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Abstract

While end-to-end video-to-audio generation has greatly improved, producing high-
fidelity audio that authentically captures the nuances of visual content remains
challenging. Like professionals in the creative industries, this generation requires
sophisticated reasoning about items such as visual dynamics, acoustic environments,
and temporal relationships. We present ThinkSound, a novel framework that
leverages Chain-of-Thought (CoT) reasoning to enable stepwise, interactive audio
generation and editing for videos. Our approach decomposes the process into three
complementary stages: foundational foley generation that creates semantically
coherent soundscapes, interactive object-centric refinement through precise user
interactions, and targeted editing guided by natural language instructions. At each
stage, a multimodal large language model generates contextually aligned CoT
reasoning that guides a unified audio foundation model. Furthermore, we introduce
AudioCoT, a comprehensive dataset with structured reasoning annotations that
establishes connections between visual content, textual descriptions, and sound
synthesis. Experiments demonstrate that ThinkSound achieves state-of-the-art
performance in video-to-audio generation across both audio metrics and CoT
metrics, and excels in the out-of-distribution Movie Gen Audio benchmark. The
project page is available at https://ThinkSound-Project.github.iol

1 Introduction

Generating realistic sound for video demands more
than recognizing objects; it requires reasoning about
complex visual dynamics and context — determining
when an owl is chirping versus flapping its wings,
identifying the subtle sway of tree branches, and syn-
chronizing multiple sound events within a scene, as
illustrated in Figure[I] Current end-to-end video-to-
audio (V2A) generation systems (Luo et al., 2024}
Xing et al., |2024} Zhang et al.|, 2024), while having
largely improved, often struggle with this composi-
tional complexity and contextual nuance. They may
produce generic sounds or fail to synchronize pre-
cisely with subtle visual cues, thus limiting fidelity
and user control.
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39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://ThinkSound-Project.github.io

Recent breakthroughs in Multimodal Large Language Models (MLLMs) (Lu et al., 2024} |Liu et al.|
2023b; |Wang et al.,|2024b) offer powerful capabilities in understanding and reasoning across multiple
modalities. Concurrently, Chain-of-Thought (CoT) prompting (Wei et al.| 2022} Zhang et al., 2023}
Wang et al., [2025) has proven effective at eliciting structured, step-by-step reasoning from large
models. These advancements create great potential to fundamentally rethink V2A by decomposing
complex sound design into explicit reasoning steps and actionable synthesis instructions. The
necessity for CoT in V2A becomes evident when examining the process of sound designers. They
employ a multi-stage approach: analyzing visual content, then reasoning about acoustic properties,
and finally synthesizing and refining sounds. End-to-end approaches compress the process into a
single black-box transformation, losing the nuanced reasoning required for audio generation.

Some approaches have attempted to adopt MLLMs for multi-stage V2A. SonicVisionLM (Xie et al.,
2024) converts video to textual captions using MLLMs and employs a separate model for text-to-
audio (T2A) generation, which inevitably loses critical visual details and motion dynamics essential
for realistic sound synthesis. More recently, DeepSound-V1 (Liang et al.| 2025), while introducing
MLLM-generated CoT for V2A, fragments the process into three separate tasks (audio generation,
vocal removal, and silence detection) using specialized models rather than a unified framework. This
fragmentation fails to fully leverage the deep understanding and reasoning capabilities that MLLMs
could bring to comprehensive audio design.

To overcome these limitations and unlock the full reasoning potential of MLLMs for V2A, we present
ThinkSound that harnesses CoT reasoning to enable stepwise, interactive generation and editing
for V2A. ThinkSound decomposes audio generation into three intuitive and user-centric stages:
(1) foundational foley generation to synthesize semantic and temporal matching soundscapes, (2)
interactive object-centric refinement via user clicks, and (3) targeted audio editing guided by high-
level natural language instructions. At each stage, an MLLM produces semantically and temporally
aligned CoT instructions that guide a unified foundation model for audio generation, ensuring that the
generated audio remains coherent, contextually grounded, and high quality throughout the workflow.
Moreover, to support the training of ThinkSound and advance research in this area, we introduce
AudioCoT, a comprehensive large-scale dataset with structured CoT reasoning annotations.

Technically, three key innovations are proposed: a) We fine-tune MLLMs on AudioCoT to generate
structured, audio-specific reasoning chains that explicitly capture temporal dependencies, acoustic
properties, and the decomposition of complex audio events. b) We design a unified audio foundation
model based on flow matching that supports all three stages with the capabilities of synthesizing high-
fidelity audio from arbitrary combinations of input modalities. This foundation model directly benefits
from the detailed CoT reasoning provided by MLLMs, which effectively decomposes complex audio
scenes into manageable components, enabling focused sound event generation while maintaining
global coherence. ¢) We introduce a novel click-based interface that enables users to target specific
visual objects for audio refinement, with CoT reasoning translating visual attention into contextually
appropriate sound synthesis. The main contributions are summarized as follows:

* A novel three-stage interactive framework for V2A that progressively builds soundscapes
through initial generation, object-centric refinement, and targeted editing, all unified by CoT
reasoning from MLLMs.

* A unified multimodal foundation model capable of high-quality audio synthesis from an
arbitrary combination of video, text, and audio inputs, leveraging CoT instructions to
decompose complex scenes into manageable sound components.

* AudioCoT, a large-scale multimodal dataset with audio-specific CoT reasoning annotations
that bridges visual content, textual descriptions, and sound synthesis.

» Experimental results demonstrate that ThinkSound achieves the state-of-the-art perfor-
mance across objective metrics and subjective metrics, highlighting the effectiveness of our
reasoning-guided generation.

2 Related Work

2.1 Video-to-Audio Generation

V2A (Cheng et al.,[2024a;|Wang et al.| 2024c; Xu et al., 2024; [Liu et al.,|2025)) focuses on synthesizing
audio that aligns seamlessly with the visual content of a video clip. Earlier work (Luo et al., [2024;



Xing et al., 2024} Zhang et al., 2024; |Viertola et al., |2024) try to generate audio samples based on
silent video only using latent diffusion models (Rombach et al.,|2022) or language models (Floridi
& Chiriatti, [2020). For example, Diff-Foley (Luo et al.,|2024) employs an audio-visual contrastive
feature and latent diffusion to predict the spectrogram latent, while FoleyGen uses autoregressive
techniques. However, recent research (Chen et al.l 2024} Mo et al., [2024; [You et al.| 2025) pay
more attention to generating audios using multimodal control, including videos, audios, and texts.
For example, MMAudio (Polyak et al.l |2024) uses flow matching conditioned on multi-modal
inputs, including videos and texts. MultiFoley (Wu et al.| [2024) further uses audio context as an
additional input. Despite these advancements, existing work struggles to reason beyond simple object
recognition and fails to conduct a step-by-step interactive process with users for audio generation. In
this work, we propose ThinkSound, a V2A model with CoT reasoning in MLLMs, which supports
step-by-step and interactive audio generation and editing.

2.2 Large Language Models and Reasoning

LLMs (Liu et al.| |2024a;|Guo et al.}|[2025; Hurst et al.|[2024) have demonstrated remarkable reasoning
capabilities through CoT prompting, enabling complex problem decomposition via intermediate rea-
soning steps. This paradigm, pioneered by (Wei et al.|[2022), has been extended to MLLMs (Alayrac
et al., 20225 Yang et al.,[2023; |Chu et al., 2024) that integrate visual, audio, and textual understanding
through cross-modal alignment. Recent works (Rubenstein et al., 2023} [Li et al.l [2023; [Wu et al.|
2024) have explored MLLMs’ potential in multimodal reasoning, particularly in visual-audio-textual
grounding and cross-modal causal reasoning. Despite these, MLLMSs remain under-explored for
audio generation. While models like SonicVisionLM (Xie et al., |2024)) and DeepSound-V1 (Liang
et al., 2025) incorporate V2A, they lack mechanisms to decompose user intent into semantic and
temporal reasoning steps. Our ThinkSound proposes a novel framework for audio generation and
editing that decomposes the complex task into foundation Foley generation, interactive object-centric
refinement, and targeted audio editing (Wang et al., 2023} |Liu et al.| 2024d).

2.3 Flow Matching

Flow Matching has emerged as a powerful alternative to diffusion models for high-quality audio
synthesis (Evans et al.,[2024; [Liu et al.| |2024b}, |2023a)), directly learning continuous normalizing
flows between distributions by training a time-dependent vector field. Recent works [Lipman et al.
(2022); IL1u et al.| (2022)) establish its theoretical foundations, while [Liu et al.| (2024c)) demonstrated
its advantages for audio generation with improved quality and faster sampling. |Polyak et al.| (2024)
further advances this approach by applying conditional flow matching to multimodal audio generation,
showing its effectiveness in maintaining temporal coherence across complex audio signals. Our
work extends these advances through CoT-guided generation and a novel multi-guidance strategy
that integrates control signals from multiple modalities. Our modality-agnostic training approach
with classifier-free guidance dropout allows the model to generate high-quality audio from flexible
input combinations, addressing both control precision and data scarcity challenges that have limited
previous approaches.

3 AudioCoT Dataset for CoT-Guided Generation and Editing

3.1 Multimodal Data Sources

The AudioCoT dataset comprises both video-audio and audio-text pairs. For video-audio data, we
utilize VGGSound (Chen et al.,2020) and a curated, non-speech subset of AudioSet (Gemmeke et al.}
2017) to ensure broad coverage of real-world audiovisual events. For audio-text data, we aggregate
pairs from AudioSet-SL (Hershey et al., 2021)), Freesound (Fonseca et al., {2017, AudioCaps (Kim
et al.,|2019), and BBC Sound Effects|7 resulting in a diverse and representative corpus for training
multimodal models. Further details on data processing and statistics are provided in the Appendix [A.T]

“https://sound-effects.bbcrewind.co.uk/
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Figure 2: Overview of our AudioCoT dataset construction pipeline.
3.2 Automated CoT Generation Pipeline

Stage 1: Foundational Foley CoT Generation. To construct the Foley generation CoT data, we
employ a multi-stage processing pipeline. For video-audio pairs, we utilize VideoLLaMA?2 (Cheng
et al., [2024b)) to extract both temporal and semantic information from the videos through differ-
ent prompting strategies, while for audio-text pairs (which lack video data), we employ a more
streamlined approach without VideoLLaMA 2. In both cases, we generate audio descriptions using
Qwen2-Audio (Chu et al.| 2024), combining them with existing video captions or text annotations.
The collected information is then integrated using GPT-4. l-nanéﬂ to synthesize comprehensive CoT
reasoning chains that capture the complex relationships between content conditions and the corre-
sponding audio elements, ensuring both data types contribute to a comprehensive understanding of
audio generation reasoning.

Stage 2: Interactive Object-Centric CoT Generation. To facilitate object-focused audio generation,
we develop a Region of Interest (ROI) extraction framework leveraging Grounded SAM2 (Ren et al.|
2024; |Ravi et al.||2024). Using audio captions as prompts, we identify and generate bounding boxes
for potential sound-emitting objects. These coordinates are tracked temporally across video frames,
while VideoLLaMA?2 provides detailed semantic descriptions for each ROI segment. For complex
audio manipulations (extraction/removal), we construct a hierarchical reasoning structure where
the CoT of the target video is merged with another video’s CoT to establish a global context. This
composite representation is then integrated with ROI-specific generation information and processed
by GPT-4.1-nano to formulate coherent manipulation rationales (detailed in Appendix [A.2).

Stage 3: Instruction-Based Audio Editing CoT Generation. For instruction-guided audio editing,
we analyze and integrate CoT information from Stage 1 based on four primary operations: extension,
inpainting, addition, and removal. These operations address scenarios from extending sequences
to eliminating unwanted segments. GPT-4.1-nano processes this integrated information to generate
instruction-specific CoT reasoning chains while we perform corresponding audio operations, creating
(Instruction-CoT, input audio, output audio) triplets for model training and evaluation.

4 ThinkSound

4.1 Overview

As depicted in Figure 3] ThinkSound introduces a novel step-by-step, interactive framework for audio
generation and editing guided by CoT reasoning. Our approach decomposes the complex V2A task
into three intuitive stages: (1) foundation Foley generation that creates a semantic and temporal

*https://openai.com/index/gpt-4-1/
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Figure 3: Overview of the ThinkSound architecture. Left: our Multimodal LLM framework, where a
fine-tuned VideoLLaMA 2 model generates CoT reasoning for audio generation and editing. Right:
our enhanced Multimodal Transformer architecture, which features an MM-DiT backbone with
dedicated pathways for processing multimodal inputs and CoT-driven conditioning to enable high-
fidelity, contextually grounded audio generation.

matching soundscape, (2) interactive region-based refinement through user clicks, and (3) targeted
audio editing based on high-level instructions. At each stage, an MLLM generates CoT reasoning
that guides a unified audio foundation model to produce and refine the soundtrack.

4.2 CoT Reasoning with Multimodal LL.M

To enable stepwise, context-aware audio generation, we leverage VideoLLaMA?2 (Cheng et al.,
2024b) as the core multimodal reasoning engine. VideoLLaMA?2 is selected for its state-of-the-art
capability in fusing video, text, and audio modalities, and its advanced spatial-temporal modelling is
essential for capturing the nuanced interplay between visual events and their corresponding acoustic
manifestations.

We further adapt VideoLLaMA?2 to the audio reasoning domain by fine-tuning it on our AudioCoT
dataset, which contains rich, annotated reasoning chains tailored for audio-visual tasks. This fine-
tuning process is designed to equip the model with three core competencies: (1) audio-centric
understanding—the ability to infer acoustic properties, model sound propagation, and reason about
audio-visual correspondences, including temporal and causal relationships among audio events
(e.g., “footsteps occur before the door opens, then conversation ensues”); (2) structured CoT
decomposition—the capacity to break down complex audio generation or editing tasks into explicit,
actionable steps; and (3) multimodal instruction following—robustly interpreting and executing
diverse generation or editing instructions across modalities. As illustrated in Figure [3] the fine-
tuning objective is the standard cross-entropy loss for next-token prediction. Through this targeted
adaptation, VideoLLaMA? is transformed into a specialized audio reasoning module, capable of
producing contextually precise CoT instructions that drive each stage of the ThinkSound pipeline.

4.3 CoT-Guided Unified Audio Foundation Model

The core of ThinkSound is our unified audio foundation model that seamlessly translates CoT
reasoning into high-quality audio, whose detail is shown in the right part of Figure 3] We encode
audio into latent representations using a pre-trained VAE (Pinheiro Cinelli et al.| 2021) and train
our model with conditional flow matching (Lipman et al.||2022), where the velocity field prediction
is conditioned on multimodal context, including visual content, CoT reasoning, text captions, and
audio context. To support any combination of input modalities, we adopt the integration of classifier-
free guidance dropout during training. By randomly dropping different modality combinations
with probability p4,op, We enable the model to handle arbitrary input configurations at inference
time—essential for our interactive framework. We also incorporate strategic audio context masking
to support advanced editing operations such as inpainting and extension.

For text processing, we employ a dual-pathway encoding strategy: MetaCLIP (Xu et al., [2023)
encodes visual captions to provide scene-level context, while T5-v1-x1 (Raffel et al.,|2020) processes
structured CoT reasoning to capture detailed temporal and causal relationships. These complementary



representations are effectively combined, with MetaCLIP’s features serving as global conditioning
signals while T5’s outputs enable fine-grained reasoning-driven control.

Our enhanced MM-DiT architecture builds on recent advances in multimodal generative model-
ing (Esser et al.|[2024} Labs|, [2024; |Cheng et al.|[2024a)) with three key components: (1) we implement
a hybrid transformer backbone that alternates between modality-specific and shared processing. Multi-
stream transformer blocks maintain separate parameters for each modality while sharing attention
mechanisms, allowing efficient processing of diverse inputs without sacrificing cross-modal learning.
(2) We design an adaptive fusion module that upsamples video features and fuses them with audio
latents via a gated mechanism (Cho et al., 2014). This not only highlights salient visual cues and
suppresses irrelevant information, but also ensures that video information is directly involved in
subsequent single-stream transformer blocks. By integrating video into the audio latent space, the
model can better capture subtle visual details and their nuanced effects on the soundscape, enabling
richer cross-modal reasoning than using audio latents alone. (3) We implement global conditioning
by mean-pooling CLIP features from both the caption and video, and, following MMAudio (Cheng
et al., [2024al), incorporating sync features to improve audio-visual temporal alignment. The resulting
global condition is added to the timestep embedding and injected via adaptive layer normalization
layers (AdaLN) (Peebles & Xiel 2023)) into both multi-stream and single-stream blocks.

4.4 Step-by-Step CoT-Guided Audio Generation and Editing

By enabling flexible combinations of input modalities along with CoT, ThinkSound supports de-
composing audio generation into three intuitive stages shown in Figure[I] This three-stage pipeline
enables progressively refined, highly customized audio generation through an intuitive interactive
workflow, with CoT reasoning bridging user intent and audio synthesis at each step.

Stage 1: CoT-Guided Foley Generation. In the first stage, our framework analyzes the entire
video to identify acoustic elements and their relationships. The fine-tuned MLLM generates detailed
CoT reasoning that explicitly identifies primary sound events, ambient elements, acoustic properties,
and their temporal dependencies - determining when objects make sounds and how these sounds
interact. This structured reasoning guides the audio foundation model to synthesize high-fidelity
audio that precisely matches both the semantic content and temporal dynamics of the visual scene.
By decomposing complex audio scenes into explicit sound components through CoT reasoning,
the model generates a diverse and coherent soundscape that captures subtle visual cues and motion
dynamics essential for realistic audio synthesis.

Stage 2: Interactive Object-Focused Audio Generation. Stage 2 introduces an interactive frame-
work that enables users to refine the initial soundscape by focusing on specific visual elements.
Through a simple click-based interface, users can select objects of interest for audio enhancement.
Unlike the holistic approach in Stage 1, this object-centric refinement leverages the segmented ROI
to guide targeted audio synthesis. The fine-tuned MLLM analyzes the selected ROI and generates
specialized CoT reasoning focused on the object’s acoustic properties within the global context. This
structured reasoning conditions the audio foundation model to synthesize object-specific sounds,
seamlessly integrating them with the initial soundtrack produced in Stage 1. Notably, in this stage,
the foundation model incorporates the existing audio context as an additional conditioning signal.

Stage 3: Instruction-based Audio Editing. In the final stage, users can provide high-level editing
instructions to refine audio quality or modify specific elements. The MLLM translates these natural
language instructions into precise audio processing operations through CoT reasoning, considering
both visual content and current audio state. The foundation model, conditioned on both this reasoning
and the existing audio context, applies targeted modifications while maintaining overall coherence.
This natural language-driven approach enables non-technical users to perform sophisticated audio
manipulation, including adding sounds, removing sounds, audio inpainting, and audio extension.

S Experiments

5.1 Experiment Setup

Evaluation Metrics We conduct comprehensive evaluations using both objective and subjective
metrics to assess audio quality, text-audio alignment, and video-audio synchronization. For objective



Table 1: Comparison of our ThinkSound foundation model with existing video-to-audio baselines on
the VGGSound test set. | indicates lower is better, 1 indicates higher is better. For MOS, we show the
mean and variance of the MOS scores. T indicates that the method does not use text for inference.

Method | Objective Metrics | Subjective Metrics | Efficiency
| FDI Klpsst 4 Klpansd DeSyncl CLAP, 1 CLAPqr | MOS-QT  MOS-AT | Params Time(s)
GT - - - 0.55 0.28 0.45 4.37+0.21  4.56+0.19 - -
See&Hear 118.95 2.26 2.30 1.20 0.32 0.35 2.75+1.08 2.874+0.99 | 415M 19.42
V-AURAT 46.99 2.23 1.83 0.65 0.23 0.37 3.42+1.03 3.20+1.17 | 695M 14.00
FoleyCrafter 39.15 2.06 1.89 1.21 0.41 0.34 3.08+1.21 2.63+0.88 | 1.20B 3.84
Frieren® 74.96 2.55 2.64 1.00 0.37 0.34 3.27+1.11  2.95+1.09 159M -
V2A-Mapperi 48.10 2.50 2.34 1.23 0.38 0.32 331+1.02 3.16+1.04 | 229M -
MMAudio 43.26 1.65 1.40 0.44 0.31 0.40 3.84+0.89 3.974+0.82 | 1.03B 3.01
ThinkSound ‘ 34.56 1.52 1.32 0.46 0.33 0.46 ‘ 4.02+0.73  4.18+0.79 ‘ 1.30B 1.07
w/o CoT Reasoning ‘ 39.84 1.59 1.40 0.48 0.29 0.41 ‘ 3.91+0.83 4.04£0.75 ‘ 1.30B 0.98

evaluation, we compute the Fréchet Distance (FD) (Kilgour et al.,[2018) in the OpenL3 feature space
(Cramer et al.| 2019} |[Evans et al., [2024) to measure distribution-level similarity, which we extend
to evaluate stereo audio. We also use the Kullback-Leibler (KL) Divergence (Copet et al., [2024)
based on predictions from PaSST model (KLp,ss1) and PaNNs (KL p,n v s) to evaluate label-level
consistency. Temporal alignment between audio and video is assessed using DeSync predicted by the
Synchformer model (Iashin et al.,[2024), while semantic alignment with text is measured using the
CLAP score (Wu* et al., 2023} (Chen et al., 2022), including both CLAP,,,, (caption) and CLAP¢,r
(CoT). For subjective evaluation, we collect human ratings using the Mean Opinion Score (MOS) to
evaluate perceived audio quality (MOS-Q) and alignment with video and CoT (MOS-A). Further
details are provided in the Appendix [C|

Implementation Details For VAE training, we initialize our VAE using the VAE model weights
trained on stereo data at 44.1kHz sample rate provided by Stability Al [ﬂ We employ mixed precision
training with a batch size of 144 across 24 A800 GPUs for 500,000 steps. Subsequently, following
Evans et al.| (2024), we freeze the VAE encoder and train the VAE decoder with a latent mask ratio of
0.1 for an additional 500,000 steps. We use AdamW (Loshchilov & Hutter, |2019)) as the optimizer,
setting the generator learning rate to 3e-5 and the discriminator learning rate to 6e-5. In the foundation
model training phase, we utilize an exponential moving average and automatic mixed precision for
100,000 steps on 8 A100 GPUs, with an effective batch size of 256. We adopt a cfg dropout of 0.2 for
each modality with a learning rate of 1e-4. During the task-specific fine-tuning stage, we similarly
apply exponential moving average and automatic mixed precision for 50,000 steps on 8 A100 GPUs,
maintaining an effective batch size of 256. AdamW remains our optimizer of choice, with a learning
rate set at le-4. We attach the benchmark details of VGGSound, Movie Gen Audio Bench, and
AudioCoT test set for stages 2 and 3 into Appendix [A.3]

5.2 Main Results

Video-to-Audio Generation Results We compare our foundation model against existing video-
to-audio baselines including Seeing and Hearing (Xing et al., 2024), V-AURA (Viertola et al.|
2024), FoleyCrafter (Zhang et al., |2024), Frieren (Wang et al. 2024d)), V2A-Mapper (Wang
et al.l 2024a), and MMAudio (Cheng et al., [2024a). From Table E], we observe three key find-
ings: (1) GT audio exhibits low CLAP,, scores (0.28), revealing that original VGGSound
captions inadequately capture the semantic content and temporal relationships needed for high-
fidelity audio generation. (2) ThinkSound outperforms all baselines across most objective met-
rics and all subjective metrics. Compared to the strongest baseline (MMAudio), our model
achieves substantial improvements in audio quality (KLp,sst: 1.52 vs. 1.65) and semantic
alignment (CLAPc,r: 0.46 vs. 0.40), while maintaining comparable temporal synchronization.
Subjective evaluations further confirm these im-
provements (MOS-Q: 4.02 vs. 3.84, MOS-A:
4.18 vs. 3.97). (3) Removing CoT reasoning

Table 2: Out-of-distribution evaluation on
MovieGen Audio Bench. This benchmark does

notably degrades both audio quality and align- not provide the GT audios, so we cannot compare
. . FD and KL.
ment metrics, especially for CLAP¢,r, decreas-

ing from 0.46 to 0.41, confirming that CoT pro- Method | CLAPcor T DeSync) | MOS-Qt  MOS-Af

vides crucial information about sound events, MMAudio 0.45 0.77 |3.95+0.87 3.62+1.03
their temporal relationships, and acoustic char- MovieGen 0.47 1.00  |3.98+0.77 3.70+£0.96
acteristics. ThinkSound |~ 0.51 0.76 | 4.11+0.74 3.87+0.82

*https://github.com/Stability-Al/stable-audio-tools



Furthermore, we conduct an out-of-distribution evaluation on the MovieGen Audio Bench (Polyak
et al., [2024) to assess the generalization capability of our model. The results in Table 2] show that our
ThinkSound model still achieves the best CLAP,t score of 0.51 while DeSync is on par with the
best baseline. For subjective evaluation, ThinkSound achieves the best performance in both alignment
and fidelity metrics. This demonstrates that ThinkSound exhibits strong generalization capability
across different scenarios.

Object-Focused Audio Generation and CoT-
Guided Audio Editing For object-focused
generation, we compare two approaches: (1)

Table 3: Object-focused generation performance.
Method | FDJ KLpsst 4 CLAPT| MOS-Qt MOS-AT

MMAudio, which does not have the ROI design, MMAudio [44.46 138 041 [3.61:£0.63 3.6440.69
and (2) ThinkSound w/o CoT reasoning. Results  ThinkSound |43.27  1.32 0.48 |3.89+0.52 3.914-0.53
in Table [3] show that our interactive approach ~ w/o CoT  [4528 134 0.43 |3.77+0.64 3.81+0.59

with CoT reasoning achieves significantly better
results, demonstrating superior object-specific sound quality and integration with the foundation
audio.

For text-guided audio editing, we compare
ThinkSound with AudioLDM-2 (Liu et al.
2024e) and Edit Friendly DDPM (Huberman+
Spiegelglas et al.}[2024), adapting these models

Table 4: Audio editing results on AudioCoT test
set (MOS-A: alignment between audio and text;
DDPM: DDPM-Friendly).

to our experimental setup. As shown in Table[4] Method | FD{ KLpasst 4 CLAPT| MOS-Qf MOS-AT
ThinkSound outperforms the baselines across all ~ AudioLDM-2 ‘ 6128  1.94 0.35 ‘ 3.28+0.59 3.4840.82
objective and subjective metrics. Specifically, DDPM 55.56 175 0.39 |3.3440.28 3.6740.56
ThinkSound achieves the lowest FD (34.78) and  ThinkSound [34.78 145  0.51 |3.92-0.82 3.85--0.82
KLpasst (1.45), and the highest CLAP score  w/o CoT ‘45.78 1.58 0.44 ‘3.5310.45 3.524+0.62

(0.51), indicating better audio fidelity and se-
mantic relevance. In human evaluation, ThinkSound also gets the best MOS-Q and MOS-A. Remov-
ing CoT reasoning clearly drops all metrics, showing the importance of CoT-guided reasoning for
text-based audio editing.

5.3 Ablation Studies

To better understand the contribution of each component in ThinkSound and to validate the
effectiveness of our design choices, we conduct comprehensive ablation studies on the VG-
GSound test set. Mainly focus on: 1) text encoding strategies and 2) multi-modal integra-
tion mechanisms. For more ablation and exploratory results, we attach them to Appendix

Table 5: Comparison of text encoder fusion strate-
gies. The input of the CLIP text encoder is the
caption. The CLAP score means the value of

Text Encoding Strategies. We evaluate dif-
ferent text encoding strategies with or without
CoT reasoning, and the results are compiled in

Table[5] The results show that (1) CoT reason- CLAPcor.

ing substantially improves audio fidelity, with ~_Method | FD} KLpasst 4 KLpans 4 DeSyncy CLAP 1
the FD score improving from 39.84 to 37.65 CLIP  |39.84 159 1.40 0.48 0.41
when comparing CLIP-only to T5-based CoT ap- T5 (CoT)[37.65  1.54 1.35 046  0.44
proaches. (2) The integration of contrastive fea- CLIP+T5|34.56  1.52 1.32 046 046

tures from CLIP with contextual features from
TS5 further enhances performance, reducing KL
divergence metrics from 1.54 to 1.52 (KLp,ssT)

Multi-Modal Integration Mechanisms. We
investigate different multi-modal integration

and from 1.35 to 1.32 (KLpanns)-

Table 6: Comparison of different multi-modal in-

mechanisms for video and audio before feed-
ing them into the single-stream transformer, and
the results are displayed in Table[6] We find that
(1) the element-wise addition of video and au-
dio features performs better than audio-only in-
put with weak-supervision global conditioning,
especially for synchronization metric DeSync,

tegration mechanisms between video and audio
features.

Integration ‘ FDJ| KLpasst 4 KLpanns 4 DeSync| CLAP 1

audio only |37.13 1.58 1.37 0.50 0.43
linear video |38.96  1.58 1.38 0.46 0.45
gated video |34.56  1.52 1.32 0.46 0.46




Vocalize

Ground-truth

CoT 2
Begin with a quiet ambient backdrop—just faint wind or street
noise—while the car door remains open in view. A solid, mechanical
thud then marks it closing. After several seconds, it reopens, and a
few seconds later it slams shut again, the impact allowed to fully
resonate. Ambient sounds stay minimal, anchoring realism without
distracting from the door’s tactile motion.

Begin with a quiet, serene backdrop—soft breeze or rustling
leaves. Suddenly, a clear pheasant crow cuts through the calm as
the focal sound. As it fades, subtle bird chirps and gentle clucking
resume, sustaining a natural atmosphere. Finally, the audio
gradually returns to quiet, balancing dynamism and tranquility.

Figure 4: Qualitative Comparison: Left: Spectrograms for a car door movement sequence (closed —
opened — closed), showing ThinkSound’s precise alignment of each door sound versus the baseline’s
premature opening effect. Right: Spectrograms for a grassy-field pheasant scene (ambient bird calls
— wing-flap chirp — ambient calls), illustrating ThinkSound’s accurate detection and timing of the
transient chirp compared to the baseline’s omission or delay.

decreasing from 0.50 to 0.46. (2) The gated fusion mechanism outperforms simple element-wise
addition and audio-only input across all metrics.

5.4 Case Study

In our qualitative analysis, we compare spectrograms of audio generated by ThinkSound and those
produced by baselines, as illustrated in Figure @] We make the following observations: (1) As
demonstrated in case 1, a car door sequence—closed—opened—closed—is accurately reflected by
ThinkSound, whereas the baseline models erroneously introduce an extra opening sound at the start.
This highlights ThinkSound’s ability, via CoT prompting, to track temporal and causal event order
in structured scenes. (2) In case 2, a pheasant moving in a grassy field—accompanied by ambient
bird calls, suddenly flapping its wings and emitting a sharp chirp before returning to background
noise—is faithfully reproduced by ThinkSound. The baselines, however, often miss or delay this
brief chirp. These cases underscore ThinkSound’s enhanced temporal reasoning and sensitivity to
subtle visual cues, resulting in more precise and context-aware audio synthesis.

6 Conclusion

This paper presented ThinkSound, a novel CoT reasoning framework for audio generation and editing
that decomposed complex audio generation into three interpretable and user-centric stages. Our
evaluations showed that ThinkSound outperformed state-of-the-art methods, producing contextually
appropriate and temporally precise soundscapes. The framework’s interactive nature enabled users
to refine generated audio through intuitive pointing and natural language instructions, addressing
the gap between creative intent and automated generation. While challenges remained in capturing
nuanced acoustic properties, our AudioCoT dataset and training strategy established a foundation
for future research in intelligent audio generation with applications across film, gaming, and social
media. In future work, we will explore incorporating physical acoustic modeling and developing
more sophisticated reasoning capabilities for complex multi-object sound interactions.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14



Justification: We provide theory assumptions and proofs in section 4
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
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by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we will open-source our codes(contains model or their access method), which
is enough to reproduce our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: we specify all the training and test details
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We only use one fixed random seed.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide sufficient information on the computer resources in training details
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed Positive impacts in section 6 Conclusion and negative
impacts in section F

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We take actions for safeguards , which is described in section G Safeguards
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Creators or original owners of assets, used in the paper, are properly credited
and the license and terms of use explicitly mentioned and are properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18


paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our assets is well documented and the document is provided
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work do not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We carefully follow the LLM policy and fully describe the usage of LLMs
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A AudioCoT Dataset Details

A.1 Data Collection and Preprocessing

To ensure high data quality and consistency, we employ a comprehensive preprocessing pipeline. We
begin by removing silent audio-video clips to retain only those with meaningful content. For the
AudioSet subset (Gemmeke et al.,[2017), we further exclude segments containing human voices based
on tag information, as our focus is on non-speech audio. All audio-video clips are then segmented
into fixed-length intervals of 9.1 seconds, with any shorter clips discarded to maintain uniformity. To
achieve a balanced dataset, we maintain an approximately 1:1 ratio between music and sound effect
samples, ensuring equal representation of both categories.

A.2 Quality Control for Automated Data Pipeline

To enhance the effectiveness of CoT reasoning in preserving audio characteristics while integrating
visual context, we implemented a comprehensive multi-stage quality control pipeline:

Stage 1: Audio-Text Alignment Filtering We employ a systematic approach to ensure high-
quality audio-CoT pairs. First, we calculate the CLAP score between each audio sample and its
corresponding CoT description to quantify semantic alignment. For pairs exhibiting low CLAP scores
(below 0.2), we regenerate the CoT using an enhanced prompt specifically designed to emphasize
audio characteristics and features. After regeneration, we recalculate the CLAP score to assess
improvement. Audio samples that continue to demonstrate poor alignment (persistent low CLAP
scores) are excluded from the dataset to maintain quality standards.

Stage 2: Object Tracking Consistency To ensure reliable audio-visual correspondence, we
retain only those video sequences containing at least one Region of Interest (ROI) that remains
consistently visible throughout the entire duration. Videos with objects that disappear from view
or exhibit inconsistent tracking are filtered out. This criterion ensures that our dataset maintains
high-quality visual references for audio generation tasks, providing consistent visual anchors for the
audio generation process.

Stage 3: Semantic Pairing of Audio Components For tasks requiring paired audio components,
we utilize GPT-4.1-nano to analyze tag categories from VGGSound (Chen et al.| 2020) based on two
critical criteria. First, we ensure semantic distinctiveness, where tags must be sufficiently distinct to
avoid confusion during audio extraction and removal tasks. Second, we verify contextual plausibility,
ensuring that the co-occurrence of paired sounds is contextually reasonable within the same acoustic
scene. This balanced approach ensures that our audio pairs are both semantically meaningful and
practically useful for audio generation tasks.

Human Verification Protocol To validate our automated filtering processes, we implement a
rigorous manual review at each pipeline stage. No less than 5% of the total data volume undergoes
human inspection to ensure quality. This verification step helps validate the effectiveness of our
automated filtering criteria and ensures the overall reliability and quality of our dataset. The human
reviewers assess both the technical aspects of alignment and the perceptual quality of the audio-visual
correspondence. When samples fail human verification, they are immediately removed from the
dataset. Additionally, if the human rejection rate for any filtering criterion exceeds 5%, we recalibrate
the corresponding automated filtering parameters and reprocess the entire batch to maintain dataset
integrity. This feedback loop between automated filtering and human verification ensures continuous
improvement of our quality control pipeline.

A.3 Benchmark Construction

We evaluate the performance of ThinkSound on three different tasks: video-to-audio generation,
object-focused audio generation, and audio editing. For the video-to-audio generation task, we use
the VGGSound test set as the in-distribution evaluation set while the MovieGen Audio Bench is
the out-of-distribution evaluation set. For the VGGSound test set, we use the same quality filtering
protocol as our training data preparation. Given that our primary focus is on video-to-sound/music
generation, we construct three different difficulty levels based on the complexity of the audio-visual

21



Table 7: Overview of datasets used in our work.

Dataset Modality Text Format  Hours
VGGSound (Chen et al.| [2020) Audio-Video Caption 453.6
AudioSet (Gemmeke et al.,[2017) Audio-Video Caption 287.5
AudioSet-SL (Hershey et al.,[2021) Audio-Text Caption 262.6
Freesound (Fonseca et al., [2017) Audio-Text Caption 1286.6
AudioCaps (Kim et al., 2019) Audio-Text Caption 112.6
BBC Sound Effects Audio-Text Tags 128.9
Total Hours - - 2531.8

relationships. Specifically, we distinguish the difficulty levels based on a multi-dimensional scoring
system that evaluates:

* Semantic Consistency: The alignment between the audio and the visual content is evaluated
by the ImageBind score (0.3+ for easy, 0.25-0.3 for medium, 0.2-0.25 for hard), and the
CLAP score between audio and CoT (0.4+ for easy, 0.3-0.4 for medium, 0.2-0.3 for hard).

» Temporal Synchronization: The degree of synchronization between visual events and
corresponding sounds evaluated by DeSync score (0-0.3 for easy, 0.3-0.6 for medium, 0.6+
for hard).

* Acoustic Scene Complexity: The audio events’ numbers (one dominant sound for easy, 2-3
distinct sounds for medium, multiple overlapping sounds for hard)

According to the above evaluation criteria, we input the scores and criteria into GPT-4.1-nano
to generate the difficulty level for each sample. The final difficulty assignment follows a tertile
distribution: the lowest-scoring third is classified as "easy," the middle third as "medium," and
the highest-scoring third as "hard." This stratified approach ensures balanced representation across
difficulty levels while maintaining meaningful distinctions in task complexity. For each difficulty
level, we construct a benchmark subset containing around 2000 samples.

For stages 2 and 3, we maintain methodological consistency with our training protocols while
adapting the evaluation criteria to each task’s specific requirements. For stage 2, we select samples
with clearly identifiable visual objects that produce distinct sounds, while for stage 3, we focus
on samples with different audio categories suitable for manipulation tasks. Each evaluation subset
contains approximately 2,000 samples.

B Model Configurations and Architecture

B.1 Model Configurations

ThinkSound consists of two primary components: a hierarchical variational autoencoder (VAE) for
audio compression and reconstruction, and a flow-matching multimodal transformer.

Variational Autoencoder The encoder consists of five convolutional blocks with channel multipli-
ers [1, 2,4, 8, 16] and strides [2, 4, 4, 8, 8], projecting the stereo waveform into a 128-dimensional
latent space. The decoder mirrors this architecture with transposed convolutions to reconstruct
64-dimensional latent representations back into the time-domain waveform.

Multimodal Diffusion Transformer ThinkSound employs an enhanced Multi-modal Diffusion
Transformer (MM-DiT) with a hidden size dimension of 1024. It comprises 14 multi-stream trans-

former layers and 7 single-stream transformer layers, with 16 attention heads. We further attach our
different model scale parameters for reference. We use the large model by default.

B.2 Model Architecture

The architecture of multistream transformers is depicted in Figure 5]
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Table 8: Diffusion Transformer Configurations at Different Model Sizes

Model Hidden Depth Attention Multistream Singlestream Total
Scale Size Heads Layers Layers Parameters
Large 1024 21 16 14 7 1.3B
Medium 768 21 12 14 7 724M
Small 512 18 8 12 6 533M
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Figure 5: Multi-stream blocks: F), is the video features, F; is the text features, x; is the audio latents,
and ¢, denotes the global condition.

C Evaluation

C.1 Objective Metrics

To comprehensively evaluate the generated audio, we adopt a set of objective metrics targeting
different aspects: perceptual quality, semantic consistency, temporal alignment, and cross-modal
correspondence.

Feature Distribution Alignment: We project both generated and reference audio into the OpenL3
embedding space (Cramer et al.| (2019); [Evans et al. (2024) and compute the Fréchet Distance
(FD) Kilgour et al.|(2018)); |[Copet et al.| (2024)) to assess the similarity between their distributional
statistics. We chose OpenL3 because it accepts signals of up to 48kHz while VGGish operates at
16kHz, which is more suitable for our 44kHz audio. Following the previous work [Evans et al.| (2024),
we extend the FD to evaluate stereo signals by projecting left and right channels separately and then
averaging the results. Moreover, to evaluate whether the generated audio matches the reference in
terms of its distribution, we compute the Kullback-Leibler (KL) DivergenceCopet et al.| (2024)
between class probability distributions predicted by the PaSST modelKoutini et al.|(2021) and PaNNs
model (Kong et al.,[2020) as classifiers.

Temporal Alignment: To evaluate the synchronization between generated audio and its correspond-
ing video, we adopt the DeSync score predicted by the Synchformer model [lashin et al.| (2024),
following the practice of |(Cheng et al.|(2024a). For each sample, we truncate the video to match the
duration of the generated audio and compute the DeSync score using Synchformer, which operates
with a 4.8-second context window. Specifically, we extract both the first and last 4.8-second segments
from each video-audio pair, calculate the DeSync score for each segment, and report the average as
the final temporal alignment metric. Text-Audio Correspondence: To assess the semantic alignment
between generated audio and textual prompts, we utilize the CLAP score [Wu* et al.| (2023)); |Chen
et al.| (2022)), which measures similarity in a shared audio-text embedding space. Specifically, we
report CLAP,,, for evaluating alignment with the original video captions and CLAP¢,r for alignment
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with our constructed CoT descriptions. As discussed in Section 5.2, the original VGGSound captions
are often low quality and yield lower CLAP scores, whereas our CoT annotations provide richer
semantic detail and achieve higher alignment. Consequently, we primarily use the CoT-audio
alignment metric in our evaluations, except in Table [T where caption-based alignment is also
reported.

C.2 Subjective Metrics

Our subjective evaluation framework employs the Mean Opinion Score (MOS) methodology along
two critical dimensions to comprehensively assess the generated audio:

Audio Quality Assessment (MOS-Q) We evaluate the intrinsic perceptual quality of generated
audio through a rigorous assessment protocol where participants are instructed to focus on four
specific aspects:

* Clarity: The absence of unwanted artifacts, distortions, or noise
* Naturalness: How realistic and non-synthetic the audio sounds
* Fidelity: The richness and accuracy of acoustic characteristics

* Overall impression: The holistic listening experience

Each listener rates these qualities using a standard 5-point Likert scale (1: Poor, 2: Fair, 3: Good,
4: Very Good, 5: Excellent). The final MOS-Q score for each audio sample represents the average
rating across all evaluators, providing a robust measure of perceived audio quality.

Semantic and Temporal Alignment Assessment (MOS-A) To evaluate the cross-modal coher-
ence between generated audio and visual content, we assess both semantic relevance and temporal
synchronization (we also provide CoT text as the auxiliary information for semantic alignment):

o Semantic alignment: How well the audio content matches the objects, actions, and environ-
ment depicted in the video

» Temporal alignment: How accurately sound events correspond to visual events in time
Participants judge the alignment according to three categories on the same 5-point scale:

* Fully aligned (4-5 points): Complete semantic correspondence with precise temporal syn-
chronization

* Mostly aligned (2.5-3.9 points): Good semantic match with occasional minor temporal
misalignments

* Fartially aligned (1-2.4 points): Noticeable discrepancies in either semantic content or

temporal synchronization

Evaluation Protocol To ensure evaluation reliability and consistency, we implemented the follow-
ing protocol:

* All assessments were conducted in controlled in-person sessions with standardized audio
equipment

* 15 raters with normal hearing ability were recruited and briefed on the evaluation criteria
* Each rater evaluated a random subset of 50 video-audio pairs from our test collection

» Samples were presented in randomized order to prevent ordering bias

» Reference examples of each quality level were provided before the evaluation sessions

* Raters were given sufficient time to carefully evaluate each sample
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D Additional Quantitative Results

D.1 Details on Video-to-Audio Comparison

For the results in Table 1, we reproduce the results of Seeing and Hearing (Xing et al., [2024]),
V-AURA (Viertola et al., |[2024), FoleyCrafter (Zhang et al.,|2024), and MMAudio (Cheng et al.,
2024a)) using the official code and pre-trained models. For the other baselines, we use the generated
samples provided by the authors, i.e., Frieren, V2A-Mapper, and Movie Gen (Polyak et al.| [2024)).
Furthermore, the CLAP,;, scores of MM Audio, MovieGen, and ThinkSound are 0.43, 0.44, and 0.49,
respectively.

D.2 Impact of Model Size

We compare three model size of ThinkSound: Large (1.3B), Medium (724M), and Small (533M).
The Large model achieves the best performance across all metrics as shown in Table[9] These results
demonstrate that model capacity significantly enhances audio quality and improves alignment with
ground truth distribution. As model size decreases, performance degrades substantially, highlighting
the necessity of adequate model capacity for effective audio generation.

Table 9: Impact of model size results.

Size | FD]  KLpsst I KLpanns DeSync|  CLAPcor T
Small 43.26 1.64 1.39 0.50 0.43
Medium | 37.62 1.56 1.34 0.47 0.44
Large 34.56 1.52 1.32 0.46 0.46

D.3 Performance across different difficulty levels

To better validate the performance of our CoT-Guided generation, we also report the results in the
video-to-audio generation of different difficulty levels. We illustrate the construction of different
difficulty levels in Section A[A.3] The results are shown in Table[T0} and we can conclude that (1)
As expected, the performance of all models decreases as the difficulty level increases, and (2) Our
CoT-Guided generation outperforms other baselines across all difficulty levels.

Table 10: Performance across different difficulty levels.

Difﬁculty\ FD| KLpsstd KLlpanns 4 DeSyncl CLAPcor T

Easy 31.32 1.35 1.16 0.42 0.52
Medium | 35.45 1.46 1.31 0.46 0.49
Hard 48.78 1.63 1.40 0.57 0.41

D.4 Performance Comparisons between coarse-grained and fine-grained CoT

To further validate the effectiveness of our fine-grained CoT, we compare the performance of our
model with the coarse-grained CoT. The results are shown in Table[TT} We can conclude that our
fine-grained CoT outperforms the coarse-grained CoT across all metrics.

Table 11: Performance comparisons between coarse-grained and fine-grained CoT.

Granularity ‘ FDJ| KLpasst 4 KLpanns DeSyncL CLAPcer T

Coarse 42.72 1.58 1.41 0.52 0.34
Fine 34.56 1.52 1.32 0.46 0.46

D.5 Effectiveness of TS5 Encoder for CoT Structure
A key assumption of our work is that the TS encoder can effectively capture the logical structure

within the CoT reasoning steps. We provide both a theoretical rationale and empirical validation for
this.
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Theoretical Rationale While T5 is pre-trained on general web text (C4), its Transformer archi-
tecture is fundamentally designed to capture long-range dependencies and compositional structure.
The reasoning steps in our CoT (e.g., "first do A, then B happens, which causes C") are expressed
through natural language syntax and logical connectives. T5’s contextual embeddings are well-suited
to capture these structural and causal cues. The goal is not for TS to "understand" reasoning in a
human sense, but to produce a rich, structured conditioning signal that the downstream diffusion
transformer can effectively leverage.

Empirical Validation To prove that the TS5 encoder effectively utilizes the structure of the CoT,
we conducted an ablation study comparing our full model against two degraded variants: (1) Tags
Only, which provides the model with only extracted keywords (e.g., "car," "rain," "dog bark"),
removing all reasoning structure; and (2) Randomized CoT, which randomly shuffles the sentences
within the CoT, preserving all keywords but destroying the logical flow. As shown in Table[T2] both
ablations lead to a significant performance drop. This strongly indicates that the performance gain
is attributable to the stepwise logical structure of the CoT—as encoded by T5—and not merely the
presence of more keywords.

Table 12: Ablation study on the importance of CoT structure. We compare our full model against
variants with only keywords (Tags Only) and shuffled reasoning sentences (Randomized CoT).
Results show that the logical structure is critical for performance.

Setting \ FD] KLpssstd KLpanws 4 DeSyncl CLAPgor T
Randomized CoT 40.52 1.56 1.35 0.51 0.43
Tags Only 39.35 1.60 1.38 0.50 0.42
Ours (Ordered CoT) | 34.56 1.52 1.32 0.46 0.46

D.6 Impact of CoT Verbosity on Generation Quality

To mitigate the risk of verbose or hallucinated CoT text, we employ a two-pronged strategy: (1)
rigorous quality control during the creation of our AudioCoT training data (see Appendix [A.2),
and (2) direct constraints on CoT generation during inference (e.g., < 3 sentences, < 77 tokens).
To empirically validate this approach, we conducted an ablation study quantifying the impact of
verbosity. We removed our length constraints to generate "Overly Detailed" CoT prompts and
compared them against our proposed "Concise CoT." The results in Table [I3]demonstrate a clear
performance degradation with verbose reasoning, confirming that our dual strategy is effective and
that concise reasoning is critical for achieving high-quality results.

Table 13: Impact of CoT verbosity. We compare our standard concise CoT against an overly
detailed version generated without length constraints. Verbose reasoning leads to a clear performance
degradation.

Setting | FD|  KLpsst} KLpanws | DeSync|  CLAPcor T
Overly-detailed CoT | 43.56 1.61 1.55 0.54 0.35
Concise CoT (Ours) | 34.56 1.52 1.32 0.46 0.46

D.7 Dedicated MLLM Reasoning Evaluation

The quality of the CoT reasoning is the linchpin of our framework. To substantiate our claims,
we conducted a comprehensive evaluation of the generated CoT quality using both expert human
annotators and automated LLM-based metrics.

Human Evaluation We randomly sampled 100 VGGSound test cases. Two expert annotators rated
each generated CoT on a 0-1 scale across five dimensions: (1) multimodal integration, (2) specificity
of audio details, (3) feasibility for audio generation, (4) logical consistency, and (5) brevity/format
compliance. The final score is the sum (max 5).
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LLM-Based Similarity Evaluation For large-scale analysis, we compared the generated CoTs to
ground-truth CoTs using GPT-4-nano. The model was prompted to score similarity on a 0-5 scale,
focusing on reasoning structure, causal/temporal relationships, and object-sound associations.

Results The results, presented in Table[T4] provide strong empirical evidence that our fine-tuned
MLLM (ThinkSound) greatly outperforms other powerful MLLMs in generating high-quality, struc-
tured CoT for video-to-audio reasoning.

Table 14: Evaluation of MLLM-generated CoT quality. Our model is compared against baselines
using human evaluation and LLM-based similarity scoring, demonstrating superior performance in
generating high-quality CoT.

Model \ Human Score (0-5) LLM CoT Similarity (0-5)
Qwen2.5-VL-7B 3.78 3.95
Qwen2-Audio-7B 3.82 4.09
ThinkSound (VideoLLaMA?2) 4.13 4.31

E Limitation and Future

While the current MLLMs are capable of a strong understanding and reasoning of semantic informa-
tion, they still have limitations in understanding the precise temporal and spatial information of video.
For example, in the case of locating the exact timestamp of the sound event, MLLMs often fail to
provide accurate results or provide wrong results. Moreover, the current open-source video-audio
datasets for audio generation are limited in diversity and coverage, which may lack rare or culturally
specific sound events. In the future, we will continue to explore more diverse and comprehensive
datasets to improve the performance of our model. Furthermore, we will explore more effective
methods to improve the temporal and spatial alignment of generated audio.

F Potential Negative Societal Impacts

ThinkSound carries potential risks if misused. Malicious actors could exploit the system to generate
fake audio for synthetic media, thereby contributing to the spread of misinformation. Moreover, if
the training data underrepresents certain cultures or environments, the model may unintentionally
amplify biases—for instance, by reinforcing stereotypes or misassociating sounds with particular
demographic groups.

F.1 Ethical Considerations

The dataset used in this research is strictly for academic and non-commercial purposes. We
implemented several measures to ensure compliance with ethical standards, as follows.

* Data Transparency and Anonymization. We only provide ASR transcripts after rigorous
text anonymization processes, visual features of video clips, our annotations, and links to
the original videos, to ensure transparency regarding the data sources and their usage while
maintaining anonymity.

* Authorization. Any personal data should be used only with express authorization, ensuring
lawful and fair processing in accordance with applicable laws.

G Safeguards

We used a diverse training dataset covering a wide range of acoustic scenes to minimize reinforcing
stereotypes or incorrect associations between sounds and specific demographic groups. The model
will be released in stages to better assess its impact and improve safeguards. However, once the
model is openly released, we cannot control how others use it. Therefore, we provide clear usage
guidelines to encourage responsible use and help mitigate potential misuse.
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