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ABSTRACT

Large language models (LLMs) excel at writing code in high-resource languages
such as Python and JavaScript, yet stumble on low-resource languages that remain
essential to science and engineering. Besides the obvious shortage of pre-training
data, post-training itself is a bottleneck: every new language seems to require new
datasets, test harnesses, and reinforcement-learning (RL) infrastructure.
We introduce Agnostics, a language-agnostic post-training pipeline that elimi-
nates this per-language engineering. The key idea is to judge code solely by its
externally observable behavior, so a single verifier can test solutions written in
any language. Concretely, we (i) use an LLM to rewrite existing unit-test datasets
into an I/O format, (ii) supply a short configuration that tells the verifier how to
compile and run a target language, and (iii) apply reinforcement learning with
verifiable rewards (RLVR) in a robust code execution environment.
Applied to five low-resource languages—Lua, Julia, R, OCaml, and For-
tran—Agnostics (1) improves Qwen-3 4B to performance rivaling other 16B–70B
open-weight models; (2) scales to larger and diverse model families (Qwen-3 8B,
DeepSeek Coder 6.7B Instruct, SmolLM 3, Phi 4 Mini); and (3) for ≤16B pa-
rameter models, sets new state-of-the-art pass@1 results on MultiPL-E and a new
multi-language version of LiveCodeBench which we introduce.
We will release the language-agnostic training datasets (Ag-MBPP-X, Ag-
Codeforces-X, Ag-LiveCodeBench-X), training code, and ready-to-use configura-
tions, making RL post-training in any programming language as simple as editing
a short YAML file.

1 INTRODUCTION

Large language models (LLMs) are remarkably good at programming tasks, especially when coding
in high-resource programming languages such as Python and JavaScript. Their proficiency in low-
resource programming languages, such as Fortran, Julia, and others, is far more limited. This gap
appears both on benchmarks (Cassano et al., 2023) and in popular discourse. Many low-resource
languages are adapted to and widely used in particular sectors such as computational science (e.g.,
Julia, Fortran), medicine (e.g., Mumps), data science (e.g., R), and others. Methods for improving
LLMs on such languages would help programmers in these sectors truly take advantage of LLMs.

The capability gap between high-resource and low-resource programming languages occurs for two
reasons. First, there is vastly more training data for some languages. For example, The Stack
V2 (Lozhkov et al., 2024a), the largest public training corpus of code, has ≈200GB of Python but
only ≈2GB of Julia and Fortran. Thus pretraining on code makes models significantly better at
Python. A subtler reason is the availability of post-training datasets and techniques. Contemporary
LLMs are developed with an extensive post-training process that relies on (a) high-quality curated
data for supervised fine-tuning, and (b) carefully designed environments for reinforcement learn-
ing, which must be able to execute and verify model-generated solutions. Both of these require
significant human expertise, which is hard to find for low-resource programming languages.

Our goal in this work is to facilitate post-training LLMs on low-resource programming languages,
working towards closing the resource gap. Our key idea is that for a large class of programming
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tasks, correctness can be stated as a property not of functions or code snippets, but of the entire pro-
gram’s observable behavior (e.g., I/O). Furthermore, if its correctness can be tested with a verifier
program, such a verifier with appropriate problems and test cases can be used to make a universal re-
inforcement learning environment which can be instantiated for nearly any programming language.
In fact, the verifier’s implementation language is independent from the one being learned. This ap-
proach matches the formulation of some existing post-training datasets (even if they are intended for
Python/C++), and we can reformulate language-specific datasets into this format with LLMs.

Our approach, Agnostics, works based on this insight as follows (Figure 1). 1) We use an LLM
to reformulate language-specific datasets into our uniform language-agnostic format. 2) To target
a particular language, we generate prompts and instantiate the verifier based on a small (4-5 line)
configuration file. 3) We apply reinforcement learning with verified rewards (RLVR) using a robust,
language-agnostic execution sandbox that we develop. 4) The result is a model specialized to the
target language. Agnostics particularly excels at finetuning models for low-resource languages, as it
does not rely on high-quality datasets specific to a particular language.

Contributions

1. Agnostics, a post-training pipeline for coding in arbitrary programming languages;
2. The best-performing open-weights ≤16B models for Lua, R, Julia, OCaml and Fortran;
3. Three Agnostics datasets: Ag-MBPP-X, Ag-Codeforces-X, and Ag-LiveCodeBench-X, based on

MBPP (Austin et al., 2021), Open-R1 Codeforces (Penedo et al., 2025) and LiveCodeBench (Jain
et al., 2024b) respectively.

4. A small and carefully designed Agnostics training framework, including a parallel code execution
sandbox, sampling, rewards computation, GRPO, and model back-propagation.

Figure 1: Overview: Agnostics Data Preparation and Training. (1) We reformulate existing cod-
ing datasets to our format. (2) We adapt the language-agnostic datasets to a particular programming
language. (3, 4) We reinforce coding via Group Relative Policy Optimization (Shao et al., 2024;
DeepSeek-AI et al., 2025), verifying the programs in our code execution sandbox.

2 BACKGROUND AND RELATED WORK

Language % Language %
JavaScript 17.04% Lua 0.53%
Java 8.38% R 0.35%
C++ 5.41% Fortran 0.07%
Python 3.56% Julia 0.10%

Figure 2: High-resource (left) and low-
resource (right) languages in the Stack v2.

Data Scarcity for Low-Resource Languages
General-purpose LLMs have been pretrained on
code for several years, both because LLMs are
widely used for practical programming tasks, and
because pretraining on code improves their general
reasoning abilities (Ma et al., 2023). There are also
code-specialized models either trained exclusively
on code (e.g., Xu et al. (2022); Allal et al. (2023))
or trained on code starting from a general-purpose
model checkpoint (e.g., Rozière et al. (2024)).

However, the publicly available pretraining data for code is heavily skewed toward a handful of
programming languages. E.g., consider The Stack V2 (Lozhkov et al., 2024b), the largest public
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code pretraining dataset, with code from GitHub and dozens of other sources. The Stack V2 is
dominated by relatively few programming languages: just 10 of 619 languages account for over
90% of the dataset. We want to develop models for low-resource programming languages that each
account for ≤0.5% of publicly available code (Figure 2). We can imagine working around this data
scarcity in a few ways. However, previous work shows that up-sampling low-resource languages
during pretraining only leads to small benchmark improvements (Orlanski et al., 2023), while fine-
tuning on the pre-training data for low-resource languages has negligible impact (Cassano et al.,
2024). Thus, it is not clear how to make further gains from existing natural data.

Synthetic Data for Low-Resource Languages If natural data is not available for a task, it is
possible to use LLMs to generate synthetic fine-tuning data (Wang et al., 2023), and there are many
techniques for building code-centric supervised fine-tuning datasets (e.g. Luo et al. (2023); Wei
et al. (2024c;b)) that work remarkably for Python. Although these approaches could in principle
be applied to any programming language, Cassano et al. (2024) show that without distillation or
verification (e.g., see Hu et al. (2025); Wei et al. (2024a)), synthetic tasks and code for low-resource
programming languages are low-quality, and models fine-tuned on them perform poorly.

MultiPL-T (Cassano et al., 2024), similar to TransCoder-ST (Roziere et al., 2021) and CMTrans (Xie
et al., 2024), couples synthetic data generation with verification using rejection sampling: it gen-
erates up n candidate programs in a target, low-resource language and only fine-tune models on
generations that pass hidden unit tests that it translates from Python. However, the MultiPL-T ap-
proach has two significant limitations. (1) For the verifier to not reject all samples, the model must
be able to generate a working program within n attempts. In MultiPL-T, ≈30% of prompts produce
a working program for n ∈ {50, 100} attempts, and the rest are discarded. We train on much harder
problems, and estimate that rejection sampling would require an order of magnitude more resources
for a comparable acceptance rate (§A). (2) For each low-resource language of interest, MultiPL-T
requires writing a little compiler to translate test cases and function signatures from Python to the
target language. MultiPL-T only supports a limited set of built-in Python types (e.g., no classes)
and dictates that all Python types and values must faithfully map to the target language. However,
depending on the problem and language, the natural data representation may not map cleanly to
Python. This can lead to peculiar, unidiomatic translations that require deep language expertise to
get right. The Agnostics approach is far easier to use than MultiPL-T, and only requires the user to
know how to compile and run a program in the target language from the shell.

Reinforcement Learning on Coding Tasks DeepSeek R1 (DeepSeek-AI et al., 2025) popularized
RL on LLMs with rule-based rewards, instead of learned reward models. R1 reports applying RL
to coding tasks without further dataset details. A number of papers apply RL to the NL to code
task (Zeng et al., 2025; Gehring et al., 2024; Jain et al., 2025). These techniques target Python and
show that RL can improve LLM capabilities beyond what supervised fine-tuning allows alone.

However, the key benefit of RL is that it can train a model to do tasks for which high-quality su-
pervised fine-tuning data is unavailable. There are recent examples of using RL for code optimiza-
tion (Du et al., 2025; Nichols et al., 2024), resolve GitHub, issue resolution (Wei et al., 2025), and
iterative development (Zhou et al., 2025). These papers target tasks in high-resource languages
(C++, Java, and Python) whereas Agnostics targets several low-resource languages.

3 THE AGNOSTICS APPROACH

Our approach comprises (1) a data preparation stage which reformulates language-specific pro-
gramming tasks to be language-agnostic, and retargets language-agnostic datasets to a programming
language of interest (1, 2 in Figure 1); and (2) the training stage which uses the GRPO algorithm and
an efficient, language-agnostic verification framework (3, 4 in Figure 1). Our tasks ask for programs
with particular behavior. The test cases are samples of this behavior, and a verifier program can
check if a solution behaves according to the sample. In this paper, we limited ourselves to working
with tasks asking for programs which read data from the standard input, compute a unique answer,
and write it to the standard output. Hence, the datasets we prepared share one verifier.
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# Write a python function to
# identify non-prime numbers.
def is_not_prime(n):

...

assert is not prime(2) == False

assert is not prime(10) == True

(a) An MBPP task prompt and associated tests (in gray).

Instruction: Given an integer N (N ≥ 2), deter-
mine if it is a non-prime number. Output ‘True’
if the number is non-prime, ‘False’ otherwise. In-
put format: a single integer N (N ≥ 2). Output
format: a single line containing ‘True’ or ‘False’.

Input Output
2 False
10 True

(b) The task and tests reformulated for Agnostics.

Figure 3: For dataset preparation, we use an LLM to reformulate fine-tuning datasets with language-
specific prompts and tests (above) into equivalent language-agnostic programming tasks.

3.1 DATASET PREPARATION

Some datasets, like Open-R1 Codeforces (Penedo et al., 2025), already define tasks in the desired
I/O style. More commonly, however, code datasets provide a set of unit tests. Figure 3a shows a
representative item from MBPP: it has a natural language problem description and a Python function
signature that comprise the prompt, and a suite of tests used to test model-generated code. These
datasets can be easily translated into the I/O format.

To make such problems language-agnostic and compatible with our verifier, we prompt an LLM to
reformulate each task so that the program communicates exclusively via plain-text standard in and
standard out. We ask the model to spell out concrete I/O conventions—number of decimal places,
newline versus comma separators, ordering of values, and so on—so that the expected behavior
is unambiguous. Figure 3b shows the reformulated example. §B has the instruction we use to
reformulate MBPP; other datasets might require small changes to the prompt.

3.2 PROGRAMMING LANGUAGE PREPARATION

To prepare a new language, we author a small configuration file with two purposes. First, it defines
a prompt prefix (prepended to each problem by the trainer) which instructs the model to produce
code in the target language. Second, the configuration file specifies the shell commands to install
the language toolchain and run code. In our experience, a prompt prefix simply asking for a solution
in language L is enough for more widespread languages with ≥5% base accuracy. However, when
starting from near-zero accuracy, a longer prefix can help prevent common mistakes. E.g., our R
language configuration (Figure 4) features a longer prompt explaining the quirks of I/O APIs in R.1

If a model barely knows a programming language, a good prefix can help it. Still, writing the prefix
takes manual effort. For OCaml and Fortran, we let a base model generate several faulty snippets,
and asked a capable LLM (OpenAI o3) for advice based on the snippets with the following prompt.

What follows are several Fortran programs. You’ll see that most of them are
wrong. Read them carefully and identify the Fortran programming mistakes that
I’m making. Ignore algorithmic mistakes, and focus on my misconceptions about
Fortran. Come up with advice on how I should program Fortran correctly. Distill
this advice into 10-20 sentences.

We use the resulting instructions verbatim (§C) when training models. The prefix only needed to
slightly raise the model’s train split performance; base accuracy as low as 0.09% was enough for the
model to start learning (see §A). Configuring the two languages took 1 hour each.

3.3 TRAINER AND CODE EXECUTION

The Agnostics trainer uses the Group-Relative Policy Optimization (GRPO) reinforcement learn-
ing algorithm (Shao et al., 2024), with verifiable rewards (DeepSeek-AI et al., 2025), and further

1There are 3 ways to run R, 3 I/O APIs, and only one portable way to read from standard in.
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install: apt-get install -y r-cran-tidyverse
filename: snippet.R
execute: Rscript snippet.R
prompt: |

Use R version 4. Use ‘readLines(con = file("stdin"))‘ to read from
stdin. Use the ‘n‘ argument to read the first ‘n‘ lines. For example:
‘‘‘r
input <- readLines(con = file("stdin"), n = 1)
n <- as.integer(input)
cat(n) # print the first line of input
‘‘‘
Also, please remember to use ‘cat‘ to print output.

Figure 4: An Agnostics configuration snippet for R (slightly rephrased for presentation).

common tweaks to improve its efficiency (Yu et al., 2025). We couple the algorithm with a language-
agnostic code execution framework designed to be robust and efficient.

Trainer The trainer instantiates the GRPO algorithm as follows. Let (x, {(ink, outk)}Kk=1) ∼ D
be a dataset of language-agnostics tasks, where x is the task prompt and {(ink, outk)}Kk=1 is the
set of I/O examples. Let P be L.prompt from a language configuration L (e.g., Figure 4). From
the behavior policy πθold we sample a group G of candidate responses {yi}Gi=1 ∼ πθold(· | P, x).
We assign each candidate a reward Ri, with Ri = 1 if the execution environment (described later)
verifies that the extracted program behaves as in the I/O examples (ink, outk) and Ri = 0 otherwise.
We turn group rewards into sequence-level advantages Âi, and update the policy with the objective

LGRPO(θ) = E{(x, )∼D,{yi}G
i=1∼πθold (·|P,x)}[

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(

clip
(
ri,t(θ), 1− ε, 1 + ε

)
Âi, ri,t(θ)Âi

)]
,

where ri,t(θ) =
πθ(yi,t | P, x, yi,<t)

πθold(yi,t | P, x, yi,<t)
, Âi =

Ri −mean({Rj}Gj=1)

std({Rj}Gj=1)
.

We omit the KL-divergence term, similar to Yu et al. (2025). We also considered and decided against
a reward for a partially-correct answer (§D.3). We tried to reward the model for code which runs
without errors but produces wrong output or for code which only passes the public tests (if there are
any). In both cases the models were very likely to learn how to exploit the reward, e.g., by producing
empty programs or by hard-coding the public tests (and claiming to produce a “draft answer”).

Code Execution Our verifier, a language-agnostic code execution sandbox, (1) extracts a program
from each candidate; (2) compiles it if needed; and (3) tests it on the I/O examples {(ink, outk)}Kk=1.

To extract the code, we instruct the model to put it in a Markdown block, which all major instruction-
tuned models do by default. Since we rely on the native format of the model, we do not need to train
the model with a format reward. This guarantees that the increases in rewards we see during training
are real improvements and not merely the result of the model learning to format correctly.

For each language, we build and cache an OCI (2025) container using the configuration L. To build
the container, we install the language compiler and runtime (the script L.install), and include
a generic execution harness which runs and tests candidate programs. The execution harness runs
continuously in the container, waiting for triples with the candidate program, the set of input/output
examples, and timeouts. The harness (1) writes the program to disk (to L.filename), (2) compiles
it if needed (L.compile), (3) runs it on each received input (L.execute), and verified that it
produces the expected output. The harness imposes timeouts on the compilation step and each
execution, and returns reward 0 on any timeout or failed verification. It is important to have timeouts
for both compilation and execution. This prevents pathologies such as unbounded macro expansion
in Julia (caught by the compile timeout) and infinite loops (caught by the execution timeout). Using
containers also allows us to limit CPU, memory, and filesystem usage; no elevated privileges are
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granted to the generated program. Although the current datasets only specify tasks by standard I/O,
the same sandbox can safely accommodate problems that read/write from network or disk.

A subtle resource limit that we impose is a limit on the size of output. Even with a short timeout
such as 30 seconds, a pathological candidate program can output tens of gigabytes of text. This
can crash the verifier if it naı̈vely tries to read and store all output. Instead, the verifier maintains a
fixed-size (5MB) read buffer and immediately kills programs which overflow it.

Overall, this design lets us keep a pool of warm containers for the duration of training: we find
that spawning a fresh container is two orders of magnitude slower than re-using an existing one.
In our experiments, a single training run may involve testing 150,000 programs, each on several
I/O examples. Most of the generated programs are faulty and some behave badly, e.g., they either
timeout, consume too much memory, or produce too much output. So containers do occasionally
crash or need to be killed, and our execution environment handles this automatically.

Finally, to improve compile times, our execution environment mounts a RAM disk in each con-
tainer. Compilation may be slow due to creating many intermediate files, and indeed some large
C++ projects, e.g., Firefox, recommend using a RAM disk to speed up their builds (Firefox, 2025).

Implementation We implement the trainer and execution environment with Ray (Moritz et al.,
2018), which facilitates multiprocessing and distributed computing. In particular, Ray lets us dis-
tribute the training over a network of heterogeneous nodes, which allows running the trainer on a
node specialized for GPU work and the execution environment on a node specialized for CPU work.
Ray also lets us easily separate group generation and loss computation into inter-communicating
processes. Running the two in parallel significantly speeds up training, as we found that they take
a roughly comparable amount of time. The execution environment is also an actor and manages
containers with Python asyncio coroutines, not actors, to minimize inter-process data copying.

HYPERPARAMETERS

We use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 5 × 10−6 and
a cosine decay schedule with a warmup of 0.1 epochs. We process 4 prompts in each batch, with
group size 32 per prompt. When training we use temperature 0.7 and disable reasoning in hybrid
models. (Many generations still show reasoning-like text, either before the answer or in comments.)

4 EVALUATION

To evaluate Agnostics, we train and benchmark models on 5 low-resource programming languages.
We measure pass@1 accuracy with reasoning disabled, 20 samples per prompt at temperature 0.2.
Unless otherwise specified, we trained the models for 1 epoch.

4.1 TRAINING DATASETS

Ag-Codeforces-X, the main dataset we use for training, was created based on competitive program-
ming problems from the Open-R1 Codeforces dataset (Penedo et al., 2025). Few adjustments were
necessary, since the problems already specified programs and tests using standard I/O. The train split
contains 5369 problems. See §B for more details.

Ag-MBPP-X, the other training dataset we use, was created from MBPP as explained in §3.1.

4.2 BENCHMARKS

We evaluate Agnostics with the following benchmarks.

MultiPL-E (Cassano et al., 2023) is a well-established benchmark, frequently used to evaluate
the performance of new LLMs on a broad set of languages (e.g., Kimi Team (2025); Yang et al.
(2025); Grattafiori et al. (2024); ByteDance et al. (2025)). MultiPL-E was prepared by compiling
HumanEval (Chen et al., 2021) prompts and unit tests from Python to each target language. Each
MultiPL-E programming language requires a ≈500 LOC prompt and test translator, considerably
more effort than writing an Agnostics configuration file. A major limitation of MultiPL-E is being
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too easy for frontier models. With Python, frontier models are now evaluated on solving program-
ming contest problems (Jain et al., 2024b); no multi-language benchmarks are as challenging.

Ag-LiveCodeBench-X, a contribution of this paper, is a new multi-language benchmark de-
rived from LiveCodeBench. LiveCodeBench 5.0 has 880 problems, of which 381 have Python
starter code and test cases. The remaining 499 problems do not use starter code and instead use
standard I/O to specify and test solutions. Hence we used these problems to transform Live-
CodeBench into an Agnostics dataset. Accordingly, benchmarking a new programming language
with Ag-LiveCodeBench-X is straightforward: we can reuse the language configurations and ex-
ecution environment from our trainer (§3.3). Importantly, LiveCodeBench (and by extension Ag-
LiveCodeBench-X) problems are removed from our training sets (see §B). Moreover, our results
show that Ag-LiveCodeBench-X is significantly harder than MultiPL-E.

4.3 RESULTS

Model Ag-LCB-X
X= Lua Julia R

Llama 3.3 70B Ins 25 22 13
Qwen 3 32B 22 26 17
DSC v2 Lite Ins 16B 13 12 9

Qwen 3 4B 11 10 10
Qwen 3 8B 11 9 9
Qwen3-4B-MBPP-X 15 15 9
Qwen3-4B-CF-X 23 22 15
Qwen3-8B-CF-X 25 25 19

Table 1: Ag-LCB-X pass@1.

We now present our results. We use a few abbreviations in
the tables. Ag-LCB-X stands for Ag-LiveCodeBench-X; we
clarify abbreviated model names in the text. Highlighted rows
present our models; note that each cell in such a row presents
the score of a different model trained on programming lan-
guage X. We compute the score as explained in §4.

SOTA small LLMs for low-resource PLs Using Agnos-
tics, we train Qwen 3 4B on Ag-Codeforces-X specialized to
Fortran, Julia, Lua, OCaml, and R. To the best of our knowl-
edge, the resulting Qwen3-4B-CF-X models are state-of-the
art low-resource programming language models with ≤16B
open-weight parameters.

Model Ag-LCB-X
X= OCaml Fortran

Sonnet 4 6 6
Llama 3.3 70B Ins 7 3
Qwen 3 32B 2 1
DSC v2 Lite Ins 16B 7 6

Qwen 3 4B 1 0
Qwen3-4B-CF-X 7 15

Table 2: Ag-LCB-X pass@1.

Benchmarking them on Ag-LiveCodeBench-X (tables 1
and 2), we see significant improvements. (i) On every lan-
guage, the models match or outperform DeepSeek Coder v2
Lite Instruct (16B), and their performance comes close to
or even exceeds that of Qwen 3 32B and Llama 3.2 70B.
(ii) Compared to the base model, Qwen 3 4B, pass@1 im-
proves by a factor of 1.5–2x. It is safe to assume that the
Qwen models, like the Llama models (Grattafiori et al.,
2024), are trained on all the publicly available coding data;
hence, Agnostics improves the models beyond what typi-
cal training on such data allows. (iii) Finally we improve
the performance of Qwen 3 4B on OCaml and Fortran from
near zero to 7% and 15%, outperforming far larger models including Claude Sonnet 4. Notably, dur-
ing evaluation we do not use the longer prompt prefix employed to facilitate learning (§3.1). Thus
the pass@1 scores represent what the model learned, and not information provided in context.

Model MultiPL-E
X= Lua Julia R

Qwen 3 4B 61 51 36
Qwen 3 8B 63 53 44
Qwen3-4B-MBPP-X 51 62 41
Qwen3-4B-CF-X 64 54 43
Qwen3-8B-CF-X 68 61 52

Table 3: MultiPL-E pass@1.

Models trained with our approach generalize over the compet-
itive programming format: the improvements are not limited
to synthesizing programs using standard I/O. To demonstrate
this, we evaluate them on the established MultiPL-E bench-
mark. It features problems which ask for Python functions
operating on usual Python data structures, and we find that our
training also significantly improves the models on such prob-
lems (Table 3).2 We also confirmed that our training does not
lower performance on other programming languages (§D.4).

Figure 5 shows the GRPO batch pass@1 rates seen when
training Qwen3-4B-CF-X. All the models follow similar curves, partially due to being trained on
the same data permutation. Nearly all the models slowly keep improving almost until the dataset
end. We also observed the train and test split rewards to be correlated with each other (§D.2).

2Note that MultiPL-E does not support OCaml and Fortran.
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Figure 5: Group batch pass@1, Qwen3-4B-CF-X.

Agnostics scales to larger models To test if
the gains from Agnostics training scale with
model size, we train the Qwen 3 8B model on
Ag-Codeforces-X specialized to Lua, Julia and
R and benchmarked it on Ag-LiveCodeBench-
X and MultiPL-E (tables 1 and 3). The Qwen3-
8B-CF-X models show significant gains on
both benchmarks, improving over their 4B
counterparts. We expect Agnostics to scale to
even larger models, with appropriate comput-
ing resources. However, we found that Agnos-
tics training on Ag-Codeforces-X does not im-
prove two smaller models, Qwen 3 1.7B and
Llama 3.2 3B Instruct, perhaps due to the prob-
lems being too difficult for models of this size.

Agnostics works with easier problems All of the models we discussed so far were trained on
Ag-Codeforces-X. To show that Agnostics works with other datasets, we also train models for Julia,
Lua, and R using the MBPP training set. (§3.1 describes how we prepare MBPP.) MBPP problems
are trivial compared to the Open-R1 Codeforces problems (see Figure 3a), and we cannot expect
models trained on the MBPP problems to be as good as ones we presented before. Still, training
on MBPP improves Lua and Julia performance (tables 1 and 3). The table shows a small drop in R
performance on Ag-LiveCodeBench-X, but a significant improvement on MultiPL-E.

Model MultiPL-E Ag-LCB-X
X= Lua Julia R Lua Julia R

SmolLM3 3B 11 12 18 1 2 0
Phi 4 mini ins 40 39 34 8 8 0
DSC 6.7B Ins 40 54 37 8 5 7
SmolLM3-3B-CF-X 14 14 21 8 8 0
Phi4-mini-ins-CF-X 41 43 35 12 8 0
DSC-6.7B-Ins-CF-X 42 55 52 9 9 9

Table 4: Non-Qwen models, pass@1.

Agnostics works on multiple model families To
show that Agnostics works on non-Qwen mod-
els, we train SmolLM 3 (SmolLM3 Team, 2025),
Phi 4 Mini Instruct (Microsoft, 2025) DeepSeek
Coder 6.7B Instruct (Guo et al., 2024), on Ag-
Codeforces-X specialized to Julia, Lua, and R. Ag-
nostics improves these models’ performance on all
languages, as measured by MultiPL-E and Ag-
LiveCodeBench-X (Table 4). As an exception, both
SmolLM 3 and Phi 4 Mini Instruct score 0% on Ag-
LiveCodeBench-R, and training does not improve
their score. However, both models slightly improve on the simpler R problems in MultiPL-E.

Note that DeepSeek Coder 6.7B is a relatively old LLM, superseded by the much larger DeepSeekV2
and V3 models. Unlike Qwen 3, DeepSeek Coder is not trained with reinforcement learning, but
is only an instruction-tuned model. Thus this result also shows that Agnostics can work on models
that have had relatively limited post-training.

Model Ag-LCB-Fortran

Sonnet 4 Thinking (teacher) 12
Qwen 3 4B (student) 0
1 epoch 3
2 epochs 3
3 epochs 2

Table 5: Distillation experiment results.

Agnostics outperforms distillation So far we dis-
cussed training a model on its generations. An al-
ternative is to distill a larger model (assuming one
exists). As larger models do not perform very well
on many low-resource programming languages, one
can expect distillation to be less effective.

We run the following experiment to verify this claim.
Using Sonnet 4 Thinking, we synthesize Fortran
solutions to Ag-Codeforces-X problems, creating a
training set of 1,987 items. (For 13 items, Sonnet 4 (sonnet-4-20250514) with extended thinking
does not produce a response within its reasoning budget.) To make sure generating the training
items does not use significantly more compute compared to Agnostics training, we use at most 32K
reasoning tokens, spending $96 to generate the items. We fine-tune Qwen 3 4B for 3 epochs (batch
size 64, learning rate 2 × 10−5, cosine learning rate decay with warmup ratio 0.1). Table 5 shows
the resulting models reach scores far lower than the 15% of Qwen3-4B-CF-Fortran (Table 2).
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4.4 QUALITATIVE IMPROVEMENTS
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Figure 6: LLM labels of bugs in programs syn-
thesized by Qwen 3 4B and our trained model,
Qwen3-4B-CF-OCaml. A radial represents a bug
class, and points along the radial show how many
programs seem to have that bug. Qwen 3 4B
makes more fundamental programming mistakes,
such as syntax errors and misusing builtins, show-
ing its limited grasp of OCaml. Our trained model
makes far fewer such mistakes. We see a small
increase in logic flaws: the trained model makes
fewer shallow mistakes, revealing deeper issues.

In this section we take a deeper look at how
training with Agnostics addresses the kinds of
errors that Qwen 3 4B makes on low-resource
languages. First, we define a taxonomy of com-
mon bugs by prompting an LLM (o3) to clas-
sify bugs in a sample of faulty programs and
then lightly editing the suggestion. §E has the
full taxonomy and the prompt we used to de-
velop it. The taxonomy spans fundamental pro-
gramming errors, such as syntax errors, and
subtler mistakes such as logic flaws.

We then sample 100 problems from Ag-
LiveCodeBench-X, and for each take five
OCaml programs produced by Qwen 3 4B
and the Agnostics models trained on Open-R1
Codeforces problems. Recall from Table 2 that
our models significantly outperform the base
Qwen 3 models on our benchmark. Using Son-
net 4, we use the taxonomy to classify the bugs
in each program.

Figure 6 shows the bug distribution for OCaml.
We see that the base Qwen 3 4B models makes
substantially more fundamental programming
mistakes in OCaml. More programs have syn-
tax errors (55% vs 35% after training), more
programs misuse builtin functions (60% vs
32%), and so on. However, we observe a small
increase in logic flaws (18% vs 25% after train-
ing). Inspecting the results, the reason for this
is that when a program is full of syntax errors
and hallucinated functions, it is very difficult to even determine whether or not the algorithmic ap-
proach is correct. Training eliminates these shallow bugs and lets deeper issues manifest. We see
the same patterns in models trained on the other four programming languages (§E).

5 CONCLUSION

LLMs are strongest where pre-training and post-training data are abundant, and weakest where prac-
titioners arguably need them most: for low-resource programming languages. This paper proposes
Agnostics, a language-agnostic post-training pipeline that removes the per-language engineering tax
by verifying code purely via externally observable behavior. A single verifier and a short configura-
tion are enough to adapt the same reinforcement learning setup to new languages.

Empirically, Agnostics consistently improves small open-weight models on five low-resource
languages—Lua, Julia, R, OCaml, and Fortran—without requiring language-specific test translators.
Training Qwen 3 4B with Ag-Codeforces-X yields large gains on our new Ag-LiveCodeBench-X
benchmark and on MultiPL-E, often rivaling or surpassing 16B–70B open-weight baselines. The
method scales to larger and different model families: Qwen 3 8B shows similar gains to its smaller
sibling, and we also observe improvements on DeepSeek Coder 6.7B, Phi 4 Mini and SmolLM3 3B.
Error-type analysis shows our training decreases fundamental programming language mistakes.

A practical advantage of the approach is how little per-language work it requires. After the frame-
work was in place, adding OCaml and Fortran took us less than an hour each. We expect adaption to
be just as straightforward for any pragmatic programming language with a command-line toolchain.

We believe the approach scales to models of arbitrary size, although our experiments are limited by
available compute to at most 8B models. For scaling data, the Agnostics reformulation approach also
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applies to much larger problem sets. For instance, OpenCodeReasoning has ∼600K problems with
Python solutions (Ahmad et al., 2025); converting such corpora into language-agnostic I/O tasks
would provide rich RL datasets with many target languages with minimal additional engineering.

REPRODUCIBILITY STATEMENT

The existing datasets we used are publicly available and are accompanied by citations. All datasets
we introduced will be publicly released upon publication of the paper, allowing free use for research.
All code required for conducting and analyzing our experiments, including the code for dataset
preparation, as well as the models we presented and Wandb records from training them, will be
released in the same way. We state the number and range of values tried per (hyper) parameter, and
outline how we chose the final values and what they are (§§ 3.3 and D.1). We specify the computing
infrastructure (hardware and software) we used for our experiments (§D.5). The released codebases
will specify the exact versions of all the libraries we used.
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Figure 7: Rewards each step from training Qwen 3 4B on Fortran and OCaml. These are very low-
resource languages, and rewards are zero for the first several steps.

A EFFICIENCY OF REJECTION SAMPLING

An alternative to reinforcement learning is to use rejection sampling with supervised fine-tuning:
prompt the model to synthesize n solutions to each task, reject solutions that fail tests, and fine-tune
on the task-solution pairs that pass tests. If the model is weak at a task, which is the case with low-
resource languages, then it is possible for all solutions to fail for a given task. Cassano et al. (2024)
use this approach to get solutions for ≈ 30% of the tasks in their dataset. They use n = 50 for Lua
and Julia, but increase to n = 100 for OCaml.

The efficiency of this approach depends on the hardness of the task and the capabilities of the model.
In this paper, we work with newer models that are marginally better at low-resource languages (based
on MultiPL-E benchmark results). The task of Cassano et al. (2024) is to translate a simple, self-
contained Python function from the model’s pretraining data into an equivalent function in another
programming language. This task is significantly easier than the Agnostics task, which is to solve a
competitive programming problem in a low-resource language, without any reference code or tests.

Rejection sampling would be prohibitively expensive for the low-resource programming languages
we consider. Cassano et al. (2024) report a 30% success rate on their code translation task. During
Agnostics training, Qwen3-4B-CF-Fortran generated a correct answer to a problem in the train split
only 6.64% of the time, generating 11400 verified programs overall. We also sampled responses
to the same problems from the base model of Qwen3-4B-CF-Fortran, Qwen 3 4B, taking the same
amount of samples with the same generation parameters as used during training. The base model
succeeded 0.09% of the time, generating only 158 test-passing programs. Fine-tuning with these
responses would have no effect on the model.

B PREPARING DATASETS FOR AGNOSTICS

Ag-MBPP-X is a dataset of Mostly Basic Programming Problems, transformed from the
MBPP (Austin et al., 2021) dataset. The source dataset contains problems asking to complete a
Python function from on its signature and a docstring, where the docstring specifies what result the
function should return; our dataset contains equivalent programs which read/write the same data
from/to standard input/output. Out of 974 problems, we are able to translate 776 problems into
Ag-MBPP-X (348 problems are in the sanitized subset of MBPP). We analyzed Ag-MBPP-X for
data similarity against Ag-LiveCodeBench-X using Decon (2025) and found no data overlap. The
analysis was done based on 5-grams with no token sampling (see Decon documentation).

Processing the dataset with Qwen3-32B took less than 1 hour using 2 H100 GPUs. Figures 3a
and 3b in the main body of the paper shows a sample problem from the dataset, before and after the
reformulation. We used the following prompt.
You are a competitive programming expert.
You are given a problem that asks you to implement a function.
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Your task is to translate the description of the problem into a form that
accepts one set of function arguments as inputs and return the

function return value as output.

Use programming competition style input and outputs -- that is, priorize
the use of spaces and newlines to separate inputs and outputs over
using commas and parentheses (or other delimiters). Specifically, for
2d lists, you should print them as a list of lists, where the outer

lists elements are separated by newlines and the elements of the
inner lists are separated by spaces.

For example, a 2d list like [[1, 2], [3, 4]] should be printed as:
1 2
3 4
Do not use any other delimiters.

If there are multiple 2d lists, you should use 2 newlines to separate
them.

for example, a 2d list like [[1, 2], [3, 4]] and [[5, 6], [7, 8]] should
be printed as:

1 2
3 4

5 6
7 8

If the problem requires outputing decimal numbers, make sure the output
format specifies to round all decimal numbers to 4 decimal places. In
this case, you should also round all the numbers in the output to 4

decimal places.

Do not forget to specify the input and output format in the description.

Here is the problem description:
{original mbpp problem description}

Here are the test cases:
{original mbpp test cases}

You should return a json object with the following fields:
- "description": the description of the problem
- "input_format": a string describing the input format
- "output_format": a string describing the output format
- "tests": a list of test cases, each test case is a json object with the

following fields:
- "input": a string that represents the input of the test case, in the
same format as the input format in the description

- "output": a string that represents the output of the test case, in
the same format as the output format in the description

Place your response in a single ‘‘‘json ‘‘‘ block. Do not include any
other text in your response.

Ag-Codeforces-X is a dataset of competitive programming problems, created from Codeforces
problems in the open-r1/codeforces dataset. The source problems already specified pro-
grams by their I/O behavior, hence only very minor changes were needed to build language-
universal Agnostics problems out of the fields in the dataset: we only skipped the time and
memory restrictions present in the original problems. To be precise, we used data from the
open-r1/codeforces-cots dataset, solutions py decontaminated subset, which
contains problems decontaminated using 8-gram overlap against multiple benchmarks, in particular
LiveCodeBench. We used the auxilliary checker interactor subset to only keep the prob-
lems which admit a simple verifier for their solutions, i.e., problems where a single output is correct
for each input and where the solution only needs to read data from its input, compute the result,
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and write it to the standard output. We prepared both a train and a test split. The former contains
5369 problems and the latter contains 105 problems we held out from the source dataset, 5 selected
manually and 100 randomly. The manually-selected problems were chosen to be much easier than
average, to make it easier to detect if a model can solve any problems at all in a given programming
language. In short, the 5 problems are: “output a number in binary notation”, “remove all digits
from a string”, “check if the parentheses are balanced”, “parse two integers and add them”, and
the following longer problem: “Petr stands in line of n people, but he doesn’t know exactly which
position he occupies. He can say that there are no less than a people standing in front of him and no
more than b people standing behind him. Find the number of different positions Petr can occupy.”

The train split features randomized prompts, which we found help with generalizing the results
of training on the dataset to other benchmarks. The prompts were randomly split into a number of
types. 30% of the prompts use standard Markdown headings to start different sections of the prompt,
35% use bold text instead, and the remaining 35% simply concatenate the prompt sections together.
Most of the prompts follow the source dataset and feature an I/O sample in the prompt, with other
samples withheld as private. Half of the prompts of the final type do not feature any I/O sample.

Ag-LiveCodeBench-X is also a dataset of competitive programming problems, created from a
subset of the LiveCodeBench dataset (Jain et al., 2024a). LiveCodeBench 5.0 has 880 problems, of
which 381 have Python starter code and test cases. The remaining 499 problems do not use starter
code and instead use standard I/O to specify and test solutions. Hence we used these problems to
transform LiveCodeBench into an Agnostics dataset. Ag-LiveCodeBench-X only has a test split,
like its source dataset.

C AGNOSTICS CONFIGURATIONS

In this section, we list the configurations that we use for our target languages. The configuration
files use YAML. The prompts for OCaml and Fortran have instructions generated by OpenAI o3.

The Lua configuration:

prompt: Use Lua 5.1, targeting LuaJIT.
install: apt-get install -y luajit
filename: snippet.lua
execute: luajit snippet.lua

The Julia configuration:

prompt: Use Julia 1.11.
container:

base-image: "julia:1.11.3"
type: debian

filename: snippet.jl
execute: julia snippet.jl

The R configuration (unmodified, unlike Figure 4):

install: apt-get install -y r-cran-tidyverse
filename: snippet.R
execute: Rscript snippet.R
prompt: |

Use R version 4. Use ‘readLines(con = file("stdin"))‘ to read input
from stdin. Optionally, use the ‘n‘ argument to read the first ‘n‘
lines. For example:

‘‘‘r
input <- readLines(con = file("stdin"), n = 1)
n <- as.integer(input)
cat(n) # print the first line of input
‘‘‘
Also, use ‘cat‘ to print output to stdout. For example:
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‘‘‘r
cat(n)
‘‘‘
Please do not use ‘print‘ to print output.

The OCaml configuration:

prompt: |
Use OCaml 5.

Numbers: + - * / mod vs. +. -. *. /. ** (add dots!)
Casts: float_of_int int_of_float int_of_string
Mutation: refs (:= !) or pass new values recursively
Strings: split_on_char, String.get => char, use Printf "%c"
Lists: avoid List.nth; prefer pattern-match / folds / arrays

container:
base-image: "docker.io/ocaml/opam:ubuntu-22.04-ocaml-5.0"
type: debian

install:
container-instructions: |

RUN opam install base stdio utop
ENV OPAM_SWITCH_PREFIX=’/home/opam/.opam/5.0’
ENV CAML_LD_LIBRARY_PATH=’/home/opam/.opam/5.0/lib/stublibs:/home/
opam/.opam/5.0/lib/ocaml/stublibs:/home/opam/.opam/5.0/lib/ocaml’
ENV OCAML_TOPLEVEL_PATH=’/home/opam/.opam/5.0/lib/toplevel’
ENV MANPATH=’:/home/opam/.opam/5.0/man’
ENV PATH=’/home/opam/.opam/5.0/bin:/usr/local/sbin:/usr/local/bin:/
usr/sbin:/usr/bin:/sbin:/bin’

filename: snippet.ml
execute: utop -require base -require stdio snippet.ml

The Fortran configuration:

prompt: |
Use Fortran 90. Some tips:

Always begin each scope with implicit none, pick explicit kinds via
selected_*_kind, and declare proper lengths-character(len=*) is legal
only for dummy arguments, not locals. Strings are blank-padded:

call len_trim before iterating, and store dynamic text in deferred-
length allocatables (character(len=:), allocatable :: s). List-
directed read(*,*) arr does not auto-size arrays; read a count first,
then allocate and read, or tokenize a line manually. When

translating 0-based formulas (heaps, bit positions) remember Fortran
arrays default to 1-based; if you want 0-based, declare lower bounds.
Use real literals (2.0d0, 1.0_rk) to avoid silent integer division,

and guard against overflow when exponentiating integers. For
frequency tables, allocate an array or use findloc; Fortran lacks
native dicts/sets, so you must implement search yourself. Prefer
array intrinsics (sum, count, pack) over hand-rolled loops, and keep
helper procedures inside a contains section or module so interfaces
are explicit. return inside the main program is non-idiomatic; use
structured blocks or stop. Never print interactive prompts in batch
solutions; just read, compute, and write.

install: apt-get install -y gfortran
filename: snippet.f90
compile: gfortran -o snippet.out snippet.f90
execute: ./snippet.out
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Table 6: Hyperparameter sweep, pass@1 score.

Model Group size Temperature Ag-LiveCodeBench-X

Qwen3-4B-CF-Lua 32 0.7 23.00
normal-r1 32 0.7 19.87
normal-r2 32 0.7 21.58
size16-r1 16 0.7 19.80
size16-r2 16 0.7 19.40
size16-r3 16 0.7 19.65
size16-r4 16 0.7 20.61
size64-r1 64 0.7 21.71
size64-r2 64 0.7 21.21
size64-r3 64 0.7 20.87
temp0p2-r1 32 0.2 19.91
temp0p2-r2 32 0.2 20.39
temp0p2-r3 32 0.2 21.98
temp1-r1 32 1.0 21.22
temp1-r2 32 1.0 21.48
temp1-r3 32 1.0 20.30

D TRAINING AND RESULTS

D.1 CHOOSING HYPERPARAMETERS

Before picking the hyperparameters described in §3.3, we investigated other values by training the
Qwen 3 4B model on a previous version of Ag-Codeforces-X. We trained two models for each of
Lua, Julia and R, using a linear learning rate schedule with the same learning rate. We decided
against it since some of the runs degraded the model’s capabilities, unlike any of the runs we did
with a cosine decay schedule.

We compared between GRPO group sizes of 16, 32 and 64 by training the same model on Lua. In
some runs with group size 16, we saw the model improved significantly less than at higher group
sizes. We ran an experiment to compared different temperature and group size settings (Table 6).

The models trained at group size 16 had slightly lower scores compared to other models, while the
ones trained at group size 64 displayed scores comparable to other models. However, they took
significantly longer to train. Two group size 64 models took ∼ 20.5h to train on average (the third
one was trained on a different machine). In comparison, the group size 32 models trained at the
same time on the same machine took ∼ 12h on average. The models trained at temperatures other
than the 0.7 recommended by the Qwen team performed similarly to the other models.

As we found no significant difference between the temperature settings and between group sizes
32 and 64, we chose the smaller group size due to limited resources, and used the recommended
temperature settings.

D.2 TRAINING DYNAMICS

In this section we discuss the measurements we took while training the models. Figure 8 shows
the GRPO group batch pass@1 while training the Qwen3-4B-CF-X models. The scores of all the
models are broadly correlated with one another, which may at least in part be due to training them
on the same permutation of the training data. Figures 10 to 14 compare the GRPO group pass@1
scores with the pass@1 scores on the test split. We see that the scores on the test split is broadly
correlated with the train split rewards. In most cases, we see that the train scores keep increasing
until the end of the epoch, together with the test split pass@1 scores, indicating that the model keeps
improving until the end of the dataset.
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Figure 8: Training Qwen3-4B-CF-X, GRPO group batch pass@1.
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Figure 9: Training Qwen3-4B-CF-X, test split pass@1.
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Figure 10: Training Qwen3-4B-CF-Lua, GRPO group batch and test split pass@1.
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Figure 11: Training Qwen3-4B-CF-Julia, GRPO group batch and test split pass@1.
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Figure 12: Training Qwen3-4B-CF-R, GRPO group batch and test split pass@1.
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Figure 13: Training Qwen3-4B-CF-OCaml, GRPO group batch and test split pass@1.
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Figure 14: Training Qwen3-4B-CF-Fortran, GRPO group batch and test split pass@1.

Table 7: Partial reward experiment, pass@1 rates.

Model Ag-LiveCodeBench-X Ag-Codeforces-X (test split)

Qwen3-4B-CF-Lua 23.00 24.76
partial-r1 18.57 13.33
partial-r2 20.16 15.62

D.3 REWARD FUNCTION

We investigated the results of partial rewards. We trained Qwen 3 4B—the base model of Qwen3-
4B-CF-X—on Ag-Codeforces-Lua, giving it a partial reward of 0.2 if it generated code which failed
one of the tests by producing wrong output but otherwise terminated without an error. The full
reward for a snippet passing all tests was still 1. Table 7 shows that the trained models score below
Qwen3-4B-CF-Fortran both on Ag-LiveCodeBench-Lua and on the test split of Ag-Codeforces-Lua
(counting only the full-credit reward). The latter scores are particularly far lower, clearly showing
that the models learned to abuse the partial-credit reward.

During training, we saw the models focus on the partial reward. The average result from the partial
reward component was clearly increasing more quickly than the result from the full reward compo-
nent. In the training generations we inspected, the models also often claimed to generate a “draft”
answer and produced a program which ignored the problem in the prompt, for instance by only
printing a hard-coded string such as “0”.

D.4 CROSS-PROGRAMMING-LANGUAGE NEGATIVE TRANSFER

To demonstrate that Agnostics training does not lower performance on different programming lan-
guages, we evaluated the models we trained on variants of Ag-LiveCodeBench-X (Table 8).

D.5 HARDWARE AND SOFTWARE USED

We used three machines while working on this paper: B, R1 and R2. R2 was only used to generate
completions of trained models for evaluation, while B and R1 were used to train models. Upon
publication of the paper, we will publicly release Wandb records of our training runs, which include
the duration and the machine used.

B has 2 Intel Xeon Gold 6342 CPUs @ 2.80GHz, 1008 GB of RAM, 4 NVIDIA H100 80GB, and
uses Ubuntu 22.04.5 LTS.

R1 has 2 AMD EPYC 9454 48-Core CPUs, 8 NVIDIA H100 80GB (with NVLink connections),
2268 GB of RAM, and uses Ubuntu 22.04.5 LTS.

R2 has 2 Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz, 10 NVIDIA RTX A600, 504 GB of RAM,
and uses Ubuntu 22.04.5 LTS.
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Table 8: Cross-PL evaluation, pass@1 rates.

Model Ag-LiveCodeBench-X
X= Python Lua Julia R

Qwen 3 4B 34.34 11.00 10.00 10.00
Qwen3-4B-CF-Lua 32.96 23.00 6.55 3.00
Qwen3-4B-CF-Julia 35.10 8.43 22.00 3.90
Qwen3-4B-CF-R 31.58 9.08 7.92 15.00
Qwen 3 8B 33.51 11.00 9.00 9.00
Qwen3-8B-CF-Lua 34.29 25.00 7.44 5.96
Qwen3-8B-CF-Julia 33.84 8.26 25.00 7.03
Qwen3-8B-CF-R 34.49 9.90 7.34 19.00
DSC 6.7B Ins 16.86 7.89 4.79 6.77
DSC-6.7B-Ins-CF-Lua 17.63 8.93 8.60 7.33
DSC-6.7B-Ins-CF-Julia 17.60 9.54 9.13 7.79
DSC-6.7B-Ins-CF-R 17.62 8.38 5.75 8.58

Phi4 mini ins 19.87 7.95 8.10 0.52
Phi4-mini-ins-CF-Lua 22.16 11.80 8.02 0.17
Phi4-mini-ins-CF-Julia 21.15 9.10 7.69 0.38
Phi4-mini-ins-CF-R 19.82 8.02 8.54 0.65

SmolLM3 3B 20.91 1.02 2.85 0.00
SmolLM3-3B-CF-Lua 21.81 7.46 2.93 0.00
SmolLM3-3B-CF-Julia 21.58 1.53 7.83 0.00
SmolLM3-3B-CF-R 21.63 1.30 3.30 0.00

When developing the Agnostics framework, we used the following major Python libraries:
ray v2.46.0, torch v2.6.0, transformers v4.54.1, vllm v0.8.5.post1,
datasets v3.4.1, wandb 0.19.11.

E BUG TAXONOMY

E.1 PROMPT FOR GENERATING TAXONOMY

We used the following instructions to generate the bug taxonomy, followed by a list of faulty R
programs.

Input: The attached file contains multiple failed R programs (Version 4) with
their:

• Source code
• Expected output
• Actual standard output
• Error messages (where applicable)

Objective: Analyze these program failures systematically to create a compre-
hensive taxonomy of 10-12 bug themes that categorize the underlying causes of
failure.
Instructions:

1. Initial Analysis
• Read through ALL program examples carefully
• For each failure, identify the root cause (not just the symptom)
• Note any patterns or commonalities across failures

2. Taxonomy Development
• Create 10-12 distinct bug themes that collectively cover all observed fail-

ures
• Each theme should represent a fundamental type of programming error

or misconception
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• Themes should be mutually exclusive when possible, but comprehensive
in coverage

• Order themes from most to least frequent (or by logical grouping)
3. For Each Bug Theme, Provide:

• Theme Name: A concise, descriptive title
• Description: 2-3 sentences explaining the nature of this bug type
• Common Symptoms: How these bugs typically manifest (error messages,

incorrect output, etc.)
• Root Causes: The underlying programming mistakes or misconceptions
• Examples: Reference 2-3 specific programs from the file that exhibit this

theme
• Prevention Tips: Brief advice on how to avoid this type of bug

4. Constraints:
• Focus on R-specific issues as well as general programming errors
• Base your taxonomy ONLY on the provided examples
• You may search online ONLY to understand specific R error messages or

function behavior, not for existing bug taxonomies
• Ensure every failed program in the file can be classified under at least one

theme
5. Deliverable Format: Present your taxonomy as a numbered list with clear

formatting and comprehensive coverage of all observed failure patterns. Sup-
ply a short explanation for each theme in your taxonomy.

The prompt produced a taxonomy of 11 bug categories. We edited these categories and selected 7
categories relevant to us, shown in §E.2.

E.2 BUG TAXONOMY USED FOR ANALYSIS

The following categories represent the prevalent themes of programming errors we use in our anal-
ysis of bugs in model-generated code. They cover the full spectrum of parse, runtime, and logical
failures typically encountered in programming. The themes are not mutually exclusive; we allow a
program to have more than one themes.

1. Syntax and Typographical Errors: Missing commas, mismatched parentheses, or other
typos that cause compile-time parse errors.

2. Input Reading and Parsing Errors: Mis-reading or mis-parsing input, leading to empty
or malformed variables and subsequent failures.

3. Uninitialized Variables: References to variables never defined, causing undefined behav-
ior or runtime faults.

4. Data Type and Conversion Errors: Incorrect casting or type misuse that triggers type
errors, warnings, or incorrect results.

5. Function Misuse and Missing Libraries: Invocations of non-existent or
mis-parameterized functions, or missing imports/libraries, causing errors.

6. Algorithmic Logic Flaws: Programs that compile and run but produce wrong answers due
to faulty logic or conditions.

7. Output Formatting and Presentation Errors: Correct computational results, but incor-
rect due to formatting issues (e.g. missing newlines/spaces or output spec violations).

E.3 RADAR CHARTS FOR ALL PROGRAMMING LANGUAGES

Figures 15, 16, 17, 18, 19 show the error theme charts for all the programming languages we trained
a model on. Figure 18 is the same as Figure 6 from the main body; we repeated it here for conve-
nience.
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Figure 15: Radar chart of Lua error themes for Qwen3-4B and Qwen3-4B-CF-Lua.
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Figure 16: Radar chart of Julia error themes for Qwen3-4B and Qwen3-4B-CF-Julia.
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Figure 17: Radar chart of R error themes for Qwen3-4B and Qwen3-4B-CF-R.
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Figure 18: Radar chart of OCaml error themes for Qwen3-4B and Qwen3-4B-CF-OCaml.
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Figure 19: Radar chart of Fortran error themes for Qwen3-4B and Qwen3-4B-CF-Fortran.
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