
Under review as a conference paper at ICLR 2021

FLAG: ADVERSARIAL DATA AUGMENTATION FOR
GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data augmentation helps neural networks generalize better, but it remains an open
question how to effectively augment graph data to enhance the performance of
GNNs (Graph Neural Networks). While most existing graph regularizers focus
on augmenting graph topological structures by adding/removing edges, we of-
fer a novel direction to augment in the input node feature space for better per-
formance. We propose a simple but effective solution, FLAG (Free Large-scale
Adversarial Augmentation on Graphs), which iteratively augments node features
with gradient-based adversarial perturbations during training, and boosts perfor-
mance at test time. Empirically, FLAG can be easily implemented with a dozen
lines of code and is flexible enough to function with any GNN backbone, on a
wide variety of large-scale datasets, and in both transductive and inductive set-
tings. Without modifying a model’s architecture or training setup, FLAG yields
a consistent and salient performance boost across both node and graph classifica-
tion tasks. Using FLAG, we reach state-of-the-art performance on the large-scale
ogbg-molpcba, ogbg-ppa, and ogbg-code datasets.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful architectures for learning and analyzing
graph representations. The Graph Convolutional Network (GCN) (Kipf & Welling, 2016) and its
variants have been applied to a wide range of tasks, including visual recognition (Zhao et al., 2019;
Shen et al., 2018), meta-learning (Garcia & Bruna, 2017), social analysis (Qiu et al., 2018; Li &
Goldwasser, 2019), and recommender systems (Ying et al., 2018). However, the training of GNNs
on large-scale datasets usually suffers from overfitting, and realistic graph datasets often involve
a high volume of out-of-distribution test nodes (Hu et al., 2020), posing significant challenges for
prediction problems.

One promising solution to combat overfitting in deep neural networks is data augmentation
(Krizhevsky et al., 2012), which is commonplace in computer vision tasks. Data augmentations
apply label-preserving transformations to images, such as translations and reflections. As a result,
data augmentation effectively enlarges the training set while incurring negligible computational
overhead. However, it remains an open problem how to effectively generalize the notion of data
augmentation to GNNs. Transformations on images rely heavily on image structures, and it is chal-
lenging to design low-cost transformations that preserve semantic meaning for non-visual tasks like
natural language processing (Wei & Zou, 2019) and graph learning. Generally speaking, graph data
for machine learning comes with graph structure (or edge features) and node features. In the lim-
ited cases where data augmentation can be done on graphs, it generally focuses exclusively on the
graph structure by adding/removing edges (Rong et al., 2019). To date, there is no study on how to
manipulate graphs in node feature space for enhanced performance.

In the meantime, adversarial data augmentation, which happens in the input feature space, is known
to boost neural network robustness and promote resistance to adversarially chosen inputs (Goodfel-
low et al., 2014; Madry et al., 2017). Despite the wide belief that adversarial training harms standard
generalization and leads to worse accuracy (Tsipras et al., 2018; Balaji et al., 2019), recently a grow-
ing amount of attention has been paid to using adversarial perturbations to augment datasets and
ultimately alleviate overfitting. For example, Volpi et al. (2018) showed adversarial data augmenta-
tion is a data-dependent regularization that could help generalize to out-of-distribution samples, and

1



Under review as a conference paper at ICLR 2021

its effectiveness has been verified in domains including computer vision (Xie et al., 2020), language
understanding (Zhu et al., 2019; Jiang et al., 2019), and visual question answering (Gan et al., 2020).
Despite the rich literature about adversarial training of GNNs for security purposes (Zügner et al.,
2018; Dai et al., 2018; Bojchevski & Günnemann, 2019; Zhang & Zitnik, 2020), it remains unclear
how to effectively and efficiently improve GNN’s clean accuracy using adversarial augmentation.

Present work. We propose FLAG, Free Large-scale Adversarial Augmentation on Graphs, to
tackle the overfitting problem. While existing literature focuses on modifying graph structures to
augment datasets, FLAG works purely in the node feature space by adding gradient-based adversar-
ial perturbations to the input node features with graph structures unchanged. FLAG leverages “free”
methods (Shafahi et al., 2019) to conduct efficient adversarial training so that it is highly scalable
on large-scale datasets. We verify the effectiveness of FLAG on the Open Graph Benchmark (OGB)
(Hu et al., 2020), which is a collection of large-scale, realistic, and diverse graph datasets for both
node and graph property prediction tasks. We conduct extensive experiments across OGB datasets
by applying FLAG to prestigious GNN models, which are GCN, GraphSAGE, GAT, and GIN (Kipf
& Welling, 2016; Hamilton et al., 2017; Veličković et al., 2017; Xu et al., 2019) and show that
FLAG brings consistent and significant improvements. For example, FLAG lifts the test accuracy
of GAT on ogbn-products by an absolute value of 2.31%. DeeperGCN (Li et al., 2020) is an-
other strong baseline that achieves top performance on several OGB benchmarks. FLAG enables
DeeperGCN to generalize further and reach new state-of-the-art performance on ogbg-molpcba
and ogbg-ppa. FLAG is simple (adding just a dozen lines of code), general (can be directly ap-
plied to any GNN model), versatile (works in both transductive and inductive settings), and efficient
(able to bring salient improvement at tractable or even no extra cost). Our main contributions are
summarized as follows:

• We propose adversarial perturbations as a data augmentation in the input node feature space
to efficiently boost GNN performance. The resulting FLAG framework is a scalable and
flexible augmentation scheme for GNN, which is easy to implement and applicable to any
GNN architecture for both node and graph classification tasks.

• We advance the state-of-the-art on a number of large-scale OGB datasets, often by large
margins.

• We provide a detailed analysis and deep insights on the effects adversarial augmentation
has on GNNs.

2 PRELIMINARIES

Graph Neural Networks (GNNs). We denote a graph as G(V, E) with initial node features
xv for v ∈ V and edge features euv for (u, v) ∈ E . GNNs are built on graph structures to learn
representation vectors hv for every node v ∈ V and a vector hG for the entire graph G. The k-th
iteration of message passing, or the k-th layer of GNN forward computation is:

h(k)
v = COMBINE(k)

(
h(k−1)

v , AGGREGATE (k)
({(

h(k−1)
v ,h(k−1)

u , euv

)
: u ∈ N (v)

}))
, (1)

where h(k)
v is the embedding of node v at the k-th layer, euv is the feature vector of the edge between

node u and v, N (v) is node v’s neighbor set, and h(0)
v = xv . COMBINE(·) and AGGREGATE(·)

are functions parameterized by neural networks. To simplify, we view the holistic message passing
pipeline as an end-to-end function fθ(·) built on graph G:

H(K) = fθ(X;G), (2)

whereX is the input node feature matrix. After K rounds of message passing we get the final-layer
node matrix H(K). To obtain the representation of the entire graph hG , the permutation-invariant
READOUT(·) function pools node features from the final iteration K as:

hG = READOUT
({
h(K)
v | v ∈ V

})
, (3)

Additionally from the spectral convolution point of view, the k-th layer of GCN is:

I +D−
1
2AD−

1
2 → D̃−

1
2 ÃD̃−

1
2 ,S = D̃−

1
2 ÃD̃−

1
2 , (4)

2



Under review as a conference paper at ICLR 2021

H(k+1) = σ
(
SH(k)Θ(k)

)
, (5)

where H(k) is the node feature matrix of the k-th layer with H0 = X , Θk is the trainable weight
matrix of layer k, and σ is the activation function. D and A denote the diagonal degree matrix and
adjacency matrix, respectively. Here, we view S as a normalized adjacency matrix with self-loops
added.

Adversarial training. Standard adversarial training seeks to solve the min-max problem as:

min
θ

E(x,y)∼D

[
max
‖δ‖p≤ε

L (fθ(x+ δ), y)

]
, (6)

where D is the data distribution, y is the label, ‖ · ‖p is some `p-norm distance metric, ε is the
perturbation budget, and L is the objective function. Madry et al. (2017) showed that this saddle-
point optimization problem could be reliably tackled by Stochastic Gradient Descent (SGD) for the
outer minimization and Projected Gradient Descent (PGD) for the inner maximization. In practice,
the typical approximation of the inner maximization under an l∞-norm constraint is as follows,

δt+1 = Π‖δ‖∞≤ε (δt + α · sign (∇δL (fθ(x+ δt), y))) , (7)

where perturbation δ is updated iteratively, and Π‖δ‖∞≤ε performs projection onto the ε-ball in the
l∞-norm. For maximum robustness, this iterative updating procedure usually loops M times, which
makes PGD computationally expensive. While there are M forward and backward steps within the
process, θ gets updated just once using the final δM .

3 PROPOSED METHOD: FLAG

Adversarial training is a form of data augmentation. By hunting for and stamping out small pertur-
bations that cause the classifier to fail, one may hope that adversarial training should be beneficial
to standard accuracy (Goodfellow et al., 2014; Tsipras et al., 2018; Miyato et al., 2018). With an
increasing amount of attention paid to leverage adversarial training for better clean performance in
varied domains (Xie et al., 2020; Zhu et al., 2019; Gan et al., 2020), we conduct the first study on
how to effectively generalize GNNs using adversarial data augmentation. Here we introduce FLAG,
Free Large-scale Adversarial Augmentation on Graphs, to best exploit the power of adversarial aug-
mentation. Note that our method differs from other augmentations for graphs in that it happens in
the input node feature space.

Augmentation for “free”. We leverage the “free” adversarial training method (Shafahi et al., 2019)
to craft adversarial data augmentations. PGD is a strong but inefficient way to solve the inner max-
imization of (6). While computing the gradient for the perturbation δ, free training simultaneously
computes the model parameter θ’s gradient. This “free” parameter gradient is then used to compute
the ascent step. The authors proposed to train on the same minibatch M times in a row to simulate
the inner maximization in (6), while compensating by performing M times fewer epochs of train-
ing. The resulting algorithm yields accuracy and robustness competitive with standard adversarial
training, but with the same runtime as clean training.

Gradient accumulation. When doing “free” adversarial training, the inner/adversarial loop is usu-
ally run M times, each time computing both the gradient for δt and θt−1. Rather than updating
the model parameters in each loop, Zhang et al. (2019) proposed to accumulate the gradients for
θt−1 during the inner loop and applied them all at once during the outer/parameter update. The
same idea was used by Zhu et al. (2019), who proposed FreeLB to tackle this optimization issue on
language understanding tasks. FreeLB ran multiple PGD steps to craft adversaries, and meanwhile
accumulated the gradients ∇θL of model parameters. The gradient accumulation behavior can be
approximated as optimizing the objective below:

min
θ

E(x,y)∼D

[
1

M

M−1∑
t=0

max
δt∈It

L (fθ (x+ δt) , y)

]
, (8)

where It = Bx+δ0(αt) ∩ Bx(ε). The gradient accumulation algorithm largely empowers FLAG to
further improve GNN with efficient gradient usage for optimization.

3



Under review as a conference paper at ICLR 2021

Algorithm 1 FLAG: Free Large-scale Adversarial Augmentation on Graphs

Require: Graph G = (V, E); input feature matrix X; learning rate τ ; ascent steps M ; ascent step
size α; training epochs N ; forward function on graph fθ(·) denoted in (2); L(·) as objective
function. We omit the READOUT(·) function in (3) for the inductive scenario here.

1: Initialize θ
2: for epoch = 1 . . . N do
3: δ0 ← U(−α, α) . initialize from uniform distribution
4: g0 ← 0
5: for t = 1 . . .M do
6: gt ← gt−1 + 1

M · ∇θL (fθ(X + δt−1;G),y) . θ gradient accumulation
7: gδ ← ∇δL (fθ (X + δt−1;G) ,y)
8: δt ← δt−1 + α · gδ/ ‖gδ‖F . perturbation δ gradient ascent
9: end for

10: θ ← θ − τ · gM . model parameter θ gradient descent
11: end for

Unbounded attack. Usually on images, the inner maximization is a constrained optimization prob-
lem. The largest perturbation one can add is bounded by the hyperparameter ε, typically 8/255
under the l∞-norm. This ε encourages the visual imperceptibility of the perturbations, thus making
defenses realistic and practical. However, graph node features or language word embeddings do not
have such straightforward semantic meanings, which makes the selection of ε highly heuristic. In
light of the positive effect of large perturbations on generalization (Volpi et al., 2018), and also to
simplify hyperparameter search, FLAG drops the projection step when performing the inner maxi-
mization. Note that, although the perturbation is not bounded by an explicit ε, it is still implicitly
bounded in the furthest distance that δ can reach, i.e. the step size α times the number of ascending
steps M .

Biased perturbation for node classification. Conventional conv nets treat each test sample inde-
pendently during inference, whereas this is not the case in transductive graph learning scenarios.
When classifying one target node, messages from the whole k-hop neighborhood are aggregated
and combined into its embedding. It is natural to believe that a further neighbor should have lower
impact, i.e. higher smoothness, on the final decision of the target node, which can also be intuitively
reflected by the message passing view of GNNs in (1). To promote more invariance for further-
away neighbors when doing node classification, we perturb unlabeled nodes with larger step sizes
αu than αl for target nodes. We show the effectiveness of this biased perturbation in the ablation
study section.

The overall augmentation pipeline is presented in Algorithm 1. Note that when doing transductive
node classification, we use diverse step sizes αl and αu to craft adversarial augmentation for target
and unlabeled nodes, respectively. In the following sections, we verify FLAG’s effectiveness through
extensive experiments. In addition, we provide detailed discussions for a deep understanding of the
effects of adversarial augmentation.

4 EXPERIMENTS

In this section, we demonstrate FLAG’s effectiveness through extensive experiments on the Open
Graph Benchmark (OGB), which consists of a wide range of challenging large-scale datasets.
Shchur et al. (2018); Errica et al. (2019); Dwivedi et al. (2020) showed that traditional graph datasets
suffered from problems such as unrealistic and arbitrary data splits, highly limited data sizes, non-
rigorous evaluation metrics, and common neglect of cross-validation, etc. In order to empirically
study FLAG’s effects in a fair and reliable manner, we conduct experiments on the newly released
OGB (Hu et al., 2020) datasets, which have tackled those major issues and brought more realis-
tic challenges to the graph research community. We refer readers to Hu et al. (2020) for detailed
information on the OGB datasets.

Unless otherwise stated, all of the baseline test statistics come from the official OGB leaderboard
website, and we conduct all of our experiments using publicly released implementations without
touching the original model architecture or training setup. We report mean and std values from

4



Under review as a conference paper at ICLR 2021

ogbn-products ogbn-proteins ogbn-arxiv
Backbone Test Acc Test ROC-AUC Test Acc
GCN - 72.51±0.35 71.74±0.29
+FLAG - 71.71±0.50 72.04±0.20
GraphSAGE 78.70±0.36 77.68 ±0.20 71.49±0.27
+FLAG 79.36±0.57 76.57±0.75 72.19±0.21
GAT 79.45±0.59 - 73.65±0.11
+FLAG 81.76±0.45 - 73.71±0.13
DeeperGCN 80.98±0.20 85.80±0.17 71.92±0.16
+FLAG 81.93±0.31 85.96±0.27 72.14±0.19

Table 1: Node property prediction test performance on ogbn-products, ogbn-proteins, and
ogbn-arxiv datasets. Blank denotes no statistics on the leaderboard.

ogbn-products
Backbone Test Acc
GAT 79.45±0.59
+FLAG� 80.64±0.74
+FLAG† 81.29±0.39
+FLAG‡ 81.76±0.45

ogbn-mag
Backbone Test Acc
R-GCN 46.78±0.67
+FLAG 47.37±0.48

Table 2: Left: Test performance on ogbn-products with GAT as baseline. � denotes model
trained in N/M epochs; † denotes αu = αl; ‡ denotes αu = 2αl. Right: Test performance on the
heterogeneous OGB node property prediction dataset ogbn-mag.

ten runs with different random seeds. Following common practice on this benchmark, we report
the test performance associated with the best validation result. We choose the prestigious GCN,
GraphSAGE, GAT, and GIN as our baseline models. In addition, we apply FLAG to the recent
DeeperGCN model to demonstrate effectiveness. Our implementation always uses M = 3 ascent
steps for simplicity. Following Goodfellow et al. (2014); Madry et al. (2017), we use sign(·) for
gradient normalization. We leave exhaustive hyperparameter and normalization search for future
research. All training hyperparameters and evaluation results can be found in the Appendix.

Node Property Prediction. We summarize the results of node classification in Table 1. On
ogbn-products, GraphSAGE, GAT, and DeeperGCN all receive promising results with FLAG.
We adopt neighbor sampling (Hamilton et al., 2017) as the mini-batch algorithm for GraphSAGE
and GAT to make the experiments scalable. For DeeperGCN, we follow the original setup by Li
et al. (2020) to randomly split the graph into clusters. Notably, FLAG yields a 2.31% test accuracy
lift for GAT, making GAT competitive on the ogbn-products dataset. Because the graph size
of ogbn-proteins is small, all models are trained in a full-batch manner. From Table 1 we can
see that FLAG further enhances the performance of DeeperGCN but harms that of GCN and Graph-
SAGE. Considering the dataset’s specialty of not having input node features, we provide detailed
discussions on the effect of different node feature constructions later. We also do full-batch training
on ogbn-arxiv, where FLAG enables GAT and DeeperGCN to reach 73.71% and 72.14% accu-
racy. Note that the GAT baseline is from the DGL (Wang et al., 2019) implementation, which differs
from vanilla GAT with batch norm and label propagation incorporated. We reveal batch norm’s in-
fluence in the discussion. ogbn-mag is a heterogeneous network where only “paper” nodes come
with node features. We use the neighbor sampling mini-batch algorithm to train R-GCN and report
its results in the right part of Table 2. Surprisingly, FLAG can also directly bring nontrivial accuracy
improvement without special designs for heterogeneous graphs, which demonstrates its versatility.

Graph Property Prediction. Table 3 summarizes the test scores of GCN, GIN, and DeeperGCN
on all four OGB graph property prediction datasets. “Virtual” means the model is augmented with
virtual nodes (Li et al., 2017; Gilmer et al., 2017; Hu et al., 2020). As adversarial perturbations are
crafted by gradient ascent, it would be unnatural to perturb discrete input node features. Following
Jin & Zhang (2019); Zhu et al. (2019), we firstly project discrete node features into the continuous
space and then adversarially augment the hidden embeddings. On ogbg-molhiv, FLAG yields
notable improvements, but when GCN has already been hurt by virtual nodes, FLAG appears to

5



Under review as a conference paper at ICLR 2021

ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code
Backbone Test ROC-AUC Test AP Test Acc Test F1
GCN 76.06±0.97 20.20±0.24 68.39±0.34 31.63±0.18
+FLAG 76.83±1.02 21.16±0.17 68.38±0.47 32.09±0.19
GCN-Virtual 75.99±1.19 24.24±0.34 68.57±0.61 32.63±0.13
+FLAG 75.45±1.58 24.83±0.37 69.44±0.52 33.16?±0.25
GIN 75.58±1.40 22.66±0.28 68.92±1.00 31.63±0.20
+FLAG 76.54±1.14 23.95±0.40 69.05±0.92 32.41±0.40
GIN-Virtual 77.07±1.49 27.03±0.23 70.37±1.07 32.04±0.18
+FLAG 77.48±0.96 28.34±0.38 72.45±1.14 32.96±0.36
DeeperGCN 78.58±1.17 27.81\±0.38 77.12±0.71 -
+FLAG 79.42±1.20 28.42?\±0.43 77.52?±0.69 -

Table 3: Graph property test performance on ogbg-molhiv, ogbg-molpcba, ogbg-ppa, and
ogbg-code datasets. ? denotes state-of-the-art performance on the OGB leaderboard; \ denotes
the existence of virtual nodes; blank denotes no statistics on the leaderboard.

ogbn-products
Backbone Test Acc
GraphSAGE w/ NS 78.70±0.36
+FLAG 79.36±0.57
GraphSAGE w/ Cluster 78.97±0.33
+FLAG 78.60±0.27
GraphSAGE w/ SAINT 79.08±0.24
+FLAG 79.60±0.19

ogbn-products
Backbone Test Acc
GAT 79.45±0.59
GAT+PGD 80.96±0.41
GAT+Free 79.42±0.84
GAT+FreeLB 81.28±0.73
GAT+FLAG 81.76±0.45

Table 4: Left: Test accuracy on ogbn-products with GraphSAGE trained with diverse mini-
batch algorithms. Right: Test performance on ogbn-products with GAT trained with different
adversarial augmentations.

exaggerate the harm. Note that the test results on ogbg-molhiv all have relatively high variance
compared with others, where randomness in the test result is more severe. On ogbg-molpcba,
GIN-Virtual with FLAG receives an absolute value 1.31% test AP value increase, and DeeperGCN
is further enhanced to retain its SOTA performance. On ogbg-ppa, FLAG further generalizes
DeeperGCN and registers a new state-of-the-art test accuracy of 77.52%. On ogbg-code, FLAG
boosts GCN-Virtual to a state-of-the-art test F1 score of 33.16. Besides node classification, FLAG’s
strong effects on graph classification prove its high versatility. In most cases, FLAG works well with
virtual node augmentation to further enhance graph learning.

5 ABLATION STUDIES AND DISCUSSIONS

Effects of biased perturbation. From the left part of Table 2, we see that there is a salient increase
of accuracy when using a larger perturbation on unlabeled nodes, which verifies the effectiveness of
biased perturbations.

Comparison with other adversarial training methods. The right part of Table 4 shows GAT’s
performance with different adversarial augmentations. For PGD and Free, we compute 8 ascent steps
for the inner-maximization, while for FreeLB and FLAG we compute 3 steps. FLAG outperforms
all other methods by a large margin.

Compatibility with mini-batch methods. Graph mini-batch algorithms are critical to training
GNNs on large-scale datasets. We test how different algorithms will work with adversarial data
augmentation with GraphSAGE as the backbone. From the left part of Table 4, we see that neighbor
sampling (Hamilton et al., 2017) and GraphSAINT (Zeng et al., 2019) can all work with FLAG to
further boost performance, while Cluster (Chiang et al., 2019) suffers an accuracy drop.

Compatibility with batch norm. The left part of Table 5 shows that batch norm works to generalize
GAT, and FLAG works to push the improvement further. In the computer vision domain, Xie et al.

6



Under review as a conference paper at ICLR 2021

ogbn-arxiv
Backbone Test Acc
GAT w/o BN 73.29±0.12
GAT w/ BN 73.65±0.11
GAT w/ BN +FLAG 73.71±0.31

ogbn-products
Backbone Test Acc
GAT w/o dropout 75.67±0.27
GAT w/ dropout 79.45±0.59
GAT w/ dropout +FLAG 81.76±0.45

Table 5: Left: Test Accuracy on the ogbn-arxiv dataset. Right: Test Accuracy on the
ogbn-products dataset.

(2020) proposed a new batch norm method that makes adversarial training further generalize large-
scale CNN models. As there is growing attention on using batch norm on GNNs, it will also be
interesting to see how to synergize adversarial augmentation with batch norm in future architectures.

Compatibility with dropout. Dropout is widely used in GNNs. The right part of Table 5 shows
that, when trained without dropout, GAT accuracy drops steeply by a large margin. What’s more,
FLAG can further generalize GNN models together with dropout, similar to the phenomenon of
image augmentations.

Towards going “free”. FLAG introduces tractable extra training overhead. We empirically show
that, when we decrease the total training epochs to make it as fast as the standard GNN training
pipeline, FLAG still brings significant performance gains. The left part of Table 2 shows that FLAG
with fewer epochs still generalizes the baseline. Empirically, on a single Nvidia RTX 2080Ti, 100-
epoch vanilla GAT takes 88 mins, while FLAG� in Table 2 takes 91 mins. We note that heuristics like
early stopping and cyclic learning rates can further accelerate the adversarial training process (Wong
et al., 2020), so there are abundant opportunities for further research on adversarial augmentation at
lower or even no cost.

Towards going deep. Over-smoothing stops GNNs from going deep. FLAG shows its ability to
boost both shallow and deep baselines, e.g. GCN and DeeperGCN. In the left part of Figure 1, we
show FLAG’s effects on generalization when a GNN goes progressively deeper. The experiments are
conducted on ogbn-arxiv with GraphSAGE as the backbone, where a consistent improvement is
evident.

What if there’s no node feature? One natural question can be raised: what if no input node
features are provided? ogbn-proteins is a dataset without input node features. Hu et al. (2020)
proposed to average incoming edge features to obtain initial node features, while Li et al. (2020)
used summation and achieved competitive results. Note that the GCN and GraphSAGE baselines in
Table 1 use the “mean” node features as input and suffer an accuracy drop with FLAG; DeeperGCN
leverages the “sum” and gets further improved. Interestingly, when DeeperGCN is trained with
“mean” node features, it receives high invariance, so that even large magnitude perturbations will
not change its result. The diverse behavior of adversarial augmentation implies the importance of
node feature construction method selection.

6 WHERE DOES THE BOOST COME FROM?

It is now widely believed that model robustness appears to be at odds with clean accuracy. Despite
the proliferation of literature in using adversarial data augmentation to promote standard perfor-
mance, it is still unsettled where the boost or detriment of adversarial training comes from.

Data distribution is the key. We conjecture that the diverse effects of adversarial training in dif-
ferent domains stem from differences in the input data distribution rather than model architectures.
To ground our claim, we utilize FLAG to augment MLPs (an architecture where adversarial training
has adverse effects in the image domain) on ogbn-arxiv, and successfully boost generalization.
FLAG directly improves the test accuracy from 55.50 ± 0.23% to 56.02 ± 0.19%. In general, ad-
versarial training hurts the clean accuracy in image classification, but Tsipras et al. (2018) showed
that CNNs could benefit from adversarial augmentations on MNIST. This is consistent with our
guess that model architecture has little to do with the performance using adversarial augmentation.
Like one-hot word embeddings for language models, input node features usually come from discrete
spaces, e.g., bag-of-words binary features in ogbn-products. We believe that using discrete vs.

7



Under review as a conference paper at ICLR 2021

0.0 3.0 6.0 9.0 12.0
Number of layer

70.5

70.8

71.0

71.2

71.5

71.8

72.0

72.2

72.5

A
cc

ur
ac

y 
(%

)

GraphSAGE
+FLAG

0.0 0.1 0.2 0.3 0.4
Std

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

A
cc

ur
ac

y 
(%

)

GCN
+FGSM

Figure 1: Left: Test accuracy on ogbn-arxiv. Right: Test accuracy on the Cora dataset.

continuous input features may lead to different adversarial augmentation behavior. We provide a
simple example on the Cora (Getoor, 2005) dataset to illustrate. We choose the classic FGSM to
craft adversarial augmentation and GCN as the backbone. By adding Gaussian noise with std δ, we
simulate node features drawn from a continuous distribution. The result is summarized in the right
part of Figure 1. When δ = 0, the discrete distribution of node features persists. At this moment,
GCN with adversarial augmentation outperforms the clean model. With increased noise magnitude
δ, the features are continuously distributed with large support and FGSM starts to harm the clean
accuracy, which validates our conjecture.

7 RELATED WORK

Existing graph regularizers mainly focus on augmenting graph structures by modifying edges (Rong
et al., 2019; Hamilton et al., 2017; Chen et al., 2018). We propose to effectively augment graph data
using adversarial perturbations. On large-scale image classification tasks, Xie et al. (2020) lever-
aged adversarial perturbations, along with new batch norm methods, to augment data. Zhu et al.
(2019); Jiang et al. (2019) added adversarial perturbations in the embedding space and generalized
language models further in the fine-tuning phase. Gan et al. (2020) showed that VQA model accu-
racy was further improved by adversarial augmentation. To clarify, FLAG is intrinsically different
from the previous graph adversarial training methods (Feng et al., 2019; Deng et al., 2019; Jin &
Zhang, 2019). Feng et al. (2019) proposed to reinforce local smoothness to make embeddings within
communities similar. All three methods assigned pseudo-labels to test nodes during training time
and utilized virtual adversarial training (Miyato et al., 2018) to make test node predictions similar to
their pseudo-labels. This makes them workable for semi-supervised settings, but not for inductive
tasks. Besides the original classification loss term, they all introduced KL loss into the final objec-
tive functions, which would at least double the GPU memory usage and make training less efficient
and less scalable. In contrast, FLAG requires minimal extra space overhead and can directly work
in the original training setup.

8 CONCLUSION

We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), a simple, scalable,
and general data augmentation method for better GNN generalization. Like widely-used image
augmentations, FLAG can be easily incorporated into any GNN training pipeline. FLAG yields
consistent improvement over a range of GNN baselines, and reaches state-of-the-art performance
on the large-scale ogbg-molpcba, ogbg-ppa, and ogbg-code datasets. Besides extensive
experiments, we also provide conceptual analysis to validate adversarial augmentation’s different
behavior on varied data types. The effects of adversarial augmentation on generalization are still not
entirely understood, and we think this is a fertile space for future exploration.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Yogesh Balaji, Tom Goldstein, and Judy Hoffman. Instance adaptive adversarial training: Improved
accuracy tradeoffs in neural nets. arXiv preprint arXiv:1910.08051, 2019.

Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via graph
poisoning. In International Conference on Machine Learning, pp. 695–704. PMLR, 2019.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. arXiv preprint arXiv:1806.02371, 2018.

Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph convolutional
networks. arXiv preprint arXiv:1902.09192, 2019.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph adversarial training: Dynamically
regularizing based on graph structure. IEEE Transactions on Knowledge and Data Engineering,
2019.

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-scale adversarial
training for vision-and-language representation learning. arXiv preprint arXiv:2006.06195, 2020.

Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. arXiv preprint
arXiv:1711.04043, 2017.

Lise Getoor. Link-based classification. In Advanced methods for knowledge discovery from complex
data, pp. 189–207. Springer, 2005.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart:
Robust and efficient fine-tuning for pre-trained natural language models through principled regu-
larized optimization. arXiv preprint arXiv:1911.03437, 2019.

Hongwei Jin and Xinhua Zhang. Latent adversarial training of graph convolution networks. In
ICML Workshop on Learning and Reasoning with Graph-Structured Representations, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

9



Under review as a conference paper at ICLR 2021

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Chang Li and Dan Goldwasser. Encoding social information with graph convolutional networks
forpolitical perspective detection in news media. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pp. 2594–2604, 2019.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train
deeper gcns. arXiv preprint arXiv:2006.07739, 2020.

Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation for drug discovery. arXiv
preprint arXiv:1709.03741, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979–1993, 2018.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social
influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2110–2119, 2018.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2019.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In
Advances in Neural Information Processing Systems, pp. 3358–3369, 2019.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Yantao Shen, Hongsheng Li, Shuai Yi, Dapeng Chen, and Xiaogang Wang. Person re-identification
with deep similarity-guided graph neural network. In Proceedings of the European conference on
computer vision (ECCV), pp. 486–504, 2018.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. In Advances in
neural information processing systems, pp. 5334–5344, 2018.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance on text
classification tasks. arXiv preprint arXiv:1901.11196, 2019.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training.
arXiv preprint arXiv:2001.03994, 2020.

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V Le. Adversarial
examples improve image recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 819–828, 2020.

10



Under review as a conference paper at ICLR 2021

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–
983, 2018.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. arXiv preprint arXiv:1905.00877,
2019.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. arXiv preprint arXiv:2006.08149, 2020.

Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dimitris N Metaxas. Semantic graph con-
volutional networks for 3d human pose regression. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3425–3435, 2019.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Thomas Goldstein, and Jingjing Liu. Freelb: Enhanced
adversarial training for language understanding. arXiv preprint arXiv:1909.11764, 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2847–2856, 2018.

11

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km


Under review as a conference paper at ICLR 2021

Appendix

A FLAG PYTORCH IMPLEMENTATION

1 #M as ascent steps, alpha as ascent step size
2 #X denotes input node features, y denotes labels
3 def flag(model, X, y, optimizer, criterion, M, alpha) :
4 model.train()
5 optimizer.zero_grad()
6

7 pert = torch.FloatTensor(*X.shape).uniform_(-alpha, alpha)
8 pert.requires_grad_()
9 out = model(X+pert)

10 loss = criterion(out, y)/M
11

12 for _ in range(M-1):
13 loss.backward()
14 pert_data = pert.detach() + alpha*torch.sign(pert.grad.detach())
15 pert.data = pert_data.data
16 pert.grad[:] = 0
17 out = model(X+pert)
18 loss = criterion(out, y)/M
19

20 loss.backward()
21 optimizer.step()

12



Under review as a conference paper at ICLR 2021

B FULL STATISTICS

Here we summarize our main experiment results on both node and graph classification tasks. Hy-
perparameters for crafting adversarial augmentations are listed in the table. For other training setups
of backbones, we refer readers to the public website of the OGB leaderboard.

Table 6: ogbn-products

Backbone Test Acc Val Acc αl αu/αl M

GraphSAGE 78.70±0.36 91.70±0.09 - - -
+FLAG 79.36±0.57 92.05±0.07 8e-03 2 3
GAT 79.45±0.59 - - - -
+FLAG 81.76±0.45 92.51±0.06 5e-03 2 3
DeeperGCN 80.98±0.20 92.38±0.09 - - -
+FLAG 81.93±0.31 92.21±0.37 5e-03 2 3

Table 7: ogbn-proteins

Backbone Test ROC-AUC Val ROC-AUC αl αu/αl M

GCN 72.51±0.35 79.21±0.18 - - -
+FLAG 71.71±0.50 78.93±0.16 1e-03 1 3
GraphSAGE 77.68 ±0.20 83.34±0.13 - - -
+FLAG 76.57±0.75 82.84±0.17 1e-03 1 3
DeeperGCN 85.80±0.17 71.92±0.16 - - -
+FLAG 85.96±0.27 91.32±0.22 8e-03 1 3

Table 8: ogbn-arxiv

Backbone Test Acc Val Acc αl αu/αl M

MLP 55.50±0.23 57.65±0.17 - - -
+FLAG 56.02±0.19 58.17±0.11 2e-03 1 3
GCN 71.74±0.29 73.00±0.17 - - -
+FLAG 72.04±0.20 73.30±0.10 1e-03 1 3
GraphSAGE 71.49±0.27 72.77±0.16 - - -
+FLAG 72.19±0.21 73.49±0.09 1e-03 1 3
GAT 73.65±0.11 75.04±0.06 - - -
+FLAG 73.71±0.13 74.96±0.10 1e-03 1 3
DeeperGCN 71.92±0.16 72.62±0.14 - - -
+FLAG 72.14±0.19 73.11±0.09 8e-03 1 3

13



Under review as a conference paper at ICLR 2021

Table 9: ogbg-molhiv

Backbone Test ROC-AUC Val ROC-AUC α M

GCN 76.06±0.97 82.04±1.41 - -
+FLAG 76.83±1.02 81.76±0.87 1e-02 3
GCN-Virtual 75.99±1.19 83.84±0.91 - -
+FLAG 75.45±1.58 83.83±1.15 1e-03 3
GIN 75.58±1.40 82.32±0.90 - -
+FLAG 76.54±1.14 82.25±1.55 5e-03 3
GIN-Virtual 77.07±1.49 84.79±0.68 - -
+FLAG 77.48±0.96 84.38±1.28 1e-03 3
DeeperGCN 78.58±1.17 84.27±0.63 - -
+FLAG 79.42±1.20 84.25±0.61 1e-02 3

Table 10: ogbg-molpcba

Backbone Test AP Val AP α M

GCN 20.20±0.24 20.59±0.33 - -
+FLAG 21.16±0.17 21.50±0.22 8e-03 3
GCN-Virtual 24.24±0.34 24.95 ±0.42 - -
+FLAG 24.83±0.37 25.56±0.40 8e-03 3
GIN 22.66±0.28 23.05±0.27 - -
+FLAG 23.95±0.40 24.51±0.42 8e-03 3
GIN-Virtual 27.03±0.23 27.98±0.25 - -
+FLAG 28.34±0.38 29.12±0.26 8e-03 3
DeeperGCN 27.81±0.38 29.20±0.25 - -
+FLAG 28.42?±0.43 29.52±0.29 8e-03 3

Table 11: ogbg-ppa

Backbone Test Acc Val Acc α M

GCN 68.39±0.34 64.97±0.34 - -
+FLAG 68.38±0.47 64.98±0.45 2e-03 3
GCN-Virtual 68.57±0.61 65.11±0.48 - -
+FLAG 69.44±0.52 66.38±0.55 5e-03 3
GIN 68.92±1.00 65.62±1.07 - -
+FLAG 69.05±0.92 64.65±0.70 8e-03 3
GIN-Virtual 70.37±1.07 66.78±1.05 - -
+FLAG 72.45±1.14 67.89±0.79 5e-03 3
DeeperGCN 77.12±0.71 73.13±0.78 - -
+FLAG 77.52?±0.69 74.84±0.52 8e-03 3

Table 12: ogbg-code

Backbone Test F1 Val F1 α M

GCN 31.63±0.18 29.73±0.14 - -
+FLAG 32.09±0.19 30.16±0.16 8e-03 3
GCN-Virtual 32.63±0.13 30.62±0.07 - -
+FLAG 33.16?±0.25 30.99±0.16 8e-03 3
GIN 31.63±0.20 29.81±0.14 - -
+FLAG 32.41±0.40 30.44±0.39 8e-03 3
GIN-Virtual 32.04±0.18 30.20±0.16 - -
+FLAG 32.96±0.36 30.92±0.35 8e-03 3

14


	Introduction
	Preliminaries
	Proposed Method: FLAG
	Experiments
	Ablation Studies and Discussions
	Where Does the Boost Come from?
	Related Work
	Conclusion
	FLAG PyTorch Implementation
	Full Statistics

