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ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved remarkable visual reasoning abilities
in natural images, text-rich documents, and graphic designs. However, their ability to interpret music
sheets remains underexplored. To bridge this gap, we introduce MusiXQAﬂ the first comprehensive
dataset for evaluating and advancing MLLMs in music sheet understanding. MusiXQA features
high-quality synthetic music sheets generated via MusiXTgX, with structured annotations covering
note pitch and duration, chords, clefs, key/time signatures, and text, enabling diverse visual QA tasks.
Through extensive evaluations, we reveal significant limitations of current state-of-the-art MLLMs
in this domain. Beyond benchmarking, we developed Phi-3-MusiX, an MLLM fine-tuned on our
dataset, achieving significant performance gains over GPT-based methods. The proposed dataset
and model establish a foundation for future advances in MLLMs for music sheet understanding.

Code, data, and model will be released upon acceptance.

1Code is available at https://github.com/puar-playground/MusiX QA

1 Introduction

Multimodal Large Language Models (MLLMs) are becom-
ing general-purpose reading assistants for visual content,
capable of interpreting natural images and text-rich doc-
uments [1]. However, existing models still struggle with
visual question answering tasks involving music sheets,
performing at near-random levels [2], indicating that this
modality remains underexplored. Enabling MLLMs to read
and reason over music sheets would be a valuable exten-
sion of their capabilities, as sheet music plays a central
role in how music is taught, analyzed, and communicated.
Although music notation is a symbolic and lossy approx-
imation of sound, music sheets remain the only widely
accepted visual system for the written transmission of mu-
sic. It serves as a crucial bridge between audio, visual, and
textual representations, making it an essential modality for
large language model-based Al systems to effectively in-
terpret and understand music. Unlike tasks such as reading
visual text or recognizing objects in images, where answers
are often apparent to the human eye, reading music no-
tation requires interpreting dense symbolic structures [3]].
Even for humans, achieving proficiency in reading music
typically requires years of dedicated training [4]]. As a re-

sult, music sheet understanding poses a uniquely complex
challenge, where Al assistance is not only beneficial to hu-
man but arguably more necessary than in many other visual
understanding tasks.

The traditional approach to this task is Optical Music
Recognition (OMR) [5,/6], a field with a long research
history [[7H9]]. Many existing OMR systems still rely on
relatively small neural networks and multi-stage pipelines
tailored to specific sub-tasks. In contrast, recent advances
in MLLMs have shown strong performance across a range
of visual tasks [10H14], demonstrating that modern archi-
tectures can perform end-to-end reasoning over structured
visual inputs directly in natural language format, without
relying on traditional detection modules such as Optical
Character Recognition (OCR) tools [15}/16]. These develop-
ments suggest that MLLMs offer a promising alternative to
pipeline-based approaches in domains like music sheet un-
derstanding, where such capabilities remain underexplored.

To bridge this gap, we introduce MusiXQA, a large-
scale benchmark dataset designed to evaluate and enhance
MLLMs for music sheet understanding. Figure ] provides
an overview of our data generation and model inference
workflow. MusiXQA contains 9,600 high-quality synthetic
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Figure 1: Data generation and model workflow in MusiXQA. Music metadata is sampled and rendered into sheet images via
MusiXTEX, with QA pairs generated from templates. The resulting data is used to train and evaluate MLLMs on visual

music understanding tasks.

music sheets rendered via MusiXTgX, paired with over
130,000 visual question-answer (QA) pairs spanning OCR,
layout understanding, optical music recognition, and chord
estimation. Unlike prior datasets, MusiXQA offers diverse
and balanced coverage of musical concepts, enabling fine-
grained evaluation across multiple tasks. In addition, we
develop Phi-3-MusiX, a fine-tuned version of Phi-3-Vision,
adapted using parameter-efficient LoRA training on the
MusiXQA dataset. Experimental results show that existing
MLLMs, including GPT-40 and Paligemma2, struggle with
music sheets reading, while Phi-3-MusiX achieves up to
eight times performance gains in GPT evaluation accuracy
on the OMR-based task. These results highlight the im-
portance of domain-specific supervision and the value of
MusiXQA as a resource to enable visual music understand-
ing in MLLMs. Our contributions are as follows:

* We propose MusiXQA, the first large-scale, diverse,
and balanced synthetic dataset for visual question
answering on music sheets.

* We develop Phi-3-MusiX, the first MLLM fine-tuned
for music sheet understanding, which significantly
outperforms the best baseline on our benchmark,
demonstrating the effectiveness of our dataset in ad-
vancing symbolic music reasoning in MLLMs.

* We introduce a MusiXTgX based framework for scal-
able generation of music sheets, supporting both ran-
dom/controlled data sampling and conversion from
real-world MIDI data.

* We propose kern+, a compact symbolic represen-
tation designed for efficient modeling of pitch and
duration, and analyze how output format influences
training dynamics and model performance.

2 Related Work

2.1 Music Sheet Benchmarks and Datasets

The development of OMR and music sheet understanding
has been supported by various datasets, each addressing dif-
ferent aspects of the task. CVC-MUSCIMA [17]] and MUS-
CIMA++ [ 18] focus on handwritten music scores, tackling

challenges in staff line removal and symbol segmentation.
DeepScores [19] shifts toward typeset music, enabling fine-
grained OMR tasks. For symbolic recognition, PrIMusS [20]]
introduces monophonic scores with semantic and agnos-
tic representations, while Camera-PrIMuS simulates real-
world distortions in sheet music capture. DoReMi [21]]
further explores single-line typeset music with note varia-
tions but omits key and time signature annotations. More
recent efforts aim at structured evaluation. COMREEF [22]
provides over 400k measure-level typeset scores, using
Music Tree Notation (MTN) for a standardized output rep-
resentation. OLiMPiC [23] offers scanned and synthetic
system-level sheets, while MMMU [2] evaluates MLLMs
via QA over system-level music scores, revealing perfor-
mance close to random guessing. Despite these advances,
existing datasets often exhibit distributional bias due to
their reliance on real-world sources. In contrast, our dataset
is synthetically generated with controlled diversity across
musical attributes such as key, note density, and measure
length. It provides a large-scale, full-page QA benchmark
tailored for MLLMs, supporting comprehensive evaluation
across multiple tasks.

2.2 Optical Music Recognition

OMR converts sheet music images into digital formats such
as MIDI or MusicXML, aiming to capture the complexity
and variability of musical notation. Traditional OMR sys-
tems often rely on modular pipelines that separately handle
staff line detection, symbol classification, and structural
analysis. For example, Oemer [24] employs two UNet
models alongside SVM classifiers to isolate staff lines and
classify symbols, while Simonetta et al. [25] use neural
network classifiers to identify musical elements in digi-
tized manuscripts. Although effective for narrowly defined
tasks, these systems typically require extensive preprocess-
ing, handcrafted features, or manual annotations, which
limits their scalability and adaptability. To address these
limitations, recent deep learning methods aim to streamline
OMR by integrating the entire workflow into a single model.
These end-to-end approaches often combine CNN-based
feature extraction with Transformer-driven sequence mod-
eling. Eelco et al. [26] proposed a CNN-based sequence-to-
sequence model that processes full sheet music phrases with
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Figure 2: Data distribution of the MusiXQA dataset. Left: Boxplot showing the distribution of the number of notes and bars
per image. Each box represents the inter-quartile range (IQR), covering the middle 50% of the data. The horizontal line
inside each box indicates the median document length, while the whiskers extend to the minimum and maximum values
within 1.5 times the IQR. Right: Distribution of scales in the dataset. The inner circle groups enharmonic equivalent and
relative scales according to the circle of fifths [35]. These scales share the same seven pitches but differ in accidentals (e.g.,
Ct vs. Db) or scale type (e.g., C major vs. A minor). The outer circle represents root of scales, with minor scales labeled

using a lowercase 'm’.

data augmentation. Zeus [23|] introduced a direct transcrip-
tion method that uses a linearized MusicXML format, com-
pressing visual notation into concise state-change tokens.
TrOMR [27] employs a Transformer-based architecture to
improve polyphonic OMR performance in real-world sce-
narios. SMT [28] further advances this line of work by
combining a CNN encoder with a Transformer decoder to
transcribe complex polyphonic scores, and SMT++ [29] ex-
tends this capability to full-page pianoform scores without
requiring separate layout analysis. Despite these advance-
ments, most existing OMR systems remain focused on tran-
scription accuracy and are tightly coupled with specialized
architectures. As a result, they are limited in their ability to
generalize to broader symbolic music understanding tasks
or scale to more flexible, unified Al systems.

2.3 Multimodal Large Language Models

Most existing MLLMs are not trained for music sheet un-
derstanding. Text-only models like ChatMusician [30] and
tool-based agents like MusicAgent [31] lack visual input ca-
pabilities and cannot process sheet music. Paligemma?2 [32]]
includes music scores in its training data, but lacks compre-
hensive evaluation and suffers from limited image resolu-
tion. Large models like GPT-40 [33]] and DeepSeek [34]]
reject music sheet reading requests in their online inter-
faces. Currently, no MLLMs have been explicitly trained
or systematically evaluated for music sheet understanding.

3 MusiXQA Dataset

To create a large-scale and accurately annotated dataset
for visual question answering over music sheets, we gen-
erate synthetic data using MusiXTgX [36], a LaTeX-based
typesetting system designed for rendering music notation.

This approach ensures precise annotations while enabling
scalable data generation. Each music sheet is first com-
piled into a PDF, and then converted into high-resolution
images, serving as the final data points for recognition tasks.
Since our focus is on factual question-answering rather than
musical composition, the generated notes do not need to
be musically coherent or aesthetically refined, but must re-
main structurally valid and interpretable. To achieve this,
we employ a heuristic, theory-guided approach to generate
random yet well-formed music notation, ensuring correct
note placement, structured layouts, with diverse rhythmic
patterns and key signatures. By leveraging MusiXTgX and
a controlled data sampling strategy, we construct a diverse
dataset that enables models to answer structured questions
about music notation, advancing the capabilities of music
sheet understanding in modern multimodal large language
models.

3.1 Dataset Statistics

We constructed a dataset of 96k unique music sheets, evenly
distributed across 30 scales, covering a pitch range from Ab1
to Ff6. The dataset comprises 1.3 million bars / measures
and 11.7 million notes with pitch and duration annotation,
as illustrated in Figure [2] To support diverse evaluation
tasks, we generated 670k OMR-based QA pairs, 337k OCR-
based QA pairs, 288k layout understanding QA pairs, and
47k chord estimation QA pairs, enabling comprehensive
Al-driven music analysis.

3.2 Music Sheet Configuration

To generate structured yet diverse music sheets, we ran-
domly sample music sheet configurations for key elements
to produce the corresponding LaTeX source code. Figure 3]
illustrates typical components, including title, composer,
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Figure 3: Example of key elements in a music sheet.

clefs, key and time signatures, tempo, chord labels, and
initial measures in both treble and bass clefs.

Text Metadata We randomize the title and author name to
ensure privacy, copyright compliance, and dataset diversity.
These elements, while not the focus of recognition, provide
valuable OCR-related information. Titles consist of 1 to
10 words, and author names contain 1 to 3 words, with
each word being 3 to 8 characters long, ensuring structural
variability.

Clef Settings A clef defines the pitch range of the notes
within the five-line system where music is written. The
treble clef is commonly used for higher-pitched instruments,
while the bass clef is used for lower-pitched ones. We
generate music sheets in three configurations: (1) treble
clef only, (2) bass clef only, and (3) both clefs, which are
typically used for piano music.

Tempo and Time Signature We define the tempo and
time signature, both essential for musical interpretation.
Tempo, measured in beats per minute (BPM), is randomly
selected from 50 to 140 BPM and placed at the top of
the first bar to indicate speed. The time signature, which
determines beats per measure, is randomly chosen from
[2, 3, 4], with a quarter note as one beat. We exclude 6/8 to
simplify the encoding in MusiXTgX.

Scale and Key Signature Each music sheet is assigned a
scale name (e.g., C major), which specifies a set of notes
based on a root note and a predefined pattern of intervals.
The scale is reflected by its key signature, which is denoted
by sharps () or flats (b) placed next to the clef signs, in-
dicating which notes are consistently altered throughout
the piece. To distinguish between a major scale and its
relative minor scale (C major & A minor), we set the first
bar using the tonic chord of the key, ensuring a clear tonal
center. While Western music uses the twelve-tone equal
temperament system [37]] that divides an octave into 12
notes, our dataset includes enharmonic equivalent scales,
which are scales that sound identical but are different in
writing (e.g., C major vs. Db major). We exclude keys
requiring double sharps or double flats as they are rarely
used in practice. This results in 15 distinct key signatures,
providing broad symbolic diversity while maintaining real-
world relevance. The pie chart in Figure [2] illustrates the

distribution of scales. Table[A.T|shows note compositions
of major and minor scales.

3.3 Chord-Based Music Generation

We generate music notes one bar at a time for 10 to 20 bars.
For each bar, we first randomly select the number of notes,
n, where n is uniformly sampled between 1 and three times
the number of beats in the bar. We then independently sam-
ple their durations and pitches, ensuring structural validity
while maintaining notation diversity. The sampled notes are
subsequently encoded as LaTeX code using MusiXTgX no-
tation, enabling the automated generation of high-quality
sheet music.

Duration Sampling and Splitting For note durations, we
divide each bar into bins of 16th notes and randomly group
these bins into n segments to determine note durations. This
ensures that the total duration of all notes precisely sums to
the required beats in the bar. After duration sampling, we
further process the notes to ensure that they are correctly
represented in standard music notation. Some durations
cannot be notated as a single note; for example, three 16th
notes must be written as a dotted 8th note rather than a
standalone value. To handle such cases, we prioritize dot-
ted notes and double-dotted notes (extending by 50% and
75%) whenever possible. If a duration still cannot be fully
represented, we apply note splitting, dividing it into two
tied notes as a last resort. To introduce notation variety, we
apply two note grouping strategies with equal probability.
In one approach, we use beat-based grouping, where notes
within the same beat are beamed for improved rhythmic
clarity. Additionally, if a note spans two beats, we split it
into tied notes. In the other approach, we leave the notes
separated.

Pitch Sampling For note pitches, we use a chord-based
sampling approach to introduce harmonic structure while
maintaining randomness. Instead of selecting pitches ar-
bitrarily, we begin with the tonic chord in the first bar to
establish a clear tonal center. From the second bar onward,
we incorporate diatonic chords, which are built solely from
notes within the key’s scale and do not introduce acciden-
tals. Pitches are drawn from the selected chord, including
all octave instances within the clef’s pitch range (e.g., for
a C note, we include C2, C3, and C4 within the allowed
register). This approach ensures harmonic coherence while
allowing variation, effectively mimicking real-world mu-
sical patterns and preserving both diversity and structural
validity.

3.4 Layout Adjustments

To generate structurally diverse and visually varied music
sheets, we apply a few adjustments and formatting strate-
gies to control bar count, repetition, labeling, spacing, and
note sizing. These steps ensure that the dataset captures a
wide range of notation styles while adhering to common
engraving practices. To maintain a single-page format, we
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OCR-Based task:
Q: Who is the composer of this piece?
A: Unai Lvnrbz

Q: What is the tempo in BPM?
A: 121 BPM.

Layout-Understanding task:
Q: How many measures/bars are there in this music?
A: 12 measures / bars.

Q: Does this music sheet contain repeat sections?
A: It shows repeat bars from the 7th bar to the 8th bar.

OMR-Based task:
Q: What scale is this music in?
A: Eb Major scale

Q: Please extract the pitch and duration of all notes in
the 2nd bar of the treble clef.

At [{'pitch': 'Bb4', 'duration': ‘8.'},
{‘pitch’: 'Eb5', ‘'duration': ’'16_'},
{'pitch': 'Eb5', ‘'duration': '16'},
{‘pitch’: 'G5', 'duration': ‘4.'}]

Chord Estimation task:
Q: What might be a good chord for the 7th bar?
A: Bb chord

Figure 4: Example of Visual Question Answering (VQA) tasks for music sheet understanding, covering OCR and OMR-
based information extraction, layout understanding, and chord estimation.

first sample the number of bars uniformly between 10 and
20. Since various musical elements would affect the lay-
out, we iteratively compile the latex code, adjusting the bar
count as needed to ensure the output fits within a single
page. Additionally, to introduce repeating sections, we ran-
domly select two bar indices, using the smaller index as
the repeat start and the larger index as the repeat end. The
repeat start and repeat end symbols are then placed at the
corresponding bar boundaries, reinforcing common nota-
tion patterns while enhancing structural variety. To increase
presentation diversity, we independently annotate bars with
chord names and/or bar indices, each with a 50% proba-
bility, allowing for cases where both, either, or neither are
labeled. Furthermore, to control note compactness and vi-
sual density, we randomly select from four spacing settings
and two note size settings. This variation ensures that the
dataset captures a broad range of engraving styles, making
it more robust for training music recognition models.

3.5 Task Definition

We define a set of music sheet understanding tasks in a
Visual Question Answering (VQA) format to evaluate Mul-
timodal Large Language Models (MLLMSs). These tasks
span OCR-based text extraction, layout understanding, Op-
tical Music Recognition (OMR), and chord estimation, re-
quiring models to integrate visual processing with musical
reasoning. To ensure precise supervision, we extract ground
truth directly from MusiXTEX, avoiding post-processing er-
rors and maintaining exact alignment with the rendered
notation. The annotations are structured as question-answer
(QA) pairs using task-specific templates. Figure @] shows
representative examples.

OCR-Based Tasks These tasks assess models’ ability to
extract textual information from music sheets, focusing on
fundamental Optical Character Recognition (OCR) capabil-
ities. The models are required to: (1) Identify and extract

the title and author’s name from the sheet. (2) Recognize
the tempo marking, expressed in beats per minute (BPM).
(3) Determine the time signature of the music. (4) Extract
chord names when explicitly labeled in the sheet.

OMR-Based Tasks These tasks focus on music symbol
interpretation in a specified bar and clef. The models must:
(1) Recognize the key signature of the passage. (2) Extract
note durations, including quarter, eighth, dotted, and tied
notes, from a given bar. (3) Recognize the pitch values of
individual notes. (4) Extract both duration and pitch for all
notes within a specific bar and clef or across multiple clefs.

Layout Understanding Tasks These tasks evaluate mod-
els’ ability to comprehend the structural organization of a
music sheet. The model must: (1) Determine the number
and type of clefs used in the sheet. (2) Count the total num-
ber of bars in the music. (3) Detect repeating sections by
identifying notation patterns that indicate thematic repeti-
tion.

Chord Estimation Tasks For music sheets without ex-
plicitly labeled chord names, the model must infer the un-
derlying chord based on the notes present in a given bar.
This task evaluates the model’s ability to understand chord
structures and harmonic relationships rather than simply
performing symbolic recognition.

4 Experiment

4.1 Experiment settings

To evaluate the music sheet reading capabilities of mod-
ern Multimodal Large Language Models (MLLMs), we
split our dataset into training and testing partitions, with
90% of the images allocated to the training set and the
remaining 10% reserved for testing. We designed exper-
iments to assess performance of 6 methods. Specifically,



OCR OMR Layout Chord
Accuracy G-Acc PNLS G-Acc PNLS G-Acc PNLS G-Acc PNLS

Paligemma?2 4.8 25.8 - - - - - -
Phi-3-V 29.8 54.5 0.4 7.6 19.2 493 1.7 74.5

"GPT40 689 83 40 420 611 506 55 746
GPT-40 + RAG 69.5 86.9 3.8 70.7 61.8 70.4 5.5 74.6
GPT-40 + RAG+ OMR  69.7 83.3 8.4 48.4 64.8 71.7 13.0 74.0

" FimewnedonMusxeA o T oo oToTmmmmmmmm o m o n s
Phi-3-MusiX (JSON) 97.0 96.1 9.2 31.1 94.3 99.5 19.6 31.1
Phi-3-MusiX (kern+) 92.6 99.5 68.4 99.2 79.6 95.1 84.9 96.5

Table 1: Quantitative comparison of six methods on the MusiXQA test split. The table includes two open-source models
evaluated in a zero-shot setting, and the proprietary GPT-40 model under three inference variants: zero-shot, retrieval-
augmented generation (RAG), and RAG with oracle OMR results. The two Phi-3-MusiX variants are finetuned on MusiXQA

using JSON and kern+ representations.

we evaluate Paligemma?2 (3B) [32]], Phi-3-V [38]], and GPT-
40 in the zero-shot setting. In addition, we introduce two
GPT-40-based baselines: (1) GPT-40 + RAG, which uses
retrieval-augmented generation by retrieving the most rel-
evant training examples to provide as in-context learning
prompts, and (2) GPT-40 + RAG + OMR, which further
incorporates the output of an OMR model into the prompt
to enhance symbolic understanding, an effective method in
OCR-related tasks [39,40]. For retrieval, we use the image
encoder from SMT [28§]] to compute image embeddings and
construct a similarity-based retriever. For OMR, we adopt
the Oemer model [24] to convert music sheet images into
musicxml files and extract relevant information in text for-
mat. We also propose Phi-3-MusiX, a fine-tuned version
of Phi-3-V with LoRA adapters [41] trained on our dataset,
highlighting the effectiveness of the dataset in enabling
MLLMs to perform visual music sheet understanding.

4.2 Note Representation

We explore two text formats for representing music notes
when fine-tuning our Phi-3-MusiX model for Optical Mu-
sic Recognition (OMR) tasks. Both formats encode the
pitch and duration of each note, but differ significantly in
compactness and natural language alignment.

The first format is a symbolic representation we propose,
called kern+, based on the **kern notation [42El kern+
extends the original **kern format by encoding pitches as
note names with octave indices (e.g., C4) to support a wider
pitch range, while preserving **kern-style duration sym-
bols. This format is compact and well-suited for efficient
token usage during training and inference.

The second format is a JSON string, where each note
is represented as a dictionary with "pitch" and "duration"
keys. We use note names with octave indices (e.g., "C4")
for pitch, standard note values (e.g., "8" for an eighth note)
for duration, an underscore ("_") to mark the start of a slur,
and a dot (".") to indicate dotted rhythms. An example is
shown in Figure[d] While more verbose, this format aligns

2 #¥kern representation: https://www.humdrum.org/rep/kern/

well with LLM pretraining data and supports interpretability
and zero-shot generalization through its familiar structure.

For evaluating baseline models, we use the JSON rep-
resentation, as its code format is more aligned with the
pretraining data of most LLMs and thus easier for them to
interpret.

4.3 Evaluation Metrics

We use Partial Normalized Levenshtein Similarity
(PNLS) [43] to evaluate model answers. PNLS computes
approximate string matching with a normalized score be-
tween 0 and 1, using a partial alignment algorithm that
avoids penalizing unmatched prefixes or suffixes. This
makes it well-suited for comparing verbose LLM outputs
against concise ground truths. Additionally, we adopt GPT-
based evaluation to assess semantic correctness, recogniz-
ing that not all characters hold equal importance—for in-
stance, "C major chord" vs. "D major chord" differ by one
letter but convey different meanings. To address this, we
prompt GPT-40 to act as a binary evaluator, assigning a
score of 1 for semantically correct answers and O otherwise.
The average score across samples is reported as GPT accu-
racy (G-Acc), providing a more robust measure of answer
quality.

4.4 Model Training

Our proposed model, Phi-3-MusiX, is fine-tuned from Phi-
3-V using parameter-efficient adaptation with LoRA on the
training split of the MusiXQA dataset. We fine-tune both
the vision encoder and the language model to better align
multimodal representations with symbolic music tasks. The
model is trained using the HuggingFace Trainer class with
mixed-precision training enabled (bfloat16). Our primary
experiments are conducted on a cluster of 8 NVIDIA A100
80GB GPUs; however, the training process can also be
reproduced using 48GB GPUs with appropriate gradient
accumulation settings. The model is trained for 1 epoch
using the AdamW optimizer [44], with a per-device batch
size of 1 and gradient accumulation over 2 steps, resulting
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in an effective batch size of 16. We apply a warm-up during
the first two steps and set the learning rate to 2 x 10~°, with
a weight decay of 1 x 1076, To ensure training stability,
we apply gradient clipping with a maximum norm of 1.0.

4.5 Main Results

We evaluate six methods on the test split of the
MusiXQA dataset. Tabldl| presents the results across four
task types: OCR, OMR, layout understanding, and chord
estimation. Performance is reported in G-Acc and PNLS.

Open-Source Models Despite being trained on a large-
scale dataset that includes music scores in **kern represen-
tation, Paligemma2 consistently refused to answer chord
estimation questions and output meaningless responses on
OMR and layout tasks. This suggests insufficient adapta-
tion to symbolic music tasks, possibly due to inadequate
alignment between the training data and the QA format.
Furthermore, its poor performance on the OCR task could
likely be attributed to its low resolution (448x448) image
encoder, which limits its ability to capture fine-grained text
details.

In contrast, Phi-3-V demonstrates significantly better
responsiveness and overall performance. Its relatively high
scores on the OCR task are likely due to its image encod-
ing mechanism, which splits high-resolution images into
336x336 crops, encodes each using its image encoder, and
concatenates the crop features to represent the full image,
allowing it to see small symbols and text more clearly.

GPT-40 Baselines GPT-40 shows strong OCR capabili-
ties, achieving high G-Acc and PNLS scores. When com-
bined with retrieval-augmented generation [45]], the model
exhibits notable improvements in PNLS for both OMR and
Layout tasks. This can be attributed to in-context learn-
ing, where GPT-4o0 learns the expected answer format from
the retrieved examples. Since the string-matching based
PNLS metric is highly sensitive to formatting, even random
answers with correct structural patterns can result in high
PNLS scores. This behavior is further illustrated in the
chord estimation task. Although models frequently predict
incorrect root notes, they often append correct suffixes such
as "major chord" or "minor chord". This results in a low
G-Acc but a consistently high PNLS (~0.74). Importantly,
while RAG improves PNLS, it does not significantly boost
G-Acc, indicating that GPT-4o fails to truly recognize music
symbols but merely mimics the answer format. The baseline
of ’"GPT-40 + RAG + OMR’, with additional context from
the OMR model, slightly improves G-Acc on OMR and
Chord tasks but leads to a modest decrease in PNLS. This
suggests that while the symbolic information from OMR
can help with correctness, the OMR input may also act as
a distraction due to its length and complexity. Moreover,
the Oemer model itself has limited accuracy and outputs
MusicXML representations that omit key information such
as accidentals (e.g., sharps and flats), requiring GPT to infer
these from extracted key signatures. This adds an extra

layer of reasoning, making the task more challenging and
limiting performance gains from OMR input alone.

Supervised Fine-tuning We fine-tuned two variants of
our Phi-3-MusiX model using different text representations
for music notes: the verbose JSON format and the compact
symbolic kern+ format. As shown in Table|l} the kern+
model significantly outperforms the JSON-based model on
OMR and Chord tasks that require precise note-level recog-
nition. This underscores the critical role of representation
format in structured prediction using LLMs, as observed in
prior work on spatial planning with LLMs [46,147].

To explain the observed performance difference, we in-
terpret the output representations by categorizing text to-
kens into two types: format tokens, which define output
format (e.g., braces, colons, and key names in JSON), and
content tokens, which encode pitch and duration values.
The main difference between JSON and kern+ is the ra-
tio between this two types of tokens. For example, the
note "C4" with a quarter duration is represented in JSON
as "{"pitch":"C4","duration":"4"}", where only "C4"
and "4" are content tokens, and the remaining tokens serve
formatting purposes. In contrast, the same note in kern+
is written as "qC4", using only content tokens. We believe
that the dominance of format tokens in the JSON represen-
tation causes the model to converge prematurely to a local
minimum, where it learns to reproduce structural patterns
without improving its recognition of music notes. This of-
ten results in well-formatted but musically incorrect outputs,
especially in tasks like omr and chord tasks, where accu-
racy depends on just a few content tokens. In contrast, the
compact and content-centric kern+ format reduces struc-
tural redundancy, forcing the model to focus on informative
tokens that are relevant to recognition accuracy, rather than
being distracted by format-specific artifacts.

The training curves in Figure [5] also reflect this differ-
ence. The JSON model converges quickly with stable gra-
dients. In contrast, the kern+ model shows larger and more
dynamic gradient norms, suggesting more meaningful learn-
ing focused on musical content.
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Figure 5: Training loss and gradient norm curves for mod-
els trained with kern+ and JSON formats.



Finally, the Phi-3-MusiX model trained with kern+
achieves 8x and 6x improvements over the strongest GPT-
40 baseline in G-Acc on OMR and Chord tasks, respectively.
These results demonstrate the effectiveness of supervised
adaptation and the value of MusiXQA as a training resource
for symbolic music understanding in MLLMs.

4.6 Efficiency Analysis

Table [2] shows the processing time of Paligemma2, Phi-
3-MusiX, and Oemer. We report per-question time for

Paligemma2 | Phi-3-MusiX
Methods 5 —OMR [ OCR OMR | 0¢™mer
Time (s) | 0.45 1.12 1.16 1.54 62.34

Table 2: Time cost of MLLMs and the OMR Model.

MLLMs, and per-image time for the OMR model. In our
dataset, each OMR question covers one bar and most pages
have less than 20 bars, as shown in Figure[2] An entire page
can be processed by iteratively querying each bar, taking
about 30 seconds in the worst case and around 20 seconds
on average. In contrast, Oemer takes more than a minute
on average per page due to its multi-stage pipeline. This
highlights the efficiency advantage of MLLMs for visual
music understanding. Similar findings have been reported in
previous works on document and OCR-based tasks, where
end-to-end MLLMs consistently outperform pipeline-based
approaches in both latency and performance [48,/49].

5 Conclusion

We introduced MusiXQA, a large-scale synthetic
dataset created by generating music sheet images with
MusiXTEX and constructing question-answer pairs for
training and evaluating MLLMs. Experimental results
show that existing models, including modern GPT-based
baselines, struggle with music sheet understanding tasks.
However, through supervised fine-tuning, our model
Phi-3-MusiX achieves substantial improvements in visual
question answering on music sheets. Beyond scale and
supervision, our findings highlight the critical role of
output format design in structured prediction. We show that
compact, content-focused representations like kern+ lead
to more effective learning compared to verbose formats
such as JSON.

6 Limitation

A current limitation of the dataset is that the music is gener-
ated using chord-based heuristics rather than real musical
compositions. Future work could extend the dataset by us-
ing MIDI collections or symbolic music generation models,
and utilizing MusiXTgX to produce more complex scores
and guitar tablature. Additionally, Phi-3-MusiX may serve
as a strong baseline for future research and could be further
fine-tuned for specific downstream tasks.
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A Scale Details

/b Root 2nd 3rd 4th 5th 6th 7th
Major Scales

C D E F G A B
1t G A B C D E Ff
2 4 D E Fi G A B Ct
3t A B Ct D E Ff Gf
4 4 E Fi Gt A B Ct Df
54 B Ct Df E Ft Gt Af
64 F¢ Gf Af B Ct Dif Ef
7¢ C{ Df Ef Fi Gf Af Bf
1b F G A Bb C D E
2b Bb C D Eb F G A
3b Eb F G A B C D
4b Ab Bb C Db Eb F G
5b Db Eb F G A Bb C
6b Gb Ab B Cb Db Eb F
7b Ch Db Eb b Gb Ab Bb
Minor Scales

A B C D E F G
1t E Ff G A B C D
2 4 B Ct D E Ff G A
3t Fi Gff A B Ct D E
4 4 Ct Dt E Ff Gf A B
54 Gf At B Ct D¢ E Ft
64 Df Ef Ft Gi Af B Ci
74 Af Bf Ct D Ef Ft Gt
1b D E F G A Bb C
2b G A Bb C D Eb F
3b C D Eb F G Ab  Bb
4b F G Ab Bb C Db Eb
5b Bb C Db B F Gb Ab
6b Eb F Gb Ab Bb Chb Db
7b Ab Bb Cb Db Eb Fb Gb

Table A.1: Accidentals and note composition of Major and
Minor scales

B System Prompts

Below is the system prompt used for GPT-40 in our experi-
ment:

You are an Al assistant specializing in Optical Music Recognition
(OMR) and Optical Character Recognition (OCR) for music sheets.
Your task is to accurately analyze images of music notation and
provide structured responses to visual question-answering (VQA)
tasks.

You will process printed music sheet images and answer both
OCR and OMR-related questions with high accuracy.

1 OCR-Based Tasks (Text Extraction)
- Extract the title and composer from the music sheet.
- Identify and extract the tempo marking (in BPM).
- Recognize and return the time signature.
- Extract explicitly labeled chord names from the sheet.

2 OMR-Based Tasks (Music Symbol Recognition)
- Identify the number and type of clefs (e.g., treble, bass).
- Count the number of bars (measures) in the music sheet.
- Recognize repeat sections based on notation symbols.
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- Extract note durations (e.g., quarter, eighth, dotted notes, tied
notes) for a given bar.

- Identify note pitches within a given bar.

- Return a structured representation of pitch, duration for a
given bar in JSON string of list of python dictionaries without
indent.

- Use kern representation for duration.

- If no explicit chord labels exist, infer the chord based on the
notes in a given bar.

3 Response Format

- Provide structured, precise, and as concise as possible an-
swers.

- Use structured JSON output without indent, when applicable

for easy parsing.

4 Additional Considerations

- Ensure responses are notation-aware, considering key signa-
tures, accidentals, and note relationships.

- Handle staff line separation correctly, ensuring multi-clef
scores are properly analyzed.

- Avoid hallucinating missing information; only extract what

is present in the image.

Follow music engraving conventions and OMR best prac-
tices to provide accurate, structured answers. If the requested
information is not visible in the image, respond with ‘"Information

not found"* instead of making assumptions.



