

EFFICIENT SELF-EVALUATION FOR DIFFUSION LANGUAGE MODELS VIA SEQUENCE REGENERATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Diffusion large language models (dLLMs) have recently attracted significant at-
 012 tention for their ability to enhance diversity, controllability, and parallelism. How-
 013 ever, their non-sequential, bidirectionally masked generation makes quality as-
 014 sessment difficult, underscoring the need for effective self-evaluation. In this
 015 work, we propose DiSE, a simple yet effective self-evaluation confidence quan-
 016 tification method for dLLMs. DiSE quantifies confidence by computing the prob-
 017 ability of regenerating the tokens in the entire generated sequence, given the full
 018 context. This method enables more efficient and reliable quality assessment by
 019 leveraging token regeneration probabilities, facilitating both likelihood estima-
 020 tion and robust uncertainty quantification. Building upon DiSE, we further in-
 021 troduce a flexible-length generation framework, which adaptively controls the se-
 022 quence length based on the model’s self-assessment of its own output. Experi-
 023 ments demonstrate that DiSE consistently improves performance across multiple
 024 datasets, increasing likelihood evaluation by 4.0% and uncertainty evaluation by
 025 6.4%, while achieving up to a $32 \times$ speedup over Monte Carlo simulation baseline,
 026 and additionally improving flexible-length generation accuracy. These results es-
 027 tablish DiSE as an efficient and versatile self-evaluation framework for diffusion-
 028 based language models.

1 INTRODUCTION

031 Recently, diffusion large language models (dLLMs) (Yu et al., 2025) have emerged as a promis-
 032 ing direction in natural language processing. In contrast to auto-regressive (AR) models, dLLMs
 033 adopt the generative framework of diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021;
 034 Song et al., 2020), framing text generation as a progressive denoising process. This approach en-
 035 ables better diversity, controllability, and parallel generation compared to AR models. Nonetheless,
 036 the non-sequential and bidirectional nature of dLLMs makes direct likelihood-based self-evaluation
 037 challenging (Nie et al., 2025). Concurrently, self-evaluation has been recognized as a fundamental
 038 capability of LLMs, serving as the basis for a wide range of applications such as hallucination de-
 039 tection (Shorinwa et al., 2025; Fadeeva et al., 2024), answer quality assessment (Chang et al., 2024),
 040 and generation quality enhancement (Huang et al., 2024; Xie et al., 2024).

041 In AR models, causal masking enforces a strict left-to-right generation order, allowing sequence
 042 probability to be decomposed into token-level conditional probabilities. This simplifies the genera-
 043 tion process and enables self-evaluation through likelihood estimation. In contrast, dLLMs use bidi-
 044 rectional masking and a non-sequential, stepwise generation process, making direct likelihood-based
 045 self-evaluation challenging. Currently, dLLMs rely primarily on Monte Carlo simulation-based ap-
 046 proximations of sequence likelihood (Nie et al., 2025), but this method is computationally expensive
 047 and often yields suboptimal estimates, limiting its practical effectiveness. Moreover, owing to the
 048 intrinsic token-level self-evaluation signal provided by next-token prediction in AR models, the gen-
 049 eration length can be adaptively controlled via real-time EOS token prediction. Unlike AR models,
 050 conventional dLLMs lack such an effective built-in likelihood-based self-evaluation signal, which
 051 forces them into fixed-length generation and fundamentally restricts their flexibility.

052 In this work, we propose DiSE, a simple yet effective self-evaluation confidence quantification
 053 method for diffusion large language models. DiSE is derived by feeding the entire sequence back
 into the dLLM and computing the probability of regenerating its tokens under the full context. This

method enables the model to assess its own generation quality by evaluating how well it can reproduce the original sequence when conditioned on the entire context, effectively leveraging its own internal predictions. Based on DiSE, we introduce a flexible-length sequence generation method that, unlike conventional fixed-length generation, enables controllable and adaptive output lengths guided by the model’s self-assessment. Serving as a real-time self-evaluation mechanism, DiSE guides the process of searching, assessing and stopping to determine the optimal generation length.

DiSE provides a versatile mechanism for dLLMs, acting as an effective estimator for conditional likelihood evaluation and facilitating robust uncertainty quantification (Shorinwa et al., 2025). This approach significantly improves computational efficiency while achieving higher evaluation accuracy compared to traditional Monte Carlo simulation-based methods. Extensive experiments on likelihood evaluation, uncertainty quantification, and flexible-length generation show the effectiveness of the proposed DiSE.

Our main contributions are summarized as follows:

- **Efficient and Reliable Self-evaluation Mechanism for dLLMs.** We propose DiSE, a simple yet effective self-evaluation confidence quantification method for diffusion large language models, which enables dLLMs to perform efficient and reliable self-assessment by computing the probability of sequence regeneration.
- **Flexible-length dLLM Generation with DiSE.** We propose a flexible-length generation framework for dLLMs based on DiSE, which enables adaptive sequence lengths through real-time self-evaluation and is validated through extensive experiments.
- **Performance Improvements in Likelihood Evaluation and Uncertainty Quantification.** The DiSE consistently enhances dLLM performance by serving as an efficient estimator for conditional likelihood evaluation and improving uncertainty quantification. It achieves a 4.0% improvement in average accuracy on ARC-Challenge and GPQA, and a 6.4% improvement in average ROC-AUC across Countdown, GSM8K, MATH500 and SVAMP, while yielding a 32 \times speedup over Monte Carlo simulation.

2 RELATED WORK

2.1 dLLMs

Diffusion Large Language Models (dLLMs) (Yu et al., 2025) adapt the diffusion modeling paradigm (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2020), which is originally successful in image and video generation (Podell et al., 2023; Zhong et al., 2025), to natural language. Early efforts, such as D3PM (Austin et al., 2021), DiffusionBERT (Austin et al., 2021), RDM (Zheng et al., 2023), MDLM (Sahoo et al., 2024) and MD4 (Shi et al., 2024), focused on exploring training objectives, noise scheduling strategies, and parameterization methods. Recent research includes LLaDA (Nie et al., 2025), the first large-scale dLLM, DIFFUSION-LLMs (Ye et al., 2023) with multi-stage training strategies, and DiffuGPT / DiffuLLaMA (Gong et al., 2024), which adapt pre-trained auto-regressive models to the diffusion framework. DREAM (Ye et al., 2025) further demonstrates strong performance in complex reasoning tasks. Subsequent developments, such as LLaDA 1.5 (Zhu et al., 2025) with variance-reduced preference optimization for preference alignment and TESS 2 (Tae et al., 2025) with auto-regressive initialization and adaptive noise scheduling, further improve generation quality.

2.2 SELF-EVALUATION FOR LLMs

Self-evaluation (Ren et al., 2023; Geng et al., 2023) has emerged as a crucial mechanism in LLMs, providing models with the capability to assess the reliability of their own outputs and to produce internal measures of confidence and correctness. Self-evaluation is most directly performed via likelihood estimation, using the model’s probabilistic output to quantify plausibility. While sequence likelihood is a natural evaluation signal for AR models, it is generally intractable for dLLMs. Recent efforts (Nie et al., 2025) address this by developing approximate likelihood measures, but their effectiveness is often limited by computational cost and estimation variance. Beyond likelihoods, uncertainty quantification (UQ) (Shorinwa et al., 2025; He et al., 2023; Vashurin et al., 2024) evaluates the confidence of model predictions and plays a key role in mitigating hallucinations in risk-aware

108 settings. Token-level approaches estimate uncertainty from the conditional probability distribution
 109 of the generated tokens, employing entropy-based metrics, sequence normalization, or meaning-
 110 aware scoring (e.g., perplexity (Shorinwa et al., 2025), CCP (Fadeeva et al., 2024), MARS (Bakman
 111 et al., 2024)) for more fine-grained assessments. Self-verbalized UQ (Stengel-Eskin et al., 2024;
 112 Xu et al., 2024; Lin et al., 2022) encourages LLMs to articulate their confidence through verbalized
 113 probabilities or epistemic markers. Building on these uncertainty signals, recent work leverages
 114 self-evaluation for calibration, aligning model confidence with empirical accuracy and thereby im-
 115 proving the reliability and quality of generated outputs (Huang et al., 2024; Xie et al., 2024).

3 PRELIMINARIES

3.1 AUTO-REGRESSIVE LLM PROBABILITY ESTIMATION

Given an auto-regressive language model and a text sequence $X = (x_1, x_2, \dots, x_N)$, the probability of generating the entire sequence is factorized as the product of conditional probabilities:

$$p_\theta(X) = \prod_{i=1}^N p_\theta(x_i | x_{<i}), \quad (1)$$

where $x_{<i} = (x_1, \dots, x_{i-1})$ represents all preceding tokens, and θ denotes the model parameters. This factorization allows exact computation of the sequence probability by multiplying the model’s predicted probabilities for each token given its context. The probability estimation for conditional generation is detailed in Appendix B.1.

3.2 DLLM MONTE CARLO PROBABILITY ESTIMATION

DLLMs do not employ the causal masking used in auto-regressive LLMs and therefore the probability of generating a sequence cannot be factorized as a simple product of conditional probabilities. To approximate the log-probability of generating a target sequence $X^0 = (x_1^0, x_2^0, \dots, x_N^0)$, the traditional approach (Nie et al., 2025) adopts the following term:

$$\mathbb{E}_{l, X^l} \left[\frac{N}{l} \sum_{i=1}^N \mathbf{1} [x_i^l = \langle \text{mask token} \rangle] \log p_\theta(x_i^0 | X^l) \right], \quad (2)$$

where l is uniformly sampled from $\{1, 2, \dots, N\}$, and $X^l = (x_1^l, x_2^l, \dots, x_N^l)$ is obtained by uniformly sampling l tokens from X^0 , replacing the tokens at these positions with mask tokens, while keeping all other tokens identical to those in X^0 . Since the exact computation of this expectation is intractable, Monte Carlo simulation (Harrison, 2010) is employed, where a finite number of samples are generated and the expectation is approximated by their empirical average. This approximation enables tractable estimation of sequence probabilities for DLLMs. The probability estimation for conditional generation is detailed in Appendix B.2.

4 METHOD

4.1 DiSE

In traditional likelihood estimation approaches, whether using auto-regressive LLMs or DLLMs with Monte Carlo simulation, the common paradigm is to condition on the tokens at known positions and predict the tokens at unknown positions based on their probability distributions. However, under the DLLM framework, it is also possible to predict the tokens at positions that are already known. In this work, we propose DiSE, a self-evaluation confidence quantification method for DLLMs that employs token regeneration probability as a novel indicator of model confidence and investigate different token sets to calculate token regeneration probability.

Let the text sequence be $X = (x_1, x_2, \dots, x_N)$. The DLLM takes X as input and concurrently predicts the tokens at all positions that already exist. $p_\theta(x_i | X)$ represents the probability of the model regenerating token x_i at position i given the entire sequence X . Accordingly, the probability of the model regenerating X given X is formulated as $\prod_{i=1}^N p_\theta(x_i | X)$. Consider a binary mask

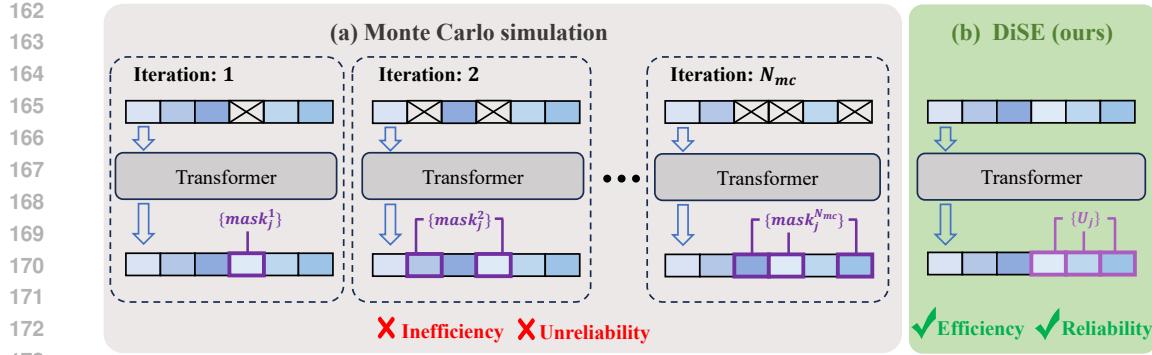


Figure 1: A simplified illustration of self-evaluation confidence quantification methods for clarity. (a) Monte Carlo simulation approach for dLLMs. A total of N_{mc} simulations are performed. In the i -th simulation, a set of masked positions $\{mask_j^i\}$ is sampled. The tokens at these positions are replaced with mask tokens, and the model predicts the probability of correctly generating these tokens. The final estimation is obtained by aggregating the results across all N_{mc} simulations. (b) The proposed DiSE for dLLMs. The set of selected positions $\{U_j\}$ is predefined. The model receives the entire sequence and estimates the regeneration probability of the tokens at $\{U_j\}$.

$M \in \{0, 1\}^N$, where $M_i = 1$ indicates that the token at position i is included in the probability calculation for regeneration, and $M_i = 0$ means it is ignored. Let $U = \{i \mid M_i = 1\}$ be the index set of the selected positions. The probability of regenerating the tokens in the selected region is formulated as $\prod_{i \in U} p_\theta(x_i \mid X)$. After taking the logarithm and averaging over the number of selected tokens, the DiSE score is defined as follows:

$$\text{DiSE}(X) = \frac{1}{|U|} \sum_{i \in U} \log p_\theta(x_i \mid X), \quad (3)$$

where different selection modes are employed to determine the binary mask $M \in \{0, 1\}^N$, thereby controlling the index set of selected positions U . This measure captures the model's confidence in regenerating its own tokens and allows flexible evaluation over either local regions or the entire sequence. For conditional generation with prompt P and generated response R , the DiSE score is calculated by treating the concatenated sequence $[P; R]$ as X . Figure 1 presents a simplified visualization of the Monte Carlo simulation approach for dLLMs and the proposed DiSE.

4.2 OBSERVATION

Observation I: Semantic Coherence Positively Correlates with DiSE Scores. We sample 15 well-formed sentences and generate fully randomized versions by replacing all original tokens with random tokens. The DiSE scores are computed for both the natural and randomized sentences using a binary mask M with all positions set to one, corresponding to the selection mode 'full'. As shown in Figure 2 (a), natural sentences achieve substantially higher DiSE scores than their randomized counterparts. Additionally, we perform three local token randomization experiments, replacing 10 tokens in the front, middle or back regions of each sentence, and the DiSE scores are measured for these perturbed positions. In these experiments, the selection modes are denoted as 'first-10'/'mid-10'/'last-10', indicating that $M = 1$ is applied only to the respective region. Figures 2 (b), (c) and (d) show that natural sentences consistently obtain higher DiSE scores than randomized sentences in all regions. These findings indicate that DiSE effectively captures semantic coherence of both global and local region, allowing fine-grained self-evaluation across different parts of a sentence.

Observation II: Answer Accuracy Positively Correlates with DiSE Scores. We conduct a series of experiments on four commonly used reasoning datasets: Countdown (Pan et al., 2025), GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023) and SVAMP (Patel et al., 2021). The model outputs are categorized into two groups according to whether the generated answers match the ground-truth solutions. We compute the DiSE scores separately for the correct and incorrect groups and report their averages under two selection modes 'full' and 'last-10'. The results, summarized in Figure 3, consistently reveal that correct outputs tend to exhibit higher DiSE scores

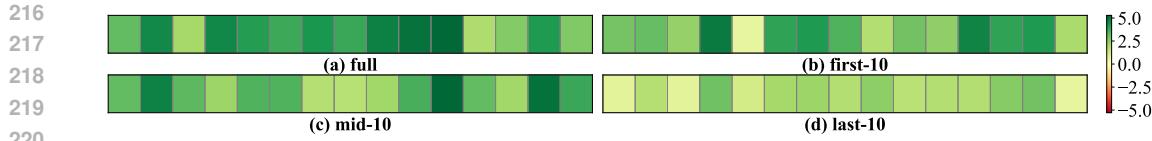


Figure 2: Differences between the DiSE scores of natural sentences and randomized sentences using the LLaDA-Instruct-8B model under four selection modes: ‘full’ (entire sentence), ‘first-10’ (first 10 tokens), ‘mid-10’ (10 tokens from the middle) and ‘last-10’ (last 10 tokens). Each subfigure contains 15 blocks, representing 15 sampled sentences. All blocks are shown in green (difference > 0), indicating that natural sentences consistently achieve higher DiSE scores than randomized sentences.

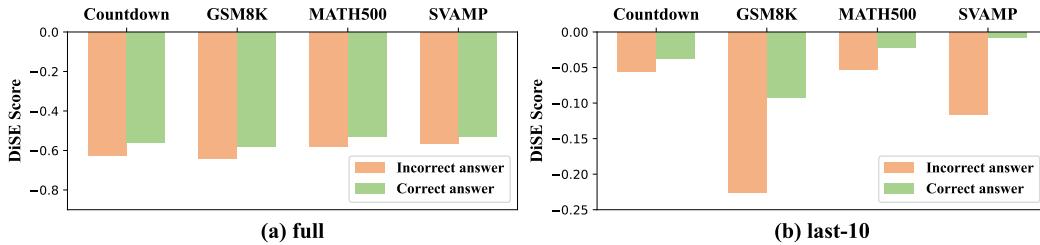


Figure 3: Comparison between the DiSE scores of correct and incorrect answers across four datasets using the LLaDA-Instruct-8B model under two selection modes ‘full’ and ‘last-10’. Correct outputs consistently show higher values, with the disparity notably amplified under ‘last-10’, which focuses on the final ten tokens associated with answer positions.

than incorrect ones across different datasets. Importantly, under the selection mode ‘last-10’, which focuses on the final ten tokens closely associated with the answer positions, the disparity between correct and incorrect outputs is substantially amplified. This finding highlights the strong correlation between DiSE scores and answer accuracy, supporting the reliability of the proposed DiSE.

4.3 DIRECT USE OF DiSE

Conditional Likelihood Estimation for dLLMs. Conditional likelihood estimation serves as an important metric for evaluating the generative ability of language models. During the evaluation, we estimate the probability or log-probability of generating a candidate response R conditioned on a given prompt P . For each prompt P , there may be multiple candidate responses, and we select the one with the highest probability as the final answer and compute the accuracy accordingly. In this work, DiSE is employed as an approximate estimator of the conditional likelihood evaluation via the unconventional regenerating probability, rather than the standard generating probability.

Uncertainty Quantification for dLLMs. Quantifying the uncertainty of model outputs is crucial for assessing their reliability. In the context of dLLMs, we use the DiSE score as a self-evaluation signal to measure the confidence of a generated sequence. Sequences with higher DiSE scores are considered more reliable, while lower scores indicate higher uncertainty. The negative of the DiSE score is used to quantify the uncertainty of the model output, with a higher value reflecting a higher estimated uncertainty.

4.4 FLEXIBLE-LENGTH dLLM GENERATION WITH DiSE

In general, dLLMs require the generation length L to be fixed and specified in advance. Different choices of L lead to different outcomes, and longer generations incur higher computational costs. In our work, we aim to relax the restriction of a fixed generation length and instead allow the output length to be adjusted flexibly within a controllable range. This is enabled by DiSE, which provides an intrinsic signal to evaluate the quality of generations without ground-truth supervision. Leveraging this property, we propose flexible-length dLLM generation.

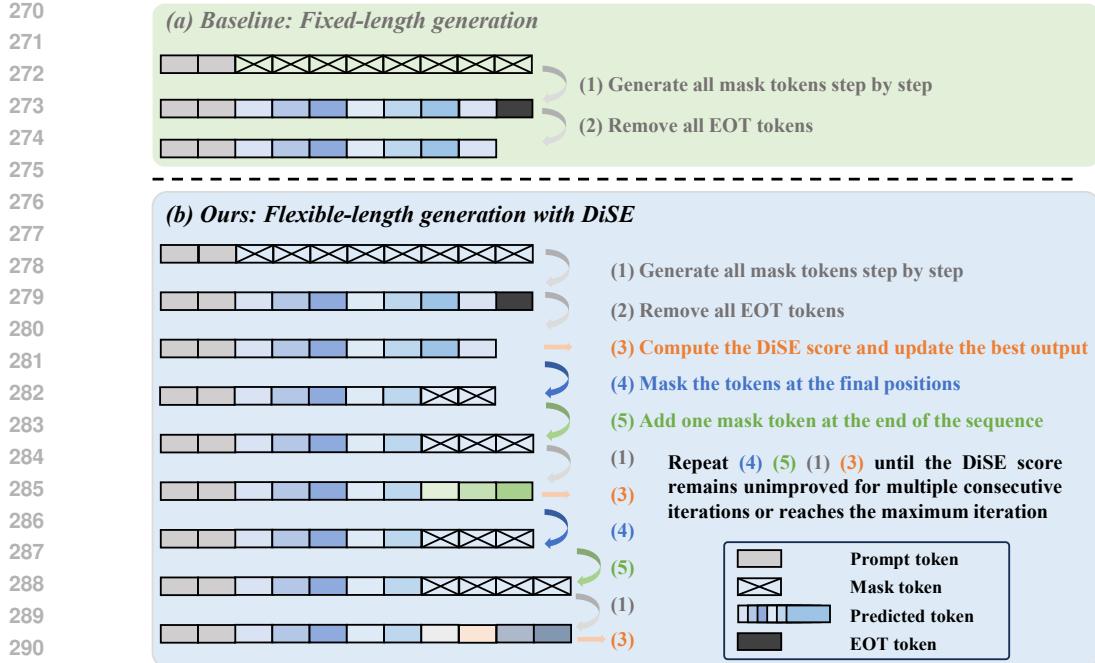


Figure 4: Illustration of the flexible-length dLLM generation framework with DiSE versus fixed-length generation. (a) Fixed-length generation baseline. The model generates a sequence of predetermined length L . (b) Flexible-length generation with DiSE. Starting from base length L , DiSE serves as a real-time self-evaluation mechanism, assessing the quality of the current sequence and deciding whether to terminate the extension process.

Our method proceeds as follows. Given a prompt P and a base length L , we first generate an initial response R of length L . Let \bar{R} denote the sequence obtained by removing all EOT tokens from R . We construct the complete token sequence as $X^{(1)} = [P; \bar{R}]$ and compute its DiSE score, which serves as the guiding criterion for controlling the generation length. Keeping the tokens in the early positions unchanged, we apply a masking operation to the last D tokens, and add one additional mask token at the end of the sequence. We use the model to regenerate the sequence, after which the DiSE score of the newly generated sequence is computed. At each iteration, D is incremented by one. This process is repeated iteratively, with DiSE determining whether the extended generation is beneficial. If the DiSE score improves, we retain the extension; otherwise, if the DiSE score remains unimproved for K consecutive iterations, we stop. To avoid unbounded computation, we set a maximum of M_{max} iterations. The overall procedure is illustrated in Figure 4 and the detailed algorithm is provided in Appendix C. This flexible-length generation process uses the DiSE score as a self-evaluation signal, enabling dLLMs to adaptively decide their output length in a principled manner.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Experiments are conducted using two dLLMs, LLaDA-Instruct-8B (Nie et al., 2025) and LLaDA-1.5-8B (Zhu et al., 2025), on a diverse set of datasets, including ARC-Challenge (Clark et al., 2018), GPQA (Rein et al., 2024), Countdown (Pan et al., 2025), GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023) and SVAMP (Patel et al., 2021). The conventional Monte Carlo simulation approach for dLLMs is used as the baseline, with the number of samples N_{mc} evaluated under two settings: $N_{mc} = 1$ and $N_{mc} = 32$. Additionally, we include the auto-regressive LLM LLaMA3-Instruct-8B (Dubey et al., 2024) for comparison in the experiments. More details are presented in Appendix D.

324
 325 Table 1: Conditional likelihood estimation results on ARC-Challenge and GPQA. The table com-
 326 pares the proposed DiSE against the Monte Carlo simulation baseline with varying N_{mc} , and also
 327 includes a comparison with the probability estimates from auto-regressive LLMs. The last column
 328 reports the average number of model forward passes per computation.

	Method	ARC-Challenge	GPQA	# forward passes
LLaDA-Instruct-8B	MC, $N_{mc} = 1$	0.306	0.212	1
	MC, $N_{mc} = 32$	0.478	0.286	32
	DiSE (ours)	0.542	0.301	1
LLaDA-1.5-8B	MC, $N_{mc} = 1$	0.311	0.203	1
	MC, $N_{mc} = 32$	0.488	0.275	32
	DiSE (ours)	0.567	0.299	1
LLaMA-3-8B	probability	0.530	0.304	1

336
 337 Table 2: ROC-AUC scores for uncertainty quantification on the Countdown, GSM8K, MATH500
 338 and SVAMP datasets with varying generation lengths. The table compares Monte Carlo simu-
 339 lation baseline with varying N_{mc} , the proposed DiSE, and the perplexity calculation using the
 340 auto-regressive model LLaMA3-Instruct-8B. The last column reports the average ROC-AUC scores
 341 across the preceding 12 settings.

	Method / Gen Len	Countdown			GSM8K			MATH500			SVAMP			Avg. ROC-AUC↑
		128	256	512	128	256	512	128	256	512	128	256	512	
LLaDA-Instruct-8B	MC, $N_{mc} = 1$	0.524	0.520	0.528	0.539	0.513	0.540	0.497	0.541	0.532	0.563	0.575	0.509	0.532
	MC, $N_{mc} = 32$	0.595	0.534	0.558	0.590	0.552	0.595	0.528	0.578	0.531	0.616	0.551	0.647	0.573
	DiSE (ours)	0.578	0.521	0.622	0.633	0.644	0.658	0.611	0.634	0.604	0.688	0.692	0.755	0.637
LLaDA-1.5-8B	LLaMA perplexity	0.574	0.419	0.392	0.675	0.605	0.577	0.575	0.637	0.551	0.686	0.650	0.590	0.578
	MC, $N_{mc} = 1$	0.525	0.588	0.528	0.516	0.559	0.525	0.558	0.514	0.525	0.562	0.466	0.554	0.535
	MC, $N_{mc} = 32$	0.608	0.557	0.520	0.559	0.578	0.608	0.580	0.546	0.551	0.585	0.513	0.597	0.567
	DiSE (ours)	0.610	0.471	0.586	0.610	0.616	0.613	0.606	0.553	0.533	0.599	0.629	0.677	0.592
	LLaMA perplexity	0.596	0.459	0.362	0.635	0.631	0.546	0.652	0.588	0.550	0.639	0.587	0.620	0.572

352 5.2 CONDITIONAL LIKELIHOOD ESTIMATION

353 We evaluate the performance of our proposed approach in the conditional likelihood estimation ex-
 354 periments, with the results summarized in Table 1. Compared to the conventional Monte Carlo
 355 simulation baseline, our method demonstrates substantial and consistent improvements on ARC-
 356 Challenge and GPQA, indicating its reliability as a estimator in likelihood evaluation. Moreover,
 357 when contrasted with the probability estimates obtained from auto-regressive LLMs, the proposed
 358 approach achieves comparable or even superior results. We also report the average number of model
 359 forward passes required for each computation. Notably, relative to the Monte Carlo baseline with
 360 $N_{mc} = 32$, our method achieves nearly a 32-fold increase in computational efficiency while demon-
 361 strating enhanced predictive performance. Specifically, using the LLaDA-Instruct-8B model, our
 362 method outperforms the Monte Carlo baseline with $N_{mc} = 1$, which offers comparable efficiency,
 363 by 23.6% on ARC-Challenge and 8.9% on GPQA. Furthermore, even when compared to the higher-
 364 cost Monte Carlo baseline with $N_{mc} = 32$, our approach achieves nearly a 32 \times speedup while still
 365 improving performance, with gains of 6.4% on ARC-Challenge and 1.5% on GPQA.

366 5.3 UNCERTAINTY QUANTIFICATION

367 For uncertainty quantification experiments, we evaluate the ability to distinguish correctness among
 368 multiple generated answers for each question using ROC-AUC scores (Kuhn et al., 2023), where the
 369 ROC-AUC score measures the probability that a randomly chosen correct answers receives lower
 370 uncertainty than a randomly chosen incorrect one. We generate 5 answers per question. Table 2
 371 presents the results on the Countdown, GSM8K, MATH500 and SVAMP datasets with varying
 372 generation lengths, using ROC-AUC scores to assess uncertainty quantification performance. In
 373 comparison to the conventional Monte Carlo simulation method, our approach yields substantial
 374 improvements. Using the LLaDA-Instruct-8B model, our method improves average ROC-AUC by
 375 10.5% across twelve generation settings over the Monte Carlo method with $N_{mc} = 1$ at comparable
 376 cost. Even compared to Monte Carlo with $N_{mc} = 32$, which incurs a nearly 32 \times higher cost, our
 377 approach remains superior by 6.4%. Compared to the perplexity method of an auto-regressive LLM,

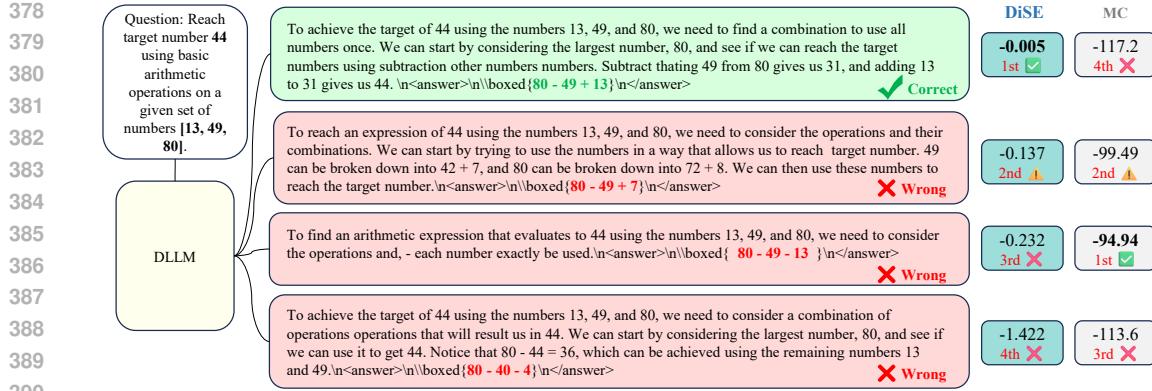


Figure 5: Qualitative example of uncertainty quantification with four generated answers using LLaDA-Instruct-8B. DiSE assigns higher score to the correct answer and lower scores to incorrect answers, while the Monte Carlo simulation ($N_{mc} = 32$) produces scores that do not consistently reflect correctness.

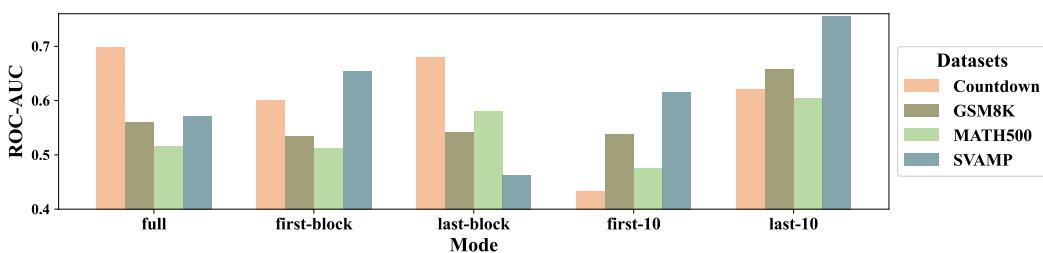


Figure 6: Ablation study of different DiSE selection modes for uncertainty quantification using LLaDA-Instruct-8B with a generation length of 512. Each mode corresponds to a different subset of tokens used for regeneration probability calculation across the sequence. Results across multiple datasets show that focusing on the last few non-EOT tokens yields higher ROC-AUC scores for uncertainty quantification.

our approach yields a 5.9% gain on the same generations. Additional results of best-of-N sampling experiments for uncertainty quantification are presented in Appendix E.1.

We present a qualitative example in Figure 5 illustrating the contrast between DiSE and Monte Carlo simulation in capturing answer correctness. Four candidate answers generated by LLaDA-Instruct-8B using the same input are shown. DiSE consistently assigns lower scores to incorrect answers, corresponding to higher uncertainty, while Monte Carlo simulation with $N_{mc} = 32$ fails to reflect answer correctness. This case study highlights the reliability of DiSE as a fine-grained sequence-level uncertainty measure. Additional qualitative examples are presented in Appendix E.2.

We investigate the effect of different DiSE selection modes on uncertainty quantification, where each mode specifies the subset of tokens used for computing regeneration probability: ‘full’ (all tokens), ‘first-block’ (tokens in the first generation block), ‘last-block’ (tokens in the last generation block, including EOT tokens), ‘first-10’ (first 10 generated tokens) and ‘last-10’ (last 10 non-EOT tokens). As shown in Figure 6, focusing on the last 10 non-EOT tokens tends to yield higher ROC-AUC scores on multiple datasets, as these tokens typically correspond to the answer region. Regeneration probabilities of earlier tokens provide limited information about answer correctness, and including EOT tokens in the last generation block negatively impacts the uncertainty estimation. In general, this ablation study demonstrates that carefully selecting the token subset for the DiSE computation significantly affects the quality of uncertainty quantification. More details on the results under different selection modes are presented in Appendix E.3.

5.4 FLEXIBLE-LENGTH DLLM GENERATION

Table 3 presents the evaluation results of flexible-length DLLM generation on the Countdown, GSM8K, MATH500 and SVAMP datasets with multiple base lengths L . Two fixed-length baselines,

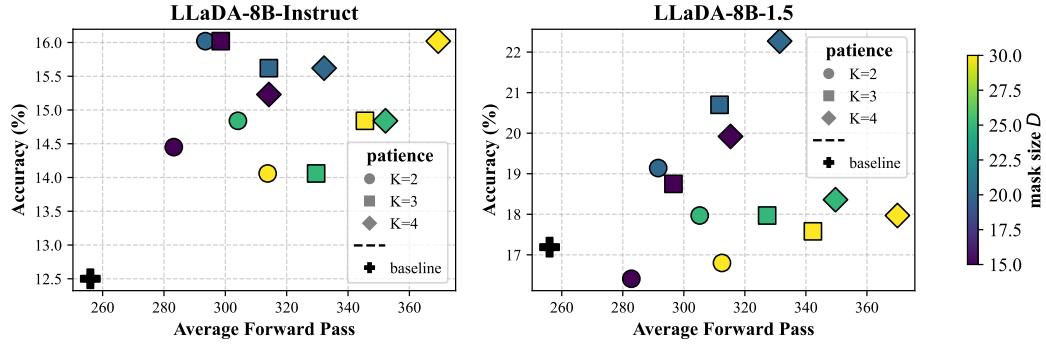
432

433 Table 3: Results of flexible-length dLLM generation with DiSE on the Countdown, GSM8K,
 434 MATH500, and SVAMP datasets with varying base lengths. The table presents two fixed-length
 435 baselines. The first, **Baseline**, generates sequences with the base length L , while the second, **Base-
 436 line (Max Len)**, generates sequences with the base length L increased by the maximum number
 437 of iterations M_{max} . These are compared with the proposed flexible-length generation with DiSE
 438 (DiSE-flexible). The final column reports the average accuracy across the preceding 12 configura-
 439 tions.

Method / Base Len	Countdown			GSM8K			MATH500			SVAMP			Avg. Accuracy
	128	256	512	128	256	512	128	256	512	128	256	512	
Baseline	26.17	15.23	12.50	68.01	76.65	79.23	26.20	32.80	36.80	84.67	85.00	83.67	52.24
Baseline (Max Len)	25.00	16.41	15.62	69.29	76.80	78.85	25.60	31.60	36.40	85.33	84.67	83.00	52.38
LLaDA-Instruct-8B	27.73	18.36	15.62	70.96	79.68	79.30	26.00	33.60	36.60	87.33	86.00	84.33	53.79
	24.22	15.62	17.19	70.51	77.48	79.53	26.80	34.00	36.80	87.00	84.67	86.67	53.37
LLaDA-1.5-8B	24.22	17.58	17.58	71.95	78.77	79.53	25.80	34.20	37.00	86.33	83.00	86.33	53.52
	26.17	19.53	22.27	72.33	79.53	80.06	27.20	35.60	37.40	87.00	85.00	87.00	54.92

446

447



458

459 Figure 7: Ablation study on the Countdown dataset with base length $L = 512$ for flexible-length
 460 dLLM generation with DiSE, examining the effects of different patience K and mask sizes D on
 461 performance. The figure presents both accuracy and the average number of model forward passes
 462 for each configuration.

463

464

465 generating sequences of length L or $L + M_{max}$, are considered to reflect conventional fixed-length
 466 generation. In contrast, our proposed method employs DiSE to guide flexible-length generation,
 467 enabling adaptive adjustment of the output sequence length. The results indicate that the flexible-
 468 length approach with DiSE yields average improvements over fixed-length baselines across multiple
 469 datasets and varying base lengths, providing strong evidence for the effectiveness of dynamically
 470 adapting sequence length with DiSE in dLLM generation.

471

472

473

474 To assess the impact of patience K and mask size D , we perform an ablation on Countdown with
 475 base length $L = 512$, reporting accuracy and average forward passes in Figure 7. Our method
 476 generally outperforms the baseline, while different K and D settings highlight a trade-off between
 477 computational cost and performance. Additional ablation results are presented in Appendix F.

478

476

6 CONCLUSION

477

478

479 We introduce DiSE, a simple yet effective self-evaluation confidence quantification method for
 480 dLLMs. By employing token regeneration probability, DiSE achieves both high reliability and
 481 computational efficiency. Building upon DiSE, we propose a flexible-length generation framework,
 482 which enables adaptive sequence lengths through real-time self-evaluation. Comprehensive experi-
 483 ments across multiple datasets demonstrate the effectiveness of DiSE and the flexible-length genera-
 484 tion framework with DiSE. DiSE closes the gap in dLLMs by introducing an efficient self-evaluation
 485 mechanism previously exclusive to auto-regressive LLMs. By leveraging DiSE, we overcome the
 fixed-length generation constraint in dLLMs and open the door to broader applications.

486 ETHICS STATEMENT
487

488 This work does not involve human subjects, personal data, or sensitive information. All datasets
489 used in our experiments (ARC-Challenge, GPQA, Countdown, GSM8K, MATH500 and SVAMP)
490 are publicly available benchmark datasets. We strictly adhered to ethical research practices and
491 did not conduct any data collection that could raise privacy, security, or fairness concerns. Our
492 work focuses on providing an efficient and reliable self-evaluation confidence quantification method
493 for dLLMs, and introducing a flexible-length dLLM generation framework based on it, without
494 introducing risks of harmful applications. To the best of our knowledge, this research complies with
495 the ICLR Code of Ethics and poses no foreseeable ethical concerns.

496
497 REPRODUCIBILITY STATEMENT
498

499 We have made extensive efforts to ensure the reproducibility of our work. Comprehensive imple-
500 mentation details are reported in Section 5.1 and Appendix D. The detailed algorithm of flexible-
501 length dLLMs generation with DiSE is provided in Appendix C. Upon acceptance, we will release
502 the code of our method to facilitate replication and further research.

503
504 REFERENCES
505

506 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
507 denoising diffusion models in discrete state-spaces. *Advances in neural information processing*
508 *systems*, 34:17981–17993, 2021.

509 Yavuz Faruk Bakman, Duygu Nur Yaldiz, Baturalp Buyukates, Chenyang Tao, Dimitrios Dimitri-
510 adis, and Salman Avestimehr. Mars: Meaning-aware response scoring for uncertainty estimation
511 in generative llms. In *Proceedings of the 62nd Annual Meeting of the Association for Compu-
512 tational Linguistics (Volume 1: Long Papers)*, pp. 7752–7767, 2024.

513
514 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
515 Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM*
516 *transactions on intelligent systems and technology*, 15(3):1–45, 2024.

517 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
518 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
519 *arXiv:1803.05457v1*, 2018.

520 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
521 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
522 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

523
524 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
525 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
526 *arXiv e-prints*, pp. arXiv–2407, 2024.

527
528 Ekaterina Fadeeva, Aleksandr Rubashevskii, Artem Shelmanov, Sergey Petrakov, Haonan Li,
529 Hamdy Mubarak, Evgenii Tsymbalov, Gleb Kuzmin, Alexander Panchenko, Timothy Baldwin,
530 et al. Fact-checking the output of large language models via token-level uncertainty quantification.
531 *arXiv preprint arXiv:2403.04696*, 2024.

532
533 Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koepll, Preslav Nakov, and Iryna Gurevych. A
534 survey of confidence estimation and calibration in large language models. *arXiv preprint*
535 *arXiv:2311.08298*, 2023.

536
537 Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
538 Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
539 autoregressive models. *arXiv preprint arXiv:2410.17891*, 2024.

540
541 Robert L Harrison. Introduction to monte carlo simulation. In *AIP conference proceedings*, volume
542 1204, pp. 17, 2010.

- 540 Wenchong He, Zhe Jiang, Tingsong Xiao, Zelin Xu, and Yukun Li. A survey on uncertainty quantification methods for deep learning. *arXiv preprint arXiv:2302.13425*, 2023.
- 541
- 542
- 543 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
- 544
- 545 Yukun Huang, Yixin Liu, Raghuveer Thirukovalluru, Arman Cohan, and Bhuwan Dhingra. Calibrating long-form generations from large language models. *arXiv preprint arXiv:2402.06544*, 2024.
- 546
- 547
- 548 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty estimation in natural language generation. *arXiv preprint arXiv:2302.09664*, 2023.
- 549
- 550
- 551 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth International Conference on Learning Representations*, 2023.
- 552
- 553
- 554 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in words. *arXiv preprint arXiv:2205.14334*, 2022.
- 555
- 556
- 557 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In *International Conference on Machine Learning*, pp. 8162–8171. PMLR, 2021.
- 558
- 559 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*, 2025.
- 560
- 561
- 562 Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero. <https://github.com/Jiayi-Pan/TinyZero>, 2025. Accessed: 2025-01-24.
- 563
- 564
- 565 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are nlp models really able to solve simple math word problems? *arXiv preprint arXiv:2103.07191*, 2021.
- 566
- 567
- 568 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv preprint arXiv:2307.01952*, 2023.
- 569
- 570
- 571 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Diranji, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In *First Conference on Language Modeling*, 2024.
- 572
- 573
- 574 Jie Ren, Yao Zhao, Tu Vu, Peter J Liu, and Balaji Lakshminarayanan. Self-evaluation improves selective generation in large language models. In *Proceedings on*, pp. 49–64. PMLR, 2023.
- 575
- 576
- 577 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024.
- 578
- 579
- 580 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized masked diffusion for discrete data. *Advances in neural information processing systems*, 37: 103131–103167, 2024.
- 581
- 582
- 583 Ola Shorinwa, Zhiting Mei, Justin Lidard, Allen Z Ren, and Anirudha Majumdar. A survey on uncertainty quantification of large language models: Taxonomy, open research challenges, and future directions. *ACM Computing Surveys*, 2025.
- 584
- 585
- 586
- 587 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv preprint arXiv:2010.02502*, 2020.
- 588
- 589
- 590 Elias Stengel-Eskin, Peter Hase, and Mohit Bansal. Lacie: Listener-aware finetuning for calibration in large language models. *Advances in Neural Information Processing Systems*, 37:43080–43106, 2024.
- 591
- 592
- 593 Jaesung Tae, Hamish Ivison, Sachin Kumar, and Arman Cohan. Tess 2: A large-scale generalist diffusion language model. *arXiv preprint arXiv:2502.13917*, 2025.

- 594 Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev, Lyudmila Rvanova, Akim Tsvigun, Daniil
 595 Vasilev, Rui Xing, Abdelrahman Boda Sadallah, Kirill Grishchenkov, Sergey Petrakov, et al.
 596 Benchmarking uncertainty quantification methods for large language models with lm-polygraph.
 597 *arXiv preprint arXiv:2406.15627*, 2024.
- 598 Johnathan Xie, Annie S Chen, Yoonho Lee, Eric Mitchell, and Chelsea Finn. Calibrating language
 599 models with adaptive temperature scaling. *arXiv preprint arXiv:2409.19817*, 2024.
- 600 Tianyang Xu, Shujin Wu, Shizhe Diao, Xiaoze Liu, Xingyao Wang, Yangyi Chen, and Jing Gao.
 601 Sayself: Teaching llms to express confidence with self-reflective rationales. *arXiv preprint
 602 arXiv:2405.20974*, 2024.
- 603 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 604 Kong. Dream 7b, 2025. URL <https://hkunlp.github.io/blog/2025/dream>.
- 605 Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Quanquan Gu. Diffusion language models
 606 can perform many tasks with scaling and instruction-finetuning. *arXiv preprint arXiv:2308.12219*,
 607 2023.
- 608 Runpeng Yu, Qi Li, and Xinchao Wang. Discrete diffusion in large language and multimodal models:
 609 A survey. *arXiv preprint arXiv:2506.13759*, 2025.
- 610 Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
 611 for text generation. *arXiv preprint arXiv:2302.05737*, 2023.
- 612 Linhao Zhong, Fan Li, Yi Huang, Jianzhuang Liu, Renjing Pei, and Fenglong Song. Outdreamer:
 613 Video outpainting with a diffusion transformer. *arXiv preprint arXiv:2506.22298*, 2025.
- 614 Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
 615 Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
 616 large language diffusion models. *arXiv preprint arXiv:2505.19223*, 2025.
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648 APPENDIX

649
650 A LLM USAGE651
652 In this section, we clarify the role of large language models (LLMs) in preparing this work. The
653 model was used exclusively for language polishing, such as refining grammar, style, and readability,
654 without contributing to the research design, analysis, or conclusions.
655

656 B PROBABILITY ESTIMATION FOR CONDITIONAL GENERATION

657 B.1 AUTO-REGRESSIVE LLM PROBABILITY ESTIMATION

658
659 In the context of conditional generation given a prompt P , let $R = (r_1, r_2, \dots, r_N)$ denote the
660 generated response of length N . The probability of generating R given P for an auto-regressive
661 language model can be written as:
662

663
664
$$p_\theta(R | P) = \prod_{i=1}^N p_\theta(r_i | P, r_{<i}), \quad (\text{S1})$$

665

666 where $r_{<i} = (r_1, \dots, r_{i-1})$. This formulation allows exact computation of the probability of a
667 model-generated response conditioned on a given prompt.
668

669 B.2 dLLM MONTE CARLO PROBABILITY ESTIMATION

670
671 For dLLMs, let $R^0 = (r_1^0, r_2^0, \dots, r_N^0)$ denote the generated response of length N . The traditional
672 dLLM approach approximates the log-probability of generating R^0 given P with the following term:
673

674
675
$$\mathbb{E}_{l, R^l} \left[\frac{N}{l} \sum_{i=1}^N \mathbf{1} [r_i^l = \langle \text{mask token} \rangle] \log p_\theta(r_i^0 | P, R^l) \right], \quad (\text{S2})$$

676

677 where l is uniformly sampled from $\{1, 2, \dots, N\}$, and $R^l = (r_1^l, r_2^l, \dots, r_N^l)$ is obtained by uniformly
678 sampling l tokens from R^0 , replacing the tokens at these positions with mask tokens, while
679 keeping all other tokens identical to those in R^0 . Since the exact computation of this expectation
680 is intractable, we employ Monte Carlo simulation to approximate it by sampling a finite number of
681 instances and taking their empirical average.
682

683 C ALGORITHM FOR FLEXIBLE-LENGTH dLLM GENERATION WITH DiSE

684
685 We provide a detailed algorithm for the flexible-length dLLM generation framework guided by
686 the DiSE score in Algorithm S1, which uses the DiSE score as a self-evaluation signal to achieve
687 controllable sequence lengths and improved generation quality.
688

689 D MORE IMPLEMENTATION DETAILS.

690
691 The datasets employed in our experiments are categorized into two groups: those used for conditional
692 likelihood estimation and those intended for conditional generation. Specifically, we consider
693 ARC-Challenge (Clark et al., 2018) and GPQA (Rein et al., 2024) for conditional likelihood estimation,
694 which are challenging multiple-choice science question datasets. ARC-Challenge focuses on
695 grade-school level questions that require advanced reasoning beyond simple retrieval, while GPQA
696 contains expert-crafted questions in biology, physics, and chemistry that are difficult even for highly
697 skilled humans and state-of-the-art AI models. For conditional generation, we use Countdown (Pan
698 et al., 2025), GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023), and SVAMP (Patel
699 et al., 2021), which involve arithmetic and mathematical problems requiring step-by-step reasoning,
700 advanced problem-solving, combinatorial thinking, and generalization across diverse problem
701 formats. Regarding the selection mode, i.e., the binary mask M , we adopt different configurations
for different datasets. For ARC-Challenge, we set $M = 1$ for the last two tokens of the prompt

702 **Algorithm S1** Flexible-length dLLM Generation with DiSE703 **Require:** Prompt P , base length L , maximum iterations M_{max} , patience K , mask size D 704 **Ensure:** Final generated sequence \hat{X} 705 1: Generate an initial response R of length L given prompt P 706 2: Remove all EOT tokens from R to obtain \bar{R} 707 3: $X^{(1)} = [P; \bar{R}]$ 708 4: Compute initial confidence $s^{(1)} \leftarrow \text{DiSE}(X^{(1)})$ 709 5: Set $\hat{X} \leftarrow X^{(1)}$, $\hat{s} \leftarrow s^{(1)}$, $t \leftarrow 1$, $c \leftarrow 0$ 710 6: **while** $t < M_{max}$ **do**711 7: $t \leftarrow t + 1$ 712 8: Mask the last D tokens of $X^{(t-1)}$ to obtain $X_m^{(t-1)}$ 713 9: Regenerate sequence $X^{(t)}$ from the masked input $[X_m^{(t-1)}; \langle \text{mask token} \rangle]$ 714 10: $s^{(t)} \leftarrow \text{DiSE}(X^{(t)})$ 715 11: **if** $s^{(t)} > \hat{s}$ **then**716 12: $\hat{X} \leftarrow X^{(t)}$, $\hat{s} \leftarrow s^{(t)}$, $c \leftarrow 0$ 717 13: **else**718 14: $c \leftarrow c + 1$ 719 15: **end if**720 16: **if** $c \geq K$ **then**721 17: **break**722 18: **end if**723 19: $D \leftarrow D + 1$ 724 20: **end while**725 21: **return** \hat{X} 726
727 Table S1: Best-of-N sampling results for uncertainty quantification on the Countdown, GSM8K,
728 MATH500, and SVAMP datasets with varying generation lengths. The table compares the baseline
729 without best-of-N sampling, Monte Carlo simulation with varying N_{mc} , the proposed DiSE, and
730 the perplexity calculation using the auto-regressive model LLaMA3-Instruct-8B. The last column
731 reports the average accuracy across the preceding 12 settings.

	Method / Gen Len	Countdown			GSM8K			MATH500			SVAMP			Avg. Accuracy
		128	256	512	128	256	512	128	256	512	128	256	512	
LLaDA-Instruct-8B	Baseline	26.17	15.23	12.50	68.01	76.65	79.23	26.20	32.80	36.80	84.67	85.00	83.67	52.24
	MC, $N_{mc} = 1$	24.61	21.48	17.19	68.84	78.17	80.59	25.80	33.80	36.40	84.67	84.00	85.00	53.38
	MC, $N_{mc} = 32$	29.69	21.88	16.41	71.11	78.70	82.79	27.60	34.80	36.20	86.33	85.67	86.67	54.82
	DiSE (ours)	30.86	24.22	27.34	73.01	82.41	83.02	29.80	34.60	38.20	88.33	87.00	90.00	57.40
LLaDA perplexity	Baseline	30.86	17.19	11.33	74.22	79.61	81.20	28.60	35.40	34.80	88.33	86.67	85.67	54.49
	MC, $N_{mc} = 1$	24.22	15.62	17.19	70.51	77.48	79.53	26.80	34.00	36.80	87.00	84.67	86.67	53.37
	MC, $N_{mc} = 32$	24.22	20.31	24.22	70.13	79.45	80.89	28.20	34.80	37.60	88.33	84.67	87.33	55.01
	DiSE (ours)	29.30	17.97	28.91	74.53	81.96	83.55	28.60	34.40	37.40	88.00	86.33	87.67	56.55
	LLaMA perplexity	28.91	12.89	13.28	74.60	81.50	80.14	30.40	39.00	37.20	89.67	87.67	87.00	55.19

743
744 P . For GPQA, we set $M = 1$ for the last seven tokens of the prompt P and the first two tokens
745 of the response R . For Countdown, GSM8K, MATH500 and SVAMP, we adopt the selection mode
746 ‘last-10’ by default, which sets $M = 1$ only for the last ten non-EOT tokens. For flexible-length
747 dLLM generation experiments, we set the maximum number of iterations $M_{max} = 10$, the patience
748 parameter $K = 4$, and the mask size $D = 20$ by default.749 **E ADDITIONAL RESULTS ON UNCERTAINTY QUANTIFICATION**750 **E.1 BEST-OF-N SAMPLING RESULTS**751
752 In Section 5.3, we generate multiple answers for each question and evaluate uncertainty quantifica-
753 tion using ROC-AUC scores. As an additional experiment, we perform best-of-N sampling, select-
754 ing the answer with the lowest uncertainty (i.e., highest DiSE score in our proposed method) among

756
 757 Table S2: Additional ROC-AUC results for uncertainty quantification to investigate the impact of
 758 different selection modes on performance. We evaluate two selection modes ‘full’ and ‘last-10’. The
 759 table reports ROC-AUC scores across the Countdown, GSM8K, MATH500, and SVAMP datasets
 760 with varying generation lengths, as well as the average ROC-AUC scores over all settings.

Method / Gen Len	Countdown			GSM8K			MATH500			SVAMP			Avg. ROC-AUC↑
	128	256	512	128	256	512	128	256	512	128	256	512	
LLaDA-Instruct-8B	DiSE (full)	0.616	0.672	0.698	0.597	0.585	0.560	0.514	0.555	0.517	0.665	0.549	0.571
	DiSE (last-10)	0.578	0.521	0.622	0.633	0.644	0.658	0.611	0.634	0.604	0.688	0.692	0.755
LLaDA-1.5-8B	DiSE (full)	0.591	0.664	0.681	0.593	0.569	0.546	0.489	0.590	0.532	0.630	0.574	0.552
	DiSE (last-10)	0.610	0.471	0.586	0.610	0.616	0.613	0.606	0.553	0.533	0.599	0.629	0.677

761
 762
 763
 764
 765
 766
 767
 768 multiple generations per question, and report the accuracy. Consistent with the main experiments,
 769 we generate five answers per question. Table S1 presents the evaluation results of our method under
 770 the best-of-N sampling strategy on the Countdown, GSM8K, MATH500, and SVAMP datasets
 771 with varying generation lengths. The results demonstrate that our approach consistently outperforms
 772 the baseline method that does not employ best-of-N sampling across all tested configurations, high-
 773 lighting the effectiveness of selecting the highest-scoring candidate based on DiSE. In comparison to
 774 the conventional Monte Carlo simulation method, our approach yields substantially larger improve-
 775 ments. In particular, when using the LLaDA-Instruct-8B model, the proposed method achieves an
 776 average accuracy gain of 5.16% over all twelve generation length settings, whereas the Monte Carlo
 777 method with a comparable computational cost, corresponding to $N_{mc} = 1$, achieves only an im-
 778 provement of 1.14%. Even when the Monte Carlo method is applied with $N_{mc} = 32$, resulting in
 779 an evaluation cost nearly 32 times higher, the observed improvement reaches only 2.58%, which
 780 is still considerably lower than the gain provided by our approach. Furthermore, we evaluate per-
 781 formance using probability estimates obtained from an auto-regressive LLM as a reference. For
 782 instance, under the same generations, employing the auto-regressive LLM probabilities leads to an
 783 improvement of merely 2.25%, which remains below the performance enhancement achieved by our
 784 method, thereby underscoring the superiority of DiSE in best-of-N sampling and uncertainty quan-
 785 tification. Importantly, the observed improvements are consistent across both tested dLLM variants,
 786 LLaDA-Instruct-8B and LLaDA-1.5-8B, across four datasets and three generation lengths. This
 787 consistency indicates that best-of-N sampling guided by DiSE remains robust regardless of model,
 788 task type or sequence length.

789 790 E.2 ADDITIONAL QUALITATIVE EXAMPLES OF UNCERTAINTY QUANTIFICATION 791

792 Figure S1 presents additional qualitative examples of uncertainty quantification using LLaDA-
 793 Instruct-8B. Consistently, DiSE effectively distinguishes between correct and incorrect outputs by
 794 assigning higher scores to correct answers, corresponding to lower uncertainty, while the Monte
 795 Carlo simulation with $N_{mc} = 32$ fails to align with the correctness of the answers. These results
 796 provide additional evidence of the effectiveness of DiSE as a fine-grained uncertainty measure at the
 797 sequence level.

798 799 E.3 ABLATION STUDY FOR DIFFERENT SELECTION MODES 800

801 In Section 5.3, we report the effectiveness of DiSE for uncertainty quantification under the selec-
 802 tion mode ‘last-10’, showing substantial improvements over the baseline across multiple datasets
 803 and generation lengths. To further validate the robustness of this finding, we extend the analysis
 804 by additionally evaluating the selection mode ‘full’ configuration and directly comparing it with the
 805 mode ‘last-10’. The ROC-AUC results are presented in Table S2 and the best-of-N sampling results
 806 are presented in Table S3. Without specifying a local region for computing regeneration proba-
 807 bility, DiSE with ‘full’ mode still achieves performance far above the baseline, demonstrating the
 808 effectiveness of our method.

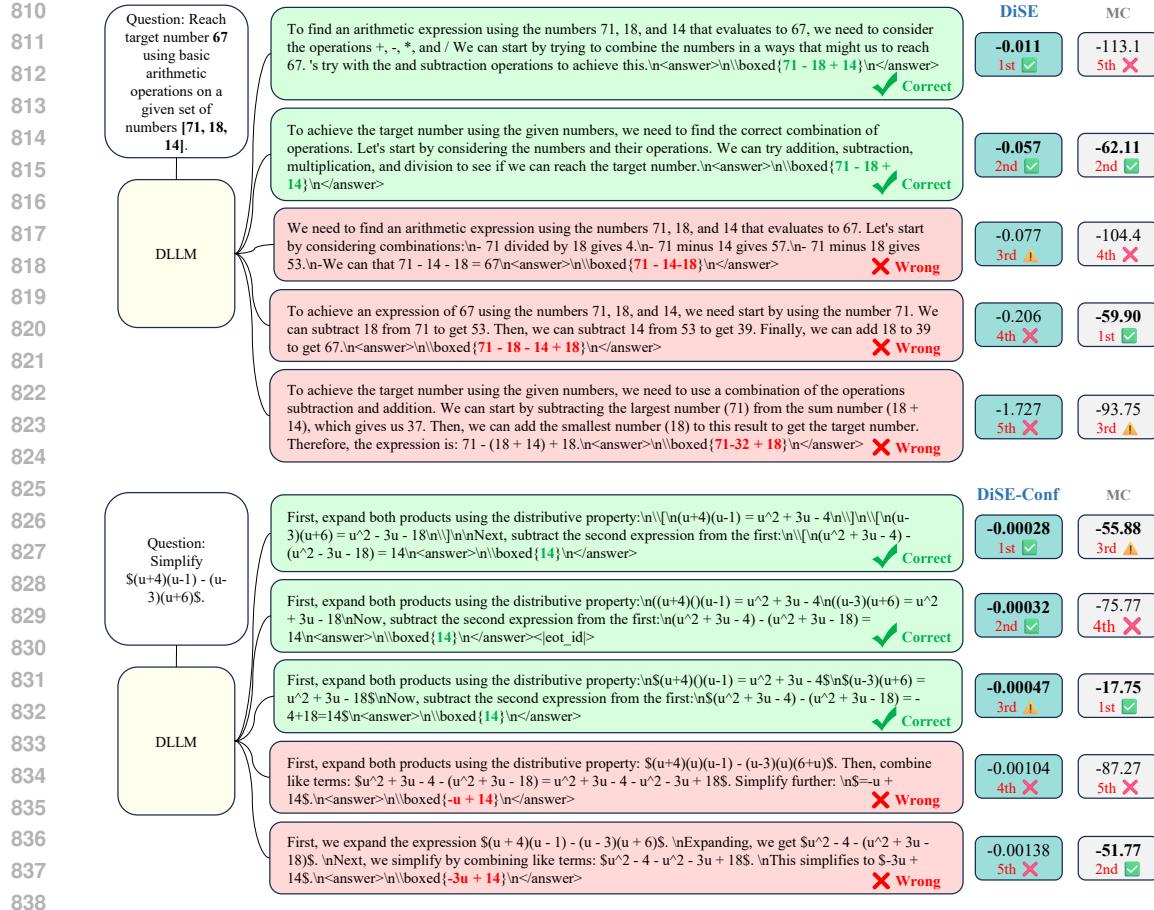


Figure S1: Additional qualitative examples of uncertainty quantification using LLaDA-Instruct-8B. DiSE assigns higher scores to correct answers and lower scores to incorrect answers, while the Monte Carlo simulation ($N_{mc} = 32$) produces scores that do not consistently reflect correctness.

Table S3: Additional best-of-N sampling results for uncertainty quantification to investigate the impact of different selection modes on performance. We evaluate two selection modes ‘full’ and ‘last-10’. The table reports accuracy across the Countdown, GSM8K, MATH500, and SVAMP datasets with varying generation lengths, as well as the average accuracy over all settings.

	Countdown			GSM8K			MATH500			SVAMP			Avg. Accuracy
Method / Gen Len	128	256	512	128	256	512	128	256	512	128	256	512	
LLaDA-Instruct-8B	DiSE (full)	30.86	28.52	27.34	71.87	79.76	79.53	27.20	34.60	34.20	87.67	85.33	87.00
	DiSE (last-10)	30.86	24.22	27.34	73.01	82.41	83.02	29.80	34.60	38.20	88.33	87.00	90.00
LLaDA-1.5-8B	DiSE (full)	27.34	25.00	32.81	72.33	79.45	80.06	24.80	37.20	38.00	88.33	86.67	85.00
	DiSE (last-10)	29.30	17.97	28.91	74.53	81.96	83.55	28.60	34.40	37.40	88.00	86.33	87.67

F ADDITIONAL ABLATION STUDY ON PATIENCE FOR FLEXIBLE-LENGTH DLLM GENERATION

We investigate the effect of different patience values K on flexible-length dLLM generation across the Countdown, GSM8K, MATH500 and SVAMP datasets with varying base lengths, testing under both the LLaDA-Instruct-8B and LLaDA-1.5-8B models. The summarized results are presented in Table S4 and Table S5.” Across all tested patience K settings, the flexible-length generation guided by DiSE consistently achieves substantially better average accuracy than fixed-length baselines, demonstrating the effectiveness of adaptive sequence length. Increasing K raises computational

864

865 Table S4: Ablation study on flexible-length dLLM generation with the LLaDA-Instruct-8B model,
 866 analyzing the impact of different patience values K on performance. The table reports accuracy on
 867 the Countdown, GSM8K, MATH500, and SVAMP datasets with varying base lengths, along with
 868 the average accuracy and the average number of model forward passes for each configuration.

Method / Base Len	Countdown			GSM8K			MATH500			SVAMP			Avg. Accuracy	Avg. # Forward Pass
	128	256	512	128	256	512	128	256	512	128	256	512		
DiSE-flexible (K=2)	27.34	18.36	16.02	70.43	79.30	79.23	26.40	34.00	36.60	87.33	86.00	84.67	53.81	182.3
DiSE-flexible (K=3)	27.34	17.97	15.62	70.74	79.61	79.23	25.80	33.80	36.60	87.33	86.00	84.33	53.70	199.3
DiSE-flexible (K=4)	27.73	18.36	15.62	70.96	79.68	79.30	26.00	33.60	36.60	87.33	86.00	84.33	53.79	215.3

873

874 Table S5: Ablation study on flexible-length dLLM generation with the LLaDA-1.5-8B model,
 875 analyzing the impact of different patience values K on performance. The table reports accuracy on the
 876 Countdown, GSM8K, MATH500, and SVAMP datasets with varying base lengths, along with the
 877 average accuracy and the average number of model forward passes for each configuration.

Method / Base Len	Countdown			GSM8K			MATH500			SVAMP			Avg. Accuracy	Avg. # Forward Pass
	128	256	512	128	256	512	128	256	512	128	256	512		
DiSE-flexible (K=2)	24.61	17.19	19.14	72.40	79.23	80.06	27.40	35.60	37.40	87.33	84.67	87.00	54.34	182.0
DiSE-flexible (K=3)	24.61	19.14	20.70	72.48	79.45	80.06	27.80	35.40	37.40	87.00	84.67	87.00	54.64	198.9
DiSE-flexible (K=4)	26.17	19.53	22.27	72.33	79.53	80.06	27.20	35.60	37.40	87.00	85.00	87.00	54.92	214.7

882

883 costs, but the corresponding performance gains are not always proportional, highlighting the need
 884 to balance efficiency with achievable improvements.

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917