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Abstract

Several methods from two separate lines of works,
namely, data augmentation (DA) and adversarial
training techniques, rely on perturbations done
in latent space. Often, these methods are either
non-interpretable due to their non-invertibility or
are notoriously difficult to train due to their nu-
merous hyperparameters. We exploit the exactly
reversible encoder-decoder structure of normal-
izing flows to perform perturbations in the latent
space. We demonstrate that these on-manifold
perturbations match the performance of advanced
DA techniques—reaching 96.6% test accuracy for
CIFAR-10 using ResNet-18 and outperform ex-
isting methods particularly in low data regimes—
yielding 10–25% relative improvement of test ac-
curacy from classical training. We find our latent
adversarial perturbations, adaptive to the classi-
fier throughout its training, are most effective.

1. Introduction
Successfully applying Deep Neural Networks (DNNs) in
real world tasks in large part depends on the availability of
large annotated datasets for the task at hand. Thus, besides
several overfitting techniques, data-augmentation (DA) of-
ten remains a “mandatory” step when deploying DNNs in
practice. Traditional DA techniques consist of applying a
predefined set of transformations to the training samples that
do not change the class label. As this approach is limited to
making the classifier robust solely to the fixed set of hard-
coded transformations, advanced methods incorporate more
loosely defined transformations in the data space (Zhang
et al., 2018a; DeVries & Taylor, 2017; Yun et al., 2019). Fur-
thermore, recently proposed DA techniques exploit the la-
tent space to perform such transformations (Antoniou et al.,
2017; Zhao et al., 2018), while typically solving the model’s
non-invertability by training a separate model (Zhao et al.,
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2018), thus making them hard to train.

A separate line of work focuses on adversarial training (see
(Biggio & Roli, 2018) and references therein), where the
final model is trained with samples perturbed in a way that
makes its prediction incorrect, called adversarial samples.
However, further empirical studies showed that such training
reduces the “clean” samples accuracy, indicating the two
objectives are competing (Tsipras et al., 2019b; Su et al.,
2018). Stutz et al. (2019) postulate that this robustness-
generalization trade-off appears due to using off-manifold
adversarial attacks that leave the data-manifold, and that ‘on-
manifold adversarial attacks’ can improve generalization.
Thus, the authors proposed to use perturbations in the latent
space of a generative model, VAE-GAN (Larsen et al., 2016;
Rosca et al., 2017). However, as this method relies on
the VAE-GAN model which is particularly hard to train—
since in addition to GAN training it involves hard to tune
hyperparamaters balancing the VAE and GAN objectives—
its usage remained limited.

Motivated by the advantages of normalizing flows (NF) rel-
evant to these two lines of works, we employ NFs (e.g.
Glow, Kingma & Dhariwal, 2018), to define entirely unsu-
pervised augmentations—contrasting with pre-defined fixed
transformations—with the same goal of improving the gen-
eralization of deep classifiers. In particular, NF models offer
appealing advantages for latent space perturbations, such as:
(i) exact latent-variable inference and log-likelihood evalua-
tion, and (ii) efficient inference and synthesis that can be
parallelized (Kingma & Dhariwal, 2018).

Related works. Several works learn useful DA policies,
for instance by optimization (Fawzi et al., 2016; Ratner
et al., 2017), Reinforcement Learning techniques (Cubuk
et al., 2019; 2020; Zhang et al., 2020b), specifically trained
generator networks (Peng et al., 2018) or assisted by gener-
ative adversarial networks (Perez & Wang, 2017; Antoniou
et al., 2017; Zhang et al., 2018b; Tran et al., 2020). Sev-
eral methods traverse the latent space to find virtual data
samples that are missclassified (Baluja & Fischer, 2017;
Song et al., 2018; Xiao et al., 2018; Zhang et al., 2020a).
Complementary, the connection of adversarial learning and
generalization has also been studied in (Tanay & Griffin,
2016; Rozsa et al., 2016; Jalal et al., 2017; Tsipras et al.,
2019a; Gilmer et al., 2018; Zhao et al., 2018).
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Figure 1. Exactness of NF encoding-decoding. Here F denotes
the bijective NF model, and G/G−1 encoder/decoder pair of in-
exact methods such as VAE or VAE-GAN which, due to inherent
decoder noise, is only approximately bijective.

Overview of contributions. We exploit the exactly re-
versible encoder-decoder structure of NFs to perform ef-
ficient and controllable augmentations in the learned on-
manifold space. We demonstrate that our on-manifold per-
turbations consistently outperform the standard training on
CIFAR-10/100 using ResNet-18. Moreover, in a low-data
regime, such training yields up to 25% relative improvement
from classical training, of which—as most effective—we
find the adversarial perturbations that are adaptive to the
classifier throughout its training, see §3.

2. Perturbations in Latent Space
The invertibility of normalizing flows enables bidirectional
transitions between image and latent space, see Figure 1.
This in turn allows for applying perturbations directly in the
latent space rather than image space. We denote a trained
NF model, mapping data manifold X to latent space Z as,
F : X → Z . Given a perturbation function P : Z → Z ,
defined over the latent space, we define its counterpart in
image space as F−1(P(F(x))).

Our goal is to define latent perturbation function P(·) such
that we obtain identity-preserving semantic modifications
over the original image x in the image domain. To this end,
we limit the structure of possible P in two-ways. Firstly,
we directly consider incremental perturbations of the form
z + P(z). Secondly, we use an ε parameter to control the
size of perturbation allowed. More precisely, we have:

F−1
(
F(x) + P(F(x), ε)

)
.

For brevity, we refer to P as “latent attacks” (LA) and we
consider two variants, described below.

2.1. Randomized Latent Attacks

At training time, given a datapoint xi, with 1 ≤ i ≤ n,
using trained normalizing flow we obtain its corresponding

latent code zi = F(xi).

Primarily, as perturbation function we consider a simplistic
Gaussian noise in the latent space:

Prand(·, ε) = ε · N (0, I) , (Randomized–LA)

which is independent from zi. Any such distribution around
the original zi is equivalent to sampling from the learned
manifold. In this case, the normalizing flow pushes forward
this simple Gaussian distribution centered around zi to a dis-
tribution on the image space around xi = F−1(zi). Thus,
sampling from the simple prior distributionN (0, I) is equiv-
alent to sampling from a complex conditional distribution
around the original image over the data manifold.

We also define norm truncated versions as follows:

P`prand(·, ε) = Π(ε · N (0, I)) ,

where `p denotes the selected norm, e.g. `2 or `∞. For `2
norm, Π is defined as `2 norm scaling, and for `∞, Π is the
component-wise clipping operation defined below:

(Π(x))i := max(−ε,min(+ε,xi)) .

2.2. Adversarial Latent Attacks

Analogous to the above randomized latent attacks, at train
time, given a datapoint xi and it’s associated label li, with
1 ≤ i ≤ n, using trained normalizing flow we obtain its
corresponding latent code zi = F(xi).

We search for ∆zi ∈ Z such that the loss obtained of the
generated image x̃i = F−1(zi + ∆zi

) is maximal:

∆?
zi

= arg max
‖∆zi

‖lp≤ε
Lθ(F−1(zi + ∆zi

), li) ,

P`padv(zi, ε) = ∆?
zi
, (Adversarial–LA)

where Lθ is the loss function of the classifier, and `p denotes
the selected norm, e.g. `2 or `∞.

In practice, we define the number of steps k and the step size
α to optimize for ∆?

zi
∈ Z (as in Stutz et al. (2019); Wong

& Kolter (2021)), and we have the following procedure:

• Initialize a random ∆0
zi

with ‖∆0
zi
‖`p ≤ ε.

• Iteratively update ∆j
zi

for j = 1, . . . , k number of
steps with step size α as follows:

∆j
zi

= Π
(

∆j−1
zi

+α·
∇Lθ(F−1(zi + ∆j−1

zi
), li)

‖∇Lθ(F−1(zi + ∆j−1
zi ), li)‖`p

)
where Π is the projection operator that ensures
‖∆j

zi
‖`p ≤ ε and the gradient is with respect to ∆j

zi
.

• Output Padv(zi, ε) = ∆k
zi
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Table 1. Test accuracy (%) on CIFAR-10, in the low-data regime
compared to the full train set. For the former, we train genera-
tive models and classifiers on the same 5% of the training set and
evaluate classifiers on the full test set. In addition to standard train-
ing, we consider training with commonly used data augmentations
(DA) in the image space, which includes rotation and horizontal
flips (Zagoruyko & Komodakis, 2016), as well as more recent
Cutout (DeVries & Taylor, 2017) and Mixup (Zhang et al., 2018a)
methods. See §3.1 for a discussion.

Method Low-data Full-set

Standard (no DA) 49.8 89.7
Standard + common DA 64.1 95.2
VAE-GAN (Stutz et al., 2019) 58.9 94.2
Cutout (DeVries & Taylor, 2017) 66.8 96.0
Mixup (Zhang et al., 2018a) 73.4 95.9
Randomized–LA (ours) 70.1 96.3
Adversarial–LA (ours) 80.4 96.6

For the case of `∞, we replace normalization of gradient
with sign(·) operator, i.e.:

∆j
zi

= Π
(

∆j−1
zi

+ α · sign
(
∇Lθ(F−1(zi + ∆j−1

zi
), li)

))
and use component-wise clipping for projection, equivalent
to the standard `∞ PGD adversarial attack of Madry et al..

Similarly, as NFs directly models the underlying data man-
ifold, this perturbation is equivalent to a search over the
on-manifold adversarial samples (Stutz et al., 2019).

3. Experiments
3.1. Generalization on CIFAR-10

We are primarily interested in the performance of our per-
turbations in the low-data regime, when using only a small
subset of CIFAR-10 as the training set. We train ResNet-18
classifiers on only 5% percent of the full training set and
evaluate models on the full test set.

We compare our methods with some of the most commonly
used data augmentations methods such as Cutout (DeVries
& Taylor, 2017) and Mixup (Zhang et al., 2018a), as well as
with the VAE-GAN based approach (Stutz et al., 2019). For
(Stutz et al., 2019), we use the authors’ implementation.

For (DeVries & Taylor, 2017), we report the best test accu-
racy observed among a grid search on the learning rate η ∈
{0.1, 0.01}. Similarly, for (Zhang et al., 2018a), we report
the best accuracy among grid search on learning rate η ∈
{0.1, 0.01} and mixup coefficient λ ∈ {.1, .2, .3, .4, 1.0}.
For Randomized–LA, we use ` = `∞, ε = 0.25, and for
Adversarial–LA, we use ` = 2, ε = 1.0, α = 0.5, k = 3.

Table 1 summarizes our generalization experiments in the

Table 2. Cross-datasets experiments. Test accuracy (%) on
CIFAR-100, in the low-data regime, where we use 10% of the
training set and the full test set. The normalizing flow used to
generate training samples is trained on CIFAR-10.

Method Test Improvement

Standard 36.4 –
Randomized–LA, `=`∞, ε=.2 39.7 +3.3
Randomized–LA, `=`∞, ε = .3 41.0 +4.6
Randomized–LA, `=`2, ε = 10 40.4 +4.0
Randomized–LA, `=`2, ε = 20 42.3 +5.9
Adversarial–LA, `=`2, α=.5, k=3 45.0 +8.6

low data regime—using only 5% of CIFAR-10 for train-
ing, compared to the full CIFAR-10 training set. Both
Randomized–LA and Adversarial–LA notably outperform
the standard training baseline. In particular, we observe that
(i) our simplistic Randomized–LA method already outper-
forms some recent strong data augmentation methods, and
(ii) Adversarial–LA achieves best test accuracy for both
low-data and full-set regimes. See §3.3 below for additional
benchmarks with VAE-GAN (Stutz et al., 2019) and §B.3
for additional results with different attack parameters.

3.2. Cross-Dataset Experiments

To further analyze potential applications of our NF based
latent attacks on real-world use cases, we conduct the fol-
lowing experiment. Assuming we have available a relevant
large-scale dataset, a question arises if the NF within our
approach can be pre-trained on it, and used for training the
classifier on a different dataset. In particular, we use CIFAR-
10 to train the NF model, and then our latent attacks to train
a classifier on 10% of the CIFAR-100 dataset.

Table 2 shows our results for a selection of latent attacks.
Randomized–LA and Adversarial–LA achieve 16% and
24% percent improvements over the standard baseline, re-
spectively. The results indicate that NFs are capable of
transferring useful augmentations across datasets. See §B.2
for an additional results with SVHN and CIFAR-10.

3.3. Additional Comparison with VAE-GAN

We study the performance of our latent perturbation-based
training strategies in varying settings, starting from low-data
regime to full-set. We reproduce the classifier and the hy-
perparameter setup used in (Stutz et al., 2019), and use anal-
ogous setup for our method. For the reported VAE-GAN re-
sults, we used the source code provided by the authors1. For
our Randomized–LA, we use perturbations of size ε=0.15
and for Adversarial–LA, we use ε=0.05, α=0.01 and num-
ber of steps k = 10.

1https://github.com/davidstutz/
disentangling-robustness-generalization

https://github.com/davidstutz/disentangling-robustness-generalization
https://github.com/davidstutz/disentangling-robustness-generalization
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Figure 2. Test accuracy (y-axis)—on full test set, for a varying
number of training samples (x-axis), on FashionMNIST. To repli-
cate the setup of VAE-GAN (Stutz et al., 2019), only a portion of
the dataset (x-axis) is used to train the classifier, while the corre-
sponding generative model is trained on the full dataset. We run
each experiment with three different random seeds, and report the
mean and standard deviation of the test accuracy. See §3.3.

Figure 2 shows our average results for 3 runs with train-
ing sizes in {600, 2400, 6000, 50000}. We observe that
Randomized–LA performs comparatively to the standard
training baseline, whereas Adversarial–LA outperforms the
standard baseline across all train set sizes. Note that the
difference to the standard baselines shrinks as we increase
the number of samples available to the classifiers.

Inline with our results, Stutz et al. (2019) report diminish-
ing performance gains for increasingly challenging datasets
such as FashionMNIST to CelebA, when using therein VAE-
GAN based approach. One potential cause could be the
approximate encoding and decoding mappings, and/or sen-
sitivity to hyper-parameter tuning. Indeed, our results sup-
port the numerous appealing advantages of NF models for
latent space perturbations, and indicate that they have better
capacity to produce useful augmented training samples.

4. Discussion
Exact Coding. As noted in §2, normalizing flows can
perform exact encoding and decoding by their construc-
tion. That is, the decoding operation is exactly the reverse
of the encoding operation. Any continuous encoder maps
a neighborhood of a sample to some neighborhood of its
latent representation. However, the invertibility of normal-
izing flows also maps any neighborhood of latent code to
a neighborhood of the original sample. This property has
significant advantages over any other approximate invert-
ible encoder-decoder methods including VAE-GANs, for
defining perturbations in latent space.

Increasing Effective Dataset Size. The primary advan-
tage of exact coding is that the generated samples via latent

perturbations improve the generalization performance of
classifiers, as we show in §3.1. To understand why this oc-
curs, consider the limit case ε→ 0 for a latent perturbation.
For a numerically stable NF, this implies that we recover
the original data samples, hence the original data manifold.
As we increase the ε, we “enlarge” our manifold simultane-
ously from all data samples. Thus, by increasing ε, we add
further plausible data points to our training set as long the
learned latent representation is a good approximation of the
underlying data manifold. This does not necessarily hold
for approximate mappings due to inherent decoder noise.

Controllability. In §2, we introduced two variants of
latent perturbations with normalizing flows. These two
variants define different local objectives around the latent
code of the original sample. The Randomized–LA defines
a sampling operation on the data manifold, whereas the
Adversarial–LA defines a stochastic search procedure to
find samples attaining high classifier losses. Here, we ex-
ploit the diffeomorphism provided by normalizing flow to
efficiently map a complex sampling operation—sampling
from data manifold, or a complex search operation—finding
on-manifold adversarial samples, to the latent space. Com-
bined with simple prior structure of normalizing flows, this
allow for future possibilities on designing efficient algo-
rithms tackling various on manifold problems §5.

Compatibility with Data Augmentations. It is impor-
tant to note that our method is orthogonal to image space
data augmentation methods. In other words, we can train
normalizing flows with commonly used data augmentations.
Indeed in our experiments, we observe that trained mod-
els apply some of the training-time augmentations such as
cropping. This allows us to encode and decode augmented
samples as well as original samples of CIFAR-10. Addition-
ally, we can use more advanced methods such as DeVries &
Taylor (2017); Zhang et al. (2018a) concurrently with our
latent perturbations to train classifiers.

5. Conclusion
Motivated by the numerous advantages of normalizing flows,
we propose flow-based latent perturbation methods to aug-
ment the training datasets, to train a classifier. Our empirical
results on several real-world datasets demonstrate the effi-
cacy of these generative models for improved test accuracy
both in full and in low-data regimes.

Further directions include exploiting potentially more com-
plex prior structures to design efficient flow-based al-
gorithms tackling on-manifold sampling or optimization
problems. For example, using NF models with explicit
parametrization of specific semantic transformations (e.g.,
zoom or orientation) would enable the training of more
robustly generalizing classifiers.
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A. Details on the implementation
In this section, we list all details on the implementation.

Source Code. Our source code is provided in this repository: https://github.com/okyksl/flow-lp.

A.1. Architectures

Generative model (NF) architecture. We use Glow (Kingma & Dhariwal, 2018) for the normalizing flow architecture.
For the MNIST (Lecun et al., 1998) and FashionMNIST (Xiao et al., 2017) experiments, we use a conditional, 12-step, Glow-
coupling-based architecture similar to (Ardizzone et al., 2019). See Table 3 for details. For the CIFAR-10/100 (Krizhevsky
& Hinton, 2009) and SVHN (Netzer et al., 2011) experiments, we use the original Glow architecture described in (Kingma
& Dhariwal, 2018), i.e., 3 scales of 32 steps each containing activation normalization, affine coupling and invertible 1×1
convolution. We adapt an existing PyTorch implementation in 2 to better match the original Tensorflow implementation in 3.
For more details on multi-scale architecture in normalizing flows, see (Dinh et al., 2017).

Table 3. Normalizing flow architectures used for our experiments on MNIST and FashionMNIST. With cin → yout we denote the
number of channels of the input and output of the layer. With ⊕ we denote concatenation operation. We use the implementation provided
in https://github.com/VLL-HD/FrEIA. For more details on affine coupling layers, see (Kingma & Dhariwal, 2018).

Generative Model
Input: x ∈ R784,y ∈ R10

GLOWCouplingBlock
PermuteRandom

GLOWCouplingBlock
PermuteRandom

...
x9
...

GLOWCouplingBlock
PermuteRandom

GLOWCouplingBlock
Input: x ∈ R784,y ∈ R10

split x→ x1,x2 (784→ 392, 392)
subnet x2 ⊕ y → s1, t1 (402→ 392, 392)

affine coupling x1, s1, t1 → z1 (3×392→ 392)
subnet z1 ⊕ y → s2, t2 (402→ 392, 392)

affine coupling x2, s2, t2 → x
′

2 (3×392→ 392)
concat. z1 ⊕ z2 (392, 392→ 784)

Subnets
Input: x ∈ R402

linear (402→ 512)
ReLU

linear (512→ 784)
split (784→ 392, 392)

Classifier architecture. For our experiments on MNIST, we use LeNet-5 (Lecun et al., 1998) with replaced nonlinearity–
instead of tanh we use ReLU , and we initialize the network parameters with truncated normal distribution σ = 0.1. For
the FashionMNIST experiments, we use the same classifier as used in (Stutz et al., 2019). See Table 4 for more details.
For CIFAR-10/100 and SVHN, we use the ResNet-18 architecture as implemented in (DeVries & Taylor, 2017; Zhang
et al., 2018a). This ResNet-18 includes slight modifications over the standard ResNet-18 architecture in order to achieve
better performance on CIFAR-10/100. See 4 and 5 for implementation. In particular, the first layer is changed to a 3× 3
convolution with stride 1 and padding 1, from the original 7× 7 convolution with stride 2 and padding 3. Additionally, the
following max-pooling layer is removed.

A.2. Hyperparameters

Generative Models. For MNIST and FashionMNIST, we use the Adam (Kingma & Ba, 2014) optimizer with a batch
size of 100 and learning rate of 10−6 for 100 epochs to train normalizing flows. For CIFAR-10 and SVHN, we use the
Adamax (Kingma & Ba, 2014) optimizer with learning rate of 0.0005 and weight decay of 0.00005. We use warmup
learning rate scheduling for the first 500.000 steps of the training. That is, the learning rate is linearly increased from 0 to
the base learning rate 0.0005 in 500.000 steps.

For VAE-GAN training, we run the implementation provided by authors6 with the default architectures and parameters. That

2https://github.com/chrischute/glow
3https://github.com/openai/glow
4https://github.com/facebookresearch/mixup-cifar10
5https://github.com/uoguelph-mlrg/Cutout
6https://github.com/davidstutz/disentangling-robustness-generalization

https://github.com/okyksl/flow-lp
https://github.com/VLL-HD/FrEIA
https://github.com/chrischute/glow
https://github.com/openai/glow
https://github.com/facebookresearch/mixup-cifar10
https://github.com/uoguelph-mlrg/Cutout
https://github.com/davidstutz/disentangling-robustness-generalization
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Table 4. Convolutional Neural Network (CNN) architectures used for our experiments on MNIST and FashionMNIST. We use ker and
pad to denote kernel and padding for the convolution layers, respectively. With h×w we denote the kernel size. With cin → yout we
denote the number of channels of the input and output of the layer.

LeNet-5
Input: x→ R1×28×28

convolution (ker: 5×5, 1→ 6; stride: 1; pad:2)
ReLU

AvgPool2d (ker: 2×2)
convolution (ker: 5×5, 6→ 16; stride: 1; pad:0)

ReLU
AvgPool2d (ker: 2×2)

Flatten (16×5×5→ 400)
linear (400→ 120)

ReLU
linear (120→ 84)

ReLU
linear (120→ 10)

ReLU

CNN from (Stutz et al., 2019)
Input: x ∈ R1×28×28

convolution (ker: 4×4, 1→ 16; stride: 2; pad:1)
Batch Normalization

ReLU
convolution (ker: 4×4, 16→ 32; stride: 2; pad:1)

Batch Normalization
ReLU

convolution (ker: 4×4, 32→ 64; stride: 2; pad:1)
Batch Normalization

ReLU
Flatten (64×3×3→ 576)

linear (576→ 100)
linear (100→ 10)

is, for FashionMNIST, we use β = 2.75, γ = 1, η = 0 and latent space size of 10. We use Adam optimizer with a batch
size of 100, learning rate of 0.005, weight decay of 0.0001 and train VAE-GANs for 60 epochs with an exponential decay
scheduling of 0.9 for the learning rate. For CIFAR-10, we use the CelebA setup provided (the only 3-channel color dataset
provided) and thus use β = 3.0, latent space size of 25 and 30 epochs instead. Note that we report “On-Learned-Manifold
Adversarial Training” from (Stutz et al., 2019) which uses class-specific VAE-GANs. That is, 10 separate VAE-GAN
architectures are trained for both FashionMNIST and CIFAR-10 datasets.

Discussion on Hyperparameters of Generative Models. As normalizing flows directly optimize log-likelihood of the
data, there are no hyperparameters in their loss function. Additionally, the normalizing flow models that we use have a fixed
latent dimension equal to the input dimension due to their architectural design. This is in contrast to VAE-GAN used in
(Stutz et al., 2019) where the training involves optimizing separate losses for three networks (namely, encoder, decoder
and discriminator) concurrently. Coefficients called β, γ and η are used to scale different loss terms involved such as
reconstruction, decoder and discriminator loss. Additionally, the latent size for VAE-GAN is hand-picked for each dataset.

Classifiers. For MNIST, we use the Adam optimizer with a learning rate of 0.001 and weight decay of 0.001. We train
LeNet-5 classifiers for 20 epochs with exponential learning decay of rate 0.1 for 10.000 steps. For FashionMNIST, we use
the training setup used in (Stutz et al., 2019). That is, we use Adam optimizer with a learning rate of 0.01 and weight decay
of 0.0001. We train classifiers for 20 epochs with exponential learning decay of rate 0.9 for 500 steps. For CIFAR10/100,
we use the training setup used in (DeVries & Taylor, 2017; Zhang et al., 2018a). More precisely, we use Stochastic Gradient
Descent (SGD) with a batch size of 128, a learning rate of 0.1, weight decay of 0.0005, and Nesterov momentum of 0.9.
We train ResNet-18 classifiers for 200 epochs and multiply the learning rate by 0.2 at epochs {60, 120, 160}. For SVHN,
we use the same optimizer with a weight decay of 0.0001. We train ResNet-18 classifiers for 120 epochs and multiply the
learning rate by 0.1 at epochs {30, 60, 90}.

Data Augmentation. For CIFAR-10/100, we use standard data augmentation akin to (Zagoruyko & Komodakis, 2016).
That is, we zero-pad images with 4 pixels on each side, take a random crop of size 32× 32, and then mirror the resulting
image horizontally with 50% probability. We use such data augmentation for both training the generative and the classifier
models. Hence, our normalizing flow model is capable of encoding-decoding operations on augmented samples as well.
Advanced data augmentation baselines we use in Table 1 (DeVries & Taylor, 2017; Zhang et al., 2018a) also include the
same standard data augmentations. However, (Stutz et al., 2019) does not use data augmentation in their generative model.
To provide a more direct comparison between the performance of two generative models, in §B.3 we conduct an additional
study without any data augmentations.
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B. Additional Results
B.1. Results on MNIST

Table 5 summarizes our results on MNIST in full data regime. Although the baseline has very good performances on this
dataset, we observe improved generalization.

Table 5. Train and test accuracy (%) as well as loss on MNIST. Comparison with standard training, versus ours—latent-space perturba-
tions (Prand & Padv).

Perturbation Train Accuracy Train Loss Test Accuracy Test Loss

Standard 99.80 0.0069 99.24 0.0288

P`∞rand, ε=0.15 99.78 0.0076 99.28 0.0262

P`∞adv, ε=0.05, α=0.01, k=10 99.26 0.0230 99.43 0.0216

B.2. Results on SVHN

Table 6 summarizes our results on SVHN in low-data regime. Similarly to §3.2, we conduct a cross-dataset experiment
between CIFAR-10 and SVHN, where we use pre-trained normalizing flows on CIFAR-10 to train classifiers on SVHN. To
provide a baseline on the effect of using different datasets for normalizing flows and classifiers, we also provide results with
pre-training on SVHN. Latent attacks transferred from CIFAR-10 achieve superior performance to direct pre-training on
SVHN, indicating that transferring augmentations across datasets is promising.

Table 6. Test accuracy (%) on SVHN, in the low-data regime, where we use 5% of the training set and the full test set. Comparison with
normalizing flows trained on CIFAR-10, versus SVHN.

SVHN CIFAR-10

Perturbation Test Improvement Perturbation Test Improvement

Standard 81.2 – Standard 81.2 –
P`2rand, ε=15.0 84.9 +3.7 P`2rand, ε=15.0 90.0 +8.8

P`2adv, ε=0.5, α=0.25, k=2 86.9 +5.7 P`2adv, ε=0.3, α=0.15, k=2 90.5 +9.3

B.3. Additional Results on CIFAR-10

Results without Data Augmentation. To provide a direct comparison between two generative models and eliminate the
effect of data augmentation, we run additional experiments. Table 7 shows results for our latent perturbations without
any data augmentation to train the normalizing flow and the classifier. In line with our FashionMNIST results in §3.3, we
observe that both Randomized–LA and Adversarial–LA overperform standard baseline and VAE-GAN based approach.

Table 7. Test accuracy (%) on CIFAR-10, in the low-data regime, where we use 5% of the training set and the full test set, without data
augmentation.

Method Low-data

Standard 49.8
VAE-GAN (Stutz et al., 2019) 49.4
Randomized–LA (ours) 54.9
Adversarial–LA (ours) 58.2

Results with Different Attack Parameters. In Table 8, we provide results with varying hyperparameters for the different
attacks. Observe that in the “higher” Adversarial–LA perturbation setting–where ε = 2.0, the classifier still didn’t fully fit to
the training set but the test performance is above the standard baseline.
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Multi-step Training. We run additional experiments where we sequentially apply different attack hyperparameters in a
multi-step training with weaker perturbations to increase the performance on the test set. The results are listed in Table 8,
denoted with +.

Table 8. Train and test accuracy (%) as well as loss on CIFAR-10, using ResNet-18. All of the models are trained with the same
hyperparameters listed in §A.2. Perturbations listed with the + sign indicates a multi-step training. For example, last row lists the result of
the model trained with P `2

adv, ε = 2.0, α = 1.5, k = 2 for 130 epochs, Prand, ε = 0.25 for 40 epochs and P `2
rand, ε = 10.0 for 30 epochs.

Note that, regardless of multi-step training, the hyperparameters, including the total number of training epochs (= 200), remain fixed
across the experiments.

Perturbation Train Accuracy Train Loss Test Accuracy Test Loss

Baselines:
Standard 100.0 0.002 95.2 0.194

P `2PGD, ε=2.0, α=0.5, k=10 61.13 0.895 75.7 0.731

P `∞PGD, ε=0.03, α=0.008, k=10 77.3 0.521 86.3 0.442

Ours:
P`2rand, ε=10.0 99.8 0.007 95.8 0.161

P`∞rand, ε=0.25 99.5 0.015 96.3 0.142

+Prand, ε=0.15 100.0 0.002 96.4 0.133

P`2adv, ε=1.0, α=0.5, k=3 99.9 0.005 96.6 0.126

P`2adv, ε=2.0, α=1.5, k=2 89.1 0.214 95.8 0.134

+P`2adv, ε=1.0, α=0.75, k=2 99.2 0.030 96.5 0.114

+P`2adv, ε=0.75, α=0.5, k=2 99.7 0.011 96.7 0.115

+Prand, ε=0.25 100.0 0.002 96.5 0.132

+P`2rand, ε=10.0 100.0 0.002 96.6 0.131

Generated Images. Figure 3 depicts samples obtained with our Randomized-LA and Adversarial-LA methods. In
contrast to random image space perturbations, we observe that both Randomized-LA and Adversarial-LA yield perturbations
dependent on the semantic content of the input image.
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Test sample Randomized–LA Difference Adversarial–LA Difference
x x̃rand x̃rand − x x̃adv x̃adv − x

Figure 3. Illustrative results of our latent space perturbations. The first column depicts a randomly selected samples from the test set
x. We depict the outputs obtained with Eq. Randomized–LA and Eq. Adversarial–LA as well as their difference with the test sample
x. By observing the difference images, we see that the added perturbations depend on the semantic content of the input image.


