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ABSTRACT

Vision Transformers (ViTs) have gained prominence as a preferred choice for a
wide range of computer vision tasks due to their exceptional performance. How-
ever, their widespread adoption has raised concerns about security in the face of
malicious attacks. Most existing methods rely on empirical adjustments during
the training process, lacking a clear theoretical foundations. In this study, we
address this gap by introducing SpecFormer, specifically designed to enhance
ViTs’ resilience against adversarial attacks, with support from carefully derived
theoretical guarantees. We establish local Lipschitz bounds for the self-attention
layer and introduce a novel approach, Maximum Singular Value Penalization
(MSVP), to attain precise control over these bounds. We seamlessly integrating
MSVP into ViTs’ attention layers, using the power iteration method for enhanced
computational efficiency. The modified model, SpecFormer, effectively reduces
the spectral norms of attention weight matrices, thereby enhancing network local
Lipschitzness. This, in turn, leads to improved training efficiency and robustness.
Extensive experiments on CIFAR and ImageNet datasets confirm SpecFormer’s
superior performance in defending against adversarial attacks.

1 INTRODUCTION

Vision Transformer (ViT) (Dosovitskiy et al., 2020) has gained increasing popularity in computer
vision. Owing to its superior performance, ViT has been widely applied to image classification (Xu
et al., 2022), object detection (Carion et al., 2020), semantic segmentation (Strudel et al., 2021), and
video understanding (Arnab et al., 2021). More recently, the popular vision foundation models (Rad-
ford et al., 2021; Dehghani et al., 2023) also adopt ViT as the basic module. Unlike CNNs (Simonyan
& Zisserman, 2014), a classical vision backbone, ViT initially divides images into non-overlapping
patches and leverages the self-attention mechanism (Vaswani et al., 2017) for feature extraction.

Despite its popularity, security concerns related to ViT have recently surfaced as a critical issue.
Studies have demonstrated that ViT is vulnerable to malicious attacks (Fu et al., 2022; Lovisotto
et al., 2022), which compromises its performance and system security. Adversarial examples, which
are created by adding trainable perturbations to the original inputs to produce incorrect outputs, are
one of the major threats in machine learning security. Different attacks, such as FGSM (Goodfellow
et al., 2015), PGD (Madry et al., 2018), and CW attack (Carlini & Wagner, 2017), have significantly
impeded neural networks including both CNNs (Simonyan & Zisserman, 2014; Szegedy et al., 2015;
He et al., 2016) and ViT (Dosovitskiy et al., 2020; Touvron et al., 2021a; d’Ascoli et al., 2021).

This work aims at improving the adversarial robustness of ViT. Prior arts (Bhojanapalli et al., 2021;
Naseer et al., 2021; Bai et al., 2021b) have empirically investigated the intrinsic robustness of ViT
compared with CNNs. Bhojanapalli et al. (2021) found out that when pre-trained with a sufficient
amount of data, ViTs are at least as robust as the CNNs (Simonyan & Zisserman, 2014) on a broad
range of perturbations. Bai et al. (2021b) stated that CNNs can be as robust as ViT against adversarial
attacks if they properly adopt Transformers’ training recipes. Furthermore, Shao et al. (2021); Paul
& Chen (2022) used frequency filters to discover that the success of ViT’ robustness lies in its lower
sensitivity to high-frequency perturbations. But later works (Fu et al., 2022; Lovisotto et al., 2022;
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Wang et al., 2022b) suggest that adding an attention-aware loss to ViTs can manipulate its output,
resulting in lower robustness than CNNs.

Other than the robustness analysis of ViT, there are some empirical and theoretical efforts in design-
ing algorithms to enhance its robustness. Empirically, Debenedetti et al. (2022) proposed a modified
adversarial training recipe of more robust ViT by omitting the heavy data augmentations used in
standard training. Mo et al. (2022) found that masking gradients from attention blocks or masking
perturbations on some patches during adversarial training can greatly improve the robustness of ViT.
While prior arts have mainly focused on improvements from an empirical perspective, they do not
pay attention to the underlying theoretical principles governing self-attention and model robustness.

Some recent research (Zhou et al., 2022; Wang et al., 2022a; Qi et al., 2023) have investigated the
theoretical properties of the self-attention mechanisms in ViTs. However, they focused on study-
ing the stability during training (Wang et al., 2022a; Takase et al., 2022) without establishing an
explicit link to robustness. While some scattered understandings about the robustness of attention
mechanisms do exist, their applicability and reliability remain unclear. Therefore, it is imperative to
conduct a comprehensive exploration on the robustness of ViT from both the theoretical and empiri-
cal perspectives. By doing so, we can possess a more thorough understanding of what influences the
robustness of ViT, which is essential for the continued development of powerful and reliable deep
learning models, especially large foundation models.

In this work, we propose SpecFormer, a simple yet effective approach to enhance the adversarial
robustness of ViT. Concretely, we first provide a rigorous theoretical analysis of model robustness
from the perspective of Lipschitz continuity (Murdock, 1999). Our analysis shows that we can eas-
ily control the Lipschitz continuity of self-attention by adding additional penalization. SpecFormer
seamlessly integrate our proposed Maximum Singular Value Penaliztaion (MSVP) algorithm into
each attention layer to help improve model stability. We further adopt the power iteration algo-
rithm (Burden et al., 2015) to accelerate optimization. Our approach is evaluated on four public
datasets, namely, CIFAR-10/100 (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009) and Im-
agenette (Howard, 2019) across different ViT variants. Our SpecFormer achieves superior perfor-
mance in both clean and robust accuracy. Under standard training, our approach improves robust
accuracy by 2.79% and 2.89% against FGSM (Goodfellow et al., 2015) and PGD (Madry et al.,
2018) attacks, respectively; under adversarial training, SpecFormer outperforms the best counter-
parts by 3.35% and 2.58% on CW (Carlini & Wagner, 2017) and PGD (Madry et al., 2018) attacks.
The clean accuracy is also improved by 1.67%, and 3% on average in both settings.

Our main contributions can be summarized as follows:

• We provide a comprehensive theoretical analysis of the Lipschitz continuity of Vision Trans-
former robustness and compare it with existing bounds in the literature.

• We propose SpecFormer, a robust Transformer architecture that applies Maximum Spectral
Value Penalization (MSVP) to each attention layer to enhance adversarial robustness.

• Extensive experiments demonstrate the superiority of our approach in both clean and robust ac-
curacy against different adversarial attacks.

2 RELATED WORK

2.1 ADVERSARIAL ROBUSTNESS

The early work of adversarial robustness (Szegedy et al., 2013) discovered that although deep net-
works are highly expressive, their learned input-output mappings are fairly discontinuous to some
extent. Therefore, people can apply an imperceptible perturbation that maximizes the network’s pre-
diction error to cause misclassification of images. Since then, a vast amount of research (Goodfellow
et al., 2015; Nguyen et al., 2015; Papernot et al., 2016a) has been done in adversarial attack (Carlini
& Wagner, 2017; Chen et al., 2018), defense (Papernot et al., 2016b; Xie et al., 2018), robust-
ness (Zheng et al., 2016), and theoretical understanding (Pang et al., 2022; Zhang et al., 2019a).

The problem of overall adversarial robustness can be formulated as a min-max optimization,
minθ maxδ L(f(x+δ), y). The solution to the inner maximization problem w.r.t the input perturba-
tions δ corresponds to generating adversarial samples (Goodfellow et al., 2015; Madry et al., 2018),
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while the solution to the outer minimization problem w.r.t the model parameters θ corresponds to
adversarial training (Tramèr et al., 2018; Bai et al., 2021a), which is an irreplaceable method for
improving adversarial robustness and plays a crucial role in defending against adversarial attacks.

Existing attack approaches focus on deriving more and more challenging perturbations δ to ex-
plore the limits of neural network adversarial robustness. For instance, Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015) directly take the sign of the derivative of the training loss w.r.t
the input perturbation as δ ← δ + α sign (∇δL(fθ(x+ δ), y)). Projected Gradient Descent (PGD)
method (Madry et al., 2018) updates the perturbations by taking the sign of the loss function deriva-
tive w.r.t the perturbation, projecting the updated perturbations onto the admissible space, and repeat-
ing multiple times to generate more powerful attacks: δ ← Πϵ (δ + α · sign (∇δL (fθ(x+ δ), y))).

2.2 ROBUSTNESS OF VISION TRANSFORMER

Regarding the robustness of Vision Transformers, the first question people are curious about is how
they compare to the classic CNN structure in terms of robustness. To address this question, nu-
merous papers (Szegedy et al., 2013; Shao et al., 2021; Bhojanapalli et al., 2021; Bai et al., 2021a)
have conducted thorough evaluations of both visual model structures, analyzed possible causes for
differences in robustness, and proposed solutions to mitigate the observed gaps. Building upon these
understandings, Zhou et al. (2022) developed fully attentional networks (FANs) to enhance the ro-
bustness of self-attention mechanisms. They evaluate the efficacy of these models in terms of cor-
ruption robustness for semantic segmentation and object detection, achieving state-of-the-art results.
Additionally, Debenedetti et al. (2022) compared the DeiT (Touvron et al., 2021a), CaiT (Touvron
et al., 2021b), and XCiT (Ali et al., 2021) ViT variants in adversarial training and discovered that
XCiT was the most effective. This discovery sheds light on the idea that Cross-Covariance Attention
could be another viable option for improving the adversarial robustness of ViTs.

In terms of the theoretical understanding of the relationship between Transformers and robustness,
Zhou et al. (2022) attribute the emergence of robustness in Vision Transformers to the connection
of self-attention mechanisms with information bottleneck theory. This suggests that the stacking of
attention layers can be broadly regarded as an iterative repeat of solving an information-theoretic
optimization problem, which promotes grouping and noise filtering. Dasoulas et al. (2021) analyzed
that the norm of the derivative of attention models is directly related to the uniformity of the softmax
probabilities. If all attention heads have uniform probabilities, the norm will reach its minimum; if
the whole mass of the probabilities is on one element, the norm will reach its maximum. Considering
a linear approximation of the attention mechanism, the smaller the derivative norm, the tighter the
changes when perturbations are introduced, thus enhancing the robustness of the Transformer. These
findings have been supported by another paper (Lovisotto et al., 2022) that proposes an attention-
aware loss to deceive the predictions of Vision Transformers. Their attack strategy exactly misguides
the attention of all queries towards a single key token under the control of an adversarial patch,
corresponding to the maximum derivative norm case described above.

3 PRELIMINARIES

Denote a clean dataset as D = {xi, yi}Ni=1, where x and y are the input and ground-truth label
respectively, and denote the loss function as L. We aim to investigate the robustness of the Vision
Transformer (ViT) under two different training paradigms: standard supervised training and adver-
sarial training (AT) (Madry et al., 2018). In standard training, we aim to learn a classification func-
tion fθ parameterized by θ, where the optimal parameter is θ∗ = argminθ E(x,y)∈D L(fθ(x), y).
While standard training is shown to be less resilient to adversarial attacks, AT is a major and effective
paradigm for adversarial robustness. AT aims to improve a model’s ability to resist malicious attacks
by solving a min-max optimization problem and generating adversarial examples by adding strategic
perturbations δ within a given budget δ0, which can fool the model predictions, i.e., fθ(x+ δ) ̸= y.
The model parameters are updated to reduce the classification error on the perturbed examples,
resulting in enhanced robustness against adversarial attacks:

θ∗ = argminθ E(x,y)∈D max
∥δ∥2≤δ0

L (fθ(x+ δ), y) , (1)

where δ0 bounds the magnitude of δ to prevent unintended semantic changes caused by perturbation.
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This work aims to improve the adversarial robustness of ViT in both AT and non-AT scenarios. We
show that by adding a slight penalization, its robustness can be greatly enhanced in both settings.

4 THEORETICAL ANALYSIS

Bounding the global Lipschitz constant of a neural network is a commonly used method to provide
robustness guarantees (Cisse et al., 2017; Leino et al., 2021). However, the global Lipschitz bound
can be loose because it needs to hold for all points in the input domain, including inputs that are far
apart. This can greatly reduce clean accuracy in empirical comparisons (Huster et al., 2019; Madry
et al., 2018). On the other hand, a local Lipschitz constant bounds the norm of output perturbations
only for inputs within a small region, typically selected as a neighborhood around each data point.
This aligns perfectly with the scenario of adversarial robustness, as discussed in Section 2.1, where
perturbations attempt to affect the model’s output within a budget constraint. Local Lipschitz bounds
are superior because they produce tighter bounds by considering the geometry in a local region, often
leading to much better robustness (Hein & Andriushchenko, 2017; Zhang et al., 2019b).

The core of our study is to bridge the gap between local Lipschitz continuity and adversarial ro-
bustness in ViTs. Primary distinctions of ViT lie in the LayerNorm and self-attention layers. The
seminal work (Kim et al., 2021) proved the dot-product is not globally Lipschitz continuous and the
LayerNorm is Lipschitz continuous (see Kim et al. (2021), Appendix N). Therefore, we only need
to modify that concept and prove that the dot-product self-attention is local Lipschitz continuous.
By utilizing the local Lipschitz continuity, the adversarial robustness can be strengthened.

Definition 4.1 (Local Lipschitz Continuity). Suppose X ⊆ Rd is open. A function, denoted as
f , is considered locally Lipschitz continuous with respect to the p-norm, denoted as ∥ · ∥p, if, for
any given point x0, there exists a positive constant C and a positive value δ0 such that whenever
∥x− x0∥p < δ0, the following condition holds:

∥f (x)− f (x0)∥p ≤ C ∥x− x0∥p . (2)

The smallest value of C that satisfies the condition is called the local Lipschitz constant of f . From
Eq. (2), we observe that a classifier exhibiting local Lipschitz continuity with a small C experiences
less impact on output predictions when subjected to budget-constrained perturbations. In this study,
we harness the concept of local Lipschitz continuity to safeguard ViT against malicious attacks. Our
primary focus is on ensuring that the attention layer maintains Lipschitz continuity in the vicinity
of each input, and we employ optimization objectives to strengthen this property. This strategic
approach enables us to bolster the output stability of ViT when facing adversarial attacks. We
provide the formal definition of the local Lipschitz constant and the method for its calculation below.

Definition 4.2 (Local Lipschitz Constant). The p-local Lipschitz constant of a network f(x) over
an open set X ⊆ Rd is defined as:

Lipp(f,X ) = sup
x1,x2∈X
x1 ̸=x2

∥f(x1)− f(x2)∥p
∥x1 − x2∥p

. (3)

If f is smooth and p-local Lipschitz continuous over X , the Lipschitz constant can be computed by
upper bounding the norm of Jacobian.

Theorem 4.1 (Calculation of Local Lipschitz Constant (Federer, 1969) ). Let f : X → Rm be
differentiable and locally Lipschitz continuous under a choice of p-norm ∥ · ∥p. Let Jf (x) denote its
total derivative (Jacobian) at x. Then,

Lipp(f,X ) = sup
x∈X
∥Jf (x)∥p, (4)

where ∥Jf (x)∥p is the induced operator norm on Jf (x).

The global Lipschitz constant, which takes into account the supremum over X = Rd, must ensure
Eq. (2) even for distant x abd x0, which can render it imprecise and lacking significance when
examining the local behavior of a network around a single input. We concentrate on 2-local Lipschitz
constants, where X = B2(x0, δ0) := {x : ∥x− x0∥2 ≤ δ0} represents a small ℓ2-ball with a radius
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of δ0 centered around x0. The choice of the 2-norm for our investigation is motivated by two key
reasons. First, the 2-norm is the most commonly used norm in Euclidean space. Second, and delving
further into the rationale, as revealed in (Yoshida & Miyato, 2017), the sensitivity of a model to input
perturbations is intricately connected to the 2-norm of the weight matrices, which in turn is closely
linked to the principal direction of variation and the maximum scale change.
Proposition 4.2 (Connection of Model Sensitivity and Maximum Singular Value (Yoshida & Miy-
ato, 2017)). In a small neighbourhood of x0, we can regard fθ as a linear function: x 7→
Wθ,x0x + bθ,x0 , whose weights and biases depend on θ and x0. For a small perturbation δ,
we have

∥fθ(x0+δ)−f(x0)∥2

∥δ∥2
=
∥(Wθ,x0

(x+δ)+bθ,x0)−(Wθ,x0
x+bθ,x0)∥2

∥δ∥2
=
∥Wθ,x0

δ∥
2

∥δ∥2
≤ σmax (Wθ,x0

) . (5)

The proposition above suggests that when the maximum singular value of the weight matrices is
small, the function fθ becomes less sensitive to input perturbations, which can significantly enhance
adversarial robustness. Inspired by this, we can re-examine the self-attention mechanism as a prod-
uct of linear mappings and apply the same spirit to enhance the robustness of Vision Transformers.

Re-examining Self-Attention as a Product of Linear Mapping Operations We propose to re-
consider self-attention, the fundamental module in ViT as a multiplication of three linear map-
pings, on which the aforementioned proposition on model robustness can be applied. Given an input
X ∈ RN×d, the self-attention module in ViT is typically represented as:

Attn
(
X,WQ,WK ,WV

)
= softmax

(
XWQ

(
XWK

)⊤
√
D

)
XWV , (6)

where WQ,WK ,WV ∈ Rd×D are projection weight matrices corresponding to query, key, and
value. N, d, and D stand for the number of tokens, data dimension, and the hidden dimension of
self-attention, respectively. By virtue of the intrinsic nature of self-attention, we conceptualized it
as a three-way linear transformation, where the matrices are multiplied together:

Attn
(
X,WQ,WK ,WV

)
= softmax

(
XWQ(XWK)

⊤

√
D

)
XWV = softmax

(
h1(X)h2(X)⊤√

D

)
h3(X),

(7)
where these linear mapping operations are formulated as:

h1(X) = XWQ, h2(X) = XWK , h3(X) = XWV . (8)

After reinterpreting the self-attention mechanism as a product of three linear mappings, we are
inspired by Prop. 4.2 to readily discern that we can independently control the maximum singular
values of these three weight matrices to imbue the model with adversarial robustness.
Theorem 4.3. The self-attention layer is local Lipschitz continuous in B2 (X0, δ0)

Liplocal(Att,X0) ≤ N(N + 1) (∥X0∥F + δ0)
2
[ ∥∥WV

∥∥
2

∥∥WQ
∥∥
2

∥∥WK,⊤∥∥
2
+
∥∥WV

∥∥
2

]
, (9)

If we make a more stringent assumption that all inputs to the self-attention layer are bounded, i.e.,
X ∈ RN×d represents a bounded open set, then we can determine the maximum of the input X as
B = maxX∈X ∥X∥F . This allows us to establish a significantly stronger conclusion:

Liplocal(Att,X0) ≤ N(N + 1) (B + δ0)
2
[ ∥∥WV

∥∥
2

∥∥WQ
∥∥
2

∥∥WK,⊤∥∥
2
+
∥∥WV

∥∥
2

]
. (10)

This framework provides us with theoretical support, allowing us to manage the local Lipschitz
constant of the attention layer by controlling the maximum singular values of WQ,WK ,WV .

5 SPECFORMER

Inspired by the above analysis, we propose SpecFormer, a more robust ViT against adversarial
attacks, as illustrated in Figure 1. SpecFormer employs Maximum Singular Value Penalization
(MSVP) with an approximation algorithm named power iteration to reduce the computational costs.
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FIGURE 1: SpecFormer with MSVP.

Algorithm 1 SpecFormer
1: ▷ Initialization:
2: for layer ℓ = 1 to L do
3: Init uℓ

q/k/v,v
ℓ
q/k/v

4: end for
5: ▷ Forward:
6: A minibatch {(x1, y1), . . . , (xk, yk)}
7: for layer ℓ = 1 to L do
8: Pass minibatch through the layers
9: for head h = 1 to H do

10: vℓ ← (W ℓ)⊤uℓ, uℓ ←Wℓvℓ,
11: σℓ ← uℓWℓvℓ,
12: Add λ(σℓ)2 to Lmsvp.
13: end for
14: end for
15: ▷ Backward:
16: Update θ by backprop: Lcls + Lmsvp.

5.1 MAXIMUM SINGULAR VALUE PENALIZATION

MSVP aims to enhance the robustness of ViT by adding penalization to the self-attention layers.
Concretely speaking, MSVP restricts the Lipschitz constant of self-attention layers by penalizing
the maximum singular values of the linear transformation matrices WQ,WK , and WV . Denote
the classification loss as Lcls such as cross-entropy, the overall training objective with MSVP is:

J = Lcls + Lmsvp = Lcls + λ ·
[
σ2
max(W

Q) + σ2
max(W

K) + σ2
max(W

V )
]
, (11)

where λ is the trade-off hyperparameter. The original Transformer (Vaswani et al., 2017) adopts
multi-head self-attention to jointly attend to information from different subspaces at different posi-
tions. In line with that spirit, MSVP can also be added in a multi-head manner. Incorporating the
summation over all the heads and layers, the overall training objective with multi-head MSVP is:

J = Lcls + Lmsvp = Lcls + λ
L∑

l=1

H∑
h=1

[
σ2
max(W

Q,h
l ) + σ2

max(W
K,h
l ) + σ2

max(W
V,h
l )

]
, (12)

where W∗,h
l denotes the hth head in the lth attention layer, and ∗ could be Q,K or V . By con-

straining the maximum singular value of the weight matrices in the mapping, we can regulate the
extent of output variations when subjected to attacks, thereby enhancing the model’s robustness. The
computation of maximum singular values can be seamlessly integrated into the forward process.

In the next section, we show how to perform efficient computation of maximum singular values
using the theoretically guaranteed (Thm. 5.1) power iteration algorithm.

5.2 POWER ITERATION

Singular value decomposition (SVD) is the most direct way to calculate the maximum singular
value. For any real matrix A ∈ Rm×n, there exists a singular value decomposition of the form
A = UΣV⊤, where U is an m×m orthogonal matrix, Σ is an m×n diagonal matrix and V is an
n×n orthogonal matrix. However, directly adopting SVD in MSVP will result in an additional time
complexity ofO(m2n+n3), which poses a disastrous computational burden, particularly given the
high hidden dimension of ViT and the vast number of attention layers used in the model.

In this section, we propose to adopt the power iteration algorithm as an alternative approach to effi-
ciently calculate the maximum singular values for the WQ,WK ,WV weight matrices. The power
iteration method (Burden et al., 2015) is a commonly used approach to approximate the maximum
singular value with each iteration taking O(mn) time. By selecting an initial approximation vector
u and v, and then performing left and right matrix multiplication with the target matrix, we can
obtain a reliable and accurate underestimate of the maximum singular value in a constant number
of iterations. Moreover, as the algorithm is iterative in nature, we can incorporate the updates into
the model’s update process, permitting us to efficiently estimate the maximum singular values with
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minimal cost. The following theorem provides a convergence guarantee of power iteration and the
proof is in Appendix C. The complete training pipeline of SpecFormer is shown in Alg. 1.
Theorem 5.1 (Convergence guarantee of the power iteration method (Mises & Pollaczek-Geiringer,
1929)). Assuming the dominant singular value σmax(A) is strictly greater than the subsequent
singular values and that u0 is initially selected at random, then there is a probability of 1 that u0

will have a non-zero component in the direction of the eigenvector linked with the dominant singular
value. Consequently, the convergence will be geometric with a ratio of

∣∣∣ σ2(A)
σmax(A)

∣∣∣.
6 EXPERIMENTS

6.1 SETUP

Datasets. We adopt four popular benchmark datasets: CIFAR10,CIFAR100 (Krizhevsky et al.,
2009), ImageNet (Deng et al., 2009), and Imagenette (Howard, 2019). These datasets are commonly
adopted in studies involving the robustness of vision models (Pang et al., 2022; Mo et al., 2022).
CIFAR-10 and CIFAR-100 datasets each comprise 60, 000 images, categorized into 10 classes and
100 classes, respectively. ImageNet encompasses over 1.2 million training images and 50, 000 test
images, distributed across 1, 000 classes. Imagenette is a subset consisting of 10 classes that are
easy to classify, selected from the ImageNet. It is often employed as a suitable proxy (Mo et al.,
2022; Wang et al., 2023) for evaluating the performance of models on the more extensive ImageNet.

Baselines. We compare SpecFormer with several notable baselines. Specifically, we evaluate Spec-
Former against LipsFormer (Qi et al., 2023), which introduces Lipschitz continuity into ViT through
a novel scaled cosine similarity attention (SCSA) mechanism and by replacing other unstable Trans-
former components with Lipschitz continuous equivalents. Additionally, we incorporate two other
baseline models that implement Lipschitz continuity through different mechanisms: L2 multi-head
attention (Kim et al., 2021) and pre-softmax Lipschitz normalization (Dasoulas et al., 2021). How-
ever, it is worth noting that the L2 multi-head attention approach requires WQ,h = WK,h, which
is overly restrictive, potentially compromising the model’s representation power. We denote the L2
attention and Lipschitz normalization methods as L2Former and LNFormer, respectively.

Implementation details. In line with prior work (Mo et al., 2022), our evaluation spans across three
distinct ViT backbones: the vanilla ViT (Dosovitskiy et al., 2020), DeiT (Touvron et al., 2021a), and
ConViT (d’Ascoli et al., 2021). This approach enables us to perform a thorough validation and
assess the general effectiveness of the MSVP algorithm. To ensure a fair comparison, we adopt the
training strategy outlined in (Mo et al., 2022). Specifically, we use the SGD optimizer with a weight
decay of 0.0001 and a learning rate of 0.1 for 40 epochs. By default, we apply both CutMix and
Mixup data augmentation. We employ FGSM (Goodfellow et al., 2015) and PGD-2 (Madry et al.,
2018) attacks for standard training, with an attack radius of 2/255. For adversarial training, we use
CW-20 (Carlini & Wagner, 2017) and PGD-20 (Madry et al., 2018) attacks, with an attack radius
of 8/255. In the case of the baseline models (Lipsformer, L2former, and LNFormer), we strictly
adhere to the training protocols described in their respective papers.

6.2 MAIN RESULTS

SpecFormer effectively controls the Lipschitz continuity of Transformers with minor modifi-
cations. From Table 1, 2 and 6, we can see that our proposed SpecFormer achieves the best results
among all the competitors. Specifically, on standard training, our SpecFormer improves over the
state-of-the-art robust ViT approaches by 2.79% and 2.89% in terms of robust accuracy on FGSM
and PGD attacks, respectively, on average. Besides, we also improve the standard accuracy by
1.67%. Using adversarial training, our SpecFormer outperforms the best counterparts by 3.35%
and 2.58% on CW and PGD attacks, respectively. Our method improves the clean accuracy of the
ViT model by 3.80%. It significantly enhances the model’s robustness and its original performance.

We have more observations from the results. 1) Some baseline methods exhibit inferior performance
when compared to vanilla ViTs, potentially attributable to the imposition of excessively stringent
Lipschitz continuity constraints, which limit the model’s expressive capacity. 2) In contrast to other
methods that ensure Lipschitz continuity in Transformers through self-attention mechanism mod-
ifications, our SpecFormer achieves this by adding a straightforward penalty term to the attention
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TABLE 1: Performance (%) of SpecFormer with different ViT variants on benchmark datasets under
standard training (using ImageNet-1k pre-trained weights). The best results are in bold.

Model Method CIFAR-10 CIFAR-100 Imagenette

Standard FGSM PGD-2 Standard FGSM PGD-2 Standard FGSM PGD-2

ViT-S

LipsFormer (Qi et al., 2023) 71.13 31.48 4.17 40.05 9.92 1.36 86.80 36.60 30.20
L2Former (Kim et al., 2021) 79.65 39.98 13.39 53.20 15.35 5.92 92.80 58.00 37.80

LNFormer (Dasoulas et al., 2021) 75.82 33.72 7.75 48.81 13.04 7.27 92.00 49.00 41.80
ViT (Dosovitskiy et al., 2020) 87.09 45.56 22.35 63.52 19.82 7.01 94.20 72.60 48.00

SpecFormer (Ours) 88.52 50.58 29.53 69.78 23.92 9.67 97.20 84.20 61.60

DeiT-Ti

LipsFormer (Qi et al., 2023) 72.54 36.14 3.46 39.72 8.66 0.96 79.40 30.60 8.00
L2Former (Kim et al., 2021) 78.09 36.64 5.05 49.02 12.63 2.56 82.40 51.00 6.00

LNFormer (Dasoulas et al., 2021) 77.16 34.78 3.81 52.50 14.40 2.83 80.20 44.80 9.20
ViT (Dosovitskiy et al., 2020) 86.40 46.10 14.46 62.79 19.89 2.35 90.00 64.20 13.00

SpecFormer (Ours) 87.42 45.71 18.10 64.14 20.93 1.61 92.20 70.20 26.20

ConViT-Ti

LipsFormer (Qi et al., 2023) 79.71 38.47 7.09 48.08 10.84 1.57 90.60 44.40 24.60
L2Former (Kim et al., 2021) 81.33 40.17 12.76 49.86 13.86 2.03 93.40 62.20 30.80

LNFormer (Dasoulas et al., 2021) 75.48 28.67 3.56 51.13 11.62 2.41 84.20 36.20 15.00
ViT (Dosovitskiy et al., 2020) 87.78 48.89 20.26 64.68 22.94 4.96 93.20 68.80 40.80

SpecFormer (Ours) 87.49 47.64 20.53 65.57 21.78 4.10 92.60 69.00 28.60

TABLE 2: Performance (%) of SpecFormer with different ViT variants on benchmark datasets under
adversarial training (using ImageNet-1k pre-trained weights). The best results are in bold.

Model Method CIFAR-10 CIFAR-100 Imagenette

Standard CW-20 PGD-20 Standard CW-20 PGD-20 Standard CW-20 PGD-20

ViT-S

LipsFormer (Qi et al., 2023) 41.54 24.20 27.50 24.08 10.47 13.04 50.00 31.00 34.80
L2Former (Kim et al., 2021) 63.22 33.55 35.78 37.20 13.69 15.65 84.80 54.60 54.60

LNFormer (Dasoulas et al., 2021) 56.04 29.92 32.74 26.37 9.84 11.63 81.00 46.80 48.80
ViT (Dosovitskiy et al., 2020) 71.76 34.34 35.49 36.45 11.97 12.89 89.60 62.80 62.40

SpecFormer (Ours) 72.73 31.84 31.90 41.46 12.80 13.54 91.60 67.00 67.00

DeiT-Ti

LipsFormer (Qi et al., 2023) 39.72 24.05 26.77 23.09 9.82 12.03 39.00 27.60 28.40
L2Former (Kim et al., 2021) 60.85 34.29 36.63 36.67 14.23 16.48 77.40 41.40 43.20

LNFormer (Dasoulas et al., 2021) 54.32 29.85 32.96 28.65 11.36 13.94 72.20 39.00 42.20
ViT (Dosovitskiy et al., 2020) 71.71 37.15 38.74 40.89 15.25 17.40 79.00 40.60 41.40

SpecFormer (Ours) 80.03 48.52 51.10 44.48 16.36 18.21 82.20 46.20 46.00

ConViT-Ti

LipsFormer (Qi et al., 2023) 56.83 32.27 35.04 31.50 14.56 17.17 60.80 34.00 38.20
L2Former (Kim et al., 2021) 39.36 23.84 26.42 16.53 8.06 9.65 10.00 10.00 10.00

LNFormer (Dasoulas et al., 2021) 49.03 28.68 31.68 29.12 13.00 15.65 72.20 39.00 42.20
ViT (Dosovitskiy et al., 2020) 53.09 30.87 33.63 31.54 14.65 17.24 68.00 41.40 43.60

SpecFormer (Ours) 67.05 38.72 41.58 37.92 14.50 16.78 86.60 47.20 46.20
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FIGURE 2: The analysis of MSVP. (a) Maximum singular value comparison between MSVP and
the vanilla Transformer. (b)&(c) tSNE (Van der Maaten & Hinton, 2008) feature visualization.

layers, without altering the original self-attention mechanism. SpecFormer’s simplicity and versatil-
ity allow seamless integration into various ViT architectures, preserving their flexibility. Experiment
results on ImageNet and hyperparameter analysis is provided in Appendix E.1 and E.3.

6.3 ANALYZING THE EFFICACY OF MSVP

Analyzing the maximum singular values. We analyze the effectiveness of the proposed MSVP
algorithm, which is the core of SpecFormer. Figure 2(a) shows the maximum singular values of both
ViT and our SpecFormer. It indicates that with minimal additional cost, our SpecFormer effectively

8
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limits the maximum singular values across all layers, which are smaller than those of vanilla ViTs.
Hence, our proposed MSVP algorithm can effectively control the maximum singular value of the
attention layers, thereby ensuring stability even under extreme perturbations.

Feature visualization. We further illustrate t-SNE feature visualizations of both vanilla ViT and
our SpecFormer in Figures 2(b) and 2(c), employing the t-SNE technique as introduced by (Van der
Maaten & Hinton, 2008). Adversarial samples introduce subtle perturbations aimed at diverting cor-
rupted samples away from their correct categories. In these figures, each distinct cluster represents
a class. While vanilla ViTs encounter difficulties in recovering adversarial samples that have been
pushed into other categories, our modified model, SpecFormer, adeptly realigns the corrupted sam-
ples with their original true classes. This contrast serves to demonstrate the significant enhancement
of ViTs’ adversarial robustness by our method.

Feature distribution distance. To further support this contrast quantitatively, we compute the A-
distance (Ben-David et al., 2006), which quantifies the similarity between two distributions, with
a lower value indicating a higher degree of similarity. As shown in Figure 2(b) and 2(c), Spec-
Former achieves a lower A-distance compared to vanilla ViTs, highlighting its capability to ef-
fectively counteract the distribution shift induced by adversarial perturbations. Consequently, our
approach enhances the safety and robustness of ViTs. To sum up, these analyses demonstrate that
our SpecFormer can both efficiently and effectively learn robust features w.r.t the adversarial attacks.

Computation cost. Finally, we analyze the computation cost of our proposed method. Table 3
displays the relative running time difference for each model to complete 10 training steps under
both standard and adversarial conditions (with vanilla ViT set to 1). The table reveals that our
proposed method exhibits the lowest additional computational costs compared to other baseline
models, underscoring the computational efficiency of our approach.

TABLE 3: Relative running time difference for 10-steps of training (vanilla ViT=1). The lowest
additional computation costs are in bold.

Relative Diff LipsFormer L2Former LNFormer TransFormer SpecFormer

Standard Training +4.5 +1.5 +3.5 0.0 +0.5
Adversarial Training +11.3 +3.3 +10.7 0.0 +1.5

7 LIMITATIONS

In the realm of adversarial robustness, a challenging yet frequently discussed issue is the relationship
between clean accuracy and robust accuracy. In this study, we are no exception, as our experiments
have revealed the intricate balance between clean accuracy and robust accuracy through the ad-
justment of hyperparameters. Investigating and modeling this relationship further using theoretical
approaches will be a primary focus for our future research endeavors. Furthermore, as mentioned
earlier, the strict adherence to complete Lipschitz continuity in mathematical terms can prove overly
stringent and potentially limit the diversity of neural network representations, consequently affecting
performance. Therefore, exploring theoretical models that address the tradeoff between Lipschitz
continuity and expressiveness is also a worthy avenue for inquiry. Last but not least, it is essential
to note that our method has only undergone validation against a limited number of attack scenarios.
Conducting additional assessments across a broader spectrum of attacks, including but not limited
to AutoAttack (Croce & Hein, 2020), backdoor attacks (Li et al., 2022), and BIM (Feinman et al.,
2017), is imperative to provide a more comprehensive evaluation.

8 CONCLUSION

This paper presents a theoretical analysis of the self-attention mechanism in ViTs and establishes a
relationship between the adversarial robustness of ViTs and Lipschitz continuity theory. We demon-
strate that the Lipschitz continuity of ViTs in the vicinity of the input can be enhanced by penalizing
the maximum singular values of the attention weight matrices. Extensive experiments validate the
effectiveness of our approach, showcasing superior performance in terms of both clean and robust
accuracy against various adversarial attacks.

9
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Vivit: A video vision transformer. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 6836–6846, 2021.

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial training
for adversarial robustness. In IJCAI survey track, 2021a.

Yutong Bai, Jieru Mei, Alan L Yuille, and Cihang Xie. Are transformers more robust than cnns?
Advances in Neural Information Processing Systems, 34:26831–26843, 2021b.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. Advances in neural information processing systems, 19, 2006.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and An-
dreas Veit. Understanding robustness of transformers for image classification. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 10231–10241, 2021.

Richard L Burden, J Douglas Faires, and Annette M Burden. Numerical analysis. Cengage learning,
2015.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp.
213–229. Springer, 2020.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-net attacks
to deep neural networks via adversarial examples. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International conference on machine
learning, pp. 854–863. PMLR, 2017.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–
2216. PMLR, 2020.

George Dasoulas, Kevin Scaman, and Aladin Virmaux. Lipschitz normalization for self-attention
layers with application to graph neural networks. In International Conference on Machine Learn-
ing, pp. 2456–2466. PMLR, 2021.

Edoardo Debenedetti, Vikash Sehwag, and Prateek Mittal. A light recipe to train robust vision
transformers. arXiv preprint arXiv:2209.07399, 2022.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision
transformers to 22 billion parameters. arXiv preprint arXiv:2302.05442, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International confer-
ence on learning representations (ICLR), 2020.

10



Under review as a conference paper at ICLR 2024
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A GENERAL OPTIMIZATGION OBJECTIVE FOR MSVP

Here we provide the most general form of our proposed Maximum Singular Value Penalization
(MSVP). In this context, we employ three hyperparameters to flexibly adjust the strength of the max-
imum singular value penalties for different attention branches. This aspect is crucial for achieving
improved performance and better adaptability within the self-attention mechanism, playing distinct
and non-interchangeable roles for WQ, WK , and WV . Denote the classification loss as Lcls such
as cross-entropy loss, the overall general training objective with MSVP is:

J = Lcls + Lmsvp = Lcls + λq · σ2
max(W

Q) + λk · σ2
max(W

K) + λv · σ2
max(W

V ), (13)

where λq, λk and λv are trade-off parameters. The original Transformer Vaswani et al. (2017)
adopts multi-head self-attention to jointly attend to information from different subspaces at different
positions. In line with that spirit, MSVP can also be added in a multi-head manner. Incorporating
the summation over all the heads and layers, the overall training objective with multi-head MSVP
is:

J = Lcls + Lmsvp = Lcls + λq ·
L∑

l=1

H∑
h=1

σ2
max(W

Q,h
l ) + λk ·

L∑
l=1

H∑
h=1

σ2
max(W

K,h
l ) + λv ·

L∑
l=1

H∑
h=1

σ2
max(W

V,h
l ), (14)

where W∗,h
l denotes the hth head in the lth attention layer, and ∗ could be Q,K or V . By restricting

the maximum size of the perturbation’s largest singular value, we can control the range of the output
changes when attacked, leading to a model with better robustness. The computation of maximum
singular values can be seamlessly integrated into the forward process.

B PROOF OF THEOREM 4.3

In this section, we derive the local Lipschitz constant upper bound for the self-attention mechanism
(Attn) around input X0.
Theorem 3.2 (Local Lipschitz Constant of self-attention layer). The self-attention layer is local
Lipschitz continuous in B2 (X0, δ0)

Lip2(Attn,X0) ≤ N(N + 1) (B + δ0)
2 [∥∥WV

∥∥
2

∥∥WQ
∥∥
2

∥∥WK,⊤∥∥
2
+
∥∥WV

∥∥
2

]
. (15)

Proof. To begin, we introduce some fundamental notations and re-formulate the self-attention mech-
anism as follows:

Attn
(
X,WQ,WK ,WV

)
= softmax

(
XWQ

(
XWK

)⊤
√
D

)
XWV ,

= PXWV ,

(16)

where we use P to denote the softmax matrix for brevity. We can further express the attention
mechanism as a collection of row vector functions fi(X):

f(X) = Attn (X) =PXWV =

 f1(X)
...

fN (X)

 ∈ RN×D, where fi(X) ∈ R1×D, (17)

We denote the input data matrix X as a collection of row vectors and the (i, j) element of P as Pij :

X =

 x⊤
1
...

x⊤
N

 ∈ RN×d, where x⊤
i ∈ R1×d,

Then we have the representation for the row vector function fi(X):

fi(X) =

N∑
j=1

Pijx
⊤
j W

V , (18)

14
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Denote the transpose of the ith row of the softmax matrix P as P⊤
i: = softmax(XAxi) ∈ RN×1,

where A stands for WQWK,⊤
√
D

, we can further write it as a matrix multiplication form:

fi(X) = Pi:XWV ∈ R1×D, (19)
To calculate the Jacobian of the attention mechanism, we need to introduce some preliminaries.
Since f is a map from RN×D to RN×d, its Jacobian is

Jf (X) =

J11(X) . . . J1N (X)
...

. . .
...

JN1(X) . . . JNN (X)

 ∈ RND×Nd, (20)

where Jij(X) = ∂fi(X)
∂xj

∈ RD×d.

Recall that

fi(X) =

N∑
j=1

Pijx
⊤
j W

V = Pi:XWV ∈ R1×D, (21)

where Pij is a function that depends on X: P⊤
i: = softmax(XAxi) ∈ RN×1. Denote XAxi = q

for brevity, by applying the chain rule and product rule, we obtain a commonly used result that can
be applied as follows:

∂Pi:

∂q
=

∂ softmax(q)

∂q
= diag(Pi:)−Pi:P

⊤
i: := P(i), (22)

By utilizing this result, we can continue to calculate the Jacobian,

∂fi(X)

∂xj
=

N∑
k=1

WV

(
∂Pik

∂xj
xk + Pik

∂xk

∂xj

)
,

= WV
N∑

k=1,k ̸=j

∂Pik

∂xj
xk +WV ∂Pij

∂xj
xj +WV PijI,

= WV
N∑

k=1

∂Pik

∂xj
xk +WV PijI,

(23)

We can further write it into a matrix form for the following derivation:

∂fi(X)

∂xj
= WV

N∑
k=1

∂Pik

∂xj
xk +WV PijI = WV [x1 . . .xN ]


∂Pi1

∂xj

...
∂PiN

∂xj

+WV PijI,

= WV X⊤


∂Pi1

∂xj

...
∂PiN

∂xj

+WV PijI = WV

X⊤ ∂P⊤
i:

∂xj︸ ︷︷ ︸
(I)

+PijI︸︷︷︸
(II)

 ,

(24)

By utilizing the chain rule again and with the result from equation (22), we can further decompose
the first term (I) as

X⊤ ∂P⊤
i:

∂xj
= X⊤ ∂P⊤

i:

∂q

∂q

∂xj
= X⊤P(i) ∂q

∂xj
, (25)

Recall that q = XAxi, we can analyze ∂q
∂xj

= ∂XAxi

∂xj
in two cases:

• Case 1: if i ̸= j,

∂XAxi

∂xj
=


(

∂x⊤
1 Axi

∂xj

)⊤
...(

∂x⊤
NAxi

∂xj

)⊤
 =


0⊤

..

(Axi)
⊤

..
0⊤

 =


0⊤

..
x⊤
i A

⊤

..
0⊤

 =


0⊤

..
x⊤
i
..
0⊤

A⊤ = EjiXA⊤,

(26)
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where Eji represents the all-zero matrix except for the entry at (j, i), which is equal to 1.

• Case 2: if i = j,

∂XAxi

∂xi
=


(

∂x⊤
1 Axi

∂xi

)⊤
...(

∂x⊤
NAxi

∂xi

)⊤
 , (27)

Note that for k ̸= i, we have

∂x⊤
k Axi

∂xi
=
(
x⊤
k A
)⊤

= A⊤xk, (28)

when k = i, we have

∂x⊤
i Axi

∂xi
= Axi +

(
x⊤
i A
)⊤

= Axi +A⊤xi, (29)

Therefore,

∂XAxi

∂xi
=


(

∂x⊤
1 Axi

∂xi

)⊤
...(

∂x⊤
NAxi

∂xi

)⊤
 =


(A⊤x1)

⊤

..
(Axi +A⊤xi)

⊤

..
(A⊤xN )⊤

 =


x⊤
1 A

⊤

..
x⊤
i A+ x⊤

i A
⊤

..
x⊤
NA⊤

 ,

=


0⊤

..
x⊤
i A

⊤

..
0⊤

+XA = EiiXA⊤ +XA,

(30)

By combining the two cases above, we can express ∂q
∂xj

using a unified formula:

∂q

∂xj
= EjiXA⊤ +XAδij , (31)

where δij is the Kronecker delta function, which takes the value 1 when i = j and 0 otherwise.

Combining equation 25, 31, we have

X⊤ ∂P⊤
i:

∂xj
= X⊤ ∂P⊤

i:

∂q

∂q

∂xj
= X⊤P(i) ∂q

∂xj
= X⊤P(i)(EjiXA⊤ +XAδij), (32)

Substituting this result back into equation 24, we can get the (i, j) block of the Jacobian:

Jij(X) =
∂fi(X)

∂xj
= WV

(
X⊤ ∂P⊤

i:

∂xj
+ PijI

)
,

= WV
(
X⊤P(i)(EjiXA⊤ +XAδij) + PijI

)
, (∀1 ≤ i, j ≤ N)

(33)

Specifically, we can write the diagnol (i, i) block of the Jacobian as

Jii(X) = WV
(
X⊤P(i)(EiiXA⊤ +XA) + PiiI

)
, (34)

while the non-diagnoal (i, j), j ̸= i block can be written as

Jij(X) = WV
(
X⊤P(i)EijXA⊤ + PijI

)
, (35)

Let us denote the ith block row of the Jacobian J as [Ji1, · · · ,JiN ]. We state the following lemma,
which establishes a connection between the spectral norm of a block matrix and its block rows:
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Lemma B.1 (Relationship between the spectral norm of a block row and the block matrix, Kim et al.
(2021)). Let A be a block matrix with block columns A1, . . . ,AN . Then ∥A∥2 ≤

√∑
i ∥Ai∥22.

Utilizing this lemma, and consider the input around X0: B2 (X0, δ0) :=
{
X : ∥X−X0∥F ≤ δ0

}
, we

can focus on derive the spectral norm of the ith block row [Ji1, · · · ,JiN ] in the neighbourhood.
Considering that all inputs received by ViT are bounded (for instance, all entries of image data fall
within the range of 0 to 255), and the inputs entering the Attention layer have been normalized
by LayerNorm to a specific range [0, 1], we can further replace the norm ∥X∥ with a constant
B = maxX∈X ∥X∥2, where X represents a bounded open set in the Euclidean space RN×D.

∥[Ji1(X), . . . ,JiN (X)]∥2

∣∣∣∣∣
X∈B2(X0,δ0)

≤ ∥Jii(X)∥2 +
∑

j ̸=i ∥Jij(X)∥2

∣∣∣∣∣
X∈B2(X0,δ0)

,

= ∥WV
(
X⊤P(i)

(
EiiXA⊤ +XA

)
+ PiiI

)
∥2 +

∑
j ̸=i ∥WV

(
X⊤P(i)EijXA⊤ + PijI

)
∥2

≤
∥∥WV

∥∥
2

∥∥P(i)
∥∥
2

(
∥Eii∥2

∥∥WQ
∥∥
2

∥∥WK,⊤
∥∥
2
+
∥∥WQ

∥∥
2

∥∥WK,⊤
∥∥) (B + δ0)

2
+
∥∥WV

∥∥
2
,∑

j ̸=i

[∥∥WV
∥∥
2

∥∥P(i)
∥∥
2
∥Eij∥2

∥∥WQ
∥∥
2

∥∥WK,⊤
∥∥
2
+
∥∥WV

∥∥
2

]
(B + δ0)

2
,

(36)

The first equality is in accordance with equation 34,35, while the second inequality arises from
the Cauchy-Schwarz inequality and the boundedness of the input space X and the perturbation δ0.
Furthermore, by utilizing

∥∥P(i)
∥∥
2
≤ 1 and ∥Eij∥2 ≤ 1, we can omit them in the inequality, leave

with pure weight matrices,

∥[Ji1(X), . . . ,JiN (X)]∥2

∣∣∣∣∣
X∈B2(X0,δ0)

≤ 2 (B + δ0)
2 ∥∥WV

∥∥
2

(∥∥WQ
∥∥
2

∥∥WK,⊤
∥∥
2
+ 1
)
+

(N − 1) (B + δ0)
2 [∥∥WV

∥∥
2

∥∥WQ
∥∥
2

∥∥WK,⊤
∥∥
2
+
∥∥WV

∥∥
2

]
,

= (N + 1) (B + δ0)
2 [∥∥WV

∥∥
2

∥∥WQ
∥∥
2

∥∥WK,⊤
∥∥
2
+
∥∥WV

∥∥
2

]
,

(37)

By directly summing across the row index or utilizing the lemma B.1 can yield our main theorem.

∥J∥2 ≤ N(N + 1) (B + δ0)
2 [∥∥WV

∥∥
2

∥∥WQ
∥∥
2

∥∥WK,⊤
∥∥
2
+
∥∥WV

∥∥
2

]
. (38)

This ends the proof.

C PROOF OF THEOREM 5.1

Theorem 4.1 (Convergence guarantee of the power iteration method (Mises & Pollaczek-Geiringer,
1929)). Assuming the dominant singular value σmax(A) (which is also the eigenvalue of matrix
A⊤A) is strictly greater than the subsequent singular values and that u0 is initially selected at
random, then there is a probability of 1 that u0 will have a non-zero component in the direction
of the eigenvector linked with the dominant singular value. Consequently, the convergence will be
geometric with a ratio of

∣∣∣ σ2(A)
σmax(A)

∣∣∣.
Proof. Denote σ1, σ2, · · · , σm as the m eigenvalues of matrix A⊤A, and v1,v2, · · · ,vm as the
corresponding eigenvectors. Suppose σ1 is the dominant eigenvalue, denote as σmax = σ1, with
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|σ1| > |σj | for ∀j > 1. The initial vector u0 can be written as the linear combination of the
eigenvectors: u0 = c1v1+ c2v2+ · · ·+ cmvm. If u0 is chosen randomly with uniform probability,
then the eigenvector corresponding to the largest singular value has a nonzero coefficient, namely
c1 ̸= 0. After multiplying the initial vector u0 with the matrix A k times, we have:

Aku0 = c1A
kv1 + c2A

kv2 + · · ·+ cmAkvm,

= c1σ
k
1v1 + c2σ

k
2v2 + · · ·+ cmσk

mvm,

= c1σ
k
1

(
v1 +

c2
c1

(
σ2

σ1

)k

v2 + · · ·+
cm
c1

(
σm

σ1

)k

vm

)
,

→ c1σ
k
1v1 (k →∞).

(39)

The second equality holds for the eigenvectors with Akvi = σk
i vi, ∀i = 1, · · · ,m, while the last

equality is valid when
∣∣∣ σi

σ1

∣∣∣ < 1 for all i > 1.

On the other hand, the vector for iterative step k can be written as uk = Aku0

∥Aku0∥ . Combining these
two equations above, we obtain uk → Cv1 as k → ∞, where C is a constant. Therefore, we
can use the power iteration method to approximate the largest singular value. The convergence is
geometric, with a ratio of

∣∣∣σ2

σ1

∣∣∣.
D COMPARISON WITH EXISTING BOUNDS

Existing literature on introducing Lipschitz continuity into Transformer models comprises three no-
table articles(Kim et al., 2021; Dasoulas et al., 2021; Qi et al., 2023), we abbreviate their proposed
modified Transformer as L2Former(Kim et al., 2021), LNFormer(Dasoulas et al., 2021), and Lips-
Former(Qi et al., 2023). We summarize the three bounds they propose for their modified attention
mechanisms below. We have also included the vanilla self-attention mechanism, along with these
three modified attention mechanisms and our optimization objectives, in Table 4, where we examine
whether these studies address robustness and whether they simplify the analysis of mechanisms.

TABLE 4: Comprehensive Comparison of the Baseline Models.

Model Proposed Mechanism Lipschitz
Continuity Robustness Simplified

Transformer
(Dosovitskiy et al., 2020) softmax

(
XWQ(XWK)

⊤

√
D

)
XWV × × −

L2Former
(Kim et al., 2021) exp

(
−∥

x⊤
i WQ−x⊤

j WK∥2
2√

D/H

)
✓ × ✓

LNFormer
(Dasoulas et al., 2021)

Q⊤K
max{uv,uw,vw} ✓ × ✓

LipsFormer
(Qi et al., 2023) qi =

(x⊤
i WQ)

⊤√
∥x⊤

i WQ∥2+ϵ
✓ × ×

SpecFormer
(Ours) Lcls + λ · σ2

max (W) ✓ ✓ ×

In (Kim et al., 2021), it was demonstrated that the self-attention mechanism, due to the potential
unboundedness of its inputs, is not globally Lipschitz continuous. Instead, they introduced an L2
self-attention mechanism based on the L2 distance

∥∥x⊤
i W

Q − x⊤
j W

K
∥∥2
2
. However, their proposed

L2 attention mechanism also lacks global Lipschitz continuity in cases where WK ̸= WQ, pos-
sessing global Lipschitz continuity only when WK = WQ. This constraint imposes significant
limitations on various expressive capabilities of the model itself, as demonstrated by the experimen-
tal results presented in the original paper’s Appendix L. Confining the model to WK = WQ results
in a substantially higher loss during convergence compared to the unconstrained model, rendering
the model suboptimal.
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In (Dasoulas et al., 2021), the authors proposed a normalization approach, denoted as g(X) = g̃(X)
c(X)

,
where g(X) represents the score function in the softmax operation, to address the issue of poten-
tially unbounded inputs, as mentioned earlier. However, their analysis is based on a simplified
version of the attention mechanism, which significantly differs from the practical application of
the self-attention mechanism. Additionally, through their choice of the function c(X), it appears
that the authors have implicitly assumed that the input is bounded. They defined c(X) as follows:
c(X) = max{∥Q∥F

∥∥K⊤∥∥
(∞,2)

, ∥Q∥F
∥∥V⊤∥∥

(∞,2)
,
∥∥K⊤∥∥

(∞,2)

∥∥V⊤∥∥
(∞,2)

}. Here, the input matrix
X is represented as X = (Q∥K∥V). It’s worth noting that this choice of c(X) seems to assume
boundedness in the input data, which may not fully address the issue of unbounded inputs in practi-
cal self-attention mechanisms.

In (Qi et al., 2023), the authors introduced a series of modules to replace components in the vanilla
Vision Transformer that they deemed to introduce instability during training. These modifications
include using CenterNorm to replace LayerNorm, employing scaled cosine similarity attention
(SCSA) as an alternative to vanilla self-attention, and utilizing weighted residual shortcuts con-
trolled by additional learnable parameters, along with spectral initialization for convolutions and
feed-forward connections, all aimed at ensuring that the Lipschitz constant for each component
remains below 1 for training stability.

However, it is noteworthy that these improvements, as presented, appear unnecessary and exces-
sively restrictive in terms of the model’s expressiveness. For instance, the authors created Cen-
terNorm and SCSA by merely shifting the operation of dividing by the standard deviation from
LayerNorm to the attention layer, resulting in no substantial improvement. Furthermore, the ℓ2 row
normalization applied to the Q,K,V matrices strongly impacts the overall expressiveness of the
model, imposing overly stringent constraints.

Additionally, the introduction of the extra parameter alpha in the weighted residual shortcut to con-
trol the influence of the residual path on the entire pathway, while aiming for contractive Lipschitz
properties, restricts α to be learned within a predefined, highly limited range or even kept fixed.
These operations are cumbersome and introduce additional computational overhead.

Lastly, the proposed spectral initialization, though effective in ensuring a Lipschitz constant of 1 for
convolutions and feed-forward parts, is extremely time-consuming during the initialization phase.
Despite these extensive operations, the SCSA module in the authors’ paper still requires bounded
norm values for WQ,WK ,WV to satisfy Lipschitz properties. Our observation posits that, in
practical scenarios, due to the Lipschitz continuity of LayerNorm, each entry of the input image
(e.g., pixel values ranging between 0 and 255) is inherently bounded. Moreover, the LayerNorm
applied to the input before entering the attention layer constrains the input values to the [0, 1] range.
Therefore, when contemplating the Lipschitz continuity of the attention layer in practical terms, it
suffices to consider bounded conditions. To delve further, in the context of adversarial robustness,
we only need to consider pointwise Lipschitz continuity and, more specifically, the local Lipschitz
continuity around a fixed point. This Lipschitz continuity can be reliably guaranteed.

E EXPERIMENTS

E.1 HYPERPARAMETER ANALYSIS

In this section, we present the results of a hyperparameter ablation study. From Table 5, it is evident
that the performance of our proposed SpecFormer remains robust even with varying hyperparame-
ters. We recommend a tuning range of [1e− 6, 1e− 3] for optimal results. When penalties that are
too large, such as 1e− 2, can result in overly constrained representations, whereas penalties that are
too small, such as 1e− 7, may have little to no effect.

E.2 IMPLEMENTATION DETAILS

The experiments were conducted on a system equipped with an Intel(R) Xeon(R) CPU E5-2687W
v4 @ 3.00GHz and NVIDIA TITAN RTX. The abbreviation ViT-S stands for the Vision Trans-
former (Dosovitskiy et al., 2020) Small backbone, which comprises of 8 attention blocks with 8
heads and an embedding dimension of 768. The DeiT-Ti backbone, on the other hand, refers to the
DeiT (Touvron et al., 2021a) Tiny model, which comprises of 12 attention blocks with 3 heads and
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TABLE 5: Performance (%) of SpecFormer on CIFAR10 under different hyperparameter choices for
both standard training and adversarial training. The best results are highlighted in bold.

(λq, λk, λv)
CIFAR-10-Standard Training CIFAR-10-Adversarial Training

Standard PGD-2 FGSM Standard CW-20 PGD-20

(1e-4,0,0) 87.36 35.32 53.91 72.54 31.47 31.59
(0,1e-4,0) 88.58 29.02 49.81 72.56 31.37 31.19
(0,0,1e-4) 87.66 36.19 52.40 72.51 31.41 31.65

(5e-4, 7e-5 ,2e-4) 88.32 31.42 48.82 72.53 31.59 31.92
(1e-4,1e-4,1e-4) 88.14 36.07 53.71 72.46 31.94 32.23
(2e-4,5e-5,7e-5) 88.61 30.01 48.31 72.42 31.56 31.82
(1e-3,9e-5,3e-4) 88.15 31.75 50.46 72.43 31.91 32.23
(1e-3,1e-3,1e-3) 88.07 32.59 47.85 71.70 31.31 31.79
(5e-4,3e-4,3e-4) 88.81 31.28 48.32 72.19 31.69 31.89
(5e-5,3e-5,3e-5) 88.52 29.53 50.58 72.55 31.68 31.72
(2e-3,3e-4,4e-4) 88.29 33.25 48.25 71.75 31.75 32.29
(4e-3,8e-4,1e-3) 88.29 33.94 46.72 71.37 31.84 32.19

TABLE 6: Performance (%) of SpecFormer with different ViT variants on ImageNet datasets under
standard training (using ImageNet-22k pre-trained weights). The best results are in bold.

Model Method Standard Training Adversarial Training

Standard FGSM PGD-2 Standard CW-20 PGD-20 PGD-100

ViT-B

LipsFormer (Qi et al., 2023) 65.76 20.87 3.77 45.04 18.91 21.13 20.83
L2Former (Kim et al., 2021) 77.40 37.12 6.89 51.24 24.85 27.04 26.95

LNFormer (Dasoulas et al., 2021) 50.84 25.78 0.54 30.93 11.53 14.08 14.04
Transformer (Dosovitskiy et al., 2020) 79.11 41.45 10.79 60.81 30.92 32.58 32.35

SpecFormer (Ours) 80.04 43.51 11.59 62.30 31.87 32.82 32.56

an embedding dimension of 192. Finally, ConViT-Ti refers to the ConViT (d’Ascoli et al., 2021)
Tiny model, comprising of 10 layers with 4 heads and an embedding size of 48.

E.3 EVALUATION ON IMAGENET

We assess the performance of our SpecFormer model on ImageNet-1k, a widely used large-scale
dataset. We conduct a comparative analysis of SpecFormer against four other baseline models under
both standard training and adversarial training paradigms. For standard training, we evaluate the
model’s adversarial robustness using FGSM (Goodfellow et al., 2015) and PGD-2 (Madry et al.,
2018) attacks, employing an attack radius of 2/255. In the case of adversarially-trained models, we
rigorously evaluate their robustness against CW-20 (Carlini & Wagner, 2017) as well as PGD-20 and
PGD-100 (Madry et al., 2018) attacks, utilizing an attack radius of 8/255. Following the training
protocols outlined in (Mo et al., 2022), we conducted adversarial training of the models for a total
of 10 epochs. Our learning rate schedule aligns with their implementation, involving a reduction of
the learning rate by a factor of 10 at the 6th and 8th epochs. The experimental results on ImageNet
are presented in Table 6. It is evident from the table that SpecFormer outperforms the other models
under both standard and adversarial training paradigms, achieving the highest standard and robust
accuracy. This highlights the effectiveness and superiority of our approach on a large-scale dataset.
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