00 6.25±0.36 6.08±0.00

Table 4. Searched FIDs of composing fewer models.

slightly better than N = 4. One potential reason is that
N = 2 induces a smaller search space, and thus OMS-DPM
can explore the search space more sufficiently.

Predictor Training Data Size. Tab. 5 shows the FID results
using different data sizes for predictor training. Unsurpris-
ingly, using less data to train the performance predictor
results in degraded performances. But in all three cases,
OMS-DPM still achieves better results than the baseline,
indicating that we can make the predictor training phase
more efficient while still obtaining promising results.

5.4. Empirical Observations

We summarize the observations on the model schedule pat-
tern, hoping to provide some practical insights. Two of
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(a) A searched schedule on ImageNet-64 using DDIM under 2000ms budget.

(b) A searched schedule on LSUN-Church using DDIM under 4000ms budget.

Figure 6. Two examples of searched schedules. The model numbers shown in the figure are consistent with the description at App. B. The
sizes of model squares match the latencies of the corresponding models approximately.

our searched schedules are demonstrated in Fig. 6. More
searched patterns can be found in Fig. 7.

Should we use more steps or larger models? Under a low
time budget, using smaller models with more steps is more
likely to gain a better generation quality than using larger
models with fewer steps. The model schedules derived by
OMS-DPM under the tightest budget (the last row of Tab. 1
and Tab. 2) are composed of only the 2 or 3 models with
the lowest latency in the model zoo. This is because when
the total number of steps is small, the error caused by the
inexact solver formula and time discretization rises very
quickly as the NFE decreases. Conversely, when having an
adequate time budget, using larger models is suggested.

Should we apply larger models earlier or later? On
ImageNet-64 with DPM-Solver and DDIM samplers and
on CIFAR-10 with the DDIM sampler, using large models
at steps near the generated data is more likely to achieve
better performances than using large models at steps near
the noise. Nevertheless, on LSUN-Church, the case is just
the opposite. That is, using large models at steps near the
noise is more likely to achieve better performances.

How should the timestep be discretized? For DDIM, we
find the step size of our discovered schedules is larger at
steps near the final generated image on CIFAR-10, CelebA,
and ImageNet-64, especially on CelebA. On LSUN-Church,
the step sizes at both ends are usually smaller than those in
the middle part.

Which solver order should be used? For DPM-Solver,
most of the discovered schedules apply the 1-st or 2-nd
solvers under tight budgets. The 3-rd solver is only used
under an adequate budget. For Stable Diffusion, our discov-
ered schedules are mixed with 1-st, 2-nd, and 3-rd solvers
under all budgets, and the 1-st solver is preferred when t is
close to 0.

6. Limitations and Future Work
Although our method can efficiently derive specialized
DPMs for any given budget, if given a new dataset or task,
we need to prepare the predictor training data on that dataset
or task and train a new predictor, which incurs a substantial
overhead. Extending our method to be capable of efficiently
deriving DPMs for new datasets and downstream tasks is
an interesting future direction. Besides, as our experiments
in Tab. 4 demonstrate that the quality and size of the model
zoos matter for the performances, how to efficiently con-
struct a good model zoo is a topic worth studying. For
example, can we efficiently prune a pretrained model to
get a diverse model zoo? Or can we design the ELBO loss
weight (Choi et al., 2022; Kingma & Gao, 2023) to train a
diverse model zoo?

Finally, let us take a broader perspective than deciding the
best model schedule of pretrained models in DPM: As more
and more open-source or proprietary models and APIs with
varying expertise and complexity are coming forth, we be-
lieve the idea of cleverly combining off-the-shelf models
and APIs to improve performance-efficiency trade-offs can
support a wider range of applications.

Acknowledgements
This work was supported by National Natural Science Foun-
dation of China (No. U19B2019, 61832007), Tsinghua
University Initiative Scientific Research Program, Beijing
National Research Center for Information Science and Tech-
nology (BNRist), Tsinghua EE Xilinx AI Research Fund,
and Beijing Innovation Center for Future Chips. We thank
Prof. Jianfei Chen, Tianchen Zhao, Junbo Zhao for their
discussion.

9



OMS-DPM: Optimizing the Model Schedule for Diffusion Probabilistic Model

References
Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Kreis,

K., Aittala, M., Aila, T., Laine, S., Catanzaro, B., et al.
ediffi: Text-to-image diffusion models with an ensemble
of expert denoisers. arXiv preprint arXiv:2211.01324,
2022.

Bao, F., Li, C., Zhu, J., and Zhang, B. Analytic-dpm: an ana-
lytic estimate of the optimal reverse variance in diffusion
probabilistic models. arXiv preprint arXiv:2201.06503,
2022.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. Wavegrad: Estimating gradients for waveform
generation. arXiv preprint arXiv:2009.00713, 2020.

Choi, J., Lee, J., Shin, C., Kim, S., Kim, H., and Yoon, S.
Perception prioritized training of diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11472–11481, 2022.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey. The Journal of Machine Learning
Research, 20(1):1997–2017, 2019.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. arXiv preprint
arXiv:2204.03458, 2022.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,
I., Simonyan, K., et al. Population based training of
neural networks. arXiv preprint arXiv:1711.09846, 2017.

Jing, B., Corso, G., Berlinghieri, R., and Jaakkola, T.
Subspace diffusion generative models. arXiv preprint
arXiv:2205.01490, 2022.

Kim, D., Shin, S., Song, K., Kang, W., and Moon, I.-C. Soft
truncation: A universal training technique of score-based
diffusion model for high precision score estimation. arXiv
preprint arXiv:2106.05527, 2021.

Kingma, D. P. and Gao, R. Understanding the diffusion
objective as a weighted integral of elbos. arXiv preprint
arXiv:2303.00848, 2023.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis.
arXiv preprint arXiv:2009.09761, 2020.

Li, H., Yang, Y., Chang, M., Chen, S., Feng, H., Xu, Z., Li,
Q., and Chen, Y. Srdiff: Single image super-resolution
with diffusion probabilistic models. Neurocomputing,
479:47–59, 2022.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on
computer vision, pp. 740–755. Springer, 2014.

Liu, L., Ren, Y., Lin, Z., and Zhao, Z. Pseudo numeri-
cal methods for diffusion models on manifolds. arXiv
preprint arXiv:2202.09778, 2022.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilis-
tic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T.-Y. Neural ar-
chitecture optimization. Advances in neural information
processing systems, 31, 2018.

Luo, S. and Hu, W. Diffusion probabilistic models for 3d
point cloud generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 2837–2845, 2021.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion
probabilistic models. In International Conference on
Machine Learning, pp. 8162–8171. PMLR, 2021.

Ning, X., Zheng, Y., Zhao, T., Wang, Y., and Yang, H. A
generic graph-based neural architecture encoding scheme
for predictor-based nas. In European Conference on Com-
puter Vision, pp. 189–204. Springer, 2020.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regular-
ized evolution for image classifier architecture search. In
Proceedings of the aaai conference on artificial intelli-
gence, volume 33, pp. 4780–4789, 2019.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical image computing and

10



OMS-DPM: Optimizing the Model Schedule for Diffusion Probabilistic Model

computer-assisted intervention, pp. 234–241. Springer,
2015.

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J.,
and Norouzi, M. Image super-resolution via iterative
refinement. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

Sen, P. K. Estimates of the regression coefficient based
on kendall’s tau. Journal of the American statistical
association, 63(324):1379–1389, 1968.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion im-
plicit models. arXiv preprint arXiv:2010.02502, 2020a.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in Neural
Information Processing Systems, 32, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Song, Y., Durkan, C., Murray, I., and Ermon, S. Maximum
likelihood training of score-based diffusion models. Ad-
vances in Neural Information Processing Systems, 34:
1415–1428, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Watson, D., Ho, J., Norouzi, M., and Chan, W. Learning
to efficiently sample from diffusion probabilistic models.
arXiv preprint arXiv:2106.03802, 2021.

Watson, D., Chan, W., Ho, J., and Norouzi, M. Learning fast
samplers for diffusion models by differentiating through
sample quality. In International Conference on Learning
Representations, 2022.

Yang, C., Akimoto, Y., Kim, D. W., and Udell, M. Oboe:
Collaborative filtering for automl model selection. In
Proceedings of the 25th ACM SIGKDD international con-
ference on knowledge discovery & data mining, pp. 1173–
1183, 2019.

Yang, X., Zhou, D., Feng, J., and Wang, X. Diffu-
sion probabilistic model made slim. arXiv preprint
arXiv:2211.17106, 2022.

Zhang, Q. and Chen, Y. Fast sampling of diffusion
models with exponential integrator. arXiv preprint
arXiv:2204.13902, 2022.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

11



OMS-DPM: Optimizing the Model Schedule for Diffusion Probabilistic Model

Budget/ms Manner Training Data

915 1831 3662

7.0× 103
Baseline (2) 3.49 3.33 3.33

Search 3.46±0.06 3.34±0.07 3.25±0.01

4.0× 103
Baseline (2) 3.43 3.33 3.33

Search 3.39±0.01 3.28±0.05 3.14±0.02

2.5× 103
Baseline (2) 3.64 3.64 3.64

Search 3.51±0.05 3.41±0.11 3.19±0.05

1.4× 103
Baseline (2) 7.41 7.01 6.40

Search 3.97±0.02 3.75±0.14 3.48±0.06

0.7× 103
Baseline (2) 10.68 10.68 10.68

Search 6.48±0.46 7.53±0.07 6.08±0.00

Table 5. Searched FIDs of using less data for predictor training.

A. Additional Results
A.1. Results of ablation study

The results of our ablation study with less predictor training data are shown in Tab. 5.

A.2. Demonstration of searched model schedules

We show some searched schedules on all the four datasets using the two samplers at Fig. 7 (except for the searched patterns
on ImageNet-64 and LSUN-Church using DDIM, which are shown at Fig. 6).

B. Model Zoo information
B.1. Model Zoo Construction

Leveraging a model zoo with varying complexities (models with different architectures) or functionalities (models with
different architectures or training settings), our OMS-DPM method can derive model schedules that achieve superior
speed-quality trade-offs. To obtain a model zoo, one can either construct and train the models themselves or directly use
public models.

On CIFAR-10, CelebA, ImageNet-64, and LSUN-Church, in order to obtain models with varying complexities and
functionalities, we adjust the model architectures and train the models ourselves. To be more specific, the most commonly
used architecture family for DPMs is U-Net (Ronneberger et al., 2015; Ho et al., 2020; Song et al., 2020b; Dhariwal &
Nichol, 2021). A U-Net is constructed by a series of downsampling stages and upsampling stages. All of these blocks
consist of several residual blocks followed by a downsampling or upsampling block. In addition, a global attention head is
used after all residual blocks in some stages. And we adjust the U-Net architecture by changing the (1) widths of each stage
(“Channels” in Tabs. 6 to 9), (2) depth (“Depth” in Tabs. 6 to 9), including the number of stages and the number of residual
blocks per stage, and (3) the number of the attention head (“Attention” in Tabs. 6 to 9). Then, we use the noise prediction
form and linear noise schedule to train the models, and all other training settings are kept the same too. As the models have
different architectures, they have different complexities and functionalities. In our experiments, the model zoo sizes are 6, 6,
7, and 6 on CIFAR-10, CelebA, ImageNet-64, and LSUN-Church, respectively.

While in the experiment of using Stable Diffusion (Rombach et al., 2022), we use the four officially provided pre-trained
models at https://huggingface.co/CompVis/stable-diffusion to construct the model zoo.

More detailed architecture configurations and training settings are illustrated as following.

CIFAR-10. The architecture configurations are shown in Tab. 6. We choose the model 1,2,3,6 to construct the N = 4
model zoo and model 2,6 to construct the N = 2 model zoo in Sec. 5.3. We follow the training settings in (Ho et al., 2020).
All models are trained with 128 batch size for 800k iterations, with a learning rate of 2× 10−4. We use 0.1 as dropout ratio
and 0.9999 as EMA rate.
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Number Channels Depth Attention

1 32×[1,2,2,2] 2 1 head at 16×16
2 64×[1,2,2,2] 2 1 head at 16×16
3 128×[1,1,1] 1 -
4 128×[1,2,2,2] 2 -
5∗ 128×[1,2,2,2] 2 1 head at 16×16
6 128×[1,2,2,2] 2 4 heads at 16×16

Table 6. Architecture configuration on CIFAR-10. Model with * has the same architecture with the model used in (Ho et al., 2020).

CelebA. The architecture configurations are shown in Tab. 7. Following (Song et al., 2020a), we use a batch size of 128
and a learning rate of 2× 10−4 for training. We train all models for 1000k iterations and save at every 50k, and then select
the best among all checkpoints based on the FID with a 20-step DDIM sampler. We use 0.1 as dropout ratio and 0.9999 as
EMA rate.

Number Channels Depth Attention

1 32×[1,2,2,2,4] 2 1 head at 16×16
2 64×[1,2,2,2,4] 2 1 head at 16×16
3 64×[1,2,2,2,4] 3 1 head at 16×16
4∗ 128×[1,2,2,2,4] 2 1 head at 16×16
5 160×[1,2,2,2,4] 2 1 head at 16×16
6 128×[1,2,2,2,4] 3 1 head at 16×16

Table 7. Architecture configuration on CelebA. Model with * has the same architecture with the model used in (Song et al., 2020a).

ImageNet-64. The architecture configurations are shown in Tab. 8. We follow the architecture choice in (Nichol &
Dhariwal, 2021), while we use our own settings for training. We set 128 as the batch size and 2× 10−5 as the learning rate.
We do not train models to predict varience like (Nichol & Dhariwal, 2021) does. We choose the checkpoints with 1500k
iterations. Dropout ratio 0.1 and EMA rate 0.9999 are used.

LSUN-Church. The architecture configurations are shown in Tab. 9. We train these models with batch size 64 and learning
rate 2× 10−5. We choose the checkpoints with 1000k iterations. Dropout ratio 0.1 and EMA rate 0.9999 are used.

Stable Diffusion. The four models we use share the same architecture but are trained on different datasets and have
different parameters. All four models are latent diffusion models that contain three modules: (1) A pre-trained CLIP text
encoder is used to encode the prompt information. (2) A VAE maps high-dimension images into a low-dimension latent
space. (3) A DPM conducts generation in the latent space using a U-Net guided by the prompt encoding. Note that the
four models share the same VAE and CLIP text encoder, so we can safely compose the four U-Nets for the latent diffusion
process.

B.2. Inference Latency

We test the time cost of inferring a batch of data for all models by averaging the latency over 500 inferences, and all
inferences are conducted on a single A100 GPU. We list all results in Tab. 10. The batch size b is 64 for LSUN-Church, 128
for CelebA and ImageNet-64, and 512 for CIFAR-10.

C. Experiment Details
C.1. Evaluation of DPMs

For the final evaluation of unconditional DPMs in Tabs. 1, 2, 4 and 5, we generate 50k images and calculate FID between
the whole training set and the generated images. To reduce the randomness of evaluation for a fair comparison, we fix the
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Number Channels Depth Attention

1 32×[1,2,3,4] 3 1 head at 16×16 and 8×8
2 64×[1,2,3,4] 3 1 head at 16×16 and 8×8
3 96×[1,2,3,4] 3 1 head at 16×16 and 8×8
4 128×[1,2,3,4] 2 1 head at 16×16 and 8×8
5∗ 128×[1,2,3,4] 3 1 head at 16×16 and 8×8
6 128×[1,2,3,4] 4 1 head at 16×16 and 8×8
7 160×[1,2,3,4] 3 1 head at 16×16 and 8×8

Table 8. Architecture configuration on ImageNet-64. Model with * has the same architecture with the model used in (Nichol & Dhariwal,
2021).

Number Channels Depth Attention

1 32×[1,1,2,2,4,4] 2 1 heads at 16×16
2 64×[1,1,2,2,4,4] 2 1 heads at 16×16
3 96×[1,1,2,2,4,4] 2 1 heads at 16×16
4 128×[1,1,2,2,4,4] 1 1 heads at 16×16
5 128×[1,1,2,2,4] 1 1 heads at 32×32
6∗ 128×[1,1,2,2,4,4] 2 1 heads at 16×16

Table 9. Architecture configuration on LSUN-Church. Model with * has the same architecture with the model used in (Ho et al., 2020).

50k generation noise in all our experiments. Since we use ODE samplers, there is no randomness in our evaluation. For
experiments with stable-diffusion, we sample 30k captions in the validation set and use them to guide the generation with a
guidance scale s = 1.5. Then we calculate the FID between generated images and the raw images of all sampled captions.

C.2. How to Conduct DPM Sampling for A Model Schedule

In this section, we explain how we conduct the DPM sampling corresponding to a specific model schedule q = [s′1, · · · , s′L].

DPM-Solver. For DPM-Solver, a k-order DPM solver can be seen as grouping k timesteps together. Our problem
parametrization can still be used: we group every 3 timesteps to form L/3 groups. For example, as1 , as2 , as3 belong to
the first group and will be used together in a single solver step. Note that for each group, our parametrization also enables
us to decide between inactive solver (e.g., s1 = s2 = s3 = 0), first-order (e.g., s1 ̸= 0, s2 = s3 = 0), second-order (e.g.,
s1 ̸= 0, s2 ̸= 0, s3 = 0), and third-order DPM solvers. Finally, we divide the continuous time following uniform logSNR
rule. The total number of time splits equals the number of used solver steps, or L/3 minus the number of inactive solvers.
Consider an example schedule [1,2,3,3,0,0,0,0,0,1,2,0] with length 3×4. [1,2,3], [3,0,0], and [1,2,0] correspond to three
solver steps, while [0,0,0] is not used during sampling. We split time [0,1] to four solver timesteps (three time splits) with
uniform logSNR. We conduct a 2-nd order solver with model 2 and model 1 in order at the first split. Then we use a 1-st
order solver with model 3 at the second split. Finally, we apply a 3-rd order solver using model 3, model 2, and model 1 in
order at the last time split, and get the generated images.

We also adjust the sequence predictor to match the property of DPM-Solver. See App. C.4 for more details. For convenience,
we set L to be divisible by 3 in our experiments with DPM-Solver.

For the maximum schedule length L, we set 90 on CIFAR-10 dataset, 60 on other datasets, and 45 for stable-diffusion.

DDIM. Different from the experiments with DPM-Solver, the search space in our experiments with DDIM contains the
time discretization scheme. Specifically, we linearly discretized [0,T] beforehand to get L discrete timesteps. Then, the
timesteps with non-zero s′, {ti|s′i ̸= 0}i=1,··· ,L, are used in sampling, while the other timesteps {ti|s′i = 0}i=1,··· ,L don’t
invovle in sampling. We set L with DDIM as 200 on CelebA dataset and 100 on other datasets.
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Number CIFAR-10(ms) CelebA(ms) ImageNet-64(ms) LSUN-Church(ms)

1 35.99±0.29 31.90±0.50 46.91±0.05 160.20±0.18
2 69.47±0.03 63.18±2.15 92.46±0.07 334.95±0.28
3 55.06±0.12 84.31±0.14 153.12±0.24 581.44±0.48
4 121.12±0.14 133.04±0.31 153.39±0.27 517.59±0.49
5 140.01±0.06 207.53±0.44 201.67±0.31 522.24±2.97
6 147.74±0.15 176.81±0.46 252.66±0.37 778.86±0.65
7 - - 309.93±1.42 -

Table 10. Latency of all models in the model zoo.

C.3. Schedule-FID Data Generation

When generating schedule-FID data for predictor training, it’s better to make the training data diversely distributed, such
that the predictor can better generalize to unseen model schedules in the large search space. We set up multiple multinomial
distributions by manually assigning the probabilities of picking each model from the model zoo. Then, for each multinomial
distribution, we generate model schedules by sampling the model choice according to the distribution at each step. We will
open source all the schedule-FID data for future use. For each model schedule on all unconditional generation tasks, we
use the corresponding DPM to sample 5k images and evaluate the FID score. For experiments with stable-diffusion, we
randomly sample 1.5k captions from the MS COCO 256×256 validation set for image generation, and then calculate the
FID between generated images and the raw image of these sampled captions. Noting that the noise taken as input to generate
schedule-FID data is also fixed.

C.4. Adjustment of the Sequence Predictor for DPM-Solver

DPM-Solver (Lu et al., 2022) uses a k-th solver to compute xti−1 from xti , which takes k NFE. So we make some
adjustments to the sequence predictor module to match the characteristics of DPM-Solver. Specifically, we group each
three model embeddings [EmbMi−2,EmbMi−1,EmbMi ] (i is divisible by 3), and then concatenate them to a 3M -dimension
encoding. We feed this encoding into a MLP to get an encoding that represents the combination of three models, which we
call solver embedding. Finally, the solver embedding is concatenated with timestep embedding and fed into the LSTM.

C.5. Hyperparameter of Predictor

We set the model embedding dimension to 64 for ImageNet-64 as we use a larger model zoo size, and 32 for other datasets.
For DPM-Solver, we set the solver embedding dimension to 64. For DDIM, we set the length of model embedding to 32.
We used 64 as the dimension of timestep embedding. For the LSTM, we set the hidden size to 128 and the layer number to
1. Finally, we use an MLP with 4 layers and an output size of 200 at each layer except the last layer. No hyperparameter
tuning is conducted.

C.6. Training

We use the ranking loss to train the predictor as described in Sec. 4.2.1. When obtaining a batch of b training data, we first
randomly choose at most compare ratio × b pairs of data whose ground truth FID difference is larger than threshold.
Then, we train the predictor with the ranking loss on these data. We set compare ratio to 2, threshold to 0.15 and the
compare margin m to 1.0.

C.7. Validating the Reliability of Predictor

We use Kendall’s Tau (KD) to evaluate the performance of predictor (Sen, 1968) . Specifically, we split our generated
schedule-FID dataset into two parts: training set and validation set. We complete the training procedure on the training set
and test the KD between predicted scores and ground truth FID on the validation set. We report our results in Tab. 11. And
our predictor for stable-diffusion achieves a KD of 0.9543 on the validation set with 2070 training data and 108 validation
data. Our predictors can achieve high KDs on unseen data, indicating their effectiveness.
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Sampler Dataset Train Valid KD

DPM-Solver

CIFAR-10 3662 3662 0.9621

CelebA 3460 3460 0.9461

ImageNet-64 2735 2738 0.9611

LSUN-Church 3082 884 0.9283

DDIM

CIFAR-10 3380 3380 0.9757

CelebA 2660 2660 0.9653

ImageNet-64 3240 360 0.9760

LSUN-Church 1838 94 0.9675

Table 11. Information of all predictors. Train/Valid means the total num of data in the training/validation sets. KD means the Kendall’s
Tau on validation set between predicted score and true FID.

C.8. Evolutionary Search

Our complete search flow is shown at Algorithm 1. Time cost budget C should be given in advance. We first randomly
initialize the whole schedule population P with a single model schedule as described in lines 1-3. To ensure the initial
schedule q0 falls in a region with good quality, we ensure that it has a time cost in [0.9×C, C]. Then we conduct T loops,
in each of which we sample a parent schedule from the current P and mutate the parent schedule to get a new candidate
schedule. Specifically, we randomly sample at most MCP schedules in the P as candidate parent set (denoted as CP ) and
choose the best one (denoted as q in line 8) as parent according to the predicted score. Then we mutate the parent to get
more schedules denoted as qnew and add them into the next generation set (denoted as NG). The mutation is conducted for
at most iter times or until the size of NG reaches MNG. Then all schedules in NG are added to the current population. If
the size of P is more than MP , we eliminate excess according to the predicted score, as described in lines 18-19. Finally,
after T loops, we choose the one with the best predicted score in the population as our searched schedule.

We set the maximum times iter of random mutation as 200 and the maximum population MNG of the next generation as 40.
The number p of candidate parents at every epoch is 10. The population cap MP is set to 40. We set the total search epoch T
as 600, but according to our experience, in most cases the search can reach the local optimum and be terminated around
200∼300 epochs.

C.9. Implementation Details and Full Results of Baseline (1)

We have reported the best FID achieved by DPMs using a single model and several common sampler settings (baseline (1))
under every budget in Sec. 5.1. The complete results of the generation quality are shown in Tab. 12 and Tab. 13. The full
results support many of our analysis in Sec. 5.4. For example, smaller models converge more quickly at relatively lower
budgets with worse convergence generation quality, and quadratic time discrete scheme is significantly better than linear
time discrete scheme on CIFAR-10, CelebA and ImageNet-64 while the case is just the opposite on LSUN-Church. While
the optimal hyper-parameters (e.g., the order of DPM-Solver, the time discretization scheme, the model size) are different
for different datasets, our OMS-DPM can always outperform the baselines. This suggests the effectiveness of OMS-DPM in
automatically finding good hyper-parameters and the benefits of reducing the burden of manual hyper-parameter tuning.

For DPM-Solver (Lu et al., 2022), we apply the fast version for 1-st, 2-nd and 3-rd order solver without adaptive step
size based on the official implementation at https://github.com/LuChengTHU/dpm-solver. We apply uniform
logSNR time discrete scheme following the default configuration.

For DDIM (Song et al., 2020a), we obtain the results by using quadratic time discrete scheme and uniform
time discrete scheme on all four datasets, following the official implementation at GitHub-ermongroup/ddim:
DenoisingDiffusionImplicitModels.

For stable-diffusion, we choose the single-step DPM-Solver and apply the uniform logSNR time discrete scheme. We
also apply the fast version for 1-st, 2-nd and 3-rd order solver and choose the best one. Other settings are kept con-
sistent with the default configuration of the official implementation at GitHub-CompVis/stable-diffusion:
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Budget/ms Model Number

1 2 3 4 5 6

7.0× 103 15.89/15.54/15.54 10.62/9.83/9.84 7.56/6.59/6.57 6.36/4.65/4.62 5.24/3.74/3.70 5.29/3.57/3.56
4.0× 103 16.23/15.53/15.56 8.49/6.60/6.60 11.36/9.83/9.83 8.09/4.72/4.56 7.13/3.84/3.71 7.38/3.63/3.61
2.5× 103 16.77/15.49/15.51 10.19/6.65/6.56 12.58/9.84/9.84 11.44/4.81/4.64 10.74/4.17/4.07 11.09/3.95/3.93
1.4× 103 18.26/15.46/15.51 14.11/6.92/6.81 15.72/10.01/9.75 22.57/8.09/5.23 22.95/6.70/6.01 24.25/7.41/6.89
0.7× 103 22.49/15.69/15.74 28.68/8.73/12.22 27.59/11.44/10.10 50.29/39.04/23.07 60.33/69.40/289.53 56.55/43.14/297.67

(a) Full results on CIFAR-10

Budget/ms Model Number

1 2 3 4 5 6

7.0× 103 8.79/8.66/8.67 4.07/3.30/3.31 3.63/2.82/2.81 5.30/3.55/3.52 4.57/2.73/2.53 4.56/2.53/2.49
5.0× 103 8.86/8.64/8.66 4.41/3.30/3.32 4.05/2.83/2.80 6.41/3.56/3.54 5.54/2.80/2.50 5.55/2.60/2.49
3.0× 103 9.70/8.64/8.66 5.31/3.29/3.30 5.10/2.84/2.77 8.32/3.52/3.60 8.50/3.68/2.76 8.51/2.92/2.40
1.5× 103 9.81/8.52/8.70 14.11/6.92/6.81 8.34/3.24/2.78 17.59/4.53/6.63 22.34/9.13/79.20 18.30/5.04/10.83
0.65× 103 9.81/8.52/8.70 18.44/4.79/6.84 22.26/10.19/80.42 45.06/151.41/352.54 42.44/316.57/333.59 43.94/305.22/314.81

(b) Full results on CelebA

Budget/ms Model Number

1 2 3 4 5 6 7

12× 103 40.73/40.36/40.66 23.75/23.30/23.67 18.67/17.86/18.13 17.40/16.58/16.89 15.89/14.79/14.94 15.77/1404/14.10 15.43/12.99/13.04
8.0× 103 40.95/40.34/40.64 24.16/23.41/23.68 19.54/18.10/18.23 18.25/16.79/16.90 17.43/15.10/14.97 17.95/14.49/14.34 18.66/13.67/13.44
5.0× 103 41.40/40.39/40.59 25.18/23.59/23.67 21.97/18.53/18.24 20.53/17.20/17.00 21.23/15.89/15.29 23.23/15.66/14.76 25.25/15.19/14.00
2.0× 103 43.87/40.65/40.62 31.74/25.26/23.96 36.74/21.79/19.51 35.99/20.50/18.20 46.09/23.92/20.63 57.25/30.84/33.40 66.38/30.80/41.10
0.8× 103 52.35/41.79/42.59 59.70/33.86/29.59 81.26/52.18/42.97 82.16/57.88/39.99 120.38/276.14/254.11 118.21/250.15/243.33 162.16/209.78/209.77

(c) Full results on ImageNet-64

Budget/ms Model Number

1 2 3 4 5 6

35× 103 134.10/133.72/133.71 56.47/54.58/54.51 18.89/16.30/16.16 17.46/15.58/15.40 19.72/17.42/17.19 15.20/12.36/11.97
25× 103 134.25/133.58/133.72 57.55/54.58/54.51 20.32/16.43/16.12 18.53/15.72/15.43 20.86/17.47/17.20 16.85/12.55/12.02
15× 103 134.78/133.21/133.43 59.89/54.43/55.08 24.20/17.33/15.91 21.43/16.11/15.65 24.29/18.13/16.77 21.64/13.54/12.03
10× 103 135.63/132.99/132.99 63.56/55.02/53.88 29.64/18.93/17.08 25.63/16.70/15.57 28.68/18.98/16.92 26.86/14.24/13.23
4.0× 103 141.11/128.36/129.89 79.94/60.46/59.48 63.64/32.95/49.83 48.21/32.23/73.31 53.22/35.54/67.31 65.04/123.53/105.1

(d) Full results on LSUN-Church

Table 12. Complete FID results of baseline (1) using 1-st/2-nd/3-rd order of DPM-Solver on four datasets.

Alatenttext-to-imagediffusionmodel.

D. Generated Images
We put some samples using our method and baseline (1) under the lowest budget with DPM-Solver in this section at Fig. 8,
Fig. 9, Fig. 10 and Fig. 11.
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(a) A searched schedule on CIFAR-10 using DDIM under 750ms budget.

(b) A searched schedule on CelebA using DDIM under 1500ms budget.

(c) A searched schedule on CIFAR-10 using DPM-Solver under 700ms budget.

(d) A searched schedule on CelebA using DPM-Solver under 650ms budget.

(e) A searched schedule on ImageNet-64 using DPM-Solver under 800ms budget.

(f) A searched schedule on LSUN-Church using DPM-Solver under 4000ms budget.

Figure 7. Several examples of searched schedules. The model numbers shown in the figure are consistent with the description at App. B.
The sizes of model squares match the latencies of the corresponding models approximately.
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Algorithm 1 Predictor-based Evolutionary Search

Require:
Perf(): a trained predictor
GetCost(): a function to get the time cost of a model schedule by summing inference latency of all the models.

Input:
C: time budget of sampling a batch of images

Symbol:
P : The whole Population of model schedule.
CP : The Candidate Parents set of each loop, from which a parent model schedule is selected.
NG: The Next Generation newly mutated from the parent schedule in each loop.
E: The Eliminated model schedules in each loop.

Hyperparameter:
Epoch: Number of loops for the entire search process.
MCP : Maximum size of the candidate parents set CP .
iter: Maximum number of mutations in each loop.
MNG: Maximum size of the next generation set NG.
MP : Maximum size of the whole population P .

Search Process:
1: P ← ∅
2: Initialize a Schedule q0

3: Add q0 to P
4: for t = 1, · · · ,Epoch do
5: i = 0
6: NG← ∅
7: Random Sample min(MCP , |P |) model schedules from P , denoted as CP
8: Choose q with min Perf(q) in CP
9: while i < itere and |NG| < MNG do

10: qnew ←Randomly mutate q
11: if GetCost(qnew) < C then
12: add qnew to NG
13: end if
14: i← i+ 1
15: end while
16: P ← P ∪NG
17: if |P | > MP then
18: Choose |P | −MP model schedules denoted as E with max Perf(q)(q ∈ E) in P
19: P ← P − E
20: end if
21: end for
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Budget/ms Model Number

1 2 3 4 5 6

9.0× 103 15.14/14.91 6.56/7.17 10.17/10.74 4.77/5.34 4.86/4.52 4.38/4.29
6.0× 103 15.00/15.01 6.60/7.38 10.33/10.93 5.16/5.76 5.54/4.93 5.04/4.73
3.0× 103 14.75/15.30 7.11/8.12 11.02/11.54 7.29/7.32 8.45/6.42 7.86/6.47
1.5× 103 14.82/16.00 9.57/10.01 13.37/13.06 13.08/11.57 15.54/11.59 14.60/11.73
0.75× 103 16.73/17.95 16.81/16.11 20.00/17.45 26.36/24.31 30.08/27.02 29.91/27.91

(a) Full results on CIFAR-10

Budget/ms Model Number

1 2 3 4 5 6

15× 103 8.44/9.79 4.74/5.57 4.63/5.19 6.48/4.98 6.51/4.61 6.48/4.88
10× 103 8.46/9.81 5.42/5.62 5.53/5.25 7.78/5.10 8.04/4.75 7.98/5.04
7.0× 103 8.57/9.84 6.36/5.69 6.54/5.33 9.08/5.30 9.71/5.03 9.49/5.37
4.0× 103 8.92/9.85 8.22/5.89 8.88/5.64 11.48/5.97 12.28/5.92 11.80/6.30
1.5× 103 10.74/9.97 13.12/7.32 13.90/7.75 15.61/9.65 17.07/11.93 15.84/12.83

(b) Full results on CelebA

Budget/ms Model Number

1 2 3 4 5 6 7

20× 103 41.91/42.29 24.41/25.71 19.18/19.82 18.11/18.66 16.57/16.61 16.05/15.71 15.08/14.74
15× 103 42.07/42.31 24.64/25.78 19.53/19.96 18.46/18.78 16.95/16.81 16.55/16.04 15.67/15.12
10× 103 42.44/42.40 25.01/25.96 20.12/20.32 19.53/19.17 17.71/17.29 17.53/16.74 16.81/16.12
5.0× 103 43.36/42.72 26.05/26.61 21.73/21.78 20.76/20.50 20.12/19.47 20.66/19.95 20.78/20.13
2.0× 103 45.49/44.06 29.13/29.74 27.56/28.34 26.91/27.00 30.77/31.38 36.25/37.36 40.09/41.49

(c) Full results on ImageNet-64

Budget/ms Model Number

1 2 3 4 5 6

55× 103 134.62/52.35 51.32/38.01 15.28/31.86 14.71/30.11 16.43/32.84 11.72/26.44
40× 103 133.46/52.54 49.85/38.37 15.08/32.40 14.53/30.86 16.36/33.41 11.73/27.00
25× 103 129.85/52.87 46.22/39.07 14.71/33.63 14.38/31.64 16.14/34.77 12.05/28.27
10× 103 119.75/54.20 35.45/42.64 15.58/39.44 14.77/35.81 16.72/39.68 15.48/35.17
4.0× 103 97.27/57.64 28.07/51.87 30.93/60.99 25.27/51.62 28.14/56.71 33.85/58.05

(d) Full results on LSUN-Church

Table 13. Complete FID results of baseline (1) using linear/quadratic time discretization scheme on four datasets with DDIM.
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(a) Samples generated by the baseline (1) method. FID=8.73 (b) Samples generated by the OMS-DPM. FID=6.08

Figure 8. Samples of CIFAR-10 dataset under 700ms budget.

(a) Samples generated by the baseline (1) method. FID=4.79 (b) Samples generated by the OMS-DPM. FID=3.53

Figure 9. Samples of CelebA dataset under 650ms budget.
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(a) Samples generated by the baseline (1) method. FID=32.23 (b) Samples generated by the OMS-DPM. FID=13.94

Figure 10. Samples of LSUN-Church dataset under 4000ms budget.

(a) Samples generated by the baseline (1) method. FID=11.92 (b) Samples generated by the OMS-DPM. FID=10.72

Figure 11. Sample of MS-COCO 256×256 under 15 NFE budget, guided by the caption “A small closed toilet in a cramped space”.
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