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Abstract001

Vision-language models (VLMs) have demon-002
strated impressive performance by effectively003
integrating visual and textual information to004
solve complex tasks. However, it is not clear005
how these models reason over the visual and006
textual data together, nor how the flow of in-007
formation between modalities is structured. In008
this paper, we examine how VLMs reason by009
analyzing their biases when confronted with010
scenarios that present conflicting image and011
text cues—a common occurrence in real-world012
applications. To uncover the extent and na-013
ture of these biases, we build upon existing014
benchmarks to create five datasets containing015
mismatched image-text pairs, covering topics016
in mathematics, science, and visual descrip-017
tions. Our analysis shows that VLMs favor018
text in simpler queries but shift toward im-019
ages as query complexity increases. This bias020
correlates with model scale, with the differ-021
ence between the percentage of image- and022
text-preferred responses ranging from +56.8%023
(image favored) to -74.4% (text favored), de-024
pending on the task and model. In addition,025
we explore three mitigation strategies: simple026
prompt modifications, modifications that ex-027
plicitly instruct models on how to handle con-028
flicting information (akin to chain-of-thought029
prompting), and a task decomposition strategy030
that analyzes each modality separately before031
combining their results. Our findings indicate032
that the effectiveness of these strategies in iden-033
tifying and mitigating bias varies significantly034
and is closely linked to the model’s overall per-035
formance on the task and the specific modality036
in question. We will release our dataset and037
code.038

1 Introduction039

Vision-language models (VLMs) have rapidly ad-040

vanced the field of artificial intelligence by effec-041

tively combining visual and textual data to achieve042

state-of-the-art performance on a variety of tasks043

Figure 1: We investigate VLMs’ bias toward text ver-
sus image inputs when mismatches occur between the
modalities. Our observations reveal that this bias heav-
ily depends on the task’s and sample’s difficulty. For
example, while the model relies on textual representa-
tions to compute the roots of a degree-2 polynomial,
increasing the degree to 3 shifts the reliance more to-
ward the visual representation of the function.

(Zhou et al., 2022; Liu et al., 2023b; Zhang et al., 044

2024; Li et al., 2025). However, it remains un- 045

clear how these models integrate and reason over 046

information from multiple modalities—a capability 047

that becomes increasingly important in applications 048

such as retrieval-augmented generation (RAG) (Yu 049

et al., 2024; Yuan et al., 2024) and multi-agent sys- 050

tems (Ghafarollahi and Buehler, 2024; Jiang et al., 051

2024), where data can be sourced from diverse 052

modalities. 053

To understand how VLMs reason over multi- 054

ple modalities, one approach is to investigate their 055

behavior when confronted with conflicting infor- 056

mation. Moreover, it is important to determine 057

whether these models exhibit a bias toward one 058

modality over the other, when exposed to delib- 059

erately mismatched image-text pairs (see Figure 060

1). For example, consider a scenario in healthcare 061
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where a chest X-ray image shows no signs of pneu-062

monia, yet the accompanying text erroneously de-063

scribes clear evidence of the disease. If the model064

disproportionately relies on the text, it may incor-065

rectly diagnose pneumonia, potentially leading to066

inappropriate treatment recommendations and se-067

vere patient harm.068

In this paper, we investigate VLMs’ biases in069

the presence of conflicting multimodal cues by070

building upon existing datasets to create five novel071

benchmarks (Liu et al., 2023a; Fu et al., 2024).072

Each benchmark consists of mismatched textual073

and image cues, with every sample assigned a074

complexity score to study the impact of sample075

difficulty on the models bias. These benchmarks076

span various topics, including mathematical rea-077

soning, science, and visual descriptions. To gen-078

erate the mismatched pairs, we begin with aligned079

image-text pairs from the original datasets and then080

employ a combination of rule-based methods and081

manual modifications to alter the textual content,082

thereby introducing conflicting information.083

We adopt five state-of-the-art VLMs spanning084

a diverse range of scales and conduct experiments085

on our constructed benchmarks. Our analysis re-086

veals that when presented with conflicting infor-087

mation, VLMs tend to favor textual data over im-088

ages in simpler scenarios. However, as query com-089

plexity increases, the models shift their bias to-090

ward the modality they perceive to be simpler—in091

many cases, this is the image. Furthermore, we ob-092

serve that the extent of this bias correlates with the093

model’s scale and strength. Finally, our findings094

indicate that this modality preference arises partly095

from the models’ perception of task difficulty and096

partly from other internal biases, and is strongly097

linked to LLMs performance with different modal-098

ities as the input on a given task.099

Observing the significant degree of modality bias100

in our experiments, we set out to explore several101

mitigation strategies aimed at reducing this issue.102

We consider three approaches to address modal-103

ity bias: simple prompt modifications, introduc-104

ing explicit instructions similar to chain-of-thought105

prompting, and a decomposition approach that ana-106

lyzes each modality separately before combining107

outputs. Our experiments show that each approach108

exhibits a diverse impact based on the task, the109

model, and—most importantly—the model’s per-110

formance when given different modalities as input.111

In scenarios where the model shows strong perfor-112

mance with both modalities (or even one modality)113

as the input, at least one of explored mitigation 114

strategies demonstrate reasonable performance. 115

2 Conflicting Modalities 116

In this work, our goal is to understand how VLMs 117

reason over multiple modalities when they are pre- 118

sented with conflicting information. We simulate 119

realistic scenarios in which the visual and textual 120

inputs contradict one another, forcing the models 121

to weigh and integrate disparate cues. In this sec- 122

tion, we outline the problem setting and describe 123

the methodology used to construct our benchmarks. 124

We provide the prompts used in creating the bench- 125

mark and the data statistics of created benchmarks 126

in the Appendix. 127

2.1 Problem Statement 128

To evaluate how vision-language models (VLMs) 129

handle conflicting multimodal cues, we formulate 130

the following experimental setting. Assume we 131

have a query Q, an image I , and a corresponding 132

textual description T each yield a consistent an- 133

swer A. Each query is associated with a complexity 134

score c that reflects the difficulty of the reasoning 135

task. We then create a modified textual descrip- 136

tion T ′ that intentionally provides an answer A′ 137

different from A. 138

In an ideal scenario, a VLM would detect the dis- 139

crepancy between I and T ′ and indicate a conflict 140

rather than committing to either A or A′. However, 141

if the model outputs an answer that aligns with one 142

of the modalities (A or A′), this behavior is consid- 143

ered a bias toward that modality. We can quantify 144

this bias by defining the bias metric B as: 145

B = f(|A|, |A′|), 146

where | · | represents the number of times the model 147

adheres to the response from a specific modality, 148

and f is a function measuring the difference be- 149

tween the inputs, which can be as simple as com- 150

puting their ratio. This metric captures the degree 151

to which the model’s output favors certain modality. 152

In our experiments, we define B as the difference 153

between the percentage of image-favored responses 154

and the percentage of text-favored responses. 155

2.2 Benchmarking 156

To systematically study VLM’s biases, we build 157

upon data from two existing datasets—VSR (Liu 158

et al., 2023a) and Isobench (Fu et al., 2024)— 159

and create five distinct benchmarks featuring mis- 160

matched image-text pairs. 161
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Graph Connectivity: For this benchmark, we162

start with graph samples sourced from Isobench.163

We manually modify the adjacency matrices in a164

minimal manner to alter the connectivity between165

target nodes. When the original graph is uncon-166

nected, we ensure that our modifications do not167

simply connect the two target nodes directly, pre-168

serving the underlying structure while ensuring169

certain level of difficulty. We approximate the com-170

plexity of each sample in this task by the number171

of edges in its corresponding graph.172

Function Convexity: Using samples from173

Isobench, we generate conflicting pairs by altering174

the functions expressions. Specifically, we multi-175

ply each coefficient of the function by minus one,176

creating a scenario where the textual description177

of the function’s convexity contradicts the visual178

representation. We approximate the complexity179

of each sample in this task based on the number180

of characters in the textual representation of the181

mathematical expression of the function.182

Polynomial Roots Calculation: In this bench-183

mark, we generate polynomials of degrees 1184

through 4 (since they have closed form solution)185

by randomly selecting the roots within the range186

of –10 to 10 and use them to construct both the187

polynomial expressions and their corresponding188

visual representations. To create a conflicting pair,189

we randomly alter one of the roots by replacing it190

with a different value from the same range, result-191

ing in a discrepancy between the textual and visual192

depictions of the polynomial. The degree of each193

polynomial serves as a proxy for task complexity.194

Physics and Chemistry Questions: For this task,195

we leverage samples from Isobench and manually196

alter the textual descriptions of physics and chem-197

istry problems. The modifications are designed so198

that the answer derived from the text would differ199

from that suggested by the visual cues, pointing200

to a choice other that the initial answer from the201

provided multiple-choices. Additionally, we filter202

out any questions that could be correctly answered203

by relying solely on the question, ensuring that the204

conflict between image and text is both meaningful205

and challenging. We manually assign an “easy” or206

“hard” label to each sample to reflect its complexity.207

Visual Description: For this benchmark, we first208

select samples from the VSR dataset in which the209

original statement accurately reflects the content210

Figure 2: We investigate the impact of three mitiga-
tion strategies—Verbalized, CoT, and Decomposed—on
identifying mismatches in the input modalities.

of the image. We then use GPT-4o mini to gener- 211

ate an extended description of the image centered 212

around the given statement. By manually identi- 213

fying the opposite of spatial relationships studied 214

in the VSR dataset, we replace the original rela- 215

tion with its opposite (in the extended description), 216

thereby creating a mismatched pair. We analyze 217

the per-relation breakdown (based on the original 218

input relation) of VLMs performance as a proxy 219

for task complexity. 220

3 Mitigation Strategies 221

Our experiments indicate that VLMs exhibit a no- 222

table bias when handling conflicting multimodal 223

information (see section 4.2). To address this chal- 224

lenge, we propose three distinct mitigation strate- 225

gies, as summarized in Figure 2 with the adopted 226

prompts provided in the Appendix. These strate- 227

gies aim to detect and mitigate the bias by altering 228

the models’ processing of visual and textual inputs, 229

thereby encouraging a more balanced integration 230

of information. The strategies are as follows: 231

Verbalized Mitigation: Directly prompting the 232

model to identify and report any mismatches or 233

contradictions between the modalities. Instead of 234

asking the models to provide only the answer, we 235

additionally instruct them to indicate a mismatch 236

if a discrepancy is detected. This explicit acknowl- 237

edgment of conflict helps prevent the model from 238

defaulting to one modality. 239

CoT Mitigation: Taking inspiration from chain- 240

of-thought prompting, in this method, the model 241

is guided through a three-step process. First, we 242

instruct the model to process the image input alone; 243
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second, evaluate the textual description indepen-244

dently; and third, combine the outputs from both245

modalities. We further instruct the model to extract246

all relevant information from each modality, par-247

ticularly when a single modality does not suffice248

to solve the task. Finally, the model is instructed249

to compare the two results and either provide an250

answer or indicate if a mismatch is detected.251

Decomposed Mitigation: In this method, we em-252

ploy a multi-stage approach wherein the VLM is253

run three separate times. The first run solve the task254

using only the image input, the second only use the255

text input, and the third combines the outputs from256

the previous two runs. In the final stage, the model257

is specifically instructed to highlight any inconsis-258

tencies between the outputs, and if a discrepancy is259

detected, to report a mismatch.260

4 Experiments261

In here, we first examine the extent of bias in VLMs262

using our created benchmarks. Next, we examine263

how bias correlates with the models’ perceived264

problem difficulty and conduct an error analysis of265

their performance. Finally, we explore the impact266

of various mitigation strategies in reducing the bias.267

4.1 Experimental Details268

For our experiments, we evaluate five state-of-269

the-art vision-language models: Qwen2-VL-7B-270

Instruct and Qwen2-VL-72B-Instruct (Wang et al.,271

2024b), Llam-3.2-90B-vision-instruct (Grattafiori272

et al., 2024), GPT-4o mini, and GPT-4o (Hurst273

et al., 2024). These models have been selected for274

their diverse architectures and multimodal process-275

ing capabilities, enabling us to investigate how fac-276

tors such as model scale, training methodology, and277

fusion strategies affect the integration of conflicting278

information. Moreover, we rely on accuracy and279

F1 scores as evaluation metrics. To determine the280

models’ preferred modality for each sample, we281

identify the modality-specific label with which the282

output aligns. All prompts used with these models283

are provided in the Appendix.284

4.2 Bias in VLMs285

We measure the bias of VLMs toward text or image286

modalities using our created datasets. To isolate the287

impact of bias from the models mispredictions, we288

calculate the percentage of text versus image bias289

in mismatched inputs only for those samples where290

models produced correct predictions when both291

the image and text were aligned (i.e., the original 292

inputs). Additionally, we report the percentage 293

of incorrect predictions on the original, aligned 294

inputs. We also present the accuracy of models’ 295

performance for solving each task when using only 296

one modality or both, along with the corresponding 297

B value for each task and model in the Appendix. 298

4.2.1 Bias in Mathematical Reasoning 299

Graph Connectivity: We present the distribution 300

of modality preferences across graphs in Figure 3a, 301

where the task is to determine whether two target 302

nodes are connected. We categorize model perfor- 303

mance by the number of edges in the graphs—a 304

proxy for task difficulty. For simpler graphs with 305

fewer edges, models tend to favor answers sup- 306

ported by textual input. However, as graph dif- 307

ficulty increases, there is a clear shift toward re- 308

liance on visual (image-based) information. No- 309

tably, for highly complex graphs (those with 32 310

edges or more), most models rely exclusively on 311

image inputs to generate their responses. Moreover, 312

while all models exhibit similar bias trends, Qwen 313

models show a higher rate of incorrect predictions. 314

Finally, based on the overall bias values reported 315

in the Appendix (Table 4), we observe that, with 316

the exception of Llama-3.2 90B, all other models 317

generally favor images over text in this task. 318

Function Convexity: The bias distribution of 319

VLMs in identifying the convexity of mathematical 320

functions is depicted in Figure 3c. We approximate 321

task difficulty based on the number of characters 322

in each function’s mathematical expression and di- 323

vide the samples into five categories. The results 324

indicate that for stronger models, as the difficulty 325

increases, the textual bias decreases while the re- 326

liance on image cues increases. In contrast, for 327

Qwen models, we observe a mixed impact of dif- 328

ficulty on modality bias. We suspect this inconsis- 329

tency may be partly due to noise in our difficulty 330

approximation method, as reflected by the higher 331

number of incorrect predictions in some of the eas- 332

ier categories (those with fewer characters). Finally, 333

based on the overall bias values reported in the Ap- 334

pendix (Table 4), we find that all models generally 335

favor text over image in this task. 336

Polynomial Roots Calculation: The results of 337

VLM bias in calculating the roots of polynomials 338

are presented in Figure 3d. As shown, there is 339

a clear shift in modality preference as the degree 340

of the polynomial increases. For polynomials of 341
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Figure 3: The distribution of VLMs biases toward text versus image inputs.

degree 1, the models exhibit a strong bias toward342

textual input, indicating that simpler algebraic rea-343

soning is more effectively grounded in the accom-344

panying text. In some instances, a few models even345

correctly identify the mismatch by reporting both346

the image- and text-derived roots. However, as347

we move to polynomials of degree 2 and higher,348

this reliance on textual information diminishes sub-349

stantially, with models increasingly favoring vi-350

sual (image-based) inputs. This transition likely351

reflects the growing complexity of the problem352

space, where interpreting graphical representations353

becomes more advantageous—or even necessary—354

for accurate problem solving. The models’ adap-355

tive use of modalities suggests an emergent reason-356

ing behavior, wherein they selectively leverage the357

most informative input source based on the task’s358

complexity. Drawing on the overall bias values359

reported in the Appendix, we observe that OpenAI360

models tend to favor images, while other models361

generally favor text in this task.362

4.2.2 Bias in Science Questions363

In answering scientific questions, we observe a364

notable reliance on textual information for easier365

questions, suggesting that the model is more confi-366

dent in leveraging text when the reasoning demands 367

are relatively low (see Figure 3b). However, this 368

reliance diminishes markedly for more challenging 369

questions. Although support from image inputs ap- 370

pears to increase in these more challenging cases, a 371

significant proportion of responses fall into the in- 372

correct predictions. This trend suggests that, within 373

the domain of science questions, the model strug- 374

gles to produce a conclusive answer when faced 375

with complex reasoning tasks that require effec- 376

tive integration of both text and image modalities. 377

These findings potentially point to a limitation in 378

the model’s ability to reconcile multimodal infor- 379

mation under higher cognitive load. The overall 380

trend in the bias values indicates that, except for 381

Qwen2 7B and GPT-4o—which favor images—all 382

other models favor text in this task (see Table 4). 383

4.2.3 Bias in Visual Description 384

Investigating VLMs’ biases toward text or image 385

inputs using VSR samples, we observe distinct be- 386

haviors depending on the model and the specific 387

spatial relation queried. For instance, GPT-4o ex- 388

hibits a stronger bias toward textual data for spa- 389

tial relations such as “perpendicular to”, “facing 390

away from”,“in the middle of”, “parallel to”, “on”, 391
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Figure 4: The distribution of VLM biases toward text versus image in the VSR-based dataset. We report the per-
spatial relationship (base on the original input’s relation) break down of performance.
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Figure 5: The accuracy of VLMs’ internal perception of
the simpler modality for solving the task is evaluated by
comparing it to the actual modality each model relies
on during problem solving.

“facing”, and “attached to”. In contrast, for rela-392

tions like “outside”, “beyond”, “detached from”,393

“within”, “alongside”, “beside”, “on top of”, and394

“above”, the model shows a much greater bias to-395

ward image data, highlighting the strong impact396

of specific spatial relations on the VLMs modality397

preference. This variation is less pronounced in398

other models, although shifts in modality bias be-399

tween text and image inputs are still evident across400

different spatial relations. We suspect that these dif-401

ferences largely reflect the training data, where the402

distribution of spatial relations varies across modal-403

ities. Based on the overall bias values reported in404

the Appendix (Table 4), we observe that, except for405

GPT-4o, all other models generally favor text over406

image in this task.407

4.3 VLMs Bias and Their Perceived Sample 408

Difficulty 409

In this section, we investigate the relationship be- 410

tween the models’ inherent modality bias and their 411

internal estimation of problem difficulty. Specifi- 412

cally, for each sample where the model provided 413

a correct answer for initial matching inputs, we 414

consider the modality it relied on (with mismatch- 415

ing inputs)—either text or image—as the gold la- 416

bel, representing the modality it implicitly deemed 417

easier to use. Samples with incorrect initial an- 418

swers are excluded to ensure that the gold label re- 419

flects a reliable internal assessment. Subsequently, 420

for each sample from our datasets, given the mis- 421

matched pair, we asked the models to explicitly pre- 422

dict which modality (text or image) they believed 423

would be easier to use in answering the query. The 424

accuracy of these predictions, which is summarized 425

in Figure 5, reveals trends similar to those observed 426

in our earlier analysis. In particular, stronger mod- 427

els show a clear alignment between their perceived 428

ease of using a given modality and the bias they ex- 429

hibit when resolving a task with conflicting visual 430

and textual information. This correlation under- 431

scores the role of internal difficulty estimation in 432

driving modality bias, suggesting that models tend 433

to favor the modality they internally assess as less 434

challenging for solving the task. 435

In cases where we observe low accuracy—highly 436

correlated with the models’ overall task perfor- 437

mance (see Table 3 in the Appendix)—we suspect 438

that additional internal biases influence the models’ 439

modality preferences. Analysis of the explanations 440

provided by the models reveals that, in most of 441

those instances, they do not rely on the specific 442

details of the sample but rather use the general task 443

description to determine which modality is easier 444

to process. 445
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Figure 6: Venn diagram of errors displaying the percentage of mispredicted samples when GPT-4o is provided
with only text, only image, and both text and image inputs.

4.4 VLMs Bias and The Models Performance446

One possible approach to understanding the roots447

of modality bias in VLMs is through error analy-448

sis. By examining the correlation between model449

failures across different input modalities, we can450

gain deeper insights into the underlying mecha-451

nisms driving its decision-making. In Figure 6, we452

present a Venn diagram illustrating GPT-4o’s er-453

ror percentages under three different input settings:454

text-only, image-only, and combined matching ini-455

tial text-image inputs (Venn diagrams of other mod-456

els are provided in the Appendix). Analyzing the457

percentage of unique and overlapping errors (error458

independence) enables us to connect these failure459

modes to the biases observed earlier. For instance,460

if GPT-4o’s errors unique to text-only and image-461

only inputs are resolved when both modalities are462

provided, we can conclude that the model effec-463

tively integrates the two modalities and reason over464

them. On the other hand, errors unique to a single465

modality that persist even when both text and im-466

age inputs are provided reveal a blind bias toward467

that modality, further underscoring the model’s in-468

ability to effectively reason across both modalities.469

Consequently, a higher proportion of such cases470

signals a stronger bias in favor of that modality.471

As shown, the number of unique-modality errors472

that persist after combining both text and image473

inputs is higher for images in the connectivity and474

VSR tasks, while it is higher for text in the con-475

vexity task, highlighting greater model bias toward476

those modalities (this aligns with the overall bias477

values reported in Table 4 in the Appendix). More-478

over, in the root calculation and science tasks, the479

number of persistent errors appears similar for both480

text-only and image-only inputs. Beyond highlight-481

ing these modality-specific failure patterns, dia-482

grams also underscore how task complexity influ-483

ences model performance. Specifically, GPT-4o’s484

errors tend to cluster in a single modality for the485

root calculation, science, and VSR, whereas for486

connectivity and convexity tasks, errors are more 487

evenly distributed between modalities. This sug- 488

gests that the complexity of solving these tasks is 489

more balanced between the modalities. 490

4.5 Mitigating Bias in VLMs 491

To investigate the impact of our mitigation strate- 492

gies, we calculate their accuracy in identifying 493

mismatches over combination of initially matched 494

and modified mismatched text-image pairs for each 495

dataset (resulting in balanced evaluation sets). The 496

results of bias mitigation strategies are summarized 497

in Table 1 (the Qwen2 7B model was incapable of 498

solving the task when the image was missing). Our 499

findings demonstrate that if models achieve high ac- 500

curacy on the original task, at least one of the three 501

proposed strategies—Verbalized, CoT, and Decom- 502

posed—can effectively detect mismatches between 503

visual and textual inputs. Notably, stronger models 504

like GPT-4o achieve particularly high accuracy in 505

conflict detection. 506

Our analysis indicates that the effectiveness of 507

each mitigation strategy varies by both model and 508

task. For instance, the decomposed method only 509

appears effective when the model’s performances 510

using image-only and text-only inputs are reason- 511

ably high. Moreover, although both the Verbal- 512

ized and CoT approaches excel when the model’s 513

performance on the original task is high, they ex- 514

hibit distinct behavior: the Verbalized approach 515

performs better for open models (despite overall 516

low accuracy) and GPT-4o, whereas GPT-4o mini 517

benefits more from the CoT method in the connec- 518

tivity, convexity, and root calculation tasks. These 519

differences highlight the nuanced nature of bias 520

in VLM predictions and suggest that tailored mit- 521

igation techniques may be necessary to address 522

specific challenges. Overall, our results underscore 523

the need for a multifaceted approach to mitigate 524

modality bias, ultimately enhancing the reliability 525

and fairness of vision-language models. 526
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Model Connectivity Convexity Roots Science VSR

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Qwen2 7B + V 49.6 7.1 53.5 36.7 50.3 14.6 58.5 51.7 57.0 68.0
Qwen2 7B + C 50.0 0.0 49.8 16.2 49.8 8.2 50.5 15.5 64.6 70.5
Qwen2 7B + D - - - - - - - - - -

Qwen2 72B + V 52.7 48.9 50.1 3.7 52.1 44.2 61.6 40.6 76.0 79.0
Qwen2 72B + C 48.8 25.9 50.9 27.2 52.7 33.6 54.5 19.6 80.5 79.0
Qwen2 72B + D 49.6 25.4 54.8 62.0 50.6 64.9 62.6 63.7 23.2 24.7

Llama-3.2 90B + V 50.7 41.6 56.4 60.1 55.3 62.8 68.1 58.2 45.8 35.1
Llama-3.2 90B + C 51.1 12.5 54.1 32.2 52.6 44.6 57.0 30.8 46.6 19.3
Llama-3.2 90B + D 52.7 52.5 60.7 62.9 53.5 63.6 68.1 71.2 10.2 9.9

GPT-4o mini + V 51.5 17.3 70.9 63.7 71.4 65.8 63.1 45.1 74.6 79.2
GPT-4o mini + C 56.3 39.8 82.8 82.2 72.1 63.1 61.6 40.6 54.6 55.6
GPT-4o mini + D 73.8 73.1 83.6 84.4 70.4 77.1 69.2 70.5 41.6 45.7

GPT-4o + V 67.6 55.6 87.3 86.8 72.0 62.7 78.3 75.7 76.3 77.2
GPT-4o + C 58.6 30.3 82.8 80.4 69.3 56.7 75.3 68.4 73.9 72.2
GPT-4o + D 81.3 80.8 85.0 85.9 68.3 75.9 79.3 79.4 68.7 68.7

Table 1: The performance of the mitigation strategies is evaluated by calculating the accuracy and F1 metrics for
the three approaches, Verbalized (V), CoT (C), and Decomposed (D). We assess their effectiveness in reporting
“mismatch” when a discrepancy exists between the input modalities.

5 Related Works527

As LLMs and VLMs become more capable in rea-528

soning tasks (Zhang et al., 2023; Ahn et al., 2024;529

Davoodi et al., 2024; Wang et al., 2024a), it is es-530

sential to investigate the interplay between modal-531

ities and how models reason across them to solve532

tasks. Previous studies have examined various as-533

pects of VLM reasoning capabilities by introducing534

benchmarks that assess their general performance535

(Liu et al., 2024b; Yue et al., 2024), or by focus-536

ing on specific abilities such as spatial reasoning537

(Chen et al., 2024) and robot navigation (Zeng et al.,538

2023). Despite these efforts, it remains unclear539

how these models reason and combine informa-540

tion across multiple modalities, and whether they541

exhibit specific biases toward any input modality.542

Many previous works investigate the robustness543

of VLMs (Chang et al., 2024). For instance, Yuk-544

sekgonul et al. (2022) demonstrate that VLMs are545

sensitive to the order of words, while Dumpala546

et al. (2024) show that they struggle to distinguish547

between semantically equivalent but lexically dif-548

ferent captions. Furthermore, several studies have549

examined VLMs robustness through adversarial550

attacks (Liu et al., 2024a; Ye et al., 2025) and jail-551

break strategies (Tao et al., 2024; Jin et al., 2024).552

The study most closely related to ours is a concur-553

rent work (Deng et al., 2025) that examines VLMs554

bias toward text and image inputs in conflicting sce-555

narios. Our approach differs in three key aspects.556

First, the authors in (Deng et al., 2025) generate557

mismatching text using GPT-4o; in contrast, we 558

create mismatched text using rule-based and man- 559

ual methods, giving us greater control. Second, 560

while (Deng et al., 2025) report that VLMs exhibit 561

a “blind faith in text”, we demonstrate that VLMs 562

can, in fact, show a stronger bias toward images in 563

certain tasks, and the extent of their bias is heavily 564

correlated with sample difficulty. Third, whereas 565

their work focuses on supervised fine-tuning ap- 566

proaches for mitigation, which can be challeng- 567

ing and expensive, we explore the impact of post- 568

processing mitigation strategies. 569

6 Conclusion 570

We investigate bias in VLMs by creating five novel 571

benchmarks that span various tasks and domains, 572

including mathematical reasoning, science, and vi- 573

sual description. Our findings reveal that VLMs 574

exhibit distinct biases toward either textual or vi- 575

sual cues depending on the task, with the na- 576

ture of this bias shifting according to sample dif- 577

ficulty and model capabilities—favoring text in 578

simpler scenarios and images in more complex 579

ones. Furthermore, we explore a range of miti- 580

gation strategies—including verbalized, chain-of- 581

thought, and decomposed approaches—which have 582

demonstrated reasonable accuracy in detecting mis- 583

matches, provided the model achieves strong per- 584

formance on the original task. These results under- 585

score the complexity of multimodal reasoning in 586

VLMs and highlight promising directions for en- 587

hancing their reliability in real-world applications. 588
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7 Limitations589

Despite the insights provided by our study, sev-590

eral limitations must be acknowledged. First, our591

analysis is restricted to only five vision-language592

models. While these models represent a range of593

architectures and capabilities, they may not capture594

the full diversity of VLM behaviors present in the595

broader research community. Future work should596

expand this analysis to include additional models597

to validate and generalize our findings.598

In addition, although our five benchmarks cover599

various tasks and domains—including mathemat-600

ical reasoning, science, and visual descriptions—601

they may not fully represent the myriad of real-602

world scenarios where multimodal conflicts occur.603

Our benchmarks, while comprehensive in their604

scope, are still limited in terms of the diversity605

and complexity of tasks that can arise in practical606

applications.607

Finally, while the mitigation strategies we inves-608

tigated (Verbalized, CoT, and Decomposed) have609

shown promising results in some cases, they may610

not be universally applicable across all models and611

tasks. Further research is needed to refine these612

approaches and explore additional strategies that613

could enhance the robustness and fairness of vision-614

language models in handling conflicting informa-615

tion.616
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VSR Description Extension

Below is a sentence that serves as the central
idea, along with a specified relationship
between entities within that sentence. Given
an image, your task is to create a complete,
coherent paragraph by adding few sentences
before and after the given sentence describing
the image. The additional sentences should
establish context in a logical manner. However,
these extra sentences should not directly
connect to the provided relationship. Ensure
that the specific relationship appears exactly
once as given within the paragraph. Finally,
do not mention ‘image’ in the paragraph.

Given sentence:
{}
Specified relationship:
{}

781

Connectivity - Pair Input

You are given the adjacency matrix of a
graph and two target nodes. The goal is
to determine whether the target nodes are
connected. Additionally, you are provided with
an image of the graph, where the target nodes
are highlighted in {}. Use both the image and
the adjacency matrix to answer the question.
The output should be in the following format:
Explanation: <....>
Answer: <True or False>

Adjacency matrix:
{}

Target nodes = {} and {}
782

Convexity - Pair Input

You are given the mathematical expression
of a function. The goal is to determine
whether the function is convex or concave.
Additionally, you are provided with the plot
of the function. Use both the plot and the
mathematical expression of the function to
identify the convexity of the function.
The output should be in the following format:
Explanation: <....>
Answer: <convex or concave>

The mathematical expression:
{}

783

Roots - Pair Input

You are given the mathematical expression of
a polynomial. The goal is to find the roots
of this polynomial. Additionally, you are
provided with an image of the plot of that
polynomial, where the roots are highlighted
in red. Use both the image and the the
mathematical expression of a polynomial to
find the roots.
The output should be in the following format:
Explanation: <....>
Answer: <[The list of roots, comma separated]>

The polynomial:
{}

784

Science - Pair Input

You are given a question, multiple choices, a
textual description, and an image. Your task
is to analyze both the text and the image and
then choose the answer of the question from
the provided choices.
The output should be in the following format:
Explanation: <....>
Answer: <A or B or ...>

The textual description:
{}

The question:
{}

The Choices:
{}

785

VSR - Pair Input

You are given a statement, a paragraph, and
an image. Your task is to analyze both the
paragraph and the image to decide whether the
statement is true or false.
The output should be in the following format:
Explanation: <....>
Answer: <true or false>

The paragraph:
{}

The statement:
{}

786

Connectivity - Only Text

You are given the adjacency matrix of a graph
and two target nodes. The goal is to determine
whether the target nodes are connected.
The output should be in the following format:
Explanation: <....>
Answer: <True or False>

Adjacency matrix:
{}

Target nodes = {} and {}
787
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Connectivity - Only Image

You are provided with an image of a graph, with
two target nodes highlighted in {}. The goal
is to determine whether the target nodes are
connected.
The output should be in the following format:
Explanation: <....>
Answer: <True or False>

Target nodes = {} and {}
788

Mitigation-V - Connectivity

You are given the adjacency matrix of a
graph and two target nodes. The goal is
to determine whether the target nodes are
connected. Additionally, you are provided with
an image of the graph, where the target nodes
are highlighted in {}. Use both the image and
the adjacency matrix to answer the question.
If there is a mismatch or a contradiction
between image and text, the answer should be
‘Mismatch’.
The output should be in the following format:
Explanation: <....>
Answer: <True or False or Mismatch>

Adjacency matrix:
{}
Target nodes = {} and {}

789

Mitigation-C - Connectivity

You are given the adjacency matrix of a
graph and two target nodes. The goal is
to determine whether the target nodes are
connected. Additionally, you are provided with
an image of the graph, where the target nodes
are highlighted in {}. Use both the image
and the adjacency matrix to answer the question.

Follow these steps to find the answer:

Step 1: Attempt to determine the answer
using only the image. If the image alone does
not provide the answer, extract all relevant
information from it.
Step 2: Attempt to determine the answer using
only the text. If the text alone does not
provide the answer, extract all relevant
information from it.
Step 3: Compare the answers or extracted
information from both the text and the image,
combine them, and derive the final answer.

If there is a mismatch or a contradiction
between image and text, the answer should be
‘Mismatch’.
The output should be in the following format:
Explanation: <....>
Answer: <True or False or Mismatch>

Adjacency matrix:
{}
Target nodes = {} and {}

790

Mitigation-D (Combining Module) - Connectivity

Given the adjacency matrix of a graph, two
target nodes, and the image of the graph, the
goal was to determine whether the target nodes
are connected.
We provide only the task’s textual description
to an LLM to obtain an answer, and separately
supply only the visual description to a VLM to
obtain its answer.
Your goal is to compare the answers from the
both models, combine them, and derive the final
answer.
If there is a mismatch or a contradiction
between two answers, the final answer should
be ‘Mismatch’.
The output should be in the following format:
Explanation: <....>
Answer: <True or False or Mismatch>

LLM’s Answer:
{}

VLM’s Answer:
{}

791

Mitigation-D (Image Module) - Connectivity

You are provided with an image of a graph, with
two target nodes highlighted in {}. The goal
is to determine whether the target nodes are
connected.
If the provided information is insufficient to
solve the task, extract all relevant details
from the input.
The output should be in the following format:
Explanation: <....>
Answer: <True or False>

Target nodes = {} and {}

792

Mitigation-D (Text Module) - Connectivity

You are given the adjacency matrix of a graph
and two target nodes. The goal is to determine
whether the target nodes are connected.
If the provided information is insufficient to
solve the task, extract all relevant details
from the input.
The output should be in the following format:
Explanation: <....>
Answer: <True or False>

Adjacency matrix:
{}

Target nodes = {} and {}

793

C VLMs Performance on The datasets 794

We provide the accuracy of VLMs on each task in 795

Table 3. For the root calculation task, we report the 796

average accuracy. First, the performance on both 797

the original and modified text is nearly identical 798

across all models, highlighting the minimal modifi- 799
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cations applied to create conflicting textual cues. In800

most cases, models perform better using textual rep-801

resentations alone compared to using images alone,802

which aligns with observations from the original803

papers. However, for connectivity, GPT-4o, for804

convexity, Qwen2 72B, and for root calculation,805

both GPT-4o and GPT-4o mini, the image input806

appears to be more helpful than text alone. Finally,807

Qwen2 7B was unable to solve the task when the808

image was missing.809

D VLMs Bias Value810

We calculate the bias value for VLMs as the dif-811

ference between the percentage of image-favored812

responses and the percentage of text-favored re-813

sponses, with results provided in Table 4. Posi-814

tive values indicate a preference for images, while815

negative values reflect a preference for textual in-816

put. Our findings reveal significant variation across817

models and tasks, with bias values ranging from818

56.8% in favor of images to 74.4% in favor of819

text. In general, less capable models tend to ex-820

hibit a stronger bias toward textual data. Moreover,821

VLMs show the highest bias toward text in the VSR822

dataset, whereas they exhibit a greater degree of823

bias toward images in the graph connectivity task.824

E Error Analysis825

We present a Venn diagram illustrating GPT-4o826

mini, Llama-3.2 90B’s, Qwen2 72B’s, Qand wen2827

7B’s error percentages under three different in-828

put settings: text-only, image-only, and combined829

matching initial text-image inputs in Figures 7, 8,830

9, and 10, respectively. We observe similar patterns831

to those seen with GPT-4o, particularly regarding832

the correlation between the models’ unique and833

common error counts and their reported bias across834

different tasks.835
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Model Only Text Original Only Text Modified Only Image Pair Text-Image Original
C

on
ne

ct
iv

ity Qwen2 7B - - 48.4 53.1
Qwen2 72B 50.7 54.6 50.7 53.9
Llama-3.2 90B 57.8 58.5 55.4 65.6
GPT-4o mini 86.7 80.4 84.3 76.5
GPT-4o 92.9 84.3 96.0 96.0

C
on

ve
xi

ty

Qwen2 7B - - 19.5 71.8
Qwen2 72B 61.7 60.5 73.4 87.5
Llama-3.2 90B 85.9 86.3 54.2 90.6
GPT-4o mini 95.3 95.3 91.4 98.0
GPT-4o 94.1 90.2 92.5 97.2

R
oo

ts

Qwen2 7B - - 31.2 36.1
Qwen2 72B 28.2 29.6 24.6 33.8
Llama-3.2 90B 31.6 29.3 16.7 35.6
GPT-4o mini 38.6 37.4 96.8 97.5
GPT-4o 34.7 34.3 98.8 99.2

Sc
ie

nc
e

Qwen2 7B - - 60.6 84.8
Qwen2 72B 89.8 86.8 54.5 89.8
Llama-3.2 90B 87.8 84.8 50.5 89.8
GPT-4o mini 87.8 82.8 67.6 87.8
GPT-4o 92.9 89.8 84.8 91.9

V
SR

Qwen2 7B - - 7.8 79.3
Qwen2 72B 97.5 97.9 30.6 79.6
Llama-3.2 90B 93.1 98.3 12.6 79.3
GPT-4o mini 96.6 99.1 35.9 70.5
GPT-4o 98.8 95.9 67.7 86.1

Table 3: The accuracy of models in solving each task when provided with text and image inputs independently and
in combination.

Model Connectivity Convexity Roots Science VSR

Qwen2 7B 37.5 -7.8 -44.4 6.0 -71.9
Qwen2 72B 38.2 -39.8 -29.0 -44.4 -74.4
Llama-3.2 90B -7.8 -53.9 -29.4 -46.4 -71.9
GPT-4o mini 23.4 -53.5 56.8 -42.4 -54.9
GPT-4o 52.3 -65.2 42.3 19.1 6.9

Table 4: VLMs’ bias value for each dataset, calculated as the difference between the percentage of image-favored
responses and the percentage of text-favored responses. Positive values indicate an image preference, while negative
values indicate a text preference.
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Figure 7: Venn diagram of errors displaying the percentage of mispredicted samples when GPT-4o mini is
provided with only text, only image, and both text and image inputs.
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Figure 8: Venn diagram of errors displaying the percentage of mispredicted samples when Llama-3.2 90B is
provided with only text, only image, and both text and image inputs.
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Figure 9: Venn diagram of errors displaying the percentage of mispredicted samples when Qwen2 72B is provided
with only text, only image, and both text and image inputs.
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Figure 10: Venn diagram of errors displaying the percentage of mispredicted samples when Qwen2 7B is provided
with only text, only image, and both text and image inputs.
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