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ABSTRACT

Diffusion large language models (dLLMs) have recently attracted significant at-
tention for their ability to enhance diversity, controllability, and parallelism. How-
ever, their non-sequential, bidirectionally masked generation makes quality as-
sessment difficult, underscoring the need for effective self-evaluation. In this
work, we propose DiSE, a simple yet effective self-evaluation confidence quan-
tification method for dLLMs. DiSE quantifies confidence by computing the prob-
ability of regenerating the tokens in the entire generated sequence, given the full
context. This method enables more efficient and reliable quality assessment by
leveraging token regeneration probabilities, facilitating both likelihood estima-
tion and robust uncertainty quantification. Building upon DiSE, we further in-
troduce a flexible-length generation framework, which adaptively controls the se-
quence length based on the model’s self-assessment of its own output. Experi-
ments demonstrate that DiSE consistently improves performance across multiple
datasets, increasing likelihood evaluation by 4.0% and uncertainty evaluation by
6.4%, while achieving up to a 32x speedup over Monte Carlo simulation baseline,
and additionally improving flexible-length generation accuracy. These results es-
tablish DiSE as an efficient and versatile self-evaluation framework for diffusion-
based language models.

1 INTRODUCTION

Recently, diffusion large language models (dALLMs) (Yu et al., 2025) have emerged as a promis-
ing direction in natural language processing. In contrast to auto-regressive (AR) models, dLLMs
adopt the generative framework of diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021;
Song et al., 2020), framing text generation as a progressive denoising process. This approach en-
ables better diversity, controllability, and parallel generation compared to AR models. Nonetheless,
the non-sequential and bidirectional nature of dLLMs makes direct likelihood-based self-evaluation
challenging (Nie et al., 2025). Concurrently, self-evaluation has been recognized as a fundamental
capability of LLMs, serving as the basis for a wide range of applications such as hallucination de-
tection (Shorinwa et al., 2025; Fadeeva et al., 2024), answer quality assessment (Chang et al., 2024),
and generation quality enhancement (Huang et al., 2024; Xie et al., 2024).

In AR models, causal masking enforces a strict left-to-right generation order, allowing sequence
probability to be decomposed into token-level conditional probabilities. This simplifies the genera-
tion process and enables self-evaluation through likelihood estimation. In contrast, dLLMs use bidi-
rectional masking and a non-sequential, stepwise generation process, making direct likelihood-based
self-evaluation challenging. Currently, dLLMs rely primarily on Monte Carlo simulation-based ap-
proximations of sequence likelihood (Nie et al., 2025), but this method is computationally expensive
and often yields suboptimal estimates, limiting its practical effectiveness. Moreover, owing to the
intrinsic token-level self-evaluation signal provided by next-token prediction in AR models, the gen-
eration length can be adaptively controlled via real-time EOS token prediction. Unlike AR models,
conventional dLLMs lack such an effective built-in likelihood-based self-evaluation signal, which
forces them into fixed-length generation and fundamentally restricts their flexibility.

In this work, we propose DiSE, a simple yet effective self-evaluation confidence quantification
method for diffusion large language models. DiSE is derived by feeding the entire sequence back
into the dLLM and computing the probability of regenerating its tokens under the full context. This
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method enables the model to assess its own generation quality by evaluating how well it can repro-
duce the original sequence when conditioned on the entire context, effectively leveraging its own
internal predictions. Based on DiSE, we introduce a flexible-length sequence generation method
that, unlike conventional fixed-length generation, enables controllable and adaptive output lengths
guided by the model’s self-assessment. Serving as a real-time self-evaluation mechanism, DiSE
guides the process of searching, assessing and stopping to determine the optimal generation length.

DiSE provides a versatile mechanism for dLLMs, acting as an effective estimator for conditional
likelihood evaluation and facilitating robust uncertainty quantification (Shorinwa et al., 2025). This
approach significantly improves computational efficiency while achieving higher evaluation accu-
racy compared to traditional Monte Carlo simulation-based methods. Extensive experiments on
likelihood evaluation, uncertainty quantification, and flexible-length generation show the effective-
ness of the proposed DiSE.

Our main contributions are summarized as follows:

+ Efficient and Reliable Self-evaluation Mechanism for dLLMs. We propose DiSE, a
simple yet effective self-evaluation confidence quantification method for diffusion large
language models, which enables dLLMs to perform efficient and reliable self-assessment
by computing the probability of sequence regeneration.

¢ Flexible-length dLLM Generation with DiSE. We propose a flexible-length generation
framework for dLLMs based on DiSE, which enables adaptive sequence lengths through
real-time self-evaluation and is validated through extensive experiments.

* Performance Improvements in Likelihood Evaluation and Uncertainty Quantifica-
tion. The DiSE consistently enhances dLLM performance by serving as an efficient es-
timator for conditional likelihood evaluation and improving uncertainty quantification. It
achieves a 4.0% improvement in average accuracy on ARC-Challenge and GPQA, and
a 6.4% improvement in average ROC-AUC across Countdown, GSM8K, MATH500 and
SVAMP, while yielding a 32x speedup over Monte Carlo simulation.

2 RELATED WORK

2.1 DLLMsSs

Diffusion Large Language Models (dLLMs) (Yu et al., 2025) adapt the diffusion modeling
paradigm (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2020), which is originally suc-
cessful in image and video generation (Podell et al., 2023; Zhong et al., 2025), to natural language.
Early efforts, such as D3PM (Austin et al., 202 1), DiffusionBERT (Austin et al., 2021), RDM (Zheng
et al., 2023), MDLM (Sahoo et al., 2024) and MD4 (Shi et al., 2024), focused on exploring train-
ing objectives, noise scheduling strategies, and parameterization methods. Recent research includes
LLaDA (Nie et al., 2025), the first large-scale dLLM, DIFFUSION-LLMs (Ye et al., 2023) with
multi-stage training strategies, and DiffuGPT / DiffuLLaMA (Gong et al., 2024), which adapt pre-
trained auto-regressive models to the diffusion framework. DREAM (Ye et al., 2025) further demon-
strates strong performance in complex reasoning tasks. Subsequent developments, such as LLaDA
1.5 (Zhu et al., 2025) with variance-reduced preference optimization for preference alignment and
TESS 2 (Tae et al., 2025) with auto-regressive initialization and adaptive noise scheduling, further
improve generation quality.

2.2  SELF-EVALUATION FOR LLMS

Self-evaluation (Ren et al., 2023; Geng et al., 2023) has emerged as a crucial mechanism in LLMs,
providing models with the capability to assess the reliability of their own outputs and to produce
internal measures of confidence and correctness. Self-evaluation is most directly performed via like-
lihood estimation, using the model’s probabilistic output to quantify plausibility. While sequence
likelihood is a natural evaluation signal for AR models, it is generally intractable for dLLMs. Recent
efforts (Nie et al., 2025) address this by developing approximate likelihood measures, but their ef-
fectiveness is often limited by computational cost and estimation variance. Beyond likelihoods, un-
certainty quantification (UQ) (Shorinwa et al., 2025; He et al., 2023; Vashurin et al., 2024) evaluates
the confidence of model predictions and plays a key role in mitigating hallucinations in risk-aware
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settings. Token-level approaches estimate uncertainty from the conditional probability distribution
of the generated tokens, employing entropy-based metrics, sequence normalization, or meaning-
aware scoring (e.g., perplexity (Shorinwa et al., 2025), CCP (Fadeeva et al., 2024), MARS (Bakman
et al., 2024)) for more fine-grained assessments. Self-verbalized UQ (Stengel-Eskin et al., 2024;
Xu et al., 2024; Lin et al., 2022) encourages LLMs to articulate their confidence through verbalized
probabilities or epistemic markers. Building on these uncertainty signals, recent work leverages
self-evaluation for calibration, aligning model confidence with empirical accuracy and thereby im-
proving the reliability and quality of generated outputs (Huang et al., 2024; Xie et al., 2024).

3 PRELIMINARIES

3.1 AUTO-REGRESSIVE LLM PROBABILITY ESTIMATION

Given an auto-regressive language model and a text sequence X = (1, o, ..., Zx ), the probability
of generating the entire sequence is factorized as the product of conditional probabilities:

N
po(X) =[] po(zi | 2<), (1
i=1

where x.; = (x1,...,2;_1) represents all preceding tokens, and € denotes the model parameters.
This factorization allows exact computation of the sequence probability by multiplying the model’s
predicted probabilities for each token given its context. The probability estimation for conditional
generation is detailed in Appendix B.1.

3.2 DLLM MONTE CARLO PROBABILITY ESTIMATION

DLLMs do not employ the causal masking used in auto-regressive LLMs and therefore the proba-
bility of generating a sequence cannot be factorized as a simple product of conditional probabilities.

To approximate the log-probability of generating a target sequence X° = (29, 29,...,2%), the
traditional approach (Nie et al., 2025) adopts the following term:
N
E; x: T Z 1 [mi = (mask token)] log pe (:c? | Xl) , 2)
i=1
where [ is uniformly sampled from {1,2,..., N}, and X' = (2!, 2},...,2Y;) is obtained by uni-

formly sampling [ tokens from XY, replacing the tokens at these positions with mask tokens, while
keeping all other tokens identical to those in X". Since the exact computation of this expectation is
intractable, Monte Carlo simulation (Harrison, 2010) is employed, where a finite number of samples
are generated and the expectation is approximated by their empirical average. This approximation
enables tractable estimation of sequence probabilities for dLLMs. The probability estimation for
conditional generation is detailed in Appendix B.2.

4 METHOD

4.1 Di1SE

In traditional likelihood estimation approaches, whether using auto-regressive LLMs or dLLMs with
Monte Carlo simulation, the common paradigm is to condition on the tokens at known positions and
predict the tokens at unknown positions based on their probability distributions. However, under
the dLLM framework, it is also possible to predict the tokens at positions that are already known.
In this work, we propose DiSE, a self-evaluation confidence quantification method for dLLMs that
employs token regeneration probability as a novel indicator of model confidence and investigate
different token sets to calculate token regeneration probability.

Let the text sequence be X = (x1,2,...,zn). The dLLM takes X as input and concurrently
predicts the tokens at all positions that already exist. pg(z; | X) represents the probability of the
model regenerating token x; at position ¢ given the entire sequence X. Accordingly, the probability

of the model regenerating X given X is formulated as vazl po(x; | X). Consider a binary mask
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Figure 1: A simplified illustration of self-evaluation confidence quantification methods for clarity.
(a) Monte Carlo simulation approach for dLLMs. A total of N,,. simulations are performed. In
the ¢-th simulation, a set of masked positions {mask;—} is sampled. The tokens at these positions
are replaced with mask tokens, and the model predicts the probability of correctly generating these
tokens. The final estimation is obtained by aggregating the results across all V,,,. simulations. (b)
The proposed DiSE for dLLMs. The set of selected positions {U } is predefined. The model receives
the entire sequence and estimates the regeneration probability of the tokens at {U; }.

M € {0,1}", where M; = 1 indicates that the token at position i is included in the probability
calculation for regeneration, and M; = 0 means it is ignored. Let U = {i | M; = 1} be the
index set of the selected positions. The probability of regenerating the tokens in the selected region
is formulated as [],.;; po(z; | X). After taking the logarithm and averaging over the number of
selected tokens, the DiSE score is defined as follows:

Zlogpg(sci | X), 3)

iceU

1
DiSE(X) = i

where different selection modes are employed to determine the binary mask M € {0, 1}V, thereby
controlling the index set of selected positions U. This measure captures the model’s confidence
in regenerating its own tokens and allows flexible evaluation over either local regions or the entire
sequence. For conditional generation with prompt P and generated response R, the DiSE score
is calculated by treating the concatenated sequence [P; R] as X. Figure | presents a simplified
visualization of the Monte Carlo simulation approach for dLLMs and the proposed DiSE.

4.2 OBSERVATION

Observation I: Semantic Coherence Positively Correlates with DiSE Scores. We sample 15
well-formed sentences and generate fully randomized versions by replacing all original tokens with
random tokens. The DiSE scores are computed for both the natural and randomized sentences using
a binary mask M with all positions set to one, corresponding to the selection mode ‘full’. As shown
in Figure 2 (a), natural sentences achieve substantially higher DiSE scores than their randomized
counterparts. Additionally, we perform three local token randomization experiments, replacing 10
tokens in the front, middle or back regions of each sentence, and the DiSE scores are measured for
these perturbed positions. In these experiments, the selection modes are denoted as ‘first-10’/‘mid-
10°/‘last-10’, indicating that M = 1 is applied only to the respective region. Figures 2 (b), (c) and
(d) show that natural sentences consistently obtain higher DiSE scores than randomized sentences
in all regions. These findings indicate that DiSE effectively captures semantic coherence of both
global and local region, allowing fine-grained self-evaluation across different parts of a sentence.

Observation II: Answer Accuracy Positively Correlates with DiSE Scores. We conduct a se-
ries of experiments on four commonly used reasoning datasets: Countdown (Pan et al., 2025),
GSMSK (Cobbe et al., 2021), MATHS500 (Lightman et al., 2023) and SVAMP (Patel et al., 2021).
The model outputs are categorized into two groups according to whether the generated answers
match the ground-truth solutions. We compute the DiSE scores separately for the correct and in-
correct groups and report their averages under two selection modes ‘full’ and ‘last-10°. The results,
summarized in Figure 3, consistently reveal that correct outputs tend to exhibit higher DiSE scores
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Figure 2: Differences between the DiSE scores of natural sentences and randomized sentences using
the LLaDA-Instruct-8B model under four selection modes: ‘full’ (entire sentence), ‘first-10" (first
10 tokens), ‘mid-10’ (10 tokens from the middle) and ‘last-10" (last 10 tokens). Each subfigure
contains 15 blocks, representing 15 sampled sentences. All blocks are shown in green (difference
> 0), indicating that natural sentences consistently achieve higher DiSE scores than randomized
sentences.
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Figure 3: Comparison between the DiSE scores of correct and incorrect answers across four datasets
using the LLaDA-Instruct-8B model under two selection modes ‘full” and ‘last-10’. Correct outputs
consistently show higher values, with the disparity notably amplified under ‘last-10’, which focuses
on the final ten tokens associated with answer positions.

than incorrect ones across different datasets. Importantly, under the selection mode ‘last-10°, which
focuses on the final ten tokens closely associated with the answer positions, the disparity between
correct and incorrect outputs is substantially amplified. This finding highlights the strong correlation
between DiSE scores and answer accuracy, supporting the reliability of the proposed DiSE.

4.3 DIRECT USE OF DISE

Conditional Likelihood Estimation for dLLMs. Conditional likelihood estimation serves as an
important metric for evaluating the generative ability of language models. During the evaluation,
we estimate the probability or log-probability of generating a candidate response R conditioned on
a given prompt P. For each prompt P, there may be multiple candidate responses, and we select
the one with the highest probability as the final answer and compute the accuracy accordingly. In
this work, DiSE is employed as an approximate estimator of the conditional likelihood evaluation
via the unconventional regenerating probability, rather than the standard generating probability.

Uncertainty Quantification for dLLMs. Quantifying the uncertainty of model outputs is crucial
for assessing their reliability. In the context of dLLMs, we use the DiSE score as a self-evaluation
signal to measure the confidence of a generated sequence. Sequences with higher DiSE scores are
considered more reliable, while lower scores indicate higher uncertainty. The negative of the DiSE
score is used to quantify the uncertainty of the model output, with a higher value reflecting a higher
estimated uncertainty.

4.4 FLEXIBLE-LENGTH DLLM GENERATION WITH DISE

In general, dLLMs require the generation length L to be fixed and specified in advance. Different
choices of L lead to different outcomes, and longer generations incur higher computational costs. In
our work, we aim to relax the restriction of a fixed generation length and instead allow the output
length to be adjusted flexibly within a controllable range. This is enabled by DiSE, which provides
an intrinsic signal to evaluate the quality of generations without ground-truth supervision. Leverag-
ing this property, we propose flexible-length dLLM generation.
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Figure 4: Illustration of the flexible-length dLLM generation framework with DiSE versus fixed-
length generation. (a) Fixed-length generation baseline. The model generates a sequence of pre-
determined length L. (b) Flexible-length generation with DiSE. Starting from base length L, DiSE
serves as a real-time self-evaluation mechanism, assessing the quality of the current sequence and
deciding whether to terminate the extension process.

Our method proceeds as follows. Given a prompt P and a base length L, we first generate an initial
response R of length L. Let R denote the sequence obtained by removing all EOT tokens from R.
We construct the complete token sequence as X () = [P; R] and compute its DiSE score, which
serves as the guiding criterion for controlling the generation length. Keeping the tokens in the early
positions unchanged, we apply a masking operation to the last D tokens, and add one additional
mask token at the end of the sequence. We use the model to regenerate the sequence, after which
the DiSE score of the newly generated sequence is computed. At each iteration, D is incremented
by one. This process is repeated iteratively, with DiSE determining whether the extended generation
is beneficial. If the DiSE score improves, we retain the extension; otherwise, if the DiSE score
remains unimproved for K consecutive iterations, we stop. To avoid unbounded computation, we
set a maximum of M, iterations. The overall procedure is illustrated in Figure 4 and the detailed
algorithm is provided in Appendix C. This flexible-length generation process uses the DiSE score
as a self-evaluation signal, enabling dLLMs to adaptively decide their output length in a principled
manner.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Experiments are conducted using two dLLMs, LLaDA-Instruct-8B (Nie et al., 2025) and LLaDA-
1.5-8B (Zhu et al., 2025), on a diverse set of datasets, including ARC-Challenge (Clark et al.,
2018), GPQA (Rein et al., 2024), Countdown (Pan et al., 2025), GSM8K (Cobbe et al., 2021),
MATHS500 (Lightman et al., 2023) and SVAMP (Patel et al., 2021). The conventional Monte Carlo
simulation approach for dLLMs is used as the baseline, with the number of samples N,,. evalu-
ated under two settings: N,,. = 1 and N,,. = 32. Additionally, we include the auto-regressive
LLM LLaMA3-Instruct-8B (Dubey et al., 2024) for comparison in the experiments. More details
are presented in Appendix D.
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Table 1: Conditional likelihood estimation results on ARC-Challenge and GPQA. The table com-
pares the proposed DiSE against the Monte Carlo simulation baseline with varying N,,., and also
includes a comparison with the probability estimates from auto-regressive LLMs. The last column
reports the average number of model forward passes per computation.

Method | ARC-Challenge GPQA | # forward passes

MC, N,.=1 | 0306 0212 | 1
LLaDA-Instruct-8B  MC, N,,,. = 32 ‘ 0.478 0.286 ‘ 32

DiSE (ours) ‘ 0.542 0.301 ‘ 1

MC, N,.=1 | 03Il 0.203 | 1
LLaDA-1.5-8B MC, Ny, = 32 ‘ 0.488 0.275 ‘ 32

DiSE (ours) ‘ 0.567 0.299 ‘ 1
LLaMA-3-8B probability ‘ 0.530 0.304 ‘ 1

Table 2: ROC-AUC scores for uncertainty quantification on the Countdown, GSM8K, MATH500
and SVAMP datasets with varing generation lengths. The table compares Monte Carlo simu-
lation baseline with varying N,,., the proposed DiSE, and the perplexity calculation using the
auto-regressive model LLaMA3-Instruct-8B. The last column reports the average ROC-AUC scores
across the preceding 12 settings.

\ Countdown GSMSK MATHS500 SVAMP \ Avg. ROC-AUC?

Method / Gen Len ‘ 128 256 512 128 256 512 128 256 512 128 256 512 ‘

MC, Nype =1 ‘ 0.524 0.520 0.528 0.539 0.513 0.540 0497 0.541 0.532 0.563 0.575 0.509 ‘ 0.532
LLaDA-Instruct-8B MC, Ny = 32 ‘ 0.595 0.534 0558 0590 0.552 0.595 0.528 0.578 0.531 0.616 0.551 0.647 ‘ 0.573

DiSE (ours) | 0578 0.521 0.622 0.633 0.644 0.658 0.611 0.634 0.604 0.688 0.692 0.755 | 0.637

LLaMA perplexity ‘ 0.574 0.419 0392 0.675 0.605 0577 0575 0.637 0.551 0.686 0.650 0.590 ‘ 0.578

MC, Nype =1 ‘ 0.525 0.588 0.528 0.516 0.559 0.525 0.558 0.514 0.525 0.562 0.466 0.554 ‘ 0.535
LLaDA-1.5-8B MC, N, = 32 ‘ 0.608 0.557 0.520 0.559 0.578 0.608 0.580 0.546 0.551 0.585 0.513 0.597 ‘ 0.567

DiSE (ours) | 0.610 0471 0586 0.610 0.616 0.613 0.606 0.553 0.533 0.599 0.629 0.677 | 0.592

LLaMA perplexity ‘ 0.596 0459 0362 0.635 0.631 0.546 0.652 0.588 0.550 0.639 0.587 0.620 ‘ 0.572

5.2 CONDITIONAL LIKELIHOOD ESTIMATION

We evaluate the performance of our proposed approach in the conditional likelihood estimation ex-
periments, with the results summarized in Table 1. Compared to the conventional Monte Carlo
simulation baseline, our method demonstrates substantial and consistent improvements on ARC-
Challenge and GPQA, indicating its reliability as a estimator in likelihood evaluation. Moreover,
when contrasted with the probability estimates obtained from auto-regressive LL.Ms, the proposed
approach achieves comparable or even superior results. We also report the average number of model
forward passes required for each computation. Notably, relative to the Monte Carlo baseline with
Ny = 32, our method achieves nearly a 32-fold increase in computational efficiency while demon-
strating enhanced predictive performance. Specifically, using the LLaDA-Instruct-8B model, our
method outperforms the Monte Carlo baseline with N,,,. = 1, which offers comparable efficiency,
by 23.6% on ARC-Challenge and 8.9% on GPQA. Furthermore, even when compared to the higher-
cost Monte Carlo baseline with N,,,. = 32, our approach achieves nearly a 32x speedup while still
improving performance, with gains of 6.4% on ARC-Challenge and 1.5% on GPQA.

5.3 UNCERTAINTY QUANTIFICATION

For uncertainty quantification experiments, we evaluate the ability to distinguish correctness among
multiple generated answers for each question using ROC-AUC scores (Kuhn et al., 2023), where the
ROC-AUC score measures the probability that a randomly chosen correct answers receives lower
uncertainty than a randomly chosen incorrect one. We generate 5 answers per question. Table 2
presents the results on the Countdown, GSM8K, MATHS500 and SVAMP datasets with varying
generation lengths, using ROC-AUC scores to assess uncertainty quantification performance. In
comparison to the conventional Monte Carlo simulation method, our approach yields substantial
improvements. Using the LLaDA-Instruct-8B model, our method improves average ROC-AUC by
10.5% across twelve generation settings over the Monte Carlo method with N,,,. = 1 at comparable
cost. Even compared to Monte Carlo with N,,,. = 32, which incurs a nearly 32x higher cost, our
approach remains superior by 6.4%. Compared to the perplexity method of an auto-regressive LLM,
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Question: Reach

To achieve the target of 44 using the numbers 13, 49, and 80, we need to find a combination to use all
target number 44

numbers once. We can start by considering the largest number, 80, and see if we can reach the target

l:_‘:fﬂ:’::: numbers using subtraction other numbers numbers. Subtract thating 49 from 80 gives us 31, and adding 13
operations on a to 31 gives us 44. \n<answer>\n\\boxed {80 - 49 + 13}\n</answer> Correct
given set of
numbers [13, 49, To reach an expression of 44 using the numbers 13, 49, and 80, we need to consider the operations and their

80]. combinations. We can start by trying to use the numbers in a way that allows us to reach target number. 49
can be broken down into 42 + 7, and 80 can be broken down into 72 + 8. We can then use these numbers to

reach the target number.\n<answer>\n\\boxed {80 - 49 + 7}\n</answer> X Wrong

To find an arithmetic expression that evaluates to 44 using the numbers 13, 49, and 80, we need to consider
the operations and, - each number exactly be used.\n<answer>\n\\boxed{ 80 - 49 - 13 }\n</answer>

x Wrong

~
To achieve the target of 44 using the numbers 13, 49, and 80, we need to consider a combination of

operations operations that will result us in 44. We can start by considering the largest number, 80, and see if
we can use it to get 44. Notice that 80 - 44 = 36, which can be achieved using the remaining numbers 13
and 49.\n<answer>\n\\boxed {80 - 40 - 4}\n</answer> X Wrong )

Figure 5: Qualitative example of uncertainty quantification with four generated answers using
LLaDA-Instruct-8B. DiSE assigns higher score to the correct answer and lower scores to incorrect
answers, while the Monte Carlo simulation (N,,. = 32) produces scores that do not consistently
reflect correctness.
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Figure 6: Ablation study of different DiSE selection modes for uncertainty quantification using
LLaDA-Instruct-8B with a generation length of 512. Each mode corresponds to a different subset
of tokens used for regeneration probability calculation across the sequence. Results across multiple
datasets show that focusing on the last few non-EOT tokens yields higher ROC-AUC scores for
uncertainty quantification.

our approach yields a 5.9% gain on the same generations. Additional results of best-of-N sampling
experiments for uncertainty quantification are presented in Appendix E.1.

We present a qualitative example in Figure 5 illustrating the contrast between DiSE and Monte Carlo
simulation in capturing answer correctness. Four candidate answers generated by LLaDA-Instruct-
8B using the same input are shown. DiSE consistently assigns lower scores to incorrect answers,
corresponding to higher uncertainty, while Monte Carlo simulation with N,,. = 32 fails to reflect
answer correctness. This case study highlights the reliability of DiSE as a fine-grained sequence-
level uncertainty measure. Additional qualitative examples are presented in Appendix E.2.

We investigate the effect of different DiSE selection modes on uncertainty quantification, where each
mode specifies the subset of tokens used for computing regeneration probability: ‘full’ (all tokens),
“first-block’ (tokens in the first generation block), ‘last-block’ (tokens in the last generation block,
including EOT tokens), ‘first-10" (first 10 generated tokens) and ‘last-10" (last 10 non-EOT tokens).
As shown in Figure 6, focusing on the last 10 non-EOT tokens tends to yield higher ROC-AUC
scores on multiple datasets, as these tokens typically correspond to the answer region. Regeneration
probabilities of earlier tokens provide limited information about answer correctness, and including
EOT tokens in the last generation block negatively impacts the uncertainty estimation. In general,
this ablation study demonstrates that carefully selecting the token subset for the DiSE computa-
tion significantly affects the quality of uncertainty quantification. More details on the results under
different selection modes are presented in Appendix E.3.

5.4 FLEXIBLE-LENGTH DLLM GENERATION

Table 3 presents the evaluation results of flexible-length dLLM generation on the Countdown,
GSMS8K, MATHS500 and SVAMP datasets with multiple base lengths L. Two fixed-length baselines,
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Table 3: Results of flexible-length dLLM generation with DiSE on the Countdown, GSM&8K,
MATHS500, and SVAMP datasets with varying base lengths. The table presents two fixed-length
baselines. The first, Baseline, generates sequences with the base length L, while the second, Base-
line (Max Len), generates sequences with the base length L increased by the maximum number
of iterations M,,,,. These are compared with the proposed flexible-length generation with DiSE
(DiSE-flexible). The final column reports the average accuracy across the preceding 12 configura-
tions.

| Countdown GSMSK MATHS00 SVAMP \
Avg. Accuracy
Method /BaseLen | 128 256 512 128 256 512 128 256 512 128 256 512 |
Bascline [2617 1523 1250 6801 7665 7923 2620 3280 3680 8467 8500 8367 | 5224
Bascline (MaxLen) | 25.00 1641 1562 6929 7680 7885 2560 31.60 3640 8533 8467 83.00 | 5238
LLaDA-Instruct-8B i fiexible (ours) | 27.73 1836 1562 70.96 79.68 79.30 2600 3360 3660 87.33 86.00 8433 |  53.79
Baseline [ 2422 1562 1719 7051 7748 7953 2680 3400 36.80 87.00 84.67 8667 |  53.37
Bascline (Max Len) | 2422 1758 1758 7195 7877 79.53 2580 3420 37.00 8633 83.00 8633 |  53.52
LLaDA-1.5-88 DiSE-flexible (ours) | 26.17 19.53 2227 72.33 7953 80.06 27.20 35.60 3740 87.00 85.00 87.00 |  54.92
LLaDA-8B-Instruct LLaDA-8B-1.5
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Figure 7: Ablation study on the Countdown dataset with base length L = 512 for flexible-length
dLLM generation with DiSE, examining the effects of different patience K and mask sizes D on
performance. The figure presents both accuracy and the average number of model forward passes
for each configuration.

generating sequences of length L or L + M., are considered to reflect conventional fixed-length
generation. In contrast, our proposed method employs DiSE to guide flexible-length generation,
enabling adaptive adjustment of the output sequence length. The results indicate that the flexible-
length approach with DiSE yields average improvements over fixed-length baselines across multiple
datasets and varing base lengths, providing strong evidence for the effectiveness of dynamically
adapting sequence length with DiSE in dLLM generation.

To assess the impact of patience K and mask size D, we perform an ablation on Countdown with
base length L = 512, reporting accuracy and average forward passes in Figure 7. Our method
generally outperforms the baseline, while different K and D settings highlight a trade-off between
computational cost and performance. Additional ablation results are presented in Appendix F.

6 CONCLUSION

We introduce DiSE, a simple yet effective self-evaluation confidence quantification method for
dLLMs. By employing token regeneration probability, DiSE achieves both high reliability and
computational efficiency. Building upon DiSE, we propose a flexible-length generation framework,
which enables adaptive sequence lengths through real-time self-evaluation. Comprehensive experi-
ments across multiple datasets demonstrate the effectiveness of DiSE and the flexible-length genera-
tion framework with DiSE. DiSE closes the gap in dLLMs by introducing an efficient self-evaluation
mechanism previously exclusive to auto-regressive LLMs. By leveraging DiSE, we overcome the
fixed-length generation constraint in dLLMs and open the door to broader applications.
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did not conduct any data collection that could raise privacy, security, or fairness concerns. Our
work focuses on providing an efficient and reliable self-evaluation confidence quantification method
for dLLMs, and introducing a flexible-length dLLM generation framework based on it, without
introducing risks of harmful applications. To the best of our knowledge, this research complies with
the ICLR Code of Ethics and poses no foreseeable ethical concerns.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. Comprehensive imple-
mentation details are reported in Section 5.1 and Appendix D. The detailed algorithm of flexible-
length dLLMs generation with DiSE is provided in Appendix C. Upon acceptance, we will release
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APPENDIX

A LLM USAGE

In this section, we clarify the role of large language models (LLMs) in preparing this work. The
model was used exclusively for language polishing, such as refining grammar, style, and readability,
without contributing to the research design, analysis, or conclusions.

B PROBABILITY ESTIMATION FOR CONDITIONAL GENERATION

B.1 AUTO-REGRESSIVE LLM PROBABILITY ESTIMATION

In the context of conditional generation given a prompt P, let R = (r1,72,...,7y) denote the
generated response of length N. The probability of generating R given P for an auto-regressive
language model can be written as:

N
po(R| P) =[] po(ri | Pres), (S1)
i=1
where r; = (r1,...,7;—1). This formulation allows exact computation of the probability of a

model-generated response conditioned on a given prompt.

B.2 DLLM MONTE CARLO PROBABILITY ESTIMATION

For dLLMs, let R® = (9,79, ...,r%;) denote the generated response of length N. The traditional
dLLM approach approximates the log-probability of generating R° given P with the following term:

N
E, g ?Z 1 [rf = (mask token)] log pe (7‘? | P, Rl) J (52)
i=1

where [ is uniformly sampled from {1,2,..., N}, and R' = (r}, 7}, ..., 74) is obtained by uni-

formly sampling [ tokens from RV, replacing the tokens at these positions with mask tokens, while
keeping all other tokens identical to those in X°. Since the exact computation of this expectation
is intractable, we employ Monte Carlo simulation to approximate it by sampling a finite number of
instances and taking their empirical average.

C ALGORITHM FOR FLEXIBLE-LENGTH DLLM GENERATION WITH DISE

We provide a detailed algorithm for the flexible-length dLLM generation framework guided by
the DiSE score in Algorithm S1, which uses the DiSE score as a self-evaluation signal to achieve
controllable sequence lengths and improved generation quality.

D MORE IMPLEMENTATION DETAILS.

The datasets employed in our experiments are categorized into two groups: those used for condi-
tional likelihood estimation and those intended for conditional generation. Specifically, we consider
ARC-Challenge (Clark et al., 2018) and GPQA (Rein et al., 2024) for conditional likelihood estima-
tion, which are challenging multiple-choice science question datasets. ARC-Challenge focuses on
grade-school level questions that require advanced reasoning beyond simple retrieval, while GPQA
contains expert-crafted questions in biology, physics, and chemistry that are difficult even for highly
skilled humans and state-of-the-art Al models. For conditional generation, we use Countdown (Pan
et al., 2025), GSM8K (Cobbe et al., 2021), MATHS00 (Lightman et al., 2023), and SVAMP (Patel
et al., 2021), which involve arithmetic and mathematical problems requiring step-by-step reason-
ing, advanced problem-solving, combinatorial thinking, and generalization across diverse problem
formats. Regarding the selection mode, i.e., the binary mask M, we adopt different configurations
for different datasets. For ARC-Challenge, we set M = 1 for the last two tokens of the prompt

13
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Algorithm S1 Flexible-length dLLM Generation with DiSE
Require: Prompt P, base length L, maximum iterations M, ..., patience K, mask size D

Ensure: Final generated sequence X
1: Generate an initial response R of length L given prompt P

2: Remove all EOT tokens from R to obtain R

32 XM = [P;R)

4: Compute initial confidence s!) < DiSE(X (1))
5:Set X+ XMW s sW 1,0

6: whilet < M,,,. do

7: t+—t+1

8: Mask the last D tokens of X =1 to obtain X,(ﬁ*l)
9: Regenerate sequence X (*) from the masked input [X,,(,tfl); (mask token)]
10: s <« DISE(X®)

11: if s() > § then
12: X X® 5+ 50 ce0
13: else

14: c+—c+1
15: end if
16: if ¢ > K then

17: break
18: end if

19: D+ D-+1
20: end while
21: return X

Table S1: Best-of-N sampling results for uncertainty quantification on the Countdown, GSM8K,
MATHS500, and SVAMP datasets with varying generation lengths. The table compares the baseline
without best-of-N sampling, Monte Carlo simulation with varying NN,,., the proposed DiSE, and
the perplexity calculation using the auto-regressive model LLaMA3-Instruct-8B. The last column
reports the average accuracy across the preceding 12 settings.

| Countdown GSMSK MATHS500 SVAMP | e G
Method/GenLen | 128 256 512 128 256 512 128 256 512 128 256 512 |
Baseline [ 2617 1523 1250 6801 7665 7923 2620 3280 3680 8467 8500 8367 | 5224
MC, N,ye =1 | 2461 2148 1719 6884 7817 80.59 2580 33.80 3640 8467 8400 8500 |  53.38
LLaDA-Instruct-8B i 'y "—35 | 2069 2188 1641 7111 7870 8279 27.60 3480 3620 8633 8567 86.67 | 54.82
DISE (ours) [ 30.86 2422 27.34 73.01 8241 8302 2980 3460 3820 8833 87.00 90.00 |  57.40
LLaMA perplexity ‘ 30.86 17.19 11.33 7422 79.61 81.20 28.60 3540 3480 88.33 86.67 85.67 ‘ 54.49
Baseline [2422 1562 17.19 7051 7748 7953 2680 3400 3680 87.00 8467 8667 | 5337
MC, N =1 | 2422 2031 2422 7013 7945 80.89 2820 3480 37.60 8833 8467 8733 | 5501
LLaDA-1.5-8B MC, N,,. =32 | 2617 2070 21.88 7263 7991 8279 2840 3560 3880 88.00 8533 8633 | 5555
DiSE (ours) [2930 1797 2891 7453 8196 8355 28.60 3440 3740 8800 86.33 87.67 | 5655
LLaMA perplexity ‘ 28.91 12.89 1328 74.60 81.50 80.14 30.40 39.00 37.20 89.67 87.67 87.00 ‘ 55.19

P. For GPQA, we set M = 1 for the last seven tokens of the prompt P and the first two tokens
of the response R. For Countdown, GSM8K, MATH500 and SVAMP, we adopt the selection mode
‘last-10° by default, which sets M = 1 only for the last ten non-EOT tokens. For flexible-length
dLLM generation experiments, we set the maximum number of iterations M,,,,, = 10, the patience
parameter K = 4, and the mask size D = 20 by default.

E ADDITIONAL RESULTS ON UNCERTAINTY QUANTIFICATION

E.1 BEST-OF-N SAMPLING RESULTS
In Section 5.3, we generate multiple answers for each question and evaluate uncertainty quantifica-

tion using ROC-AUC scores. As an additional experiment, we perform best-of-N sampling, select-
ing the answer with the lowest uncertainty (i.e., highest DiSE score in our proposed method) among
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Table S2: Additional ROC-AUC results for uncertainty quantification to investigate the impact of
different selection modes on performance. We evaluate two selection modes ‘full’ and ‘last-10’. The
table reports ROC-AUC scores across the Countdown, GSM8K, MATHS500, and SVAMP datasets
with varying generation lengths, as well as the average ROC-AUC scores over all settings.

| Countdown GSMSK MATHS500 SVAMP | Avg. ROC-AUC}
Method / Gen Len | 128 256 512 128 256 512 128 256 512 128 256 512 |
LLaDA-Instruct-8B DiSE (full) | 0616 0.672 0.698 0597 0.585 0.560 0.514 0555 0517 0.665 0549 0.571 | 0.592
DiSE (last-10) | 0578 0.521 0.622 0.633 0.644 0.658 0.611 0.634 0.604 0.688 0.692 0.755 | 0.637
LLaDA-1.5-8B DiSE (full) | 0.591 0.664 0.681 0593 0569 0.546 0489 0590 0532 0.630 0574 0.552 | 0.584
DiSE (last-10) | 0.610 0471 0586 0.610 0616 0613 0.606 0553 0533 0599 0629 0.677 | 0.592

multiple generations per question, and report the accuracy. Consistent with the main experiments,
we generate five answers per question. Table S1 presents the evaluation results of our method un-
der the best-of-N sampling strategy on the Countdown, GSM8K, MATHS500, and SVAMP datasets
with varying generation lengths. The results demonstrate that our approach consistently outperforms
the baseline method that does not employ best-of-N sampling across all tested configurations, high-
lighting the effectiveness of selecting the highest-scoring candidate based on DiSE. In comparison to
the conventional Monte Carlo simulation method, our approach yields substantially larger improve-
ments. In particular, when using the LLaDA-Instruct-8B model, the proposed method achieves an
average accuracy gain of 5.16% over all twelve generation length settings, whereas the Monte Carlo
method with a comparable computational cost, corresponding to N,,. = 1, achieves only an im-
provement of 1.14%. Even when the Monte Carlo method is applied with N,,. = 32, resulting in
an evaluation cost nearly 32 times higher, the observed improvement reaches only 2.58%, which
is still considerably lower than the gain provided by our approach. Furthermore, we evaluate per-
formance using probability estimates obtained from an auto-regressive LLM as a reference. For
instance, under the same generations, employing the auto-regressive LLM probabilities leads to an
improvement of merely 2.25%, which remains below the performance enhancement achieved by our
method, thereby underscoring the superiority of DiSE in best-of-N sampling and uncertainty quan-
tification. Importantly, the observed improvements are consistent across both tested dLLM variants,
LLaDA-Instruct-8B and LLaDA-1.5-8B, across four datasets and three generation lengths. This
consistency indicates that best-of-N sampling guided by DiSE remains robust regardless of model,
task type or sequence length.

E.2 ADDITIONAL QUALITATIVE EXAMPLES OF UNCERTAINTY QUANTIFICATION

Figure S1 presents additional qualitative examples of uncertainty quantification using LLaDA-
Instruct-8B. Consistently, DiSE effectively distinguishes between correct and incorrect outputs by
assigning higher scores to correct answers, corresponding to lower uncertainty, while the Monte
Carlo simulation with N,,. = 32 fails to align with the correctness of the answers. These results
provide additional evidence of the effectiveness of DiSE as a fine-grained uncertainty measure at the
sequence level.

E.3 ABLATION STUDY FOR DIFFERENT SELECTION MODES

In Section 5.3, we report the effectiveness of DiSE for uncertainty quantification under the selec-
tion mode ‘last-10’, showing substantial improvements over the baseline across multiple datasets
and generation lengths. To further validate the robustness of this finding, we extend the analysis
by additionally evaluating the selection mode ‘full’ configuration and directly comparing it with the
mode ‘last-10’. The ROC-AUC results are presented in Table S2 and the best-of-N sampling results
are presented in Table S3. Without specifying a local region for computing regeneration proba-
bility, DiSE with “full’ mode still achieves performance far above the baseline, demonstrating the
effectiveness of our method.
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Question: Reach

To find an arithmetic expression using the numbers 71, 18, and 14 that evaluates to 67, we need to consider
target number 67

the operations +, -, *, and / We can start by trying to combine the numbers in a ways that might us to reach

using basic X X . 3 5

aritfmetic 67. 's try with the and subtraction operations to achieve this.\n<answer>\n\\boxed{71 - 18 + 14}\n</answer>
operations on a Correct

given set of ~
numbers [71, 18, To achieve the target number using the given numbers, we need to find the correct combination of

14]. operations. Let's start by considering the numbers and their operations. We can try addition, subtraction,
multiplication, and division to see if we can reach the target number.\n<answer>\n\\boxed {71 - 18 +

14}\n</answer> Correct
} e

We need to find an arithmetic expression using the numbers 71, 18, and 14 that evaluates to 67. Let's start
by considering combinations:\n- 71 divided by 18 gives 4.\n- 71 minus 14 gives 57.\n- 71 minus 18 gives
53.\n-We can that 71 - 14 - 18 = 67\n<answer>\n\\boxed {71 - 14-18}\n</answer> x Wrong

To achieve an expression of 67 using the numbers 71, 18, and 14, we need start by using the number 71. We
can subtract 18 from 71 to get 53. Then, we can subtract 14 from 53 to get 39. Finally, we can add 18 to 39
to get 67.\n<answer>\n\\boxed {71 - 18 - 14 + 18}\n</answer> x Wrong

To achieve the target number using the given numbers, we need to use a combination of the operations
subtraction and addition. We can start by subtracting the largest number (71) from the sum number (18 +
14), which gives us 37. Then, we can add the smallest number (18) to this result to get the target number.

L Therefore, the expression is: 71 - (18 + 14) + 18.\n<answer>\n\\boxed{71-32 + 18}\n</answer> $¢ Wrong

J

DiSE-Conf
First, expand both products using the distributive property:\n\\[\n(u+4)(u-1) = u*2 + 3u - 4n\\[\n\\[\n(u-
Question: 3)(ut+6) = u”2 - 3u - 18\n\\]\n\nNext, subtract the second expression from the first:\n\\[\n(u”2 + 3u - 4) - 0.00028
S (2 - 3u - 18) = 14\n<answer>\n\\boxed {14} \n</answer> e 1st (4
implify orrec

S(utd)(u-1) - (u-
3)(u+6)s. First, expand both products using the distributive property:\n((u+4)()(u-1) = u*2 + 3u - 4\n((u-3)(u+6) = u2

+ 3u - 18\nNow, subtract the second expression from the first:\n(u*2 + 3u - 4) - (u*2 + 3u - 18) =

14\n<answer>\n\\boxed {14} \n</answer><|eot_id|> J Correct

First, expand both products using the distributive property:\n$(ut4)()(u-1) = u*2 + 3u - 48\n$(u-3)(u+6) =
u”2 + 3u - 18$\nNow, subtract the second expression from the first:\n$(u”2 + 3u - 4) - (U2 +3u - 18) =-
4+18=148\n<answer>\n\\boxed { 14} \n</answer> ¢ Correct

First, expand both products using the distributive property: $(ut+4)(u)(u-1) - (u-3)(u)(6+u)$. Then, combine
like terms: $u”2 +3u - 4 - (U2 + 3u - 18) =u"2 + 3u - 4 - u*2 - 3u + 18$. Simplify further: \n$=-u +
148 .\n<answer>\n\\boxed {-u + 14}\n</answer> X Wrong

First, we expand the expression $(u +4)(u - 1) - (u - 3)(u + 6)$. \nExpanding, we get $u”2 - 4 - (u*2 + 3u -
18)8$. \nNext, we simplify by combining like terms: $u”2 - 4 - u”2 - 3u + 18$. \nThis simplifies to $-3u +
14$.\n<answer>\n\\boxed {-3u + 14}\n</answer> x Wrong

Figure S1: Additional qualitative examples of uncertainty quantification using LLaDA-Instruct-8B.
DiSE assigns higher scores to correct answers and lower scores to incorrect answers, while the
Monte Carlo simulation (V,,,. = 32) produces scores that do not consistently reflect correctness.

Table S3: Additional best-of-N sampling results for uncertainty quantification to investigate the
impact of different selection modes on performance. We evaluate two selection modes ‘full’ and
‘last-10’. The table reports accuracy across the Countdown, GSM8K, MATH500, and SVAMP
datasets with varying generation lengths, as well as the average accuracy over all settings.

| Countdown GSMSK MATHS500 SVAMP |
Avg. Accuracy
Method / Gen Len | 128 256 512 128 256 512 128 256 512 128 256 512 |
LLaDA-Instruct-8B DiSE (full) [ 30.86 2852 27.34 71.87 79.76 79.53 2720 3460 3420 87.67 8533 87.00 | 56.16
DiSE (last-10) ‘ 30.86 2422 2734 7301 8241 83.02 29.80 34.60 3820 8833 87.00 90.00 ‘ 57.40
LLaDA-1.5-8B DiSE (full) | 27.34 2500 32.81 7233 7945 80.06 24.80 3720 38.00 8833 86.67 85.00 | 56.42
DiSE (last-10) ‘ 2930 1797 2891 7453 8196 83.55 28.60 3440 37.40 88.00 86.33 87.67 ‘ 56.55

F ADDITIONAL ABLATION STUDY ON PATIENCE FOR FLEXIBLE-LENGTH
DLLM GENERATION

We investigate the effect of different patience values K on flexible-length dLLM generation across
the Countdown, GSM8K, MATH500 and SVAMP datasets with varying base lengths, testing under
both the LLaDA-Instruct-8B and LLaDA-1.5-8B models. The summarized results are presented in
Table S4 and Table S5.” Across all tested patience K settings, the flexible-length generation guided
by DiSE consistently achieves substantially better average accuracy than fixed-length baselines,
demonstrating the effectiveness of adaptive sequence length. Increasing K raises computational
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Table S4: Ablation study on flexible-length dLLM generation with the LLaDA-Instruct-8B model,
analyzing the impact of different patience values K on performance. The table reports accuracy on
the Countdown, GSM8K, MATHS500, and SVAMP datasets with varying base lengths, along with
the average accuracy and the average number of model forward passes for each configuration.

‘ Countdown GSMSK MATHS00 SVAMP ‘

Avg. Accuracy ' Avg. # Forward Pass
Method / Base Len ‘ 128 256 512 128 256 512 128 256 512 128 256 512 ‘
DiSE-flexible (K=2) ‘ 27.34 1836 16.02 7043 7930 79.23 2640 34.00 36.60 87.33 86.00 84.67 53.81 ‘ 1823
DiSE-flexible (K=3) | 27.34 17.97 1562 70.74 79.61 7923 2580 33.80 36.60 87.33 86.00 84.33 53.70 | 199.3
DiSE-flexible (K=4) ‘ 2773 1836 15.62 70.96 79.68 79.30 26.00 33.60 36.60 87.33 86.00 84.33 53.79 ‘ 2153

Table S5: Ablation study on flexible-length dLLM generation with the LLaDA-1.5-8B model, ana-
lyzing the impact of different patience values K on performance. The table reports accuracy on the
Countdown, GSM8K, MATH500, and SVAMP datasets with varying base lengths, along with the
average accuracy and the average number of model forward passes for each configuration.

| Countdown GSMSK MATHS500 SVAMP |

Avg. Accuracy ' Avg. # Forward Pass
Method / Base Len ‘ 128 256 512 128 256 512 128 256 512 128 256 512 ‘
DiSE-flexible (K=2) | 24.61 17.19 19.14 7240 79.23 80.06 2740 3560 3740 87.33 84.67 87.00 54.34 | 182.0
DiSE-flexible (K=3) ‘ 2461 19.14 20.70 7248 7945 80.06 27.80 3540 3740 87.00 84.67 87.00 54.64 ‘ 198.9
DiSE-flexible (K=4) | 26.17 19.53 2227 7233 79.53 80.06 2720 3560 3740 87.00 8500 87.00 54.92 | 214.7

costs, but the corresponding performance gains are not always proportional, highlighting the need
to balance efficiency with achievable improvements.
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