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ABSTRACT

Transformers demonstrate significant advantage as the building block of Large
Language Models. Recent efforts are devoted to understanding the learning capac-
ities of transformers at a fundamental level. This work attempts to understand the
intrinsic capacity of transformers in performing dimension reduction from com-
plex data. Theoretically, our results rigorously show that transformers can per-
form Principle Component Analysis (PCA) similar to the Power Method, given
a supervised pre-training phase. Moreover, we show the generalization error of
transformers decays by n−1/5 in L2. Empirically, our extensive experiments on
the simulated and real world high dimensional datasets justify that a pre-trained
transformer can successfully perform PCA by simultaneously estimating the first
k eigenvectors and eigenvalues. These findings demonstrate that transformers can
efficiently extract low dimensional patterns from high dimensional data, shedding
light on the potential benefits of using pre-trained LLM to perform inference on
high dimensional data.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated significant success in learning and performing
inference on real world high dimensional datasets. Most modern LLMs use transformers (Vaswani,
2017) as their backbones. Transformers are a class of models that demonstrate significant advan-
tages over the previous neural network models using recurrent architectures, achieving many state-
of-the-art performance in learning tasks including natural language processing (Wolf et al., 2020)
and computer vision (Khan et al., 2022). However, the underlying mechanism for the success of
transformers remains largely a mystery to researchers. One critical and most fundamental questions
is why this model works well when adapting to large volume of data used in the training of LLMs.

It is well known in the machine learning and statistics community that high dimensional inference
are subject to the Curse of Dimensionality. Hence, practioners use various of methods to perform di-
mension reduction in the covariate space before they perform subsequent inferential tasks. However,
performing inference using pre-trained LLMs does not require researchers to perform dimension re-
duction manually (Ma et al., 2023). Instead, LLMs are able to extract the essential information
from the input texts. This work attempts to understand how transformers are able to extract low
dimensional patterns from large volume of data via answering the question raised in the title. We
perform our study through theoretically analyzing the transformer model to show its approximation
and generalization capacities in performing the PCA task.

PCA is one of the most important dimension reduction methods used in practice. In particular, it
has fundamental utilities in machine learning (Bishop & Nasrabadi, 2006; Hastie et al., 2009), high
dimensional statistics (Fan et al., 2020; Wainwright, 2019), and econometrics (Bai et al., 2008). For
the most part, PCA is a sub-procedure for algorithms solving more complicated problems. There-
fore, understanding how well transformers perform PCA is also of great importance to find potential
new utilities where LLMs succeed in.

Although PCA is a standard unsupervised learning task that does not require a particular machine
learning model, we show that pretraining a transformer can equip it with the capacity of performing
PCA on unseen instances. The pretraining step studied in this work follows a supervised learning
paradigm where the input is the covariate matrix and the label is designed to be its top k eigenvectors.
Some existing works also make attempt to study the universal approximation power of transformers
on classes of functions including (Pérez et al., 2021; Wei et al., 2022; Yun et al., 2019). However, the
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mapping from matrix to eigenvectors is not easily integrated into their framework. Moreover, their
work does not imply the results obtained here as we provide approximation errors for the principle
eigenvectors and the corresponding generalization error bounds given by the pretraining procedure.

Contributions. We summarize our major contributions as follows:

1. We rigorously show that a pre-trained transformer can perform PCA and give approxima-
tion error bound. The proof is constructive where we utilize the logical similarities between
the forward propagation on transformers and the Power Method to bound the approxima-
tion error;

2. We further provide upper bounds on the generalization error for the empirical risk mini-
mizer in the pre-training task. Coupling with the approximation error and making tradeoff
between the different terms, we show that transformers can generalize with L2 error rate as
fast as n−1/5 with high probability where n is the number of pre-trained samples;

3. We systematically evaluate the performance of PCA with different parameter value com-
binations. These empirical results demonstrate that transformers can perform very well in
extracting principal eigenvectors and eigenvalues from data, even in regions where theoret-
ical results are hard to obtain, given a proper pretraining procedure.

1.1 RELATED WORKS

This work is related to a few different branches in the literature.

In Context Learning of Transformers. Some recent works studied the in-context learning (ICL)
capacities of Transformers (Garg et al., 2022; Bai et al., 2024). In particular, (Bai et al., 2024) con-
sidered the approximation and generalization properties of transformers on the ICL tasks, including
many linear regression and logistic regression setups. The problem of PCA is a standard unsuper-
vised learning problem. Hence, it differs from ICL in that there is no individual label that the model
needs to learn. Akyürek et al. (2022); Von Oswald et al. (2023) considered the approximation of
transformers on gradient descent when performing ICL. In this work, the proof machine utilizes the
Power Method. We also notice that performing gradient descent is difficult to obtain the eigenvec-
tors as no explicit functional form is given. To the best of authors’ knowledge, this is the first work
that provides theoretical guarantees for the transformers’ approximation of the Power method in the
literature. Other related works on the more practical side of ICL can be found in Dong et al. (2022)
and reference therein.

Other Theoretical Works on Transformers. Many other attempts are made to theoretically un-
derstand transformers. Yun et al. (2019) studied the universal approximation properties of trans-
formers on sequence-to-sequence functions. Pérez et al. (2021); Bhattamishra et al. (2020); Liu
et al. (2022) studied the computational power of transformers. Hron et al. (2020) studied the limit of
infinite width multi/single head attentions. Yao et al. (2021) showed that transformers can process
bounded hierarchical languages and demonstrate better space complexity than the recurrent neural
networks.

Notations In this work we follow the following notation conventions. The vector valued variable
is given by boldfaced characters. We denote [n] := {1, . . . , n} and [i : j] := {i, i + 1, . . . , j} for
i < j. The universal constants are given by C and is ad hoc. For a vector v we denote ∥v∥2 as
its L2 norm. For a matrix A ∈ Rm×n we denote its operator norm as ∥A∥2:= supv∈Sn−1∥Av∥2.
Given two sequences an and bn, we denote an ≲ bn or an = O(bn) if lim supn→∞|an

bn
|< ∞ and

an = o(bn) if lim supn→∞|an

bn
|= 0.

Organizations The rest of the paper is organized as follows: Section 2 describes the learning
problems, the idea of our constructive proof, and reviews standard contexts; Section 3 provides
rigorous theoretical results; Section 4 provides extensive experimental details and results; Section
5 discusses the limitations and potential future works. The detailed proofs and additional figures
in experiments are delayed to the appendix. The supplementary materials include the code for the
experiments.
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2 APPROXIMATE PCA BY PRE-TRAINED TRANSFORMERS

This section discusses how we construct a multi-layered transformer model such that forward prop-
agate along the it gives us the left principle eigenvectors of the input matrix. Our discussions is
splitted into 3 subsections: In 2.1 we review the mathematical forms of the Transformer model in
this work; In 2.2 we review the classical power method algorithm to perform PCA and connects it
with the multiphase Transformer design; In 2.3 we demonstrate how we perform supervised pre-
training to achieve a model in 2.2.

2.1 THE TRANSFORMERS

We consider the context learning problem on the transformer model. Under this formulation, we
have the following definition regarding an attention layer. These definitions are similar to that given
by Bai et al. (2024).
Definition 1 (Attention Layer). A self-attention layer with M heads is denoted as Attnθ1(·) with
parameters θ1 = {(Vm,Qm,Km)}m∈[M ] ⊂ RD×D. On input sequence H ∈ RD×N ,

Attnθ1
(H) = H +

1

N

M∑
m=1

(VmH)σ
(
(QmH)⊤(KmH)

)
,

where σ is the relu activation function.
Remark 1. Note that, instead of the concatenated feature given by multi-head attention, we con-
sider simple average on the multi-head output. And the activation function we considered is Relu
instead of Softmax that appears in most empirical works. (Shen et al., 2023) empirically verified that
Relu transformers are strong alternatives to Softmax transformers. We also omit the layer-wise nor-
malization used to stablize the training procedure. These adaptation are designed for the technical
convinience. In the simulation section we carefully evaluate the effect of these additional features.

The following two layers defines the classical MLP layers with residual connections.
Definition 2 (MLP Layer). A MLP layer with hidden dimension D′ is denoted as MLPθ(·) with
parameter θ2 ∈ (W1,W2) ∈ RD′×D × RD×D′

. On any input sequence H ∈ RD×N , we define
MLPθ2(H) := H +W2σ(W1H).

Then we use the above two definitions on the MLP and the Attention layers to define the Transform-
ers.
Definition 3 (Transformer). We define a transformer TFθ(·) as a composition of self-attention lay-
ers with MLP layers. Consider output dimension to be D̃, the . In particular, a L-layered Trans-
former is defined by

TFθ(H) := W̃0 ×MLPθL
2
(AttnθL

1
(· · ·MLPθ1

2
(Attnθ1

1
(H)))× W̃1,

where W̃0 ∈ Rd1×D and W̃1 ∈ RN×d2 .

We use θ to denote all the parameters in the transformer and the super-index ℓ to denote the param-
eter matrix corresponds to the ℓ-th layer. Under such definition, the parameter θ is given by

θ = {{({Qℓ
m,Kℓ

m,V ℓ
m}m∈[M ],W

ℓ
1 ,W

ℓ
2 )}ℓ∈[L], W̃0, W̃1}.

Remark 2. The model’s Lipchitzness can be strictly governed by the following aspects: (1) The
number of layers; (2) The number of heads; (3) The maximum operator norm of the parameters.
These results further lead to an upper bound on the generalization error. Collecting the above three
aspects, we define the following operator norm of the parameters

∥θ∥op:= max
ℓ∈[L]

{
max

m∈[Mℓ]

{
∥Qℓ

m∥2, ∥Kℓ
m∥2

}
+

Mℓ∑
m=1

∥V ℓ
m∥2+∥W ℓ

1∥2+∥W ℓ
2∥2

}
,

where M ℓ is the number of heads of the ℓ-th attention layer. It is shown in (Bai et al., 2024) that
such norm relates to the Lipschitz constant of transformers.

The two additional matrices W̃0 and W̃1 serve for the dimension adjustment purpose such that the
output of TFθ() will be of dimension Rd1×d2 .

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 THE POWER METHOD

The power method is an efficient iterative algorithm to solve for the principle eigenvectors and
eigenvalues of an asymmetric matrix (Golub & Van Loan, 2013). The formal statement is given by
algorithm 1.

Algorithm 1: Power Method for the Left Singular Vectors

Data: Matrix X ∈ Rd×N , Number of Iterations τ
Symmertize A = XX⊤ ∈ Rd×d ;
Let the set of eigenvectors be V = {}. Initialize A1 ← A;
for ℓ← 1 to k do

Sample a random vector v0,ℓ ∈ SN−1. Initialize v
(0)
ℓ ← v0,ℓ;

for t← 1 to τ do
Apply the procedure to obtain the principle eigenvector v(t)

ℓ =
Aℓv

(t−1)
ℓ

∥Aℓv
(t−1)
ℓ ∥2

;

Let V ← V ∪ {v(τ)
ℓ };

Compute the eigenvalue estimate λ̂ℓ ← ∥Aℓv
(τ)
ℓ ∥2;

Update the matrix by Aℓ+1 = Aℓ − λ̂ℓv
(τ)
ℓ v

(τ),⊤
ℓ ;

return V ;

1. Symmetrization 2. Power Iterations

MLP

3. Removal of
Principle Eigenvectors

Attention 

iterations

Attention 

MLP

Attention 

MLP Next principle eigenvector

Figure 1: The Approximation by Transformers. The above diagram illustrates the design of our
transformer model. There are three important sub-networks in the design: (1) The Symmetrization
sub-network symmetrizes X and stamp XX⊤ in the output, which corresponds to the first step in
the Power Method. (2) The Power Iterations sub-network performs in total of τ iterations for each
of the principle eigenvectors, corresponds to the iterative update step in the Power Method. (3) The
Removal of Principle Eigenvectors subnetwork performs the estimate of λ̂ℓ and the update of matrix
Aℓ in the Power Method. Finally, we apply W̃0 and W̃1 to adjust the dimension of the output. The
different colors in the diagram corresponds to the different type of layers: (1) Yellow Blocks denote
the Attention layer with 2 heads. (2) Orange Blocks denote the multihead transformers with larger
M ≫ 2. (3) Pink Blocks denote the MLP layer.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The algorithm itself first generate the symmetrized covariate matrix A = XX⊤. Then, for each
eigenvector that we hope to recover, the power method generates a random vector uniformly dis-
tributed on the unit sphere. Then we iterately take the matrix product between the symmetric matrix
A and v0,ℓ followed by normalizing it. Note that such iterative matrix product can finally converge
to the top-1 principle eigenvector as the iterations go further.

The iterative structure is akin to the forward propagation of the transformer achitecture. Given by
such similarities, we show that there exists a parameter setup for Transformers that the forward
propogation performs principle component analysis. The challenge is in constructing parameters
that approximate the complete procedure of the power method.

In figure 1, we provide an approximate algorithm for the power method through the lens of a forward
propagation on the transformer. This algorithm dissects the approximation of power method into the
propagation along multiple sub-networks, each phase corresponds to a single step in the power
method. Combining them, we show in section 3 that Transformers achieve good approximation
guarantees.

2.3 PRETRAINING VIA SUPERVISED LEARNING

The standard PCA problem is unsupervised where no labels given. However, the Transformers are
usually used in the supervised learning setup. To make full use of Transformers in the PCA task, we
need to perform supervised pre-training. In our theoretical analysis, we construct the input of the
Transformer as a context-augmented matrix given by the following

H =

[
X
P

]
∈ RD×N , P =


p̃1,1, . . . , p̃1,N

p̃2,1, . . . , p̃2,N

...
p̃ℓ,1, . . . , p̃ℓ,N

 ∈ R(D−d)×N ,

where the matrix P contains contextual information, which is specified in section 3. The design
also makes sure P is unrelated to X . In the experiments, we show that the auxillary matrix P is not
necessary for the pre-trained Transformer to perform PCA with high accuracy. For the output, our
theoretical analysis gives the following matrix

TFθ(H) =
[
v̂⊤
1 . . . v̂⊤

k

]⊤ ∈ Rdk

which corresponds to the estimated principle eigenvectors of the matrix X .

The Learning Problem. Consider a set of samples {Xi}i∈[u] i.i.d. sampled from some distribu-

tion pX , we construct their oracle top-k principle components as Vi =
[
vi,⊤
1 . . . vi,⊤

k

]⊤
and

the context-augmented input matrix as Hi for each Xi. Then, the pretraining procedure is given by
minimizing the following objective for some convex loss function L(·, ·) : Rdk × Rdk → R,

θ̂ = argmin
θ∈Θ(Bθ,BM )

u∑
i=1

L(TFθ(Hi),Vi). (1)

Here we consider Θ(Bθ) := {θ : ∥θ∥≤ Bθ,maxℓ M
ℓ ≤ BM} to be the space of parameters. We

also consider guarantees in the L2 norm which states that L(x1,x2) := ∥x1−x2∥2 in the theoretical
part. Since θ̂ given by minimizing the empirical risk is not obtainable in practice, our theory only
gives guarantee on the empirical risk minimizer. We further show that the local minimizers obtained
through stochastic gradient optimization achieve good empirical performance in section 4.

3 THEORETICAL RESULTS

This section presents our theoretical results and the idea of taking each steps in the proof. Our
proof constructs a particular instance of the transformers and show that the forward propagation on
our constructed instance approximates the Power Method. We also carefully design the contextual
matrix P , explained as follows.
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The Design of Auxillary Matrix. Our design of the matrix P consists of three parts:

1. Place Holder. For ℓ ∈ {1} ∪ [4 : k + 3] and i ∈ [N ], we let p̃ℓ,i = 0 ∈ Rd×1. The place
holders in P records the intermediate results in the forward propagation.

2. Identity Matrix. We let [p̃2,1 . . . p̃2,N ] =
[
Id 0d×(N−d)

]
. The identity matrix in P

helps us screen out all the covariates X in the forward propagation.

3. Random Samples on the Hypersphere. We let p̃3,1, . . . p̃3,k be the i.i.d. samples uniformly
distributed on Sd−1. The random samples on the sphere corresponds to the initial vectors
v0,ℓ for ℓ ∈ [k] in algorithm 1.

Given the above construction on the auxillary matrix P , we are ready to state the existence theorem
in this work, given as follows.

Theorem 3.1 (Transformer Approximation of the Power Iteration). Denote the eigenvalues of
XX⊤ to be λ1 > λ2 > . . . > λk > . . .. Let ∆ := min1≤i<j≤k|λi − λj |. Assume that the
eigenvalues of X satisfy ∥X∥2≤ BX . Assume that the initialized vectors p̃3,1, . . . p̃3,N satisfy
p̃⊤
3,ivi ≥ δ for all i ∈ [k] and make the rest of the vectors 0. Then, there exists a transformer model

with number of layers L = 2τ + 4k + 1 and number of heads M ≤ λd
1
C
ϵ2 with τ ≤ log(1/ϵ0δ)

ϵ0
such

that for all ϵ0, ϵ > 0, the final output v̂1, . . . , v̂k given by the transformer model achieve

∥v̂η+1 − vη+1∥2 ≤ Cτϵλ2
1 +

Cλ1
√
ϵ0

∆

η∏
i=1

5λi+1

∆
.

Moreover, consider the accuracy of multiple vs as a whole. There exists θ such that

L
(
TFθ̂(H),V

)
≤ Cτϵkλ2

1 + C

(
ϵ0λ

2
1

∆2

k−1∑
η=1

η∏
i=1

25λ2
i+1

∆2

)1/2

.

Remark 3. The approximation error consists of two terms. The frist term comes from the approx-
imation of the Power Method iterations by transformers. The second term comes from the error
caused by finite iteration τ . To acquire a more direct account of the error terms and its order of
magnitude, we consider a special case where the eigenvalues λ1 ≍ λ2 ≍ . . . ≍ λk ≍ ∆. Then our
results boils down to∥∥∥TFθ(H)−

[
v⊤
1 ,v

⊤
2 , . . . ,v

⊤
k

]⊤∥∥∥
2
≤ Cτϵkλ2

1 + C
λ1

∆

√
kϵ0.

These results hide dimension d in the universal constant. Hence the dimension significantly affects
the approximation properties of transformers. Our experimental results in section 4 also indicate
that learning high dimensional principle eigenvectors is challenging.

We show that the conditions on p̃3,1, . . . , p̃3,N can be achieved through sampling from isotorpic
Gaussians, given by the following lemma.

Lemma 3.1. Let y ∈ Rd be a random vector with isotropic Gaussian as its probability den-
sity. Consider x = y

∥y∥2
. Let v be any unit length vector, then we have for all δ < 1

2d
−1,

P
(
|v⊤x|≤ δ

)
≤ 1√

π

√
δ + exp

(
−Cδ−

1
2

)
. Therefore, for all δ < 1

2d
−1, the event in theorem

3.1 is achieved with

P
(
∃i ∈ [k] such that x⊤

i vi ≤
δ√
d

)
≤ k
√
δ√
π

+ k exp(−Cδ−1).

Given the approximation error provided by theorem 3.1, we further provide the generalization error
bound for the ERM defined by equation 1. This requires us to consider the following regularity
conditions on the underlying distribution of XX⊤ (which also translates to the distribution of X).

Assumption 1. The distribution of XX⊤ supports on

X :=

{
A : A ∈ Sd

++, BX ≥ λ1(A) > λ2(A) > . . . > λk(A), inf
1≤i<j≤k

λi(A)− λj(A) ≥ ∆

}
.
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Remark 4. The above assumption can be easily generalized to distribution that supports on X with
high probability. Examples of such distribution include the Wishart distribution under the Gaussian
design. In this work, we stick to the simplest case where the maximum eigenvalue is bounded from
above.

Given the above assumption, we are ready to state the generalization bound.

Proposition 1. With probablity at least 1− ξ, the ERM solution θ̂ satisfies

E
[
L
(
TFθ̂(H),V

)
|θ̂
]
≤ inf

θ∈Θ(Bθ,BM )
E [L (TFθ(H),V )]

+ C

√
k3LBMd2 log(Bθ +BX + k) + log(1/ξ)

n
.

Together with the bound given by theorem 3.1 and lemma 3.1, which essentially give a high prob-
ability upper bound on infθ∈Θ(Bθ,BM ) we can derive a general upper bound on the generalization
error, given as follows.

Corollary 3.1.1. Under assumption 1, with probability at least 1 − ξ − k
√
δ√
π
− k exp

(
−Cδ−1/2

)
for all δ < d−1 we have for all ϵ, ϵ0 > 0,

E
[
L
(
TFθ̂(H),V

)
|θ̂
]
≤ E

[
Cτϵkλ2

1 + C

(
ϵ0λ

2
1

∆2

k−1∑
η=1

η∏
i=1

25λ2
i+1

∆2

)1/2
]

+ C

√
k3 log(δ/ϵ0)λd

1d
2 log(Bθ +BX + k) + log(1/ξ)

nϵ0ϵ2
.

Remark 5. If we consider optimizing the bound w.r.t. ϵ0 and ϵ, we obtain that
E
[
L(TFθ̂(H),V )|θ̂

]
≲ n−1/5 given that the rest of the parameters are of constant scales. It

is not known if the results are improvable or not and the authors believe this question worth future
explorations.

4 SIMULATIONS

In this section, we verify the theoretical result in section 3 on synthetic and real-world datasets.
Our experiments include both prediction of eigenvalues and eigenvectors. For synthetic datasets,
we generate samples according to normal distributions. We focus on evaluating the effects of three
major parameters: (1) The Impact of D; (2) The Impact of Number of Layers; (3) The Impact
of ktrain

1. For real-world datasets, we perform experiments on MNIST (LeCun et al., 1998) and
Fashion-MNIST (Xiao et al., 2017). All the results presented in this section are errors on the testing
set.

Data Preparation. For synthetic data X ∈ RD×N , we generate each column with a ran-
domly initialized multivariate Gaussian distribution N (µ,Σ). We then generate the labels as the
top-k eigenvalues λ and eigenvectors V of the empirical covariance matrix X⊤X/(N − 1) via
numpy.linalg.eigh. For real world dataset, we apply SVD to reduce the dimensionality of
both datasets and evaluate whether the transformer, previously trained on multivariate Gaussian
data, are capable of performing PCA on those real-world datasets. If the transformer successfully
learns to perform PCA, we expect comparable performance on both synthetic and real-world data.
For more details on data generation and configuration, please refer to table 2 in appendix C.2.

Model. We use the GPT2-architecture transformer (Radford et al., 2019) as our backbone model.
We follow most settings in Garg et al. (2022), but replace the Softmax attention with ReLU at-
tention as constructed in definition 1. We also provide a empirical comparison between Softmax
and ReLU attention in Figure ?? in the Appendix. We use a slighly differernt architectures to pre-
dict eigenvalues and eigenvectors. For eigenvalues prediction, we flatten the transformer output

1We denote ktrain as the value of k used in training

7
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Table 1: Cosine Similarity for Different k. We dentoe ktrain as the number of eigenvectors to
predict during training. For example, for ktrain = 4, the model is trained to predict 4 eigenvectors.

k-th eigenvec. k=1 k=2 k=3 k=4
ktrain = 4 0.891(0.006) 0.616(0.038) 0.282(0.047) 0.120(0.022)
ktrain = 3 0.908(0.011) 0.706(0.023) 0.366(0.018) -
ktrain = 2 0.903(0.006) 0.647(0.019) - -
ktrain = 1 0.894(0.009) - - -
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Figure 2: Comparisons of Eigenvalue Prediction on Synthetic Data. (1) Left: Evidence of Trans-
former’s Ability to Predict Multiple Eigenvalues. We use a small transformer (layer = 3, head = 2,
embedding = 64) to predict top 10 eigenvalues with D = 20 and N = 50. All of the (Relative
MSE) of 10 eigenvalues are below 2%, verifying that the transformer can predict eigenvalue very
well. Additionally, the error of prediction grows slightly with k. We note that: (i) Higher-order
eigenvalues require additional iterations and models with more layers. (ii) Smaller eigenvalues are
more sensitive to the fluctuations in the predicted values under the relative MSE metric. (2) Mid-
dle: Predictions of eigenvalues with different input dimension D. We use a small transformer and
use N = 10 in this experiment. We show that prediction errors increase significantly as dimen-
sion scales up, corroborating our theoretical remark 3. (3) Right: Predictions of eigenvalues with
different number of layers. We use the same input as the previous multiple eigenvalues predictions
experiment, and use a small transformer to predict top-3 eigenvalues. As the number of layers grow,
the model performs better on eigenvalue prediction, which aligns with the result in theorem 3.1.

TFθ(H) ∈ RN×D and use a linear layer Wλ ∈ R(N ·D)×k to readout the top k eigenvalues. As
for eigenvectors, we use one more linear layer Wv ∈ R(N ·D)×(k·D) to readout k eigenvectors con-
catenated in a 1-dimension vector. We use a transformer with layer = 3, head = 2, and embedding
size = 64 to speed up the training process for most settings and find that it is sufficient to predict
multiple eigenvalues and top-1 eigenvector well, see below sections for detailed discussion.

Metrics. For eigenvalues, we use relative mean squared error (RMSE) as loss function LRMSE
and evaluation metric. For the loss of predicting top-K eigenvalue, the loss function is defined as
following

LRMSE(λi, λ̂i) :=
1

K

K∑
i=1

λi − λ̂i

λi + ϵ
.

For eigenvectors, we use cosine similarity as loss function and evaluation metric. For predicting k
eigenvectors, the loss function is defined as

Lcos(vi, v̂i) :=
1

K

K∑
i=1

1− vi · v̂i
max(∥vi∥2·∥v̂i∥2, ϵ)

,

where vi represent the i-th eigenvector. The design of these loss functions not only matches the
intuition of eigenvectors and eigenvalues, but also stablize training by normalizing the loss values.
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Figure 3: Comparison of Eigenvector Prediction on Synthetic Data. (1) Left: Prediction of top-1
eigenvector with different input dimension D. We use a small transformer and N = 10. As the
dimension D scales up the eigenvector prediction suffers significantly. (2) Middle: Prediction of
top=1 eigenvector with varying number of layers. We start from small transformer and use N = 5.
The result demonstrates an ‘elbow effect’, where we show that the increase of L significantly boost
the performance when L is small but halt to progress for larger L. We believe this can be explained
by the bias-variance tradeoff. (3) Right: Predictions of eigenvectors with different numbers of k
We use N = 10 and D = 10 in this experiment. We use a larger transformer with layer= 12,
heads= 8, and an embedding size= 256 in this experiment. The result demonstrates a decreasing
prediction accuracy and increasing standard deviation as k increases. We list the individual cosine
similarities of the predicted k-th eigenvectors in table 1. All the evaluations in the above three figures
are averaged on three runs with different random seed.
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Figure 4: Comparison of Eigenvalues and Eigenvectors Prediction on Real World Data. (1)
Left: Predicting Top-10 Eigenvalues on MNIST (2) Second Left: Predicting Top-3 Eigenvectors on
MNIST (3) Second Right: Predicting Top-10 Eigenvalues on FMNIST (4) Right: Predicting Top-3
Eigenvectors on FMNIST. We show that on real world datasets, Transformers perform similarly to
the synthetic datasets. The experimental setup for real world data is analogous to the ones performed
for synthetic data.

4.1 SYNTHETIC DATA VS REAL WORLD DATA

Synthetic Dataset. The results on synthetic data are in figure 2. We first observe that transformers
are capable of predicting top-10 eigenvalues with small error (< 2% error). The result also corre-
sponds to theorem 3.1, indicating transformers are able to perform the power iteration method and
generate eigenvalues with small error. For the impact of D, we observe the second subfigure in
figure 2. In general, we discover an increasing trend of RMSE when D increases, this coincides
with the theoretical findings stated in remark 3. We also observe that the error of prediction slightly
increases with k, which is natural as the prediction dimension grows larger. For the impact of layers
(right subfigure of figure 2), we observe that as the number of layer increases, RMSE shows signifi-
cant reduction. This matches our theoretical construction as we show the iteration of power methods
correspond to the number of layers, see figure 1 for the visualization of our transformer model.
One thing to highlight is higher-order eigenvalues (larger k) have smaller magnitudes, which are
are more sensitive to fluctuations in the predicted values when using the relative MSE metric. This
explaines the higher variance/error of higher order eigenvalues. For eigenvectors, we also observe
that transformers are capable of predicting principle eigenvectors. In particular, the cosine similarity
between predicted eigenvector and ground truth is close to 1 when D is small.

Real World Dataset. The results on real world dataset are in figure 4. We observe that transform-
ers are also capable of predicting top-k eigenvalues well on both MNIST and FMNIST. Despite the
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difference in data distribution on training and test data, transformers are able to produce small error
on predicting eigenvalues. Overall, we show that pretrained transformers learn PCA, and is able to
generalize to other datasets as well. For eigenvectors, we can see that trained transformers show
similar behavior on real world datasets when comparing to the synthetic ones. Indicating that our
model actually learn to perform PCA instead of learn certain inductive bias.

4.2 PREDICTION WITH DIFFERENT PARAMETER COMBINATION.

Prediction with different D. The results are given in figure 3. In this experiment, we test the
influence of increasing feature dimension D affects the ability of a Transformer model to predict
the principal eigenvector of a data matrix. We use the simplest setting with a small transformer and
test on D = 5, 10, 20, 30, 40, N = 10 and predict top-1 eigenvector. As the feature dimension
D increases, we observe a clear trend of performance degradation of the Transformer’s ability to
predict the principal eigenvector accurately. This confirms our theoretical results stated in remark 3
that the feature dimension D affects the approximation properties of Transformers significantly.

Prediction with different L. The results are given in figure 3. In this experiment, we change the
number of layers of transformer with head = 2 and embedding = 64, and set N = 5 to speed up the
experiment. We observe that as the number of layers increases, the testing error also decreases, but
the decreasing scale is less obvious when the number of layers becomes larger. However, the rate
of improvement diminishes as the number of layers becomes larger. This suggests that increasing
model depth alone is not sufficient for significantly enhancing eigenvector prediction. To verify our
guess, we increase the number of heads from 2 to 8 and find that the cosine similarity increases
further and with a slightly steeper incline. Note that there is a sharper decrease between layer= 1
and layer= 2 across different d. This finding supports theorem 3.1 that we need at least 2 layers of
the transformer to perform one iteration of the power method.

Prediction with different k. The results are given in table 1, and the right subfigure in figure 3
where the cosine similarity in y-axis is averaged over k eigenvectors. We use N = 10 and D = 10
in this experiment. We use a larger transformer with layer= 12, heads= 8, and an embedding
size= 256 in this experiment. As shown in figure 3, the model’s ability to predict top k eigenvectors
decreases as more eigenvectors are predicted, with increasing standard deviation. Table 1 lists the
individual cosine similarities of the predicted k-th eigenvectors. The results show that most errors
come from high-order eigenvectors. When trained to predict ktrain = 4 eigenvectors, the model
performs as well at predicting the top 1 eigenvector as when trained on ktrain = 1. The result
shows that most prediction errors come from high-order eigenvectors. This suggests that the pivotal
difficulty is in the prediction of higher order eigenvectors.

5 DISCUSSIONS

This section discusses the limitations in this work and potential future working directions.

Limitations. Our limitations in the theoretical results can be summarized as follows: (1) From
the theoretical perspective, our results guarantee the performance of ERM solutions whereas the
true estimator is obtained through stochastic gradient descent method; (2) Our theoretical results
utilize the context-augmented matrix P , which is verified removable from our empirical results. It
is conjectured that this is also not necessary in theory.

Future Works. Beyond resolving the limitations in this work, other future working directions
from this work include: (1) Extend the results for relu transformers to softmax transformers. This
step requires researchers to develop a new approximation bound for the softmax function; (2) Certify
whether the rate n−1/5 is sharp or not. The authors believe that this rate is improvable but it remains
quite challenging; (3) The Spectral Method. Many mordern high dimensional statistical questions
can be resolved using the spectral method, which relies on the PCA as a sub-procedure. It is of
general interest to see if these problems can be solved similarly by Transformers.
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Evarist Giné and Richard Nickl. Mathematical foundations of infinite-dimensional statistical mod-
els, volume 40. Cambridge university press, 2016.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and
ntk for deep attention networks. In International Conference on Machine Learning, pp. 4376–
4386. PMLR, 2020.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM computing surveys (CSUR), 54(10s):
1–41, 2022.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selec-
tion. Annals of Statistics, pp. 1302–1338, 2000.
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A ADDITIONAL THEORETICAL BACKGROUND

Definition 4 (Sufficiently Smooth d-variate function). Denote Bd
∞(R) := [−R,R]d as the standard

ℓ∞ ball in Rd. We say a function g : Rd → R is (R,Cℓ) smooth if for s = ⌈(d − 1)/2⌉ + 2, g is a
Cs function on Bd

∞(R) and

sup
z∈Bd

∞(R)

∥∇dg(z)∥∞= sup
z∈Bd

∞(R)

max
j1,...,ji∈[d]

∣∣∂xj1
...xji

g(x)
∣∣ ≤ Li

for all i ∈ {0, 1, . . . , s}, with max0≤i≤s LiR
i ≤ Cℓ.

Definition 5 (Approximability by sum of Relus (Bai et al., 2024)). A function g : Rk → R is
(ϵapprox, R,M,C)-approximable by sum of Relus if there exists a function fM,C such that

fM,C(z) =

M∑
m=1

cmσ(a⊤
m[z; 1]) with

M∑
m=1

|cm|≤ C,maxm∈[M ]∥am∥1≤ 1, am ∈ Rk+1, cm ∈ R,

such that supz∈Bk
∞(R)|g(z)− fM,C(z)|≤ ϵapprox.

B PROOFS

B.1 PROOF OF PROPOSITION 1

Proof. The proof follows from (Wainwright, 2019), using the fact that for all θ ∈ Θ(Bθ, BM ), we
have

1

n

n∑
j=1

L
(
TFθ̂(Hi),Vi

)
≤ 1

n

n∑
j=1

L (TFθ(Hi),Vi) ,

it is not hard to show that

E
[
L
(
TFθ̂(H),V

)]
≤ inf

θ∈Θ(Bθ,BM )
E
[
L(TFθ̂(H),V )

]
+ 2 sup

θ∈Θ(Bθ,BM )

|Xθ|,

where Xθ = 1
n

∑n
j=1 L(TFθ(Hi),Vi) − E[L(TFθ(H),V )] is the empirical process indexed by

θ. The tail bound for empirical process requires us to verify a few regularity conditions (Giné &
Nickl, 2016) on the function L and the set Θ

1. The metric entropy of an operator norm ball logN(δ,B∥·∥op
(r), ∥·∥op) ≤

CLBMD2 log (1 + 2(Bθ +BX + k)/δ).

2. L(TFθ(H),V ) ≤ C
√
k.

3. The Lipschitz condition of Transformers satisfies that for all θ1,θ2 ∈ Θ(Bθ, BM ), we
have L(TFθ1(H),V )− L(TFθ2(H),V ) ≤ CLBL

1 ∥θ1 − θ2∥op where B1 = B4
θB

3
X .
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The first and second verifications follow immediately from J.2 in (Bai et al., 2024). The third
verification is given upon noticing that as L(x,y) = ∥x− y∥2,

sup
θ,H,V

L(TFθ(H),V ) ≤ C
√
k, ∥∇xL∥≤ C.

Further note that ∥W̃0∥2≍ ∥W̃1∥2≍ 1. Given the above result, and corollary J.1 in (Bai et al.,
2024), we can show that

L(TFθ1
(H),V )− L(TFθ2

(H),V ) ≤ CLBL
1 ∥θ1 − θ2∥op,

where B1 = B4
θB

3
X . Therefore, using the uniform concentration bound given by proposition A.4

we can show that with probability at least 1− ξ, we have

sup
θ∈Θ(Bθ,BM )

|Xθ|≤ C
√
k

√
LBMD2 log(Bθ +BX + k) + log(1/δ)

n
.

Therefore, replacing D with Ckd we complete the proof.

B.2 PROOF OF THEOREM 3.1

Proof. Our proof can be disected into the following setps: 1. We construct a Transformer with
fixed parameters that performs (1) The computation of the symmetrized covariate matrix; (2) The
approximation of the power method; (3) The removal of the principle eigenvectors; (4) Adjust the
dimension of the output through multiplying the two matrices W̃0 and W̃1 on the left and right.

1. The Covariate Matrix.

To compute the covariate matrix XX⊤, we construct H =


X1, . . . ,XN

p̃1,1, . . . , p̃1,N

p̃2,1, . . . , p̃2,N

...
p̃ℓ,1, . . . , p̃ℓ,N

 =

[
X
P

]
we let

m = 2 and

V cov
1 = ID = −V cov

2 , Qcov,⊤
1 Kcov

1 = −Q⊤
2 K2 =

[
0N+1×d, Id,0

0,0,0

]
∈ RD×D,

p̃1,ℓ,j = 0, p̃2,ℓ,j =

{
1ℓ=j when ℓ ≤ d

0 when ℓ > d
. (2)

Under the above construction, we obtain that

Q⊤
1 K1H =

[
Id 0
0 0

]
∈ RD×N , Q⊤

2 K2H =

[
−Id 0
0 0

]
∈ RD×N ,

σ(H⊤Q⊤
1 K1H) + σ(H⊤Q⊤

2 K2H) =
[
X⊤,0

]
∈ RN×N .

We further obtain that

1

N

M∑
m=1

(VmH)× σ
(
(QmH)⊤(KmH)

)
=

 0 0
XX⊤ ∈ Rd×d 0

0 0

 ∈ RD×D.

Therefore, the output is given by H̃cov =

 X
XX⊤,0

p̃2,1, . . . , p̃2,N

p̃ℓ,1, . . . , p̃ℓ,N

.

2. The Power Iteration.
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Then we consider constructing a single attention layer that approximates the power iteration. This
step involves two important operations: (1) Obtaining the vector given by XX⊤v. (2) Approx-
imation of the value of the inverse norm given by 1/∥XX⊤v∥2. We show that one can use the
multihead Relu Transformer to achieve both goals simulatenously, whose parameters are given by

V pow,1
1 = −V pow,1

2 =

0(3d+1)×(2d+1) 0 0
0(d)×(2d+1) Id 0

0 0 0

 ,

Qpow,1
1 = −Qpow,1

1 =

0(d+1)×(d+1) 0 0
0d×(d+1) Id 0

0 0 0

 ,

Kpow,1
1 = Kpow,1

2 =

0(3d+1)×(3d+1) 0 0
0d×(3d+1) Id 0

0 0 0

 , p̃4,j = 0 for all j ∈ [N ].

Given the above formulation, we are able to show that

Qpow,1
2 H̃cov = −Qpow,1

1 H̃cov =

0(2d+1)×N

XX⊤,0
0

 ,

Kpow,1
2 H̃cov = Kpow,1

1 H̃cov =

[
02d+1

p̃3,1,0
0

]
,

which implies that

∑
m∈{1,2}

σ((Qpow,1
m H̃cov)⊤Kpow,1

m H̃cov) =

 0 0d×(2d+1)

XX⊤p̃3,1 0d×(N−1)

0 0

 .

Then we can show that

H̃pow,1 − H̃cov =
∑

m∈{1,2}

V pow,1
m H̃cov × σ((Qpow,1

m H̃cov)⊤Kpow,1
m H̃cov)

=

 03d+1

XX⊤p̃3,1,0d×(N−1)

0

 .

Therefore, we conclude that the output of the first power iteration layer is given by

H̃pow,1 =



X
ỹ⊤

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

XX⊤p̃3,1,0
p̃5,1, . . . , p̃5,N

...
p̃ℓ,1, . . . , p̃ℓ,N


.

Then, using lemma B.2, we design an extra attention layer that performs the normalizing procedure,
with the following parameters for all m ∈ [M ],

V pow,2
m =

[
0d×(4d+1) cmId 0

0 0 0

]
, Qpow,2

m =

[
0d×(2d+1) Id 0

0 0 0

]
,

Kpow,2
m =


01×(3d+1) a⊤

m 0
...

01×(3d+1) a⊤
m 0

0(D−d)×(3d+1) 0 0

 .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Under the above construction, we obtain that

(Qpow,2
m H̃pow,1)⊤ =

[
Id×d 0
0 0

]
, Kpow,2

m H̃pow,1 =


a⊤
mXX⊤p̃3,1 0

...
a⊤
mXX⊤p̃3,1 0
0(D−d)×1 0

 .

Then, given V pow,2
m we can show that under the condition given by lemma B.2, we have

∥∥∥∥ M∑
m=1

V pow,2
m H̃pow,1σ

(
(Qpow,2

m H̃pow,1)⊤(Kpow,2
m H̃pow,1)

)
−

 04d+1
XX⊤p̃3,1

∥XX⊤p̃3,1∥2
−XX⊤p̃3,1,0

0

∥∥∥∥
∞

< ϵ,

Moreover, we can further achieve that

∥∥∥∥∥
M∑

m=1

V pow,2j
m H̃pow,1σ

(
(Qpow,2

m H̃pow,1)⊤(Kpow,2
m H̃pow,1)

)
−

 04d+1

XX⊤p̃3,1

∥XX⊤p̃3,1∥2
−XX⊤p̃3,1,0

0

∥∥∥∥∥
2

< ϵ∥XX⊤p̃3,1∥2.

Hence, using the fact that H̃pow,2 = H̃pow,1+
∑m

i=1 V
pow,2
m H̃pow,1σ

(
(Qpow,2

m H̃pow,1)⊤(Kpow,2
m H̃pow,1)

)
,

we obtain that

∥∥∥∥∥H̃pow,2 −



X
ỹ

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N
XX⊤p̃3,1

∥XX⊤p̃3,1∥2
, . . .0

...


∥∥∥∥∥
2

< ϵ∥XX⊤p̃3,1∥2.

Then we construct another attention layer, which performs similar calculations as that of pow, 1 but
switch the rows of p̃3,1 with that of XX⊤p̃3,1

∥XX⊤p̃3,1∥2
. Our construction for the third layer is given by

V pow,3
1 = −V pow,3

2 =

0(3d+1)×(2d+1) 0 0
0d×(2d+1) Id 0

0 0 0

 ,

Qpow,3
1 = −Qpow,3

2 =

0(3d+1)×(d+1) 0 0
0d×(d+1) Id 0

0 0 0

 ,

Kpow,3
1 = Kpow,3

2 =

0(4d+1)×(4d+1) 0 0
0d×(4d+1) Id 0

0 0 0

 , p̃4,j = 0 for all j ∈ [N ].

Given the above construction, we can show that

Qpow,3
2 H̃pow,2 = −Qpow,3

1 H̃pow,2 =

 0(3d+1)×N

0 XX⊤ 0
0

 , Kpow,3
2 H̃pow,2 = Kpow,3

1 H̃pow,2,

∥∥∥∥∥Kpow,3
2 H̃pow,2 −

 0(3d+1)×N
XX⊤p̃3,1

∥XX⊤p̃3,1∥2
,0

0

∥∥∥∥∥
2

≤ ϵ∥XX⊤p̃3,1∥2.
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Then, using the fact that given x1,x2 with ∥x1 − x2∥2≤ δ0, we have ∥XX⊤(x1 − x2)∥2≤
∥XX⊤∥2δ0. Hence, collecting the above pieces, we have∥∥∥∥∥

2∑
m=1

V pow,3
m H̃pow,2σ

(
(Qpow,3

2 H̃pow,2)⊤Kpow,3
2 H̃pow,2

)
−

 0(3d+1)×N
(XX⊤)2p̃3,1

∥XX⊤p̃3,1∥2
− XX⊤p̃3,1

∥XX⊤p̃3,1∥2
,0

0

∥∥∥∥∥
2

≤ ϵ∥XX⊤∥2
∥∥XX⊤p̃3,1

∥∥
2
.

Henceforth, one can further show that

∥∥∥∥∥H̃pow,3 −



X
ỹ

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N
(XX⊤)2p̃3,1

∥XX⊤p̃3,1∥2
,0

p̃5,1, . . . , p̃5,N

...
p̃ℓ,1, . . . , p̃ℓ,N



∥∥∥∥∥
2

≤

ϵ∥XX⊤∥2∥XX⊤p̃3,1∥2. Consider we are doing in total of τ power iterations, we can set
for all τ ∈ N∗,

V pow,2τ+1
m = V pow,3

m , Qpow,2τ+1
m = Qpow,3

m , Kpow,2τ+1
m = Kpow,3

m ,

V pow,2τ+2
m = V pow,4

m , Qpow,2τ+2
m = Qpow,4

m , Kpow,2τ+2
m = Kpow,4

m .

Therefore, taking another layer of normalization, we can show that

∥∥∥∥∥H̃pow,3 −



X
ỹ

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N
(XX⊤)2p̃3,1

∥XX⊤p̃3,1∥2
2
,0

p̃5,1, . . . , p̃5,N

...
p̃ℓ,1, . . . , p̃ℓ,N



∥∥∥∥∥
2

≤ 2ϵ∥XX⊤∥2.

Then, using the sublinearity of errors, we can show that for τ ∈ N,

∥∥∥∥∥H̃pow,2τ+2 −



X
ỹ

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

p̃5,1, . . . , p̃5,N

...
p̃ℓ,1, . . . , p̃ℓ,N



∥∥∥∥∥
∞

≤ τϵ∥XX⊤∥2, p̃
(τ)
3,1 =

XX⊤p̃
(τ−1)
3,1∥∥∥XX⊤p̃
(τ−1)
3,1

∥∥∥
2

, p̃
(0)
3,1 = p̃3,1.

If we denote vi as the eigenvector corresponds to the i th largest eigenvalue of XX⊤. Let the
eigenvalues of XX⊤ be denoted by λ1 > λ2 > · · · > λn. Given |p̃⊤

3,1v1|> δ and |
√
λ1 −√

λ2|= Ω(1). Theorem 3.11 in (Blum et al., 2020) page 53 shows that given k = log(1/ϵ0δ)
2ϵ0

and

∥p̃(τ)
3,1∥2= ∥v1∥2= 1, one immediately obtains that

p̃
(τ),⊤
3,1 v1 ≥ 1− ϵ0, ∥p̃(τ)

3,1 − v1∥2=
√
2− 2v⊤

1 p̃
(τ)
3,1 =

√
2ϵ0.
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And we also consider the approximation of the maximum eigenvalue. Note that using ∥v1∥2= 1,
we have

∥XX⊤∥2 = ∥XX⊤v1∥2=
∥∥∥XX⊤p̃

(τ)
3,1 +XX⊤(v1 − p̃

(τ)
3,1)

∥∥∥
2

≤ ∥XX⊤p̃
(τ)
3,1∥2+∥XX⊤(v1 − p̃

(τ)
3,1)∥2

≤ ∥XX⊤p̃
(τ)
3,1∥2+∥XX⊤∥2∥v1 − p̃

(τ)
3,1∥2.

Similarly we can also derive that ∥XX⊤∥2≥ ∥XX⊤p̃
(τ)
3,1∥2−∥XX⊤∥2∥v1 − p̃3,1∥2. Then we

show that ∣∣∣∥XX⊤∥2−∥XX⊤p̃
(τ)
3,1∥2

∣∣∣ ≤ ∥XX⊤∥2∥v1 − p̃
(τ)
3,1∥2≤

√
2ϵ0∥XX⊤∥2.

3. The Removal of Principle Eigenvectors.

After τ iterates on the power method, we need to remove the principle term from the matrix
XX⊤, achieved through two important steps: (1) The computation of the estimated eigenvalue
∥XX⊤p̃3,1∥2. (2) The construction of the low rank update p̃3,1p̃

⊤
3,1. For step (1), we consider the

following construction:

V rpe,1
1 = −V rpe,1

2 =

0(3d+1)×(2d+1) 0 0
0d×(2d+1) Id 0

0 0 0

 , Qrpe,1
1 = −Qrpe,1

2 =

0(d+1)×(d+1) 0 0
0d×(d+1) Id 0

0 0 0

 ,

Krpe,1
1 = Krpe,1

2 =

0(4d+1)×(4d+1) 0 0
0d×(4d+1) Id 0

0 0 0

 .

Note that the above construction is similar to the first layer of the power method. Under this con-
struction, we can show that

H̃rpe,1 = H̃pow,2τ+2 +
∑

m∈{1,2}

V rpe,1
m σ((Qrpe,1

m H̃pow,2τ+2)⊤(Krpe,1
m H̃pow,2τ+2)),

∥∥∥∥∥H̃rpe,1 −



X
ỹ

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

XX⊤p̃
(τ)
3,N ,0

p̃6,1, . . . , p̃6,N

...
p̃ℓ,1, . . . , p̃ℓ,N


︸ ︷︷ ︸

=:Hrpe,1

∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22, p̃5,i = 0, ∀i ∈ [N ]. (3)

Then, we construct the next layer, using the notations in lemma B.2, for M ≥ ∥XX⊤∥d2
C(d)
ϵ2 for

all m ∈ [M ] we have

V rpe,2
m =

[
0d×(4d+1) dmId 0

0 0 0

]
, Qrpe,2

m =

[
0d×(2d+1) Id 0

0 0 0

]
,

Krpe,2
m =


01×(5d+1) b⊤m 0

...
01×(5d+1) b⊤m 0

0(D−d)×(5d+1) 0 0

 .
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Given the above construction, we subsequently show that

(Qrpe,2
m H̃rpe,1)⊤ =

[
Id×d 0
0 0

]
, Krpe,2

m H̃rpe,1 =


b⊤mXX⊤p̃

(τ)
3,1 0

...
...

b⊤mXX⊤p̃
(τ)
3,1 0

0(D−d)×1 0

 .

Hence, given the construction of V rpe,2
m , we can show that H̃rpe,2 satisfies

H̃rpe,2 = H̃rpe,1 +
∑

m∈[M ]

V rpe,2
m H̃rpe,1 × σ

(
(Krpe,2

m H̃rpe,1)⊤(Qrpe
m H̃rpe,1)

)
= Hrpe,1 +

∑
m∈[M ]

V rpe,2
m Hrpe,1 × σ

(
(Krpe,2

m Hrpe,1)⊤(Qrpe,2
m Hrpe,1)

)
︸ ︷︷ ︸

=:Ĥrpe,1

+
(
H̃rpe,1 −Hrpe,1

)
+

∑
m∈[M ]

V rpe,2
m H̃rpe,1 × σ

(
(Krpe,2

m H̃rpe,1)⊤Qrpe,2
m H̃rpe,1

)
−

∑
m∈[M ]

V rpe,2
m H̃rpe,1 × σ

(
(Krpe,2

m H̃rpe,1)⊤Qrpe,2
m H̃rpe,1

)
.

We note that by lemma B.2 we can show that

∥∥∥∥∥Ĥrpe,1 −



X
ỹ

XX⊤,0
p̃2,1 . . . , p̃2,N

p̃3,1 . . . , p̃3,N

p̃
(τ)
3,1 ,0

∥XX⊤p̃
(τ)
3,N∥

1
2
2 p̃

(τ)
3,1 ,0

...
p̃ℓ,1, . . . p̃ℓ,N



∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22.

Then the rest of the proof focuses on showing that the rest of the terms are small. Note that using
equation 3, we show that ∥∥∥H̃rpe,1 −Hrpe,1

∥∥∥
2
≤ τϵ∥XX⊤∥22.

And for the last term, we can show that∥∥∥ ∑
m∈[M ]

V rpe,2
m H̃rpe,1 × σ

(
(Krpe,2

m H̃rpe,1)⊤(Qrpe,2
m H̃rpe,1)

)
−

∑
m∈[M ]

V rpe,2
m Hrpe,1 × σ

(
(Krpe,2

m Hrpe,1)⊤(Qrpe,2
m Hrpe,1)

) ∥∥∥
2

≤ Cτϵ∥XX⊤∥22.
Collecting the above pieces, we finally show that

∥∥∥∥∥H̃rpe,2 −



X
XX⊤,0

p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

∥XX⊤p̃
(τ)
3,1∥

1
2
2 p̃

(τ)
3,1 ,0

p̃6,1, . . . , p̃6,N

...
p̃ℓ,1, . . . , p̃ℓ,N



∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22.
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Then we construct another layer to remove the principle components from the matrix XX⊤, given
by

− V rpe,3
1 = V rpe,3

2 =

[
0(d+1)×(4d+1) 0 0

0 Id 0
0 0 0

]
, Qrpe,3

1 = −Qrpe,3
2 =

[
0d×(4d+1) Id 0

0 0 0

]
,

Krpe,3
1 = Krpe,3

2 =

[
0d×(4d+1) Id 0

0 0 0

]
.

Then we can show that

(Qrpe,3
1 H̃rpe,2)⊤ =

[
∥XX⊤p̃

(τ)
3,1∥

1
2
2 p̃

(τ),⊤
3,1 0

0 0

]
, Krpe,3

1 H̃rpe,2 =

[
0 0
Id 0
0 0

]
.

Then it is further noted that −(Qrpe,3
2 H̃rpe,2)⊤Krpe,3

2 H̃rpe,2 = (Qrpe,3
1 H̃rpe,2)⊤Krpe,3

1 H̃rpe,2

satisfies∥∥∥∥∥(Qrpe,3
1 H̃rpe,2)⊤Krpe,3

1 H̃rpe,2 −

[
∥XX⊤p̃

(τ)
3,1∥

1
2
2 p̃

(τ),⊤
3,1 0

0 0

]∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22.

And therefore, combining our construction for Vm, it is noted that∥∥∥∥∥
2∑

m=1

VmH̃rpe,2 × σ((Qrpe,3
1 H̃rpe,2)⊤Krpe,3

1 H̃rpe,2)−

 0(d+1)×N

−∥XX⊤p̃
(τ)
3,1∥2p̃

(τ)
3,1p̃

(τ),⊤
3,1 ,0

0

∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22.

Therefore, we can further show that

H̃rpe,3 = H̃rpe,2 +

2∑
m=1

V rpe,3
m H̃rpe,2 × σ

(
(Qrpe,3

m H̃rpe,2)⊤Krpe,3
m H̃rpe,2

)
satisfies

∥∥∥∥∥H̃rpe,3 −



X

XX⊤ − ∥XX⊤p̃
(τ)
3,1∥2p̃

(τ)
3,1p̃

(τ),⊤
3,1 ,0

p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

p̃5,1, . . . , p̃5,N

...
p̃ℓ,1, . . . , p̃ℓ,N



∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22.

And we can construct another layer to remove the term ∥XX⊤p̃
(τ)
3,1∥

1
2
2 p̃

(τ)
3,1 , which is achieved by

− V rpe,4
1 = V rpe,4

2 =

0(4d+1)×(4d+1) 0 0
0d×(4d+1) Id 0

0 0 0

 ,

Qrpe,4
1 = −Qrpe,4

2 =

 0(3d+1)×D

0d×(2d+1) Id 0
0

 ,

Krpe,4
1 = Krpe,4

2 =

 0(3d+1)×D

0d×(2d+1) Id 0
0

 .
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Using the above construction, we can further show that

∥∥∥∥∥H̃rpe,4 −



X

XX⊤ − ∥XX⊤p̃
(τ)
3,1∥2p̃

(τ)
3,1p̃

(τ),⊤
3,1 ,0

p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

p̃5,1, . . . , p̃5,N

...
p̃ℓ,1, . . . , p̃ℓ,N



∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22.

And then we proceed to recover the rest of the k principle eigenvectors using similar model architec-
ture given by the ones used by the Power Iterations. For the computation over the τ -th eigenvector,
we denote H̃pow,η,1 till H̃pow,η,τ to be the intermediate states corresponding to the η-th power it-
eration. We denote H̃rpe,η,τ0 to be the output of η-th removal of principle eigenvector layers for the
τ -th eigenvector. Furthermore, we iteratively define

A1 = XX⊤ − ∥XX⊤p̃
(τ)
3,1∥2p̃

(τ)
3,1p̃

(τ),⊤
3,1 , Ai+1 = Ai − ∥Aip̃

(τ)
3,i ∥2p̃

(τ)
3,i p̃

(τ),⊤
3,i , ∀i ∈ [k].

Then, applying the subadditivity of the 2-norm, we can show that

∥∥∥∥∥H̃rpe,4,k −



X
Ak+1,0

p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

p̃
(τ)
3,2 ,0

...
p̃
(τ)
3,k,0



∥∥∥∥∥
2

≤ Cτkϵ∥XX⊤∥22.

For simplicity, we denote Ã =

 X
Ak+1,0

p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

 and P̃ =


p̃
(τ)
3,1

p̃
(τ)
3,2
...

p̃
(τ)
3,k

 from here.

4. Finishing Up.

The finishing up phase considers constructing W̃0 and W̃1 that adjust the final output format. Our
construction gives the following

W̃0 = [0, Ikd] , W̃1 =

[
1

0N−1

]
.

And we can show that

∥∥∥∥∥W̃0H̃
rpe,4,kW̃1 −


p̃
(τ)
3,1

p̃
(τ)
3,2
...

p̃
(τ)
3,k


∥∥∥∥∥
2

≤ Cτkϵ∥XX⊤∥22.

We further use the result given by lemma B.1, denote aη :=
∥∥∥vη − p̃

(τ)
3,η

∥∥∥
2
, λ̂η =

∥∥∥Aηp̃
(τ)
3,η

∥∥∥
2
,

and bη := |λη − λ̂η| for η ∈ [k], we obtain that for all η ≥ 1, given the number of iterations
τ ≥ C log(1/ϵ0δ)

2ϵ0
where the constant value C depends on d,

aη+1 ≤
maxi∈[η] bi +

∑η
i=1 2λiai

∆
, bη+1 ≤

2λη+1

∆

(
max
i∈[η]

bη +

η∑
i=1

2λiai

)
+ λη+1

√
2ϵ0.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Further note that the starting point is given by a1 ≤
√
2ϵ0, b1 ≤ λ1

√
2ϵ0. Introducing Aη =∑η

i=1 2λiai, we obtain that Aη+1 =
∑η+1

i=1 2λiai = Aη + 2λη+1aη+1 which alternatively implies
that

1

2λη+1
(Aη+1 −Aη) ≤

maxi∈[η] bi +Aη

∆
, bη+1 ≤

2λη+1

∆

(
max
i∈[η]

bη +Aη

)
+ λη+1

√
2ϵ0.

We use the fact λη

∆ > 1 for all η ∈ [k] to show the following

Aη+1 + max
i∈[η+1]

bi ≤
5λη+1

∆

(
Aη +max

i∈[η]
bi

)
+ λ1

√
2ϵ0, A1 + b1 = 2λ1

√
2ϵ0,

which implies that

Aη+1 + max
i∈[η+1]

bi+
λ1

√
2ϵ0

5λ1

∆ − 1
≤ 5λ1

∆

(
Aη +max

i∈[η]
bi +

λ1

√
2ϵ0

5λ1

∆ − 1

)
,

Aη+1 + max
i∈[η+1]

bi+
λ1

√
2ϵ0

5λ1

∆ − 1
≤

(
A1 + b1 +

λ1

√
2ϵ0

5λ1

∆ − 1

) η∏
i=1

(
5λi+1

∆

)

= λ1

√
2ϵ0

(
2 +

1
5λ1

∆ − 1

) η∏
i=1

(
5λi+1

∆

)
. (4)

Therefore, applying the inequality given by equation 4 we can show that, for η ≤ k, we have for all
η ∈ [k − 1],

aη+1 ≤
1

∆

(
λ1

√
2ϵ0

(
2 +

1
5λ1

∆ − 1

) η∏
i=1

(
5λi+1

∆

)
− λ1

√
2ϵ0

5λ1

∆ − 1

)
,

bη+1 ≤
2ληλ1

√
2ϵ0

∆

(
2 +

1
5λ1

∆ − 1

) η∏
i=1

(
5λi+1

∆

)
+ λη+1

√
2ϵ0.

Therefore collecting pieces, we conclude that there exists a transformer with number of layers
2τ + 4k + 1 and number of heads M ≤ λd

1
C(d)
ϵ2 such that the final output v̂1, . . . , v̂k given by

the Transformer model satisfy ∀η ∈ [k − 1],

∥v̂η+1 − vη+1∥2 ≤ Cτϵλ2
1 +

1

∆

(
λ1

√
2ϵ0

(
2 +

1
5λ1

∆ − 1

) η∏
i=1

(
5λi+1

∆

)
− λ1

√
2ϵ0

5λ1

∆ − 1

)
.

And the rest of the result directly follows.

B.3 PROOF OF LEMMA 3.1

Proof. To prove the above result, we consider two events A1 =
{
∥y∥2≥

√
1
ϵ

}
, A2 ={

|y⊤v|≤
√
ϵ
}

, then we can show that{
|v⊤x|≤ 1√

ϵ

}
⊂ A1 ∪A2 ⇒ P

(
|v⊤x|≤

√
ϵ

)
≤ P(A1) + P(A2).

And we use the tail bound for Chi-square given by (Laurent & Massart, 2000) to obtain that as
ϵ < d−1,

P(A1) = P
(
∥y∥22≥ ϵ−1

)
≤ exp

(
−Cϵ−1

)
.

And similarly, consider the event A2, note that y⊤v ∼ N(0, 1), we use the cdf of the folded normal
distribution to obtain that

P (A2) = P
(∣∣v⊤y

∣∣ ≤ √ϵ) = erf

(√
ϵ√
2

)
=

2√
π

(√
ϵ− (

√
ϵ)3

3
+

(
√
ϵ)5

10
− (
√
ϵ)7

42

)
≤
√
ϵ√
π
.
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Then we obtain that

P
(
|v⊤x|≤

√
ϵ

)
≤
√
ϵ√
π
+ exp

(
−Cϵ−1

)
.

Consider in total of k independent random vectors x1, . . . ,xk, and arbitrary k vectors v1, . . . ,vk,
we can show that

P
(
∃i such that x⊤

i vi ≤ ϵ

)
≤ kP

(
x⊤
1 v1 ≤ ϵ

)
≤ k
√
ϵ√
π

+ k exp(−Cϵ−1).

B.4 PROOF OF LEMMA B.1

Lemma B.1. Assume that the correlation matrix XX⊤ has eigenvalues λ1 > λ2 > . . . > λk.
Assume that the eigenvectors are given by v1,v2, . . . ,vn and the eigenvalues satisfy inf i̸=j |λi −
λj |= ∆. Then, given that the estimate for the first τ eigenvectors satisfy v⊤

i v̂i ≥ 1 − ϵi and the
eigenvalues satisfy |λi − λ̂i|≤ δi, the principle eigenvector of XX⊤ −

∑τ
i=1 λ̂iv̂iv̂

⊤
i denoted by

ṽτ+1 satisfies

∥ṽτ+1 − vτ+1∥2≤
maxi∈[τ ] δi +

∑τ
i=1

√
8λi
√
ϵi

∆
.

Alternatively, we can also show that the eigenvector v̂τ+1 returned by power method with k =
log(1/ϵ0δ)

2ϵ0
that is initialized by satisfies

v̂⊤
τ+1vτ+1 ≥ 1− ϵτ+1 := 1− 1

2

(maxi∈[τ ] δi +
∑τ

i=1

√
8λi
√
ϵi

∆
+
√
2ϵ0

)2

,

Proof. Our proof is given by inductive arguments. Consider our obtained estimates {v̂i}i∈[k] for the
eigenvectors {vi}i∈[k] satisfy

v⊤
i v̂i ≥ 1− ϵi ∀i ∈ [τ ], |λi − λ̂i|≤ δi.

We note that for the eigenvectors, we have for a vector v0,

∥viv
⊤
i − v̂iv̂

⊤
i ∥2 = sup

v0∈Sd−1

v⊤
0 (viv

⊤
i − v̂iv̂

⊤
i )v0 = sup

v0∈Sd−1

(v⊤
0 vi)

2 − (v⊤
0 v̂i)

2

= sup
v0∈Sd−1

(v⊤
0 (vi − v̂i))(v

⊤
0 (vi + v̂⊤

i ))

≤ 2∥vi − v̂i∥2= 2
√
∥vi − v̂i∥22 = 2

√
∥vi∥22+∥v̂i∥22−2v⊤

i v̂i = 2
√
2ϵi.

Then, we can show by the subadditivity of the spectral norm,∥∥∥XX⊤ −
τ∑

i=1

λ̂iv̂iv̂
⊤
i

∥∥∥
2
=

∥∥∥ k∑
i=1

λiviv
⊤
i −

τ∑
i=1

λ̂iv̂iv̂
⊤
i

∥∥∥
2

≤
∥∥∥ k∑

i=1

λiviv
⊤
i −

τ∑
i=1

λiv̂iv̂
⊤
i

∥∥∥
2
+

∥∥∥ τ∑
i=1

δiv̂iv̂
⊤
i

∥∥∥
2

≤
∥∥∥ k∑

i=τ+1

λiviv
⊤
i

∥∥∥
2
+

∥∥∥ τ∑
i=1

δiv̂iv̂
⊤
i

∥∥∥
2
+

∥∥∥ τ∑
i=1

λiviv
⊤
i −

τ∑
i=1

λiv̂iv̂
⊤
i

∥∥∥
2

≤ λτ+1 +max
i∈[τ ]

δi +
∥∥∥ τ∑

i=1

λi(viv
⊤
i − v̂iv̂

⊤
i )

∥∥∥
2

≤ λτ+1 +max
i∈[τ ]

δi +

τ∑
i=1

λi

∥∥∥vv⊤
i − v̂iv̂

⊤
i

∥∥∥
2

≤ λτ+1 +max
i∈[τ ]

δi +

τ∑
i=1

√
8λi
√
ϵi.
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By similar argument, we can also show that∥∥∥XX⊤ −
τ∑

i=1

λ̂iv̂iv̂
⊤
i

∥∥∥
2
≥ λτ+1 −max

i∈[τ ]
δi −

τ∑
i=1

√
8λi
√
ϵi.

To study the convergence of the eigenvectors, we notice that by Davis-Kahan Theorem by (Yu et al.,
2015) we can show that the principle eigenvector ṽτ+1 = argmaxv∈Sd−1 satisfies

∥ṽτ+1 − vτ+1∥2≤

∣∣∣ ∥∥∥XX⊤ −
∑τ

i λ̂iv̂iv̂
⊤
i

∥∥∥− λτ+1

∣∣∣
max{|λτ+1 − λτ |, |λτ−1 − λτ |}

≤
maxi∈[τ ] δi +

∑τ
i=1

√
8λi
√
ϵi

∆
.

Consider the eigenvector returned by the power method, we can show by the subadditiv-
ity of L2 norm, we obtain that ∥v̂τ+1 − vτ+1∥2≤ ∥ṽτ+1 − v̂τ+1∥2+∥ṽτ+1 − vτ+1∥2≤
maxi∈[τ] δi+

∑τ
i=1

√
8λi

√
ϵi

∆ +
√
2ϵ0

v̂⊤
τ+1vτ+1 =

1

2

(
2− ∥vτ+1 − v̂τ+1∥22

)
≥ 1

2

(
2− (∥ṽτ+1 − v̂τ+1∥2+∥vτ+1 − ṽτ+1∥2)2

)
= 1− 1

2

(maxi∈[τ ] δi +
∑τ

i=1

√
8λi
√
ϵi

∆
+
√
2ϵ0

)2

.

Moreover, consider the estimate of the eigenvalue, we have∥∥∥(XX⊤ −
τ∑

i=1

λ̂iv̂iv̂
⊤
i

)
v̂τ+1

∥∥∥
2

≤
∥∥∥(XX⊤ −

τ∑
i=1

λiviv
⊤
i

)
v̂τ+1

∥∥∥
2
+

∥∥∥ τ∑
i=1

λiviv
⊤
i −

τ∑
i=1

λ̂iv̂iv̂
⊤
i

∥∥∥
2

≤
∥∥∥(XX⊤ −

τ∑
i=1

λiviv
⊤
i

)
v̂τ+1

∥∥∥
2
+

∥∥∥ τ∑
i=1

λiviv
⊤
i −

τ∑
i=1

λiv̂iv̂
⊤
i

∥∥∥
2
+

∥∥∥ τ∑
i=1

(
λi − λ̂i

)
v̂iv̂

⊤
i

∥∥∥
2

≤
∥∥∥(XX⊤ −

τ∑
i=1

λiviv
⊤
i

)
vτ+1

∥∥∥
2
+

∥∥∥(XX⊤ −
τ∑

i=1

λiviv
⊤
i

)∥∥∥
2
∥v̂τ+1 − vτ+1∥2

+max
i∈[τ ]

δi +

τ∑
i=1

√
8λi
√
ϵi

= λτ+1 + λτ+1

(maxi∈[τ ] δi +
∑τ

i=1

√
8λi
√
ϵi

∆
+
√
2ϵ0

)
+max

i∈[τ ]
δi +

τ∑
i=1

√
8λi
√
ϵi.

Therefore, by similar arguments, we can show that∣∣∣∥∥∥(XX⊤ −
τ∑

i=1

λ̂iv̂iv̂
⊤
i

)
v̂τ+1

∥∥∥
2
− λτ+1

∣∣∣ ≤ 2λτ+1

∆

(
max
i∈[τ ]

δi +

τ∑
i=1

√
8λi
√
ϵi

)
+ λτ+1

√
2ϵ0.

B.5 PROOF OF LEMMA B.2

Lemma B.2 (Approximation of norm by sum of Relu activations by Transformer networks). Assume
that there exists a constant C with ∥v∥2≤ C. There exists a multihead Relu attention layer with

number of heads M <
(

R
R

)d
C(d)
ϵ2 log(1 + C/ϵ) such that there exsits {am}m∈[M ] ⊂ SN−1 and

{cm}m∈[M ] ⊂ R where for all v with R ≥ ∥v∥2≥ R, we have∣∣∣∣ M∑
m=1

cmσ(a⊤
mv)− 1

∥v∥2
+ 1

∣∣∣∣ ≤ ϵ.
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Similarly, there exists a multihead Relu attention layer with number of heads M ≤
R

d
2 C(d)

ϵ2 log (1 + C/ϵ), a set of vectors {bm}m∈[M ] ⊂ SN−1 and {dm}m∈[M ] ⊂ R such that∣∣∣ M∑
m=1

dmσ(b⊤mv)− ∥v∥1/22 +1
∣∣∣ ≤ ϵ.

Proof. Consider a set Cd(R) := Bd
∞(R) \ Bd

2(R), then it is not hard to check that given ∥v∥2> C
with some C(d) > 0 depending on d such that we have

sup
v∈Cd(R)

∂vj1 ,...,vji∈[d]

(
1

∥v∥2

)
≤ C(d)

∥v∥d2
≤ C(d)

Rd
.

Therefore, consider the definition 5, we have Cℓ =
(

R
R

)d

C(d). Note that by proposition A.1 in
(Bai et al., 2024) shows that for a function that is (R,Cℓ) smooth with R ≥ 1 is (ϵapprox, R,M,C)
approximable with M ≤ C(d)Cℓ log(1 + Cℓ/ϵapprox)/ϵ

2
approx, we complete the proof.

Then we consider the function ∥v∥
1
2
2 , note that

sup
v∈Cd(R)

∂vj1 ,...,vji∈[d]∥v∥
1
2
2≤ C∥v∥−

1
2

2 ≤ CR
− 1

2 .

And the rest of the proof follows similarly to the previous step.
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C EXPERIMENTAL DETAILS

C.1 SETUP.

We run all our experiments on RTX 2080 Ti GPUs. We use PyTorch to construct our models and
training process. We use sklearn for data generation. A training process with 2k steps roughly takes
0.5 hours.

C.2 DATA.

Synthetic Dataset. For each Xi ∈ RD, we sample Zi ∼ N(0, I) ∈ RD. We then form Z =
[Z1, · · · , ZN ] and transform it using an invertible matrix L ∼ N(0, I) ∈ RD×D, yielding the
desired training sample X . To speed up the training process, we set N < D in all our experiment
setting. With this design, the rank of the covariance matrix XTX is at most N , meaning there
are at least D −N zero eigenvalues. The eigenvectors corresponding to these zero eigenvalues are
less meaningful. Thus, to ensure predictions focus on meaningful eigenvectors, we increase N to
10 when predicting multiple eigenvectors. We also adjust the data generation process to ensure the
magnititude of eigenvalue across different D to be at a similar level.

Real-world Dataset. For both the MNIST and FMNIST, we first normalize the images to zero
mean. Next, we perform SVD to extract the top-D principal components and project the data onto
these components, reducing feature dimension to D = 10, 20, and use N = 10, 50 for eigenvalue
and eigenvector prediction respectively. Last, we rescale the resulting matrix to ensure its magni-
titude is roughly the same level as training data (transformers are trained on synthetic data). The
rescaling process is critical to transformers as some images after SVD contains entries large as 7e3.
This will largely degrade transformer’s performance as it changes the input domain by a large mar-
gin.

C.3 HYPERPARAMETERS.

We list the hyperparameters in our experiments as below (table 2). We separate the hyperparameters
used in predicting (1) eigenvalues and single eigenvectors, and (2) multiple eigenvectors.

Table 2: Hyperparameters for Eigenvalue and Eigenvector Prediction.

parameter N = 5 N = 10 N = 20

steps (eigenvalue) 20k 20k 20k
steps (eigenvector) 20k 20k 60k
learning rate 1e-3 5e-3 5e-3
Optimizer Adam Adam Adam
batch size 64 64 64
number of layers 3 3 3
hidden dimension 64 64 64
number of heads 2 2 2

C.4 ADDITIONAL EXPERIMENTAL RESULTS
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Figure 5: Convergence Results on Eigenvalue, Eigenvector Prediction with Different Param-
eters. (1) Top left: Loss curve on eigenvalue prediction with different size of D (2) Top middle:
Loss curve on eigenvalue prediction with different number of layers (3) Top right: Loss curve on
eigenvector prediction with different size of D (4) Bottom left: Top right: Loss curve on eigenvec-
tor prediction with different number of layers (5) Bottom left: Loss curve on eigenvector prediction
with different number of ktrain For (1), we observe that smaller D is easiser for transformers as they
present lower loss. For (2), we see that with more layers, transformers are also capable of predicting
eigenvalues more accurately. For (3), transformers also predict eigenvectors better when D is small.
For (4), similar to (2), transformers with more layers shows improved performance. For (5), we want
to highlight that the loss value is mainly affected by the fact that predicting 3rd or 4th eigenvectors
are significantly harder, which contributes to higher loss value.
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Figure 6: Loss Curve Comparison between Softmax and ReLU Transformers (Top-1 Eigen-
vector Prediction). Left: D = 5 Right: D = 10 We use a 3-layer, 2 head, 64 hidden dimension
transformer to predict top-1 eigenvector across all experiments in this figure. An explanation for
the superior performance of ReLU transformers is that the normalizing behavior of Softmax can
potentially hinder the PCA process.
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Figure 7: Loss Curve Comparison between Softmax and ReLU Transformers (Top-1 Eigen-
vector Prediction). Left: D = 30 Right: D = 50 We use a 3-layer, 2 head, 64 hidden dimension
transformer to predict top-1 eigenvector across all experiments in this figure. We also observe that
the performance gap enlarges as D increases, likely because the difference between eigenvectors
becomes larger with increasing D, making the normalizing nature of Softmax unsuitable for PCA.
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