GC-VLN: Instruction as Graph Constraints for
Training-free Vision-and-Language Navigation

Hang Yin'?3; Haoyu Wei'?**, Xiuwei Xu'23!, Wenxuan Guo'?3, Jie Zhou'??, Jiwen Lu'?3*
! Department of Automation, Tsinghua University
2Beijing Key Laboratory of Embodied Intelligence Systems
3Beijing National Research Center for Information Science and Technology

Abstract: In this paper, we propose a training-free framework for vision-and-
language navigation (VLN). Existing zero-shot VLN methods are mainly designed
for discrete environments or involve unsupervised training in continuous simu-
lator environments, which makes it challenging to generalize and deploy them
in real-world scenarios. To achieve a training-free framework in continuous en-
vironments, our framework formulates navigation guidance as graph constraint
optimization by decomposing instructions into explicit spatial constraints. The
constraint-driven paradigm decodes spatial semantics through constraint solving,
enabling zero-shot adaptation to unseen environments. Specifically, we construct
a spatial constraint library covering all types of spatial relationship mentioned in
VLN instructions. The human instruction is decomposed into a directed acyclic
graph, with waypoint nodes, object nodes and edges, which are used as queries to
retrieve the library to build the graph constraints. The graph constraint optimiza-
tion is solved by the constraint solver to determine the positions of waypoints,
obtaining the robot’s navigation path and final goal. To handle cases of no so-
lution or multiple solutions, we construct a navigation tree and the backtracking
mechanism. Extensive experiments on standard benchmarks demonstrate signif-
icant improvements in success rate and navigation efficiency compared to state-
of-the-art zero-shot VLN methods. We further conduct real-world experiments
to show that our framework can effectively generalize to new environments and
instruction sets, paving the way for a more robust and autonomous navigation
framework. Project Page.

1 Introduction

Vision-and-language navigation (VLN) [1] is an essential foundational capability for various em-
bodied tasks, which requires the robot to move in a novel environment following complex linguistic
instructions. The VLN instructions typically describe the path sequence, including the direction and
distance of movement along the path, as well as scene information near the path. This necessitates
the robot’s ability of linguistic comprehension, environment perception, and spatial reasoning. How-
ever, limited by the availability of annotated data, early data-driven VLN methods exhibit poor gen-
eralization ability in unseen scenarios. Moreover, most existing data-driven VLN methods [2, 3, 4]
are trained in simulator environment, which leads to a large sim-to-real gap. Therefore, building
data-independent zero-shot navigation frameworks is necessary.

Zero-shot VLN methods [5, 6] have been proposed to overcome the limitation of annotated data
and narrow the sim-to-real gap. DiscussNav [7] leverages multi-expert discussions to integrate in-
struction understanding, environmental perception, and decision verification. MapGPT [6] builds a
map-guided GPT-based agent that leverages an online linguistic-formed map for adaptive path plan-
ning. However, constrained by immature simulators, these zero-shot VLN methods can only operate
in discrete environments [1], which only allows the robot to move between a set of discrete nodes

* Equal contribution. T Project lead. } Corresponding author.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://bagh2178.github.io/GC-VLN/

/ O Now you are by the bed.

I O After exiting the bedroom I
door, turn left and walk |
straight to the staircase.. i

I's
| Why not break down instructions i

into Graph Constraints in ﬁ |
| several stages? |

Begin s T, IR . : Possible Waypoints

Figure 1: GC-VLN models the instructions as a graph constraint optimization problem and solve
the graph constraints based on the robot’s observations to obtain the robot’s path, which enables
training-free VLN. We illustrate how graph constraints guide the navigation path and how to re-plan
the path when exploration fails.

within the environment. Methods in discrete simulator environment are impractical for deploying
in real-world scenarios, introducing a significant sim-to-real gap. Vision-and-language navigation
in continuous environments (VLN-CE) [8] is introduced to better simulate real-world environments,
where the robot can move freely and stand at any position within the environment. In VLN-CE,
the robot predicts low-level actions, including turning and moving forward, which is closer to real-
world environments. The VLN-CE methods can be easily deployed in novel real-world scenarios
without the adaptation. Nevertheless, most existing zero-shot VLN-CE methods still rely on unsu-
pervised training within simulators. A2Nav [9] constructs five subtasks for VLN-CE and trains the
five subtask modules in a self-supervised manner within the simulator. The self-supervised training
on simulator data means that these methods still exhibit a sim-to-real gap. Therefore, a training-free
framework for VLN-CE is highly demanded.

In this paper, we propose Graph-Constraints for Vision-and-Language Navigation (GC-VLN), a
training-free framework for VLN-CE. Different from previous works which is deployed in discrete
environments or self-supervised trained on simulator data, GC-VLN adopts a completely training-
free approach to perceive the scene and predict the path. Specifically, we construct a constraint
library to cover all types of spatial relationship constraints found in the instructions. Then the lin-
guistic instruction is decomposed into a directed acyclic graph, which is used to query the library
to construct a graph constraint. The navigation is formulated as a graph constraint optimization
problem, where the coordinates of the waypoint nodes are progressively solved by the constraint
solver. Additionally, we build a navigation tree to address the problem of uncertainty in the number
of solutions during graph constraint solving. We conducted extensive experiments in the simulator
benchmarks R2R-CE and RxR-CE, achieving state-of-the-art performance across the board. Real-
world experiments further demonstrate the strong generalization ability of our method.

2 Related Work

2.1 Vision-and-Language Navigation

In real-world navigation scenarios, humans typically have prior knowledge of the path to the goal.
Therefore, robots do not need to autonomously explore the goal. Using human prior knowledge, the
robot follows human instructions to reach the goal, a task called Vision-and-Language Navigation
(VLN) [1, 10, 11, 12]. Early VLN methods [13, 7] use discrete simulator environments to evaluate
VLN approaches, where the environment is divided into multiple discrete drivable waypoints. The
robot can only stand on the waypoints and selects one of the adjacent waypoints as a short-term goal
at each step. Discrete environments allow the method to focus on path selection. However, due to
the large sim-to-real gap, discrete VLN methods are difficult to deploy in real-world scenarios.

q \

II DAG Fant Graph Constraints _7@ |

| ,a Now that you Stage1 ~E mthrowgh 5 -\', |
are standing on LLM Stage2 —>-

| the steps, go down — v — 53 Query Const.@ —_ . . Stage |

v Object |

@ D o)

from there, ture B =
| v Constraint
right, and there
\ Will be a door.. Stage n ({05l & Library _I_ Constraint
L T T R e e I —.

- = — —

TS ®%-°Navigation Tree :Q ;

------- -1
Next Point
o Location
\

|
|
Y ?2 X @
| I T —a__y AR 1 Local
1 A L & | Policy
| 1 1 2 I o
I Observation RGB-D I - I I |
| . r‘, 4 & 2 | Low-level
Robot P n ? {
\—_o_o_ O_SE_—l ‘\ ,, ! :_:—_—:-L—__::_:;/ Action

Figure 2: Framework of GC-VLN. We construct a constraint library, containing all the spatial rela-
tionship mentioned by navigation instruction. The instruction is decomposed into a directed acyclic
graph (DAG) and used to query the library to get the graph constraints. The constraint solver deter-
mines the path by solving the graph constraint optimization. According to the topological sort (TS)
of graph constraint, we build the navigation tree, where the number of leaf nodes equals the number
of graph constraint solutions. In graph constraint and TS, .7 means the i-th object node in stage ¢.

Towards the aim of closely approximating real-world scenarios, Vision-and-Language Navigation in
Continuous Environments (VLN-CE) [8] is proposed, which allows the robot to move freely within
the scene by predicting low-level actions. Methods designed [14, 15, 16, 17, 2] for VLN-CE can
be directly deployed in real-world scenarios without modification. To balance the simplification of
methods in discrete VLN with the approximation of real environments in VLN-CE, the waypoint
predictor [18] is proposed to predict discrete waypoints online within a continuous environment, and
becomes the mainstream technical approach for VLN-CE task.

2.2 Training-free Navigation

Conventional navigation methods are task-training, involving modules such as LSTM [19] and trans-
former [20]. The limit of annotated data results in these methods having restricted generalization
abilities for more diverse goals or human instructions. Moreover, task-training methods also exhibit
sim-to-real gap, which limits their performance in real-world scenarios.

Zero-shot navigation [21, 22] methods have been proposed to address the generalization problem.
In the field of goal-oriented navigation, zero-shot methods for object-goal navigation [23, 24, 25,
21, 26], image-goal navigation [27, 28, 29, 30], and text-goal navigation [31] have already reached
a relatively mature stage. For VLN in discrete environments, zero-shot methods [32] have also seen
significant development. However, for the VLN-CE task, zero-shot methods remain unsatisfactory,
which is the goal of our method.

3 Approach

We first present the task definition and the overall pipeline of our approach, followed by an expla-
nation of how the graph constraint /C is constructed. Finally, we elaborate on how we sequentially
solve the coordinates of nodes in X and utilize X to guide the navigation direction.

3.1 Overview

In VLN, a robot is initialized in an unknown environment. The robot is required to follow the
linguistic instruction Z provided by a human, so that it can move within the environment and reach
the final destination. As shown in Figure 1, the instruction is typically a piece of text that describes

how to navigate from the starting point to the destination point, including navigation directions,
objects encountered along the navigational path, and spatial relationships between the navigation
path and objects. If the agent reaches within r meters of the navigation endpoint in no more than ¢
steps, the navigation is successful.

Pipeline. As shown in Figure 2, the pipeline of GC-VLN contains two main modules, the graph con-
straint construction module and constrained optimization module. First, the original instruction is
decomposed into a multi-stage directed acyclic graph G, which contains all the information required
for navigation. We construct a constraint library that encompasses all types of spatial relationships
in VLN instruction. The graph G is used to query this library to obtain the constraint types between
nodes, thereby the graph constraint /C is constructed. The determination of the node coordinates in
K is formulated as a constrained optimization problem based on their constraints, and the navigation
tree handles the uncertain number of coordinate solutions from the constraint solver, to backtrack
when no solution meets the constraint conditions.

3.2 Graph Constraint Construction

To handle the long sequence characteristics and

complex spatial relationships in the instruction Known Angle

T, we convert Z into a structured representation, ® ® ®
namely the graph constraint, which is required

to meet three criteria: 1. It must not lose any

information from Z. 2. It must explicitly con-

. . . . Unknown Distance Known Distance
tain all the objects mentioned in Z. 3. It must
provide explicit navigation directions, as well & ®
as spatial relationships between objects and the &j

navigation path.

Instruction Decomposition. The LLM is
prompted to decompose the instruction Z into
multiple navigation stages, where each stage
involves exactly one displacement (no require-
ment for the number of rotations). Each stage
has two attributes: the navigation direction and
the objects that appear in that stage. The nav-
igation direction is categorized as one of the
following: ["front", "right", "left",
"back", "unknown"]. Every object men-
tioned in Z belongs to and belongs only to one navigation stage. Each object has one attribute:
its spatial relationship with the navigation path. These nodes and edges constitute a directed acyclic
graph G.

Graph G = LLM(Z), where G = (V,&), and V, € represent the nodes and the directed edges,
respectively.)V can be categorized into waypoints V* and object nodes V°, where V¥ =
{op, vy, o Ve = U {08, 0%, ..., v, }. Edges can be categorized into £* and £° based
on whether they are connected to an object node, where £ = { (v, v) |1 <i <n—1},E° =
U, ({(vg",v;’j) |1<j<k}uU {(vioj,v;”) |1<j<m}). v and vg; represent the waypoint
nodes and the j-th object nodes in stage i, and e = (u, v) represents the edge pointing from node u
to node v. For details of instruction decomposition, please refer to the supplementary materials.

Unknown Angle

Figure 3: Diagram of the Constraint Library con-
taining six types of constraint. For constraint
¢(v | u), u and v are colored blue and green, re-
spectively. The green region is the possible region
for v.

Constraint Library. The spatial relationships between nodes mentioned in Z are considered spatial
constraints ¢ (v | u) of their coordinates u, v. The type of constraint is distinguished based on the
description of the spatial relationship topology in Z. As shown in Figure 3, we construct a constraint
library £ containing six types of constraint, which covers all types of spatial relationship topologies
involved in VLN instructions.

Assuming u is known, the second type of constraint as an example, the constraint ¢ (v | u) can be
expressed as:

co|u)=(c]|u),c?(v]u), sum(c)=c*+c?, min(c) = min(c?c?) (D)
¢ (v | u) = cos(Ag)[v —ul| = [[lv = ul = (v =) - (cos ¢, sin §)] 2)
(v u) = Ad® ~ (v - ul - d)® 3)

where ¢, A¢ and d, Ad are the baseline and tolerance of angle and distance of e, and ¢, c¢? are the
sub-constraints of angle and distance. The complete expressions of the sub-constraints of the other
five types of constraint are provided in the supplementary materials.

Graph Constraint. We query the constraint library £ using e € £ to obtain the type of constraint
¢ = L(e) corresponding to e. All nodes and constraints together form the graph constraint C:

K=,C), C=1{L(e)|ecé& @)

The direction of ¢ represents the direction of causality and inferring, meaning that the coordinates
of v can only be inferred when the coordinate of its parent node u is known. At the beginning of the
navigation, the coordinate of v} is (0, 0) and that of other nodes in V are all uncertain. At the end
of the navigation, all coordinates of v;" € V* are determined and v,; is the endpoint of this episode.

3.3 Constrained Optimization for Node Coordinates

The graph constraint K is used to guide the robot’s direction of motion. Therefore, the coordinates of
the nodes v € V are determined according to the navigation order. We propose a graph-constrained
optimization framework to determine the coordinates and a navigation tree to handle the uncertainty
in the number of solutions.

Constraint Solver. Graph constraint /C is utilized to solve the coordinates of waypoints v;’ €
V. We determine the coordinates of object nodes v7; € V° by perceiving RGB-D observations
with a pre-trained vision model. Solving for the coordinate of a node v requires knowledge of the
coordinates of all its parent nodes in K. In the initial state of navigation, only the starting point
of stage 1, which serves as the root node v}’ of X, has known coordinates. vj’ acts as the original
reference for solving the coordinates of all subsequent nodes. We perform a topological sort (TS)
on K to determine the order in which the node coordinates are solved during navigation. The order
of the topological sort ensures that for any constraint ¢ (v | u), v always follows after u. Therefore,
when determining the node coordinates in this order, the coordinates of the current node’s parent
nodes are guaranteed to be already solved. The details of the topological sort can be found in the
supplementary materials.

For the waypoint v}’, multiple constraints C,» = {c (vf [v}*)} U {c (v [vg;) |1 <j <my}
jointly restrict it, corresponding to all edges that points to v;”. We formulate the coordinate determi-
nation as a nonlinear constrained optimization problem (P1):

(P1): Maximize Z sum(c) (5)
vi CECU?J

subject to min(c) > 0, Ve € Cpw (6)

lo* — ;|| > L, Vj €{1,....,k—1} (7

where x; represents the j-th solution of v}”. The functions sum(c) and min(c) represent the sum
and minimum values of the sub-constraints in ¢, respectively. This constraint is solved for multiple
times, and in the k-th iteration, we incorporate the first £ — 1 solutions into the constraint conditions.
For object nodes v;;, we retain only the constraint conditions (without the optimization objective). A
pre-trained vision model perceives objects in the observation and the objects are projected onto the
BEV map. The coordinates of objects satisfying the constraint conditions are selected as solutions

o
for vg;.

Navigation Tree. The constraint solver generates an uncertain number of solutions for nodes v € V.
We construct the navigation tree 7 to handle this uncertainty, where each node in 7 has a specific

Table 1: Results of R2R-CE and RxR-CE in Habitat simulator. We mainly compare the SR and SPL
of SOTA methods of VLN-CE.

R2R Unseen RxR Unseen

Method Zero-shot Training-free NE OSR SR SPL NE OSR SR SPL
Seq2Seq [8] X X 7.8 37.0 240 220 - - - -
WS-MGMap [3] X X 63 476 389 343 98 298 150 121
NaVid [4] X X 55 49.1 374 359 84 345 238 212
Uni-NaVid [33] X X 5.6 533 470 427 62 555 487 409
ETPNav [2] X X 47 650 570 49.0 5.6 - 54.8 449
Cow [34] v X - - 7.8 58 - - 79 6.1
ZSON [35] v X - - 193 93 - - 142 438
A?Nav [9] v X - - 226 11.1 - - 16.8 6.3
NavGPT-CE [5] v v 84 269 163 10.2 - - - -
CA-Nav [36] v v 76 480 253 108 104 - 19.0 6.0
InstructNav [37] v v 6.9 - 31.0 24.0 - - - -
GC-VLN (Ours) v v 73 418 336 163 88 444 338 138

coordinate in the environment. Assuming that the topological sort (TS) of K is [v1,v2, ..., vy,
the constraint solver progressively solves for the node coordinates. According to the number of
solutions from the constraint solver, TS is extended to a navigation tree, where the nodes at level ¢
in 7 are the coordinate solutions of the i-th node v; in K. Standing at the i-th level of T, the number
of branches in the (¢ + 1)-th level of the navigation tree corresponds to the number of solutions for
vi+1. The path from the root node in 7 to a leaf node in 7 corresponds to a specific path in the
environment.

If the constraint solver fails to find a feasible solution, there will be no branches at that level for v;,
indicating that this particular navigation branch is unsuccessful. In this case, the robot will backtrack
in 7 until it finds a branch point with unexplored siblings. At this branch point, the robot selects the
next unexplored sibling as the future path. The backtracking mechanism enhances the fault tolerance
of GC-VLN, allowing the robot to explore potentially missed correct paths. Navigation terminates
if the robot reaches the last level of 7, corresponding to the endpoint v)y|.

4 Experiments

We conducted extensive experiments using simulators and real-world scenarios to validate the effec-
tiveness of our method. In this section, we will introduce our experimental setup, comparison with
state-of-the-art methods, ablation studies, and qualitative analysis, respectively.

4.1 Benchmarks and Implementation Details

Datasets: We conduct simulator experiments on the mainstream R2R-CE [38] and RxR-CE [39]
datasets of VLN-CE tasks. R2R-CE and RxR-CE are derived by converting the discrete trajectories
from the R2R and RxR VLN datasets into continuous trajectories within the Habitat simulator [40].
The scenes in the R2R-CE and RxR-CE datasets are sourced from the MP3D [41] dataset. We
use the validation-unseen split of R2R-CE and RxR-CE, including 1,839 and 11,006 episodes. The
instructions in R2R-CE are entirely in English, while those in RxR-CE are in three languages. The
average path length and the instruction length in RxR-CE are greater than those in R2R-CE.

Evaluation Metrics: Following [42, 43], we use success rate (SR) and success rate weighted by
path length (SPL) as the main evaluation metrics. SR represents the proportion of episodes where
the agent successfully reaches within m meters of the endpoint, where m = 3. SPL builds upon the
success rate by incorporating path length, reflecting the similarity between the actual path and the
ground truth path. Besides, navigation error (NE) and Oracle Success Rate (OSR) are also reported.

Compared Methods: We compare with state-of-the-art methods for training-free VLN-CE.
NavGPT-CE [5, 44] is the NavGPT adapted version for continuous environments. CA-Nav [36]

Table 2: Effect of pipeline design in GC-VLN on R2R-CE benchmark.

stair 6 arc!wayl

v I 2? =@

7 1 P & v &
.‘,$§;cway5 1@ 23 @1 — 5.1 52 — @
table (g 1 mirror bed atrium staircase| 4 archway archway

Graph Constraint Consrtraint Solver and Navigation Tree
Method NE OSR SR SPL | Method NE OSR SR SPL
Relax constraints in /C 8.7 257 21.5 10.8 | Rearrange topological sort 9.0 364 262 12.1
Remove waypoint constraints 8.7 30.7 23.8 10.9 | Remove solution order 8.8 41.8 336 149
Remove object constraints 8.6 357 303 159 | Random Constraint Solver 9.1 9.1 7.0 2.6
Remove unary-constraint 87 379 326 163 | Simplify 7 89 382 296 114
Remove multi-constraint 8.7 369 309 152 | Remove Backtracking 9.0 232 213 136
Full Approach 73 41.8 33.6 16.3 | Full Approach 73 418 336 163
{ ——
N
I 1 1
194 O,
N I
I 3 1
' &9 !
I 4 atriun|
| 5 1
| v
1
1
1

______ D s
| S - 62 6 @x
Instruction: ... Turn to your right, and move towards the mirror, and then turn right again and move out of this big walk-in closet. .. You're going 1
to move straight through the circular atrium and into the next one, ... , moving past a staircase and one big archway. You're mowing into the archwayl
1 just to the right of the wood-bordered one,. ... And once you’re at the corner of the table, you’re done. J

Figure 4: Demonstration of the graph constraints solving of GC-VLN. Here ¢; is the ¢-th branch
node of the ¢-th level of navigation tree.

is a constraint-aware zero-shot VLN-CE method. InstructNav [37] is a generic instruction naviga-
tion method that is applicable to VLN-CE, ojbect-goal navigation, and demand-driven navigation.

Implementation Details: We evaluate GC-VLN in the habitat simulator and real-world robot Hex-
move. We deploy DeepSeek-R1 [45] as LLM for instruction decomposition and Grounded-SAM-
2 [46, 47, 48] for object perception. The local policy is the Fast Marching Method [49].

4.2 Comparison with State-of-the-art

We compare GC-VLN with the state-of-the-art VLN-CE methods in three settings for VLN-CE: su-
pervised, zero-shot and training-free in Table 1. GC-VLN surpasses previous zero-shot methods, and
surpassed SOTA training-free method InstructNav by 2% success rate on the R2R-CE benchmark.
On the RxR-CE, we outperform all zero-shot methods for which performance has been reported. In
the supervised setting, we also outperform some methods, such as NaVid on RxR-CE.

In particular, RxR is more challenging than R2R. However, our method maintains high performance
on RxR, which demonstrates its stronger ability to handle complex instructions.

4.3 Ablation Study

‘We conduct ablation studies on R2R-CE to validate the effectiveness of each module in GC-VLN.

Effect of graph constraint: In Table 2, we first relax the graph constraints, which means removing
the angle constraint and retaining only the maximum distance for the distance constraint. The results
show a significant drop in SR and SPL. Then we remove the waypoint constraints ¢ (vzﬂ_l | vt“’),
object constraints ¢ (v%ﬂ_l | fufj), unary-constraints (type 1, 2,4, 5) and multi-constraints (type 3, 6),
respectively, replacing them with the weakest constraint (type 4). The performance of GC-VLN
shows varying degrees of decline, demonstrating the effectiveness of graph constraints.

Effect of constraint solver and navigation tree: We rearrange the topological sort by making
object nodes no longer belong to a specific stage. For solution order, we no longer use the order of

(Graph Const. |
IFrldge l @I

ab'Le cablnet

: [~ s
p NT E fridge cabinet
g p 4

K31
N - - _, L 2'
Instruction: You're in a kitchen
DAG Stage 2 »[(1EID

Open
Stage 1 stage 3 (XD

-_—
[5)
]
]

-
>
)
=)
=
7]
2
L]
o
o
=
+

o6 ¢

1 door Green Trash
plant can

1 Instruction: Go through the open brown door, then turn right. You'll see a green plant in the hallway. Walk up to the plant, then turn 1
left. After that, walk toward the trash can.

Figure 5: Demonstration of deployment in real-world environment.

coordinate solutions for a node to construct the navigation tree branches but adopt a random order.
For the constraint solver, instead of using the maximization objective function to solve coordinates,
we randomly sample points within the region defined by the constraint conditions. We simplify the
navigation tree 7 by removing the earlier unexplored branches, and remove backtracking by not
saving unexplored branches at all. The performance declines across the board, demonstrating the
effectiveness of constraint solver and navigation tree.

4.4 Qualitative Results

To provide a more intuitive view of our method, we present visualizations of the navigation process
in both the simulator and real-world environments. As shown in Figure 4, the robot progressively
explore the scene in the simulator and solve the position of each waypoint based on spatial con-
straints. As illustrated in Figure 5, we deploy GC-VLN in the real world, demonstrating its strong
generalization ability in real-world deployment.

5 Conclusion

In this paper, we propose a graph constraint-guided training-free vision-and-language navigation
framework. Since zero-shot VLN methods for discrete environment and self-supervised VLN meth-
ods for continuous environment have a large sim-to-real gap, it is challenging to deploy them in
real-world scenarios. We construct a spatial constraint library that encompasses all possible spatial
constraints and utilize LLM to decompose the instruction into a directed acyclic graph. The graph
is used to query the constraint library and obtain the graph constraints. The positions of nodes in
the directed acyclic graph are determined by the constraint solver, which solves the graph constraint
optimization problem. Navigation tree is used to handle the issue of uncertainty in the number of
solutions. Extensive experiments conducted in both simulated and real-world scenarios demonstrate
the performance and generalization ability of GC-VLN, for which it can be easily deployed in real-
world environment without performance degradation.

Acknowledgments

This work was supported in part by the Beijing Natural Science Foundation under Grant No.
L.247009, the National Natural Science Foundation of China under Grant 62125603, and the Beijing
National Research Center for Information Science and Technology.

References

[1] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Siinderhauf, I. Reid, S. Gould, and
A. van den Hengel. Vision-and-language navigation: Interpreting visually-grounded naviga-
tion instructions in real environments. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[2] D. An, H. Wang, W. Wang, Z. Wang, Y. Huang, K. He, and L. Wang. Etpnav: Evolving
topological planning for vision-language navigation in continuous environments. /[EEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2024.

[3] P. Chen, D. Ji, K. Lin, R. Zeng, T. H. Li, M. Tan, and C. Gan. Weakly-
supervised multi-granularity map learning for vision-and-language navigation. arXiv preprint
arXiv:2210.07506, 2022.

[4] J. Zhang, K. Wang, R. Xu, G. Zhou, Y. Hong, X. Fang, Q. Wu, Z. Zhang, and H. Wang. Navid:
Video-based vlm plans the next step for vision-and-language navigation. Robotics: Science
and Systems, 2024.

[5] G. Zhou, Y. Hong, and Q. Wu. Navgpt: Explicit reasoning in vision-and-language navigation
with large language models. arXiv preprint arXiv:2305.16986, 2023.

[6] J.Chen, B. Lin, R. Xu, Z. Chai, X. Liang, and K.-Y. K. Wong. Mapgpt: Map-guided prompting
with adaptive path planning for vision-and-language navigation. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics, 2024.

[7]1 Y. Long, X. Li, W. Cai, and H. Dong. Discuss before moving: Visual language navigation via
multi-expert discussions. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pages 17380-17387. IEEE, 2024.

[8] J. Krantz, E. Wijmans, A. Majundar, D. Batra, and S. Lee. Beyond the nav-graph: Vision and
language navigation in continuous environments. In European Conference on Computer Vision
(ECCV), 2020.

[9] P. Chen, X. Sun, H. Zhi, R. Zeng, T. H. Li, G. Liu, M. Tan, and C. Gan. a®nav: Action-aware
zero-shot robot navigation by exploiting vision-and-language ability of foundation models,
2023. URL https://arxiv.org/abs/2308.07997.

[10] W. Hao, C. Li, X. Li, L. Carin, and J. Gao. Towards learning a generic agent for vision-and-
language navigation via pre-training. Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[11] P. Anderson, A. Shrivastava, J. Truong, A. Majumdar, D. Parikh, D. Batra, and S. Lee. Sim-
to-real transfer for vision-and-language navigation. In Conference on Robot Learning, pages
671-681. PMLR, 2021.

[12] K. Chen, J. K. Chen, J. Chuang, M. Vazquez, and S. Savarese. Topological planning with
transformers for vision-and-language navigation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11276-11286, 2021.

[13] R. Liu, X. Wang, W. Wang, and Y. Yang. Bird’s-eye-view scene graph for vision-language
navigation. In ICCV, pages 10968-10980, 2023.

https://arxiv.org/abs/2308.07997

[14] J. Krantz and S. Lee. Sim-2-sim transfer for vision-and-language navigation in continuous
environments. In European conference on computer vision, pages 588—603. Springer, 2022.

[15] H. Wang, W. Liang, L. Van Gool, and W. Wang. Dreamwalker: Mental planning for continu-
ous vision-language navigation. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 10873-10883, 2023.

[16] Z. Wang, X. Li, J. Yang, Y. Liu, and S. Jiang. Gridmm: Grid memory map for vision-and-
language navigation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 15625-15636, 2023.

[17] Z. Wang, X. Li,J. Yang, Y. Liu, J. Hu, M. Jiang, and S. Jiang. Lookahead exploration with neu-
ral radiance representation for continuous vision-language navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 13753—
13762, June 2024.

[18] Y. Hong, Z. Wang, Q. Wu, and S. Gould. Bridging the gap between learning in discrete and
continuous environments for vision-and-language navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2022.

[19] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735—
1780, 1997.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.. Kaiser, and 1. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[21] B. Yu, H. Kasaei, and M. Cao. L3mvn: Leveraging large language models for visual target
navigation. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3554-3560. IEEE, 2023.

[22] H. Yin, X. Xu, Z. Wu, J. Zhou, and J. Lu. Sg-nav: Online 3d scene graph prompting for
llm-based zero-shot object navigation. arXiv preprint arXiv:2410.08189, 2024.

[23] K. Zhou, K. Zheng, C. Pryor, Y. Shen, H. Jin, L. Getoor, and X. E. Wang. Esc: Exploration with
soft commonsense constraints for zero-shot object navigation. In ICML, pages 42829-42842.
PMLR, 2023.

[24] W. Cai, S. Huang, G. Cheng, Y. Long, P. Gao, C. Sun, and H. Dong. Bridging zero-shot
object navigation and foundation models through pixel-guided navigation skill, 2023. URL
https://arxiv.org/abs/2309.10309.

[25] P. Wu, Y. Mu, B. Wu, Y. Hou, J. Ma, S. Zhang, and C. Liu. Voronav: Voronoi-based zero-shot
object navigation with large language model. arXiv preprint arXiv:2401.02695, 2024.

[26] Y. Kuang, H. Lin, and M. Jiang. Openfmnav: Towards open-set zero-shot object navigation
via vision-language foundation models. arXiv preprint arXiv:2402.10670, 2024.

[27] W. Guo, X. Xu, H. Yin, Z. Wang, J. Feng, J. Zhou, and J. Lu. Igl-nav: Incremental 3d gaussian
localization for image-goal navigation. arXiv preprint arXiv:2508.00823, 2025.

[28] J. Krantz, T. Gervet, K. Yadav, A. Wang, C. Paxton, R. Mottaghi, D. Batra, J. Malik, S. Lee, and
D. S. Chaplot. Navigating to objects specified by images. arXiv preprint arXiv:2304.01192,
2023.

[29] H. Yin, X. Xu, L. Zhao, Z. Wang, J. Zhou, and J. Lu. Unigoal: Towards universal zero-shot
goal-oriented navigation. arXiv preprint arXiv:2503.10630, 2025.

[30] M. Wei, T. Wang, Y. Chen, H. Wang, J. Pang, and X. Liu. Ovexp: Open vocabulary exploration
for object-oriented navigation. arXiv preprint arXiv:2407.09016, 2024.

10

https://arxiv.org/abs/2309.10309

[31] X. Sun, L. Liu, H. Zhi, R. Qiu, and J. Liang. Prioritized semantic learning for zero-shot
instance navigation, 2024. URL https://arxiv.org/abs/2403.11650.

[32] D. Li, W. Chen, and X. Lin. Tina: Think, interaction, and action framework for zero-shot
vision language navigation, 2024. URL https://arxiv.org/abs/2403.08833.

[33] J. Zhang, K. Wang, S. Wang, M. Li, H. Liu, S. Wei, Z. Wang, Z. Zhang, and H. Wang. Uni-
navid: A video-based vision-language-action model for unifying embodied navigation tasks,
2024.

[34] S.Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song. Cows on pasture: Baselines
and benchmarks for language-driven zero-shot object navigation. CVPR, 2023.

[35] A. Majumdar, G. Aggarwal, B. Devnani, J. Hoffman, and D. Batra. Zson: Zero-shot object-
goal navigation using multimodal goal embeddings. In Neural Information Processing Systems
(NeurIPS), 2022.

[36] K. Chen, D. An, Y. Huang, R. Xu, Y. Su, Y. Ling, I. Reid, and L. Wang. Constraint-
aware zero-shot vision-language navigation in continuous environments. arXiv preprint
arXiv:2412.10137, 2024.

[37] Y. Long, W. Cai, H. Wang, G. Zhan, and H. Dong. Instructnav: Zero-shot system for generic
instruction navigation in unexplored environment, 2024.

[38] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Siinderhauf, I. Reid, S. Gould, and
A. Van Den Hengel. Vision-and-language navigation: Interpreting visually-grounded naviga-
tion instructions in real environments. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3674-3683, 2018.

[39] A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge. Room-across-room: Multilin-
gual vision-and-language navigation with dense spatiotemporal grounding. arXiv preprint
arXiv:2010.07954, 2020.

[40] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,
J. Malik, et al. Habitat: A platform for embodied ai research. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 9339-9347, 2019.

[41] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, and
Y. Zhang. Matterport3d: Learning from rgb-d data in indoor environments. 3DV, 2017.

[42] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Ma-
lik, R. Mottaghi, M. Savva, et al. On evaluation of embodied navigation agents. arXiv preprint
arXiv:1807.06757, 2018.

[43] G. Ilharco, V. Jain, A. Ku, E. Ie, and J. Baldridge. General evaluation for instruction condi-
tioned navigation using dynamic time warping. arXiv preprint arXiv:1907.05446, 2019.

[44] G. Zhou, Y. Hong, Z. Wang, X. E. Wang, and Q. Wu. Navgpt-2: Unleashing navigational
reasoning capability for large vision-language models. arXiv preprint arXiv:2407.12366, 2024.

[45] DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

[46] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang, Y. Chen, F. Yan, Z. Zeng,
H. Zhang, F. Li, J. Yang, H. Li, Q. Jiang, and L. Zhang. Grounded sam: Assembling open-
world models for diverse visual tasks, 2024.

[47] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Ridle, C. Rolland,
L. Gustafson, E. Mintun, J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu, R. Girshick, P. Dollar,
and C. Feichtenhofer. Sam 2: Segment anything in images and videos, 2024. URL https:
//arxiv.org/abs/2408.00714.

11

https://arxiv.org/abs/2403.11650
https://arxiv.org/abs/2403.08833
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714

[48] T. Ren, Q. Jiang, S. Liu, Z. Zeng, W. Liu, H. Gao, H. Huang, Z. Ma, X. Jiang, Y. Chen,
Y. Xiong, H. Zhang, F. Li, P. Tang, K. Yu, and L. Zhang. Grounding dino 1.5: Advance the
“edge” of open-set object detection, 2024.

[49] J. A. Sethian. A fast marching level set method for monotonically advancing fronts. proceed-
ings of the National Academy of Sciences, 93(4):1591-1595, 1996.

12

A Overview

This supplementary material is organized as follows:

* Section B provides the algorithm for the overall pipeline of GC-VLN.
 Section D provides the details of the approach.

* Section C provides the details of the hardware used in real-world experiments.
* Section E reports the results of additional ablation experiments.

* Section F shows visualization results of failure cases.

* Section G details the prompts for LLM.

B Pipeline of GC-VLN

In Algorithm 1, we provide an algorithm diagram of GC-VLN.

Algorithm 1 Overall Pipeline of GC-VLN

Require: Instruction Z, Observation O
Ensure: Goal Position (z,y)
G + Decomposelnstruction(Z)
L < ConstraintLibrary()
C + ConstructGraphConstraint(G, £)
T < NewNavigationTree()
while True do
{v; | i=1,2,...,k} < ConstraintSolver(C, O)
T « UpdateNavigationTree(T, {v; | i = 1,2,...,k})
if {v; |i=1,2,...,k} == O then
v < Backtrack(7)
else
v + GetWaypoint({v; | i = 1,2, ..., k})
end if
Gotov (z,y)
if isFinalWaypoint (v) then
Stop at v (z,y)
end if
end while

C Hardware Details

We present the hardware details of the robot employed in our real-world experiments in Figure 6.
The robot base is the TRIGGER platform developed by Hexmove. A monocular RGB-D camera
serves as our input for observations, which is Orbbec Gemini 336L. Our pose input is provided by
the RealSense T265 tracking camera. We utilize the PIPER robot arm from AGILE-X for object
manipulation.

D Details of Approach

D.1 Instruction Decomposition

LLM is prompted to decompose the linguistic instruction Z. The decomposition of Z must meet
several rules: 1. Each stage must contain exactly ONE position change. Rotating alone without
movement is not a stage. 2. The direction of a stage is equal to the direction of the line from the start
to the end of the stage. 3. Each stage comprises two attributes: position and a list of nodes. Each
node consists of two attributes: name and position. 4. ”waypoint_position” must belong to one of

“front”, "right”, "left”, "back”, "unknown”. 5. “object_position” must belong to one of the types

» »

“right”, "left”, "through”, "weave”, "pass”, "near”, "back”.

D.2 Constraint Library

As illustrated in Figure 3 of the main text, based
on the description in the instruction Z, the an-
gle and distance information within a constraint
can be identified, allowing the constraints to be
classified into six types. A unary constraint in-
volves only two nodes, while a multi-constraint
involves three or four nodes. For example, the
instruction “move forward 3 meters to the left”
belongs to type 2, where both u (blue node) and
v (green node) are waypoints. The instruction
”move forward through a door” corresponds to
type 3, where u; (blue node) and v (green node)
are waypoints, while uy (gray node) is a door
node. The instruction “walk forward through
the space between two chairs” falls under type
6, where u; (blue node) and v (green node) are
waypoints, and uo and u3 (gray nodes) are chair
nodes.

Tracking Camera:
RealSense T265

Arm:
AGILE-X PIPER

Robot Base:
Hexmove TRIGGER

We formulate the sub-constraints for all six
types of constraints. Each type of constraint in-
cludes two possible sub-constraints: the angle
constraint ¢ and distance constraint ¢?. The Figure 6: The robot employed for conducting the
constraint types that include angular constraints ~real-world experimental deployments.

are: 1, 2, 3, and 6. The constraint types that in-

clude distance constraints are: 2, 3, 5, and 6.

We formulate the constraint as:

c= (1% 1%, sum(c) =1%*+1%¢, min(c) = min(1%c*, 1%%) 8)
where 1% and 1? denote indicator functions representing the presence of angle and distance sub-

constraints, respectively.

For types 1, 2, 4, and 5, the ¢ and ¢ are:

¢ (v u) = cos(Ad)[lv — ul = [[|lv—ul| — (v — u) - (cos ¢, sin ¢)] ©)
¢! (v |u) = Ad® = (JJv — ul| — d)? (10)
For type 3, the ¢® and c? are:
c® (v] ur,ug) = cos(A)||v — us|| — [|lv — uz|| = (v — us2) - (cos ¢, sin @)] a1
c? (v]ug,ug) = Ad? — (Jlv — uzl| — d)2 (12)

In type 1, 2, 3, 4, and 5, if the angle and distance are not explicitly specified, then A¢p = 45°,
d = 1.5m and Ad = 1.5m.

For type 6, the c® and c? are:

¢ (v [ur,uz,uz) = cos(Ag)[lv — ur]| — [[lv —warl| — (v —u1) - (cos g, sing)] (13)
c? (v |U17U2,U3):Adz—(HU—U1||—d)2 (14)
¢:arg(u2_u1+u3_ul> (15)
lug — w1 |ug — s
Ap = 1arccos<(u2_u1).(u3_ul)> (16)
2 |U27U1|‘|U37U1|

D.3 Topological Sort

To determine the order of nodes in graph constraint X, we perform topological sort on the C, which
ensures that the parent node u of each constraint ¢ (v | u) is always positioned ahead of its corre-
sponding child node v. The topological sort satisfies several conditions: 1. The parent node must
appear before its child node. 2. Among multiple child nodes of a single node, object nodes must
precede waypoint nodes. 3. The order of multiple object child nodes under a single parent node
must be consistent with the order in which they are mentioned in the instruction Z.

E Ablation Study

In Table 3, we report results of additional ablation experiments on hyperparameters of GC-VLN and
RxR-CE benchmark. For R2R-CE, we ablate the angle tolerance A¢ of the constraint type 1, 2, 3, 6,
and the distance baseline d of the all constraint types. For RxR-CE, the settings of ablation are the
same as those in the main text.

Table 3: Effect of angle tolerance and distance baseline on R2R-CE. Effect of constraint and con-
straint solver on RxR-CE.

Constraint Condition on Angle (R2R-CE) Consrtraint Condition on Distance (R2R-CE)
Angle Tolerance A9 NE OSR SR SPL | Distance Baseline d NE OSR SR SPL
30° 102 326 30.1 159 | 0.8m 10.6 357 28.5 14.7
45° (Ours) 73 418 33.6 163 | 1.5m (Ours) 73 41.8 33.6 16.3
75° 102 338 31.5 156 | 2.5m 10.1 39.0 305 14.0

Graph Constraint (RxR-CE) Consrtraint Solver (RxR-CE)
Method NE OSR SR SPL | Method NE OSR SR SPL
Relax constraints in L 10.8 31.5 24.5 9.9 | Random Constraint Solver 11.1 219 18.0 10.6
Full Approach 8.8 444 33.8 13.8 | Full Approach 88 444 338 138

F Visualization of Failure Cases

In Figure 7, we further provide visualizations of failure cases for better understanding.

Stage/Obj

—

Actual Path

—_—

(GET RN (1 —»(2 —— (3 (4 1_>z_>3_.4

front
i open globe open open .x open open x cabinet
doorway doorway doorway doorway doorway

stair

Figure 7: Visualization of three failure cases. In the first case, robot fails to locate the globe. In
the second case, the robot mistakes ’passing through the door to the right” for “forward” during the
construction of the graph constraint. In the third case, the robot initially selects an incorrect path,
and coincidentally encounters a correct object, which prevents timely backtracking.

G Prompts

We provide the prompt used for instruction decomposition in GC-VLN.

Parse navigation instructions into movement stages in JSON format: {

"stage 1": {
"waypoint position": <position>,
"connected nodes": [
{"node": <object>, "object position": <position>},
]

}

Input Instruction: <Instruction>
Rules:

Each stage has one position change. The key "waypoint position" refers
to the relative position of the next waypoint with respect to the
current one, encompassing both the distance and the angle between them.
The key "connected nodes" means the objects involved in the current
stage. Each node includes two attributes: the "node" name and its
"position" which denotes the relative position with respect to the
waypoint.

where <Instruction> will be replaced by the input instruction.

	Introduction
	Related Work
	Vision-and-Language Navigation
	Training-free Navigation

	Approach
	Overview
	Graph Constraint Construction
	Constrained Optimization for Node Coordinates

	Experiments
	Benchmarks and Implementation Details
	Comparison with State-of-the-art
	Ablation Study
	Qualitative Results

	Conclusion
	Overview
	Pipeline of GC-VLN
	Hardware Details
	Details of Approach
	Instruction Decomposition
	Constraint Library
	Topological Sort

	Ablation Study
	Visualization of Failure Cases
	Prompts

