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AND CONTROLLABLE MATERIAL TRANSFER WITH
DIFFUSION MODELS
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Figure 1: Examples of material transfer results using our proposed MaterialFusion framework.
(Left) Original images and material exemplars. (Right) Progressive transfer of material properties,
with increasing ”transfer force” for controlled adjustments.

ABSTRACT

Manipulating the material appearance of objects in images is critical for appli-
cations like augmented reality, virtual prototyping, and digital content creation.
We present MaterialFusion, a novel framework for high-quality material transfer
that allows users to adjust the degree of material application, achieving an opti-
mal balance between new material properties and the object’s original features.
MaterialFusion seamlessly integrates the modified object into the scene by main-
taining background consistency and mitigating boundary artifacts. To thoroughly
evaluate our approach, we have compiled a dataset of real-world material transfer
examples and conducted complex comparative analyses. Through comprehen-
sive quantitative evaluations and user studies, we demonstrate that MaterialFusion
significantly outperforms existing methods in terms of quality, user control, and
background preservation. Code is available at https://github.com/

1 INTRODUCTION

Manipulating the material appearance of objects in images is a critical task in computer vision and
graphics, with wide-ranging applications in augmented reality, virtual prototyping, product visual-
ization, and digital content creation. Material transfer is the process of applying the material prop-
erties from a source exemplar to the target object in an image—enables users to visualize objects
under different material conditions without the need for complex 3D modeling or rendering. This
capability accelerates design workflows and enhances the realism of synthesized images, making it
an important area of research.

Despite its significance, achieving high-quality material transfer remains challenging due to diffi-
culties in preserving geometric characteristics, controlling the degree of material application, and
effectively handling object boundaries. Existing methods Yeh et al. (2024); Richardson et al. (2023)
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often distort the target object’s shape or surface details when applying new material properties,
compromising its geometric fidelity. Moreover, many approaches Sharma et al. (2023); Cheng et al.
(2024); Titov et al. (2024) lack flexibility in adjusting the extent of material transfer, leading to
excessive application that overwhelms the object’s original structure and details, resulting in unnat-
ural appearances. Additionally, improper blending at object boundaries can introduce noticeable
artifacts, detracting from the overall image quality and disrupting consistency with the background.

Existing methods like ZeST Cheng et al. (2024) attempt to address material transfer without rely-
ing on explicit 3D information, but they often suffer from quality issues such as poor preservation
of geometric characteristics and lack of control over the degree of material transfer. Furthermore,
general-purpose image editing techniques, which include IP-Adapter Ye et al. (2023), Guide and
Rescale Titov et al. (2024), and DreamBooth Ruiz et al. (2023), struggle with material transfer
tasks. They may not accept material exemplars as input images, or if they do, they fail to produce
satisfactory results, especially in preserving material properties and handling background integra-
tion.

To overcome these limitations, we propose MaterialFusion, a novel framework that combines the
IP-Adapter with the Guide-and-Rescale (GaR) method within a diffusion model to achieve high-
quality material transfer with enhanced control and fidelity. Our approach uses the IP-Adapter to
encode material features from a source exemplar image, capturing the specific textures and nuances
of the material to be transferred. Concurrently, GaR helps preserve the geometric characteristics
and essential features of the target object, maintaining its original structure and details. To address
issues of unintended material application and background alterations, we introduce a dual masking
strategy: first, we apply masking during the material transfer process to confine the transfer to
the desired regions; second, we perform masking after each denoising step to seamlessly integrate
the modified object into the background and mitigate boundary artifacts. This combined approach
allows for precise control over the degree and location of material transfer, resulting in natural and
realistic images that maintain consistency with the surrounding environment.

Our main contributions are as follows:
• We present MaterialFusion, a novel framework that significantly improves the quality of

material transfer in images by addressing the shortcomings of existing methods without
relying on explicit 3D information.

• We introduce an adjustable material transfer control mechanism, enabling users to finetune
the extent of material application. This allows for a balanced integration of new material
properties with the object’s original appearance, maintaining natural and realistic results.

• We have compiled an extensive dataset of real-world material transfer examples and con-
ducted detailed comparative analyses. Through comprehensive quantitative evaluations
and user studies, we demonstrate that our method outperforms existing approaches in both
quality and flexibility.

2 RELATED WORK

Material transferring. Research on material transfer has progressed considerably, with early work
by Khan et al. (2006) introducing methods to render objects transparent and translucent using lu-
minance and depth maps. More recent approaches use Generative Adversarial Networks (GANs)
Goodfellow et al. (2020) for high-quality material edits that adjust perceptual attributes like glossi-
ness and metallicity, while maintaining the object’s geometric structure Delanoy et al. (2022); Subias
& Lagunas (2023). These GAN-based methods facilitate the modification of material appearance
from a single input image, allowing for flexible and visually coherent edits.

Diffusion models have also emerged as effective tools for material modification. Sharma et al.
(2024) introduced a technique using Stable Diffusion v1.5 to control material properties, including
roughness, metallicity, and transparency, directly in real images. More recently, Cheng et al. (2025)
proposed a model that also enables material property control; however, unlike Alchemist, their ap-
proach predicts only directions in the CLIP space. Several diffusion-based methods have been de-
veloped for 3D texturing as well, such as Text2Tex Chen et al. (2023) and TEXTure Richardson
et al. (2023), which generate textures from object geometries and text prompts, and TextureDreamer
Yeh et al. (2024), which transfers relightable textures to 3D shapes from a few input images. The
work most similar to ours is ZeST Cheng et al. (2024), a zero-shot material transfer method that
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applies exemplar materials from reference images to target objects, showcasing effective single-shot
material editing without additional training.
Diffusion Models for Image Editing. Diffusion models have become essential in image editing,
enabling detailed, high-quality transformations Ho et al. (2020); Dhariwal & Nichol (2021). Meth-
ods such as Null-text Inversion Mokady et al. (2023) and Prompt-to-Prompt Hertz et al. (2022)
allow edits on real images by adjusting text prompts or modifying cross-attention layers, preserv-
ing key visual content while providing control over specific areas. InstructPix2Pix Brooks et al.
(2023) extends this with instruction-driven edits, while ControlNet Zhang et al. (2023) leverages
additional conditioning inputs like edge maps and segmentation masks for precise structure manip-
ulation. However, these techniques often lack the fine-grained control needed for material-specific
edits.

Self-guidance Epstein et al. (2023) and IP-Adapter Ye et al. (2023) enable image-based conditioning
and layout preservation, with the Guide and Rescale (GaR) method Titov et al. (2024) further refin-
ing spatial structure by preserving attention and feature maps during edits. These methods improve
detail retention but can struggle with unintended background changes and fine material control. Our
approach, MaterialFusion, combines IP-Adapter’s detailed material encoding with GaR’s geometric
fidelity and includes a dual-masking strategy to limit material transfer to targeted areas. This unified
approach addresses the limitations of existing methods, ensuring high-quality, controlled material
transfer while maintaining background consistency.

3 METHOD

Figure 2: Overview of the material transfer pro-
cess in MaterialFusion. Starting with a material
exemplar yim, an input image xinit, and prompts,
our framework produces a target image where the
object adopts the desired material properties from
yim.

In this section, we will formulate the problem
statement and discuss the methods that will be
employed for material transfer from one im-
age to another. Our task involves transferring
texture or material from one image yim into
an object in the foreground of another image
xinit, while preserving the background infor-
mation and fine-grained details of the object.
The goal is to generate an image that corre-
sponds to the target prompt ytrg, where the ob-
ject in this image is imbued with the material
from yim. The input of our model consists of
an object-centric image with the target object
xinit, an image of the material yim that can be
represented as either texture or another object,
and two text prompts: target prompt ytrg and
the source prompt ysrc. An accompanying im-
age (see Fig. 2) illustrates this process, high-
lighting the inputs and outputs of the model.

To address this problem, we will employ three
primary methods: the Stable Diffusion v1.5
model Rombach et al. (2022), the IP-Adapter Ye et al. (2023) for material encoding and embed-
ding, and the Guide-and-Rescale approach Titov et al. (2024), which we will refer to as GaR. The
GaR method enables guidance during the image generation process to preserve the original layout,
structure, and key details of objects. This ability to maintain the image’s integrity will be crucial to
our material transfer tasks. Additionally, masking techniques will be utilized to enhance background
preservation and facilitate effective material transfer to the designated areas of the image.

3.1 PRELIMINARIES

Diffusion Model. For our material transfer problem, we utilize the Stable Diffusion v1.5 model
Rombach et al. (2022), which is a latent diffusion model (LDM). An essential aspect of the Stable
Diffusion model is its use of classifier-free guidance (CFG) Ho & Salimans (2022), which allows the
model to generate images conditioned on specific inputs. In contrast to classifier guidance Dhariwal
& Nichol (2021), which requires a separately trained classifier to direct the sampling process towards
particular targets, classifier-free guidance blends the outputs of the conditioned and unconditioned
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Figure 3: (Left) Comparison of material transfer results across different methods. From left to
right: the original image, target material, results using Guide-and-Rescale (GaR), IP-Adapter with
masking, our method without masking, and our full MaterialFusion approach. Our method achieves
realistic material transfer while preserving object structure and background consistency. (Right)
Gradual transfer of material characteristics with increasing ”transfer force” (λ).

models, controlled by a guidance scale w. The noise prediction during the sampling stage when
employing the classifier-free guidance mechanism can be mathematically expressed as:

ϵ̂θ(zt, c, t) = wϵθ(zt, c, t) + (1− w)ϵθ(zt, t) (1)

where ϵθ(zt, c, t) is the conditioned prediction, ϵθ(zt, t) is the unconditioned prediction and w is
guidance scale. This mechanism allows the model to generate high-quality outputs that are both
creative and contextually aligned with the given conditions.

Guide-and-Rescale. In our approach to material transfer, we utilize a modified diffusion sampling
process that employs a self-guidance mechanism Epstein et al. (2023), as proposed by the authors of
Titov et al. (2024). The self-guidance mechanism involves leveraging an energy function g to guide
the sampling process, provided that a gradient with respect to zt exists.

Self-attention mechanisms, as highlighted by Tumanyan et al. (2023), effectively capture impor-
tant information regarding the relative positioning of objects within an image. While the diffusion
UNet layers can extract essential features from images during the forward process. Building on
these insights, the authors of the GaR article developed an approach that incorporates a modified
diffusion sampling process through a guidance mechanism. This enables targeted editing of specific
regions within the image while preserving vital visual features—such as facial expressions—and
maintaining the overall layout of the image.

First, in GaR, a DDIM inversion Song et al. (2020) trajectory is obtained {z∗t }Tt=0 for xinit, condi-
tioning on ysrc. Consequently, the single noise sampling step in GaR is defined as follows:

ϵ̂θ(zt, c, t) = wϵθ(zt, c, t) + (1− w)ϵθ(zt, t) + v · ∇ztg(zt, z
∗
t , t, ysrc, I

∗, I) (2)

where I and I∗ are inner representations computed during the forward pass of ϵθ(zt, t, ysrc) and
ϵθ(z

∗
t , t, ysrc) respectively, v is the self-guidance scale.

IP-Adapter. In our study, we utilize the IP-Adapter, a lightweight and effective mechanism de-
signed to enhance image prompt capabilities in pretrained text-to-image diffusion models. The IP-
Adapter employs a decoupled cross-attention mechanism that facilitates the independent processing
of text and image features. This architectural design enables the effective integration of multimodal
inputs, combining both text and image prompts.

The IP-Adapter comprises an image encoder that extracts relevant features from the image prompt
and adapted modules that utilize decoupled cross-attention to embed these image features into the
diffusion model. Additionally, the IP-Adapter can be trained only once and then directly integrated
with custom models derived from the same base model, along with existing structural controllable
tools. This characteristic significantly expands its applicability and is crucial for our work, as we
combine the IP-Adapter with the Guide-and-Rescale method, enhancing our capability to achieve
effective material transfer.

When utilizing the IP-Adapter, the noise prediction is adapted to incorporate image conditioning,
resulting in the following expression:

ϵ̂θ(zt, ct, ci, t) = wϵθ(zt, ct, ci, t) + (1− w)ϵθ(zt, t) (3)
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Figure 4: The overall pipeline of MaterialFusion for material transfer. Starting with DDIM inver-
sion of the target image xinit and material exemplar yim, the framework combines the IP-Adapter
with UNet and employs a guider energy function for precise material transfer. A dual-masking strat-
egy ensures material application only on target regions while preserving background consistency,
ultimately generating the edited output xedit. The parameter λ, known as the Material Transfer
Force, controls the intensity of the material application, enabling adjustment of the transfer effect
according to user preference.

where ϵθ(zt, ct, ci, t) represents the predicted noise, ct is the text conditioning, and ci signifies
the image conditioning. This formulation closely resembles the standard noise prediction seen in
classifier-free guidance, but it additionally incorporates conditioning from the image prompt, en-
abling the generation of more contextually relevant outputs.

3.2 OUR METHOD

In this section, we introduce our method, which integrates the GaR approach and the IP-Adapter for
effective material transfer. To begin, we will evaluate the applicability of each method independently
in the context of material transfer, identifying their strengths and limitations. Understanding the
challenges inherent to each approach will provide a foundation for our integrated solution.
Guide-and-Rescale for material transfer. In GaR, the use of a self-guidance mechanism during
generation improves the editing process by preserving the initial image features and layout of the
image, while the editing itself is done by CFG via a text prompt. However, relying solely on GaR
proves insufficient for effectively transferring material to an object (see Fig. 3, third column). While
GaR successfully retains the details of the original object, it often falls short in material transfer,
resulting in either a degree of transfer that is less than desired or no transfer occurring at all. Addi-
tionally, for the task of transferring material, the strategy of changing the material via a text prompt
is not suitable strategy for several reasons: firstly, generating an object with a new transferred mate-
rial can be tricky for SD because the model might lean toward more typical depictions of the object.
For example, generating a wooden or glass pumpkin may not be successful and could result in the
generation of an ordinary typical orange pumpkin. Secondly, transferring material via text prompts
requires writing large and detailed text prompts, which is not very convenient. Thirdly, text prompts
can be interpreted in various ways, making it difficult to control precise attributes such as texture,
color, and structural details of the material that we want to transfer.
IP-Adapter for material transfer. Using a text prompt to generate an object with transferred
material may not yield the exact, highly specific details and nuances of the material that can be
achieved by generating from a picture prompt. As the authors of the IP-Adapter article stated, ”an
image is worth a thousand words”. All these reasons prompted us to use the IP-Adapter for encoding
the material and then adding it to the target object.
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The IP-Adapter consists of two main components: a pretrained CLIP Radford et al. (2021) image
encoder model, which in our case extracts material-specific features from a material exemplar image,
and adapted modules with decoupled cross-attention, which integrate these material features into a
pretrained text-to-image diffusion model (SD v1.5 in our case).

While the IP-Adapter is a promising method for material transfer, it is important to note that it cannot
independently achieve successful material transfer to an object. As shown in Fig.3 (fourth column),
using the IP-Adapter to add material features to a specific region of the image via masking does not
yield the desired outcomes. Although the texture of the material is transferred effectively, the object
details are lost, causing them to no longer resemble their original forms. This loss of object identity
is a significant issue.
Our method, MaterialFusion as a combination of GaR and IP-Adapter. As mentioned earlier,
GaR effectively preserves the details of objects but has limitations in its ability to transfer material.
Conversely, the IP-Adapter excels in material transfer but does not retain the details of the objects.
To harness the advantages of both approaches, we have developed a method, which leverages the
strengths of both GaR and the IP-Adapter while addressing their individual limitations.

Figure 5: First Masking. After the first masking, the
material is successfully transferred to the targeted area
of the image. However, background preservation is not
flawless, with noticeable issues occurring on the table.

In this combined framework, the IP-
Adapter is responsible for executing the
material transfer, while GaR maintains the
geometry of the target object, ensuring that
the background and overall pose remain
intact. Additionally, GaR contributes to
preserving crucial visual features of the
objects, enabling a cohesive integration of
the transferred material while upholding
the original image details. More details on
the importance of GaR in the task of mate-
rial transfer are provided in the Appendix
A.

The overall scheme of the proposed
method, MaterialFusion, is depicted in
Fig. 4. The process begins with the
DDIM inversion of the source image. Sub-
sequently, MaterialFusion conducts image
editing through a denoising process, during which the UNet, in conjunction with the IP-Adapter, in-
corporates material features into the generated image at each denoising step. Moreover, at each step
of the denoising trajectory, the noise term is adjusted by a guider that employs the latent variables zt
from the current generation process, along with the time-aligned DDIM latents z∗t . This adjustment
helps preserve the geometry, pose, and features of the object.

A single sampling step of MaterialFusion is defined by the following formula:

ϵ̂θ(zt, ct, ci, t) = wϵθ(zt, ct, ci, t) + (1− w)ϵθ(zt, t) + v · ∇ztg(zt, z
∗
t , t, ysrc, I

∗, I) (4)

where I and I∗ are inner representations computed during the forward pass of ϵθ(zt, t, ysrc) and
ϵθ(z

∗
t , t, ysrc) respectively; v is the self-guidance scale; ct is the text conditioning, and ci is the

image conditioning. The pseudocode for the MaterialFusion method can be found in Appendix D.
Masking for controlled Material Transfer. Despite the initial success of our model in transfer-
ring material to target objects, we faced significant challenges, particularly regarding unintended
material transfer to non-target areas and minor alterations in the background (as illustrated in the
first row of Fig. 5 or in the fifth column of Fig. 3). To address these issues and enhance the preci-
sion of our approach, we implemented a masking technique for controlled Material Transfer. This
technique is designed to confine the material transfer strictly to the desired regions of the object and
better preserve the background.

In our method, we apply masking twice. The first masking is performed at the stage of incorporating
material-specific features from a material exemplar image into a pretrained text-to-image diffusion
model, which occurs through the image features cross-attention layers of IP-Adapter (see Fig. 4).
This masking solves the problem of unintended material transferring to non-target areas. The results
of the generation after cross-attention masking can be seen in Fig. 5, where it is evident that after this
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Figure 6: To compare the qualitative results obtained by different methods: Our method, ZeST,
GaR, and IP-Adapter with masking. Our method demonstrates more realistic material integration,
preserving object structure and achieving higher fidelity to the target material.
masking, the material successfully transfers to the intended region, although some slight background
changes can be observed.

In the second masking step, we solve the problem of background changes compared to the original
image during generation. Masking is performed as follows: after each denoising step, we extract
the masked object from the sampling trajectory and a masked background from the DDIM inversion
latent corresponding to the current step. In other words, this can be expressed as a formula:

zt = mask · zt + (1−mask) · z∗t (5)
where zt is the latent representation from the current generation process, z∗t is the time-aligned
DDIM latent, and mask is the binary mask of the object.

This formula illustrates how we combine the current latent zt and the time-aligned DDIM latent z∗t
using a binary mask. The values corresponding to the object are retained from the current generation
step, while the background is updated by combining with the time-consistent latent representation
from the corresponding inversion step. In this way, we ensure stability and continuity of the back-
ground, avoiding abrupt transitions and artifacts. Moreover, this approach not only improves the
visual quality of the final image, but also promotes a smoother integration of elements in the image,
creating a lively and harmonious composition. We also determined the appropriate denoising step
up to which masking should be performed. See Appendix B for details.
Material Transfer Force. As previously mentioned, our method employs a decoupled cross-
attention mechanism from the IP-Adapter for material transfer, utilizing query features Z, text fea-
tures ct, and image features from the material exemplar ci. The relevant matrices for the attention
operations are defined as follows:

• For text features: Q = ZWq , K = ctWk, V = ctWv

• For material image features: Q = ZWq , K ′ = ciW
′
k, V ′ = ciW

′
v

Thus, the overall output of the attention mechanism is:
Znew = Attn(Q,K, V ) + λ ·Attn(Q,K ′, V ′) (6)

Here, λ represents the Material Transfer Force, which controls the intensity of material transfer in the
output. Adjusting λ allows for modulating the influence of material characteristics while preserving
details, resulting in a coherent and visually appealing integration. As illustrated in Fig. 3, variations
in λ demonstrate the resulting effects on material transfer and detail preservation. For more details
on the Material Transfer Force, please refer to the Appendix K.

4 EXPERIMENTS

To compare MaterialFusion with other methods, we created a dataset of free stock images com-
prising 15 material images and 25 object-oriented photographs. Detailed dataset description can be
found in Appendix C.

We compared our method against the following approaches: Guide-and-Rescale, IP-Adapter with
masking, and ZeST. We utilized the authors’ original code with the default parameters specified in
each method’s description. Configurations of our method and the baselines are in Appendix H.
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Our quantitative analysis involved an assessment of the following aspects: firstly, we focused on
the preservation of the background of the images, the geometry of the objects, and the details they
contain. To evaluate this, we calculated the LPIPS Zhang et al. (2018) between the original object
images and those obtained through various material transfer methods.

Figure 7: Quantitative analysis of material trans-
fer and object preservation. The lower right region
represents optimal results with high CLIP scores
(effective transfer) and low LPIPS values (good
detail preservation). The numbers above the dots
in the graph represent the material transfer force.
MaterialFusion achieves the best balance, with
results in the optimal zone, while GaR and ZeST
show trade-offs between transfer efficiency and
detail preservation.

Secondly, we aim to assess how effectively ma-
terial can be transferred. To accomplish this, we
developed the following scheme: we extracted
crops of two sizes, 64x64 and 128x128 pix-
els, from the resulting images using the object
mask, ensuring that only the transferred texture
crops were included—without any background.
Similarly, we generated crops from the example
material images. Subsequently, we computed
pairwise CLIP similarity scores between these
crops to determine the degree of similarity be-
tween the textures and then we calculated the
average of these scores. For a more comprehen-
sive description of the metrics, see Appendix I.

It is also important to mention, that during im-
age generation, accurately describing the mate-
rial in ytrg can be challenging. In such cases,
we took ytrg = ysrc. The reasoning behind this
decision is discussed in Appendix J.

4.1 QUALITATIVE COMPARISON

Fig. 6 presents examples of material trans-
fers utilizing various methods: ZeST, GaR, IP-
Adapter with masking, and our proposed approach. The images clearly demonstrate that GaR results
in minimal material transfer. While the IP-Adapter successfully captures the texture of the material,
it completely fails to preserve details. ZeST consistently performs well in terms of material transfer
but struggles to maintain object details. In contrast, our method exhibits robust performance in both
material transfer and detail preservation. More visual comparisons are in the Appendix E.

4.2 QUANTITATIVE COMPARISON

Table 1: User study results comparing
our method with ZeST. Our method was
preferred overall and rated highly for
detail preservation, while ZeST scored
better for material fidelity. This balance
between material transfer and object fi-
delity makes our method more effective
in delivering coherent and lifelike re-
sults.

Questions Results

Overall Preference (Q1) 68%
Material Fidelity (Q2) 26%
Detail Preservation (Q3) 70%

Fig. 7 shows the results of our quantitative analysis. The
optimal region, located in the lower right corner, indi-
cates that a high CLIP similarity score corresponds to
effective material transfer, while a low LPIPS value re-
flects good preservation of the object’s details and im-
age’s background.

Upon examining the generated images, we find that a
CLIP similarity score below 0.82 indicates the ineffec-
tive material transfer, while a score above 0.84 suggests
successful transfer. Additionally, we noted that when the
LPIPS value exceeds 0.21, the material starts to lose its
details significantly. Consequently, we have outlined the
approximate region of effective material transfer com-
bined with satisfactory preservation of the object in green
on the graph. As illustrated, only two points fall within
this favorable zone: MaterialFusion with material transfer strengths of 0.5 and 0.8. The results of
GaR fall into the region indicating good detail preservation but with low material transfer effective-
ness. In contrast, the ZeST performs well in transferring material but fails to preserve the details.

This analysis underscores the trade-offs between material transfer efficacy and detail preservation
across different methods. For a more comprehensive view, refer to Appendix F of the supplement,
where Fig. 7 is expanded to include additional methods: our approach without masking and the
IP-Adapter with masking.
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4.3 USER STUDY

To evaluate the effectiveness of our method, we conducted a user study comparing our approach
with ZeST, the current state-of-the-art method for material transfer. By presenting the results of both
our method and ZeST, we asked participants three questions: the first question (Q1) assessed user
preferences regarding Overall Preference, the second question (Q2) focused on Material Fidelity,
and the third question (Q3) evaluated Detail Preservation of the image results produced by both
methods. Details of the user study and all questions used can be found in Appendix G.

Figure 8: Examples of comparisons
where the vote for Question Q2 (Mate-
rial Fidelity) was given to ZeST. While
ZeST achieves high material transfer, it
often overpowers the original object’s
features, resulting in a ”cut-and-paste”
effect. Our approach, by contrast, bal-
ances material integration with preser-
vation of the object’s details, offering a
more coherent and realistic result.

We conducted a user study with 100 participants, each
completing 11 trials. In each trial, participants viewed
four images: the target object, a reference material, the
ZeST transfer result, and our method’s result, yielding
1,125 responses per question.

The results of the user study are presented in Table 1.
Each value indicates the percentage of users who pre-
ferred our method compared to ZeST. According to the
respondents, our method produces more realistic images
and better preserves the details of the original object com-
pared to ZeST by a wide margin. However, the results
of the user study indicate that we transferred the mate-
rial less effectively than ZeST. There is a very simple and
logical explanation for this. When using the simplest ap-
proach of cutting the material using a mask and pasting
it onto the original image, the material transfer appears
perfect; however, this method sacrifices any preservation
of the original object. ZeST lacks control over the mate-
rial transfer force, which can result in outputs that resem-
ble the simplistic cut-and-paste technique (see Fig. 8).
Therefore, the outcome is quite commendable, as it re-
flects a balance between maintaining the integrity of the
original object and achieving material transfer. Our method may not have transferred the material
as effectively as ZeST, but it provided a more realistic and coherent integration of materials and
original details, which is a significant achievement in its own right.

5 LIMITATIONS

Figure 9: Limitations of Our Method. (Left)
The difference in the nature of materials leads
to poor transfer results. (Right) The shoe ma-
terial differences resulted in limited transfer to
the left shoe.

Despite the strengths of our method, several limi-
tations must be acknowledged. One specific limi-
tation we have identified is that our method may
encounter difficulties when transferring material
to composite objects that consist of different parts
made from diverse materials. Moreover, the model
may struggle with material transfer when there is a
significant mismatch between the material’s nature
and the object’s nature. For instance, transferring
foaming waves to a motorcycle is challenging due
to their differing characteristics: foaming waves
are dynamic and fluid, lacking solidity, while a motorcycle features sharp edges, flat surfaces, and
well-defined shapes. This fundamental disparity leads to unrealistic transfer results (see Fig. 9).

6 CONCLUSION

We introduce MaterialFusion, a novel framework for exemplar-based material transfer that bal-
ances material fidelity with detail preservation, leveraging existing pre-trained models like IP-
Adapter and Guide-and-Rescale within a unified diffusion model approach. Through quantitative
evaluations and user studies, our method demonstrates superior results in realistic material inte-
gration compared to existing approaches. However, our framework has limitations, particularly in
handling highly complex materials or intricate textures where fine-grained control may still fall
short. Despite these challenges, MaterialFusion offers a robust foundation for future advancements
in controlled, high-quality material transfer for real-world applications.

9
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7 REPRODUCIBILITY STATEMENT.

Our framework does not require training. All details regarding inference, including hyperparameters
and architectural descriptions, can be found in the supplementary materials (Sections B, H, and J).
All experiments and the methods for calculating metrics are detailed in the text, particularly in
Section 4 of the main text and Sections C–K of the supplementary material. Furthermore, the code
for our method is available on GitHub. Since our experiments rely solely on our custom dataset,
which is publicly available, all reported results can be fully reproduced.
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A NECESSITY OF GUIDERS

Figure 10: Illustration of the significance of using guiders: (Left) Self-attention guider; (Right)
Feature guider. Transferring material without these guiders fails to maintain the object’s geometry,
visual features, and pose.

As previously mentioned, the Guide-and-Rescale method employs an energy function g to enhance
the sampling process. The authors of the GaR approach introduced two guiding mechanisms: the
Self-attention Guider and the Feature Guider. When utilized together during the generation process,
these guiders significantly enhance the preservation of original image details.

Self-attention mechanisms, as noted by the authors of Tumanyan et al. (2023), capture signifi-
cant information regarding the relative positioning of objects within an image. So authors of GaR
suggested guiding through matching of self-attention maps from the current trajectory A

self

i :=
selfattn.[ϵθ(zt, t, ysrc)] and an ideal reconstruction trajectory A∗self

i := selfattn.[ϵθ(z
∗
t , t, ysrc)],

where i corresponds to the index of the UNet layer. So the self-attention guider is defined as fol-
lows:

gself(zt, z
∗
t , t, ysrc, {A∗self

i }, {Aself

i }) =
L∑

i=1

mean||A∗self
i −A

self

i ||22 (7)

Moreover, during the forward process, diffusion UNet layers can extract essential features from
images. In GaR authors defined features Φ as an output of the last up-block in UNet. If Φ =
features[ϵθ(zt, t, ysrc)] and Φ∗ = features[ϵθ(z

∗
t , t, ysrc)] than feature guider is defined as:

gfeat(zt, z
∗
t , t, ysrc,Φ

∗,Φ) = mean||Φ∗ − Φ||22 (8)

In our approach, we combine both the self-attention guider and the feature guider to maintain the
layout, visual features, and geometry. Specifically, in our task of material transfer, the self-attention
guider is primarily responsible for preserving the geometry and pose of the target object. Meanwhile,
the feature guider focuses on maintaining the visual characteristics of the object. Although the fea-
ture guider also contributes to preserving the geometry, its effectiveness in this regard is somewhat
less than that of the self-attention guider.

Thus, a single sampling step in MaterialFusion can also be expressed as follows:

ϵ̂θ(zt, ct, ci, t) = wϵθ(zt, ct, ci, t) + (1− w)ϵθ(zt, t)+

+γ[vself · ∇ztgself(zt, z
∗
t , t, ysrc, {A

∗self
i }, {Aself

i })+
+vfeat · ∇ztgfeat(zt, z

∗
t , t, ysrc,Φ

∗,Φ)]

(9)

Here, γ is a scaling factor (the method of calculating γ is detailed in the Guide-and-Rescale article),
and vself and vfeat represent the self-guidance scale and feature-guidance scale, respectively.
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By adjusting these scales, one can modulate the influence of the guiders on the generated output.
The significance of employing both the self-attention guider and the feature guider is illustrated in
Fig. 10.

B ANALYSIS OF MASKING IN DENOISING PROCESSES

As mentioned earlier, we also identified the appropriate denoising step up to which the second
masking step—adding background from the DDIM inversion trajectory—should be executed.

As shown in Fig. 11, masking during the early iterations fails to preserve the image background,
while masking across the entire denoising trajectory helps maintain the background but negatively
impacts the quality of the generated output. To balance these effects, we chose an intermediate value
of 40 out of 50 denoising steps for masking. This approach allows us to achieve both high generation
quality and effective background preservation.

Figure 11: Identification of the optimal denoising step for executing the second masking — adding
background from the DDIM inversion trajectory. By masking the first 40 out of 50 denoising steps
in this manner, we effectively preserve the background while achieving high-quality generation

C DATASET DESCRIPTION

To compare MaterialFusion with other methods, we created our own dataset of real free stock im-
ages. Our dataset comprises 15 material images and 25 object-oriented photographs of various
objects. Fig.12 showcases examples of objects and materials from the dataset.

Figure 12: Examples of images from our custom dataset: (Left) Object images; (Right) Material
images.

D PSEUDOCODE FOR THE PROPOSED METHOD

The proposed method is summarized in the Algorithm 1.

13
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Algorithm 1 MaterialFusion
Input: Real image xinit, source prompt ysrc, target prompt ytrg, material exemplar image yim;

DDIM steps T ; guidance scales w, vself , vfeat; guidance threshold τg; masking threshold τm;
noise rescaling boundaries rlower, rupper; material transfer force λ; binary object mask mask.

Function: VAE encoder Enc., VAE decoder Dec., DDIM Inversion Song et al. (2020),
DDIM Sample Song et al. (2020), Self-attention Guider gself (Equation 7), Feature Guider
gfeat (Equation 8 ), noise rescaling fγ Titov et al. (2024).

Output: Edited image xedit.
1: z∗0 = Enc.(xinit)
2: for t = 0, 1, . . . , T − 1 do
3: z∗t+1 = DDIM Inversion(z∗t , ysrc)
4: end for
5: zT = z∗T
6: for t = T, T − 1, . . . , 1 do
7: ∆cfg = w(εθ(zt, t, ytrg, yim, λ,mask)− εθ(zt, t,∅))
8: ϵcfg = εθ(zt, t,∅) + ∆cfg

9:
{
{A∗self

i }Li=1,Φ
∗} = εθ(z

∗
t , t, ysrc)

10:
{
{Āself

i }Li=1, Φ̄
}
= εθ(zt, t, ysrc)

11: ϵself = vself · gself({A∗self
i }Li=1, {Āself

i }Li=1)
12: ϵfeat = vfeat · gfeat(Φ∗, Φ̄)
13: rcur = ∥∆cfg∥22/∥∇zt(ϵself + ϵfeat)∥22
14: γ = fγ(rlower, rupper, rcur)
15: if T − t < τg then
16: ϵfinal = ϵcfg + γ · ∇zt(ϵself + ϵfeat)
17: else
18: ϵfinal = ϵcfg
19: end if
20: zt−1 = DDIM Sample(zt, ϵfinal)
21: if T − t < τm then
22: zt−1 = mask · zt−1 + (1−mask) · z∗t−1
23: end if
24: end for
25: xedit = Dec.(z0)
Return: xedit

E ADDITIONAL VISUAL COMPARISON

In this section, we present an additional visual comparison of our method against ZeST, IP-Adapter
with masking, and GaR, as illustrated in Fig.14. The results indicate that while GaR demonstrates a
strong capability to maintain visual features, it struggles with effective material transfer. Conversely,
IP-Adapter with masking is proficient at transferring material textures but often compromises the
preservation of the objects’ underlying features. ZeST performs well in transferring materials for
simple objects, such as chairs, yet it falls short in maintaining features when dealing with more
complex objects. In contrast, our method effectively transfers materials to complex objects while
maintaining their visual features.

Additionally, Fig.18 provides a direct comparison between our method and the current state-of-the-
art method ZeST, highlighting the improvements achieved by our approach.

F EXTENDED QUANTITATIVE ANALYSIS

Figure 13 provides an enhanced version of Figure 7, introducing two additional methods: the IP-
Adapter with masking and our method without masking. The material transfer force, represented
by the numbers above the dots in the graph for the methods—Ours, IP-Adapter with masking, and
our method without masking—was varied between 0.5 (indicating weak material transfer) and 1.5
(indicating excessively strong material transfer). The results indicate that all three methods improve
material transfer effectiveness as the material transfer force increases, as evidenced by the rise in the
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Figure 14: Qualitative comparison with baselines, including ZeST, Guide-and-Rescale, and IP-
Adapter with masking, to integrate material features into specific regions of the image.

CLIP similarity score. However, this enhancement comes at the expense of detail retention, as illus-
trated by the increasing LPIPS scores. Notably, at a material transfer force of 1.5, the performance
metrics of our method closely resemble those of ZeST.

The graph also reveals that our method without masking leads to a significant increase in LPIPS
compared to our masked approach, indicating that masking is crucial for preserving background
details while effectively transferring material to the intended areas of the image.

Additionally, it is evident from the graph that the IP-Adapter with masking, despite enhancing ma-
terial transfer relative to our method, fails to retain object details, as indicated by the high LPIPS
scores.

G USER STUDY

Figure 13: Extended quantitative analysis of material trans-
fer and object preservation. The numbers above the dots
in the graph represent the material transfer force for the fol-
lowing methods: our method, IP-Adapter with masking, and
our method without masking.

In this appendix, we present more de-
tails on the user study conducted to
evaluate the effectiveness of our pro-
posed method. In our study, each
respondent was presented with a set
of four images: the original object,
an example image of the material to
be transferred, the result generated by
ZeST, and the result produced by our
proposed method. Participants were
asked to answer three specific ques-
tions:

Q1: Which image do you prefer?
Assess the overall quality of the im-
age: are details added or removed, is
the image spoiled (e.g., noise, blurri-
ness), and is it realistic?

Q2: Which image better transfers the
features of the material? Can we say
that the object is now made of this
material or that it uses this material?
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Q3: Which image better preserves the original object, including its outlines, details, and depth?

H DETAILED CONFIGURATION OF THE METHOD AND BASELINES

All experiments comparing the methods were performed using the official repositories from the
authors. The relevant code implementations and specific parameters for the method’s inference,
including those for our method, are listed in Table 2. All experiments were conducted on a NVIDIA
V100 with 40GB RAM.

Table 2: Overview of material transfer methods. Table presents the methods employed for material
transfer, along with their respective implementations and configuration settings. Source repositories
are included for reference.

Method Used Implementation Configuration Settings

ZeST ZeST github-repo N/A
IP-Adapter + masking IP-Adapter github-repo τm = 40

Guide-and-Rescale GaR github-repo

w = 7.5,
τg = 30,

vself = 300000, vfeat = 500,
rlower = 0.33, rupper = 3

Our -

w = 7.5,
τg = 30, τm = 40,

vself = 700000, vfeat = 1500,
rlower = 0.33, rupper = 3

I DESCRIPTION OF EVALUATION METRICS

In this appendix, we detail the metrics employed in our quantitative analysis, along with the calcu-
lation methods used.

Learned Perceptual Image Patch Similarity (LPIPS). Learned Perceptual Image Patch Simi-
larity (LPIPS) is utilized to assess the perceptual similarity between the original object images and
those generated through various material transfer methods. This metric is crucial for our analysis,
as it allows us to evaluate the preservation of the background, object geometry, and intricate details
within the images. LPIPS computes the similarity between the activations of two image patches
based on a pre-defined neural network.

Figure 15: CLIP-based similarity scoring using 64x64 and
128x128 crops of material-transferred and sample images,
excluding background. Pairwise scores quantify texture
similarity.

For our analysis, we employ AlexNet
for feature extraction, which as a for-
ward metric, according to the LPIPS
GitHub documentation, performs the
best. The process involves the fol-
lowing steps:

1. Feature Extraction: LPIPS ex-
tracts features from the original
and generated images using the
activations from specific layers of
AlexNet, which captures crucial
perceptual information about the
images.

2. Similarity Computation: By
comparing the extracted feature
activations from the two images,
LPIPS quantifies how similar they
are in terms of perceptual content.

16

https://github.com/ttchengab/zest_code/tree/main
https://github.com/tencent-ailab/IP-Adapter
https://github.com/AIRI-Institute/Guide-and-Rescale


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A lower LPIPS score indicates high similarity between the original and generated images, while
a higher score signifies greater divergence.

3 Average Calculation: Next, for each material transfer method, the average LPIPS score is cal-
culated across all images in the dataset.

CLIP similarity score. To evaluate the effectiveness of material transfer, we utilize the CLIP
similarity score. Calculating the similarity between two images using CLIP involves two main steps:
first, we extract the features of both images, and then we compute their cosine similarity. A detailed
explanation of the CLIP similarity score calculation within the context of our material transfer task
can be found in the ”Experiments” section of the article. This process is also illustrated in Fig.15.

J ABLATION STUDY ON THE NECESSITY OF TARGET PROMPT ytrg

Our primary objective is to generate an image that corresponds to the target prompt ytrg, where the
object depicted in this image acquires the material properties from yim. Notably, it is feasible to uti-
lize ysrc in place of ytrg, particularly in instances where the material characteristics are challenging
to articulate. This approach allows for effective material transfer using solely the reference image
yim.

In our ablation study, depicted in Fig.16, we investigate whether the material description in the target
prompt is essential for effective material transfer. We compare the results of material transfer when
the target prompt ytrg includes a material description versus scenarios where the target prompt is
set as ytrg = ysrc (without a specific material description). Using four distinct pairs of objects and
materials, we find that material transfer occurs successfully in all cases, irrespective of the presence
of a material description in the target prompt. Notably, for certain pairs—such as Baby Yoda with
gold, pears with masonry, and pears with leather—the inclusion of a material description allows for
the transfer to commence at lower force levels compared to cases without such a description. Con-
versely, for other pairs, like the rabbit toy with knitted fabric, the presence of a material description
does not influence the material transfer process at all, maintaining consistent transfer forces across
both conditions.

K MATERIAL TRANSFER FORCE

In this appendix, we provide a collection of examples illustrating the concept of material transfer
force, as shown in Fig.17. As seen in the image, the process begins with the transfer of texture from
the material exemplar, followed by the transfer of color. This sequential representation highlights
the distinct phases of material transfer.
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Figure 16: Ablation study on the necessity of the target prompt ytrg. We demonstrate that material
transfer remains successful regardless whether the target prompt is present or not (i.e., when ytrg =
ysrc). However, we observed that the presence of the target prompt ytrg facilitates easier material
transfer, resulting in lower material transfer forces.
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Figure 17: Examples of controlled addition of material to an object. The increase in material transfer
force can result in various outcomes, including changes in physical properties as well as modifica-
tions to texture and color. By maintaining precise control over the material transfer process, these
modifications can be carefully implemented, ensuring that the desired characteristics are achieved
without compromising the object’s original design.

Figure 18: Direct comparison between our method and the current state-of-the-art ZeST. Our ap-
proach effectively transfers materials to complex objects while better preserving their visual features
compared to ZeST.
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