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Abstract

The practical implementations of reinforcement learning (RL) often face diverse
settings, such as online, offline, and offline-to-online learning. Instead of develop-
ing separate algorithms for each setting, we propose Uni-RL, a unified model-free
RL framework that addresses all these scenarios within a single formulation. Uni-
RL builds on the Implicit Value Regularization (IVR) framework (Xu et al., 2023)
and generalizes its dataset behavior constraint to the constraint w.r.t. a reference
policy, yielding a unified value learning objective for general settings. The refer-
ence policy is chosen to be the target policy in the online setting and the behavior
policy in the offline setting. Using an iteratively refined behavior policy solves the
over-conservative issue of directly applying IVR in the online setting, it provides
an implicit trust-region style update through the value function while being off-
policy. Uni-RL also introduces a unified policy extraction objective that estimates
in-sample policy gradient using only actions from the reference policy. This not
only supports various policy classes, but also theoretically guarantees less value
estimation error and larger performance improvement over the reference policy. We
evaluate Uni-RL on a range of standard RL benchmarks across online, offline, and
offline-to-online settings. In online RL, Uni-RL achieves higher sample efficiency
than both off-policy methods without trust-region updates and on-policy methods
with trust-region updates. In offline RL, Uni-RL retains the benefits of in-sample
learning while outperforming IVR through better policy extraction. In offline-
to-online RL, Uni-RL beats both constraint-based methods and unconstrained
approaches by effectively balancing stability and adaptability.

Code: https://github.com/ryanxhr/Uni-RL
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Figure 1: Summary of results. Aggregate mean performance across six common RL benchmarks and 23
environments with diverse characteristics (e.g., observation and action spaces, task types, and offline data
compositions). Error bars indicate the 95% stratified bootstrap confidence interval. UNIVR achieves competitive
performance compared to state-of-the-art baselines across online, offline, and offline-to-online settings.
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1 Introduction

Reinforcement learning (RL) has achieved impressive results across a wide range of domains, from
playing complex games like Go (Mnih et al., 2013; Silver et al., 2017) to robotic manipulation
tasks (Levine et al., 2016). However, the practical deployment of RL demands adaptability to diverse
learning scenarios, such as online, offline, and offline-to-online settings. In the classical online RL
paradigm, agents interact continuously with the environment, gaining experience and improving
policy performance via trial-and-error approaches such as policy-gradient methods (Schulman et al.,
2015, 2017) and actor-critic algorithms (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al.,
2018). However, in safety-critical or high-cost domains, such as healthcare (Gottesman et al., 2018)
and industrial control (Zhan et al., 2022, 2025), direct online exploration can be prohibitively risky or
expensive, necessitating offline RL approaches that leverage pre-collected datasets without further
environment interaction. Recent advances in offline RL have introduced conservative algorithms (Ku-
mar et al., 2020; Fujimoto et al., 2019) and regularization-based methods (Wu et al., 2019; Xu et al.,
2023) designed specifically to mitigate extrapolation errors arising from dataset distribution shifts.
Moreover, many practical applications adopt an offline-to-online pipeline, initially leveraging offline
datasets for safe and effective policy initialization, followed by online fine-tuning to explore more
high-quality data to overcome the suboptimality of offline data (Nair et al., 2020; Lee et al., 2021b).

Existing RL algorithms are typically specialized for just one setting. For example, online algorithms
(e.g., PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018)) struggle with offline data due to
distribution shift. Offline methods (e.g., BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020),
IVR (Xu et al., 2023)) tend to be overly conservative or generalize poorly when given online access.
Offline-to-online methods (e.g., Off20n (Lee et al., 2021b), Cal-QL (Nakamoto et al., 2023)) often
require special design choices, making them difficult to generalize to other settings. Designing
different algorithms for each setting separately greatly limits the scalability and widespread adoption
of RL in real-world applications. Therefore, a critical research question emerges:

Can we design a scalable RL framework that unifies online, offline, and offline-to-online settings?

A Unified Reinforcement Learning Framework. A desirable unified framework should fulfill
several crucial properties: (1) Adaptability, seamlessly adapt to different settings, including online,
offline, and offline-to-online, without changing the learning objective; (2) Sample efficiency, exhibit
high sample efficiency, minimizing required interactions with the environment; and (3) Scalability,
scale with growing volumes of data and learn effectively in large and complex environments. We
consider the constraint optimization problem with a reference policy pu:

Uni-RL 7 =argmax E(; q)uar [17(s,a)] st Egegr [Dy (w(-]8)||lu(-s) ] <€, (D

where D (p|lq) = IEl.Nq[f(%)] is the f-divergence (Boyd et al., 2004). By converting the con-

straint problem into an unconstrained, regularized one, we get a learning objective that imposes a
policy-level value regularization by adding the f-divergence regularization term to the reward (Geist
et al., 2019). This learning objective generalizes the Implicit Value Regularization (IVR) frame-
work (Xu et al., 2023) from the dataset behavior constraint to the constraint w.r.t. the reference policy
1, yielding Unified RL (Uni-RL), a unified framework for general settings: For offfine RL, 1 is set to
be the behavior policy mp of the dataset. For online RL, we set i to be the target policy 7 which is
periodically or softly updated towards the current policy 7. For offline-to-online RL, 1 is set to be
7p in the offline pre-training stage while changing to 7 in the online stage. This framework is fully
off-policy: offline RL can be considered as a one-step version of online RL (Brandfonbrener et al.,
2021), and offline-to-online RL uses offline data to provide a good initialization for online RL.

One issue with Eq. (1) is the reliance on the probability distributions of 7 and y, which limits the
scalability of using advanced generative models such as diffusion and flow matching models (Song
et al., 2020; Lipman et al., 2022) as the policy. However, we show later that by using techniques from
duality (Xu et al., 2023; Sikchi et al., 2023), we can get the closed-form solution of the optimal policy
7*, and the value function of 7* can be learned "in-sample" (using samples from the reference policy).
By doing so, Uni-RL provides an implicit trust-region style update through the value function, and
this implicit update results in an off-policy learning scheme that previous trust-region based methods
could not achieve (Schulman et al., 2015, 2017). The implicit trust-region update not only increases
sample-efficiency, but also solves the over-conservative issue when directly applying IVR in the



online setting. Furthermore, it enables smooth dataset constraint relaxation in offline-to-online RL,
preventing early performance drops (Li et al., 2023). The in-sample learning scheme in Uni-RL
also isolates the process of value learning and policy extraction, offering better learning stability.
We further introduce a unified policy extraction objective that estimates in-sample policy gradient
using only actions from the reference policy. This design scales successfully to more powerful policy
classes beyond Gaussian distributions, and theoretically guarantees less value estimation error and
larger performance improvement over the reference policy.

We evaluate Uni-RL on 6 widely used RL benchmarks and 23 environments across online, offline,
and offline-to-online settings, achieving superior or competitive performance against state-of-the-
art domain-specific baselines. In online RL, Uni-RL achieves higher sample efficiency than both
off-policy methods without trust-region updates and on-policy methods with trust-region updates.
In offline RL, Uni-RL retains the benefits of in-sample learning while outperforming IVR through
better policy extraction. In offline-to-online RL, Uni-RL beats both constraint-based methods and
unconstrained approaches by effectively balancing stability and adaptability.

2 Preliminaries

Reinforcement Learning We consider the RL problem presented as a Markov Decision Process
(MDP) (Sutton et al., 1998), which is specified by a tuple M = (S, A, P,dy,r,7). Here S and A
are state and action space, P(s’|s, a) and dy denote transition dynamics and initial state distribution,
r(s,a) and y represent reward function and discount factor, respectively. The goal of RL is to
find a policy 7(a|s) which maximizes expected return J(m) = Er[>7° 7" - r(s, a;)]. Offline RL
considers the setting where interaction with the environment is prohibited, and one needs to learn the
optimal 7 from a static replay buffer D = {s;, a;, ;, 5. }1¥.,. We also refer to D as the online replay
buffer that is updated by filling in new transitions in the online or offline-to-online setting.

Value functions and visitation distributions Let V™ : S — Rand Q7 : S X A — R be the state
and state-action value function of 7, where V™ (s) = E [>°,° v'7(s¢, ar)|so = s] and Q™ (s,a) =
Er Y0207 7(se,a¢)|[so = s, a0 = a]. The visitation distribution d™ is defined as d™(s,a) = (1 —
V) >0V Pr(se = s,ae = a | sg ~ do,Vt,ap ~ 7 (s¢), Se41 ~ P (8¢, a¢)), which measures how
likely 7 is to encounter (s, a) when interacting with the environment, averaging over time via -
discounting. Let V*, Q* and d* denote the value functions and visitation distribution corresponding
to the regularized optimal policy 7*. We denote the empirical visitation distribution of D as d”
and the empirical behavior policy of D as 7p, which represents the conditional distribution p(als)
observed in the dataset. Let 7™ be the Bellman operator with policy 7 such that (7T7Q)(s,a) =
7(s,a) + VEg s oBarnr [Q(s',a')] and (T™V)(s) := Eqnr [r(s, a) +vEgs.a [V(s’)]]

3 Uni-RL: Unified RL via Implicit Value Regularization

We give a detailed introduction of Uni-RL in this section. We begin by recalling how the dual form of
Eq. (1) provides implicit value regularization, which is a unified, in-sample value learning objective.
We then show a naive extension of IVR to the online setting suffers from suboptimality, and address
it with an iteratively improved behavior policy, resulting in an implicit trust-region style update.
Finally, we propose a unified policy extraction method that is scalable and versatile to use across
different policy classes. We theoretically prove that it enjoys lower value estimation error and larger
performance improvement over the reference policy than previous policy extraction methods.

3.1 Towards Unified Value Learning

Implicit Value Regularization. Note that the Lagrangian relaxation of Eq. (1) is equal to

YR = arg max E. {ivt (T(St, ag) — o - g(ﬂ(at|8t)))] ’ 2)
t=0

placlst)

where g(z) = f(x)/x is differentiable and satisfies g(1) = 0. Eq. (2) can be thought of as solving a
behavior-regularized MDP problem with a modified reward function (Vieillard et al., 2020; Xu et al.,



2023). In this behavior-regularized MDP, the Bellman operator is changed to 7/ such that

(TF)Q(s,a) :=1(s,a) + VEys.a [V(s)]
m(als)
VSENW[QS,CL —a~g( )}
) = B [0 =0
Compared with the original Bellman operator 7™, 7}“ is actually applying a value regularization to

the @Q-function. This transfers the greedy-max policy 7* to a softened max (depending on f) over the
reference policy z, which enables a scalable in-sample learning scheme”.

Lemma 1 (Results in IVR). Using duality, the optimal value function Q* and V* can be solved by
min Eopanu| V() + 0 - i ((Q(s,0) = V(9)) /o) 3)

min By 00 [ (r(5,0) + 9V () = Qls,0)”]. “4)

where fivg = exp(z) if Dy is the KL divergence and 1(z > —2)(2?/4 + x + 1) if Dy is the x>
divergence. Note that Eq. (3) only uses samples from the reference policy distribution, without
needing the knowledge of 7(a|s) and u(als). This makes the usage of advanced generative models
possible in the online setting, and avoids the need to use additional models to fit a dataset behavior
distribution in the offline setting. We can recover IVR by setting u to be mp, where offline actions
serve as existing samples from 7p.

Does IVR work in the online setting? We first IVR (u=mp) —— IVR (u=m)
examine whether IVR can be naturally extended to
the online setting. In online IVR, the offline dataset

will be the replay buffer collected so far. Unlike the —*** 3000
offline setting, the replay buffer is collected by the §2°°° 2000
learned policy that is periodically updated, which " 1000

means it may contain a large portion of subopti- :
mal or random data previously collected. Learning Weighted BC MaxQ

from a highly suboptimal dataset is known to be 4z 200
hard in offline RL due to the tendency to anchor g " "
the learned policy to the dataset behavior policy ©

Caused by regUIarization (Hong et al" 2023; Xu ° 0 0.1M O.Z.M 0.3M 0.4M 0.5M 0 0 0.1M 0.%M 0.3M 0.4M 0.5M
et al., 2025). In online IVR, the optimality of the Gradient Steps Gradient Steps
regularized policy also highly depends on ~the.1‘e- Figure 2: Using an iteratively refined behavior pol-
play' buffer, and we nged to break the.regularlzatllon icy p improves online IVR across different policy
barrier to get the optimal value function and policy. extraction methods.

Weighted BC MaxQ

One way to do so is by filtering the offline dataset

iteratively according to the learned optimal policy at each iteration, and gradually optimizing towards
the optimal policy using the filtered dataset, as done in Xu et al. (2025). However, this dataset filtering
process is costly in the online setting. We thus propose a more lightweight option, where instead of
iteratively refining the dataset, we maintain an iteratively refined reference policy 7, which is updated
towards the current policy 7 and improves beyond 7. This yields the learning objective in the online
or offline-to-online setting.

min Eywp.as [V(5) + o fivw ([Q(s,) = V(s) /a)} with 7« A+ (1 - N7, (5)

where A denotes the soft updating frequency, and if A = 1, this amounts to assign 7 with the
previous policy 71, at iteration k. Using 7 as the reference policy gives a trust-region style update
with an improved p, solving the over-constrained problem of directly applying IVR in the online
setting. Figure 2 illustrates this, Uni-RL achieves higher Q values and better sample efficiency than
IVR across different policy extraction methods. Since the trust-region update is implicitly imposed
through the value learning, the algorithm remains off-policy. This improves sample-efficiency over
previous trust-region methods, which are all on-policy (Schulman et al., 2015, 2017), and exhibits
less value overestimation and more stability compared to existing off-policy methods (Fujimoto et al.,
2018; Haarnoja et al., 2018; Abdolmaleki et al., 2018b). Furthermore, it enables smooth dataset
constraint relaxation in offline-to-online RL, preventing the finetuned policy from early performance
dropping (Nair et al., 2020; Nakamoto et al., 2023; Li et al., 2023).

Here in-sample means samples from the reference policy .



3.2 Towards Unified Policy Extraction

After introducing the unified value learning objective and demonstrating how Uni-RL addresses
issues with IVR in the online setting, we now focus on providing a unified policy extraction scheme
to effectively extract the best policy from the value functions learned with Uni-RL.

Note that in IVR (Eq. (2)), we have a closed-form solution for the ratio of the optimal regularized
policy Ty to the reference policy p (Xu et al., 2023), which can be expressed as

* _ mivr(als) — max n—1 *(s.a) — V*(s)) /v
wive(s,0) = IS (0.7 (@ (s.0) = V¥ (s)) /). ©)

Previous works try to extract this policy by using either Forward KL or Reverse KL divergence.
(1) Dky (mfyr||7) — weighted BC

7 = argmax Eyp o~y [Wive (s, a) - log m(als)].

Using Forward KL divergence tends to be mode-covering, resulting in a weighted behavior cloning
style loss where action is sampled from the reference policy. Although it queries the Q function with
only in-sample actions (since Q is trained using actions from ), it prefers to cover all modes of the
target distribution, including those with low probability mass (Park et al., 2024; Xu et al., 2025).

(2) Dy (7| miyg) — MaxQ+BC
7 = argmax Equp or [ log wiyg (s, a) + log pi(als) — log w(als)].

Using Reverse KL divergence gives a MaxQ+BC style loss (Tomar et al., 2020; Fujimoto and Gu,
2021; Mao et al., 2024b). Reverse KL divergence is mode-seeking, however, actions are sampled
from the policy 7, which are potentially out-of-distribution and causes over-estimation errors to
the Q function. Futhermore, this loss needs an explicit p(a|s), which might not be available in the
offline setting, and E, .. [log 7(a|s)] can be hard to estimate when 7 is parameterized with generative
models such as diffusion or flow matching models (Kong et al., 2023).

In summary, weighted BC has lower overestimation error and scales well across different settings
and policy classes, while remaining mode-covering. In contrast, MaxQ+BC is mode-seeking but
suffers from inaccurate gradient estimation and limited scalability. Can we design a policy extraction
method that shares the best of both worlds?

Policy extraction via In-sample Policy Gradient. Our key intuition is that we still try to maintain
the weighted BC style loss due to its stability and scalability, but we want to incorporate the first-order
gradient information from policy gradient into the zero-order gradient induced by the weighted BC
loss. To achieve that, we introduce In-sample Policy Gradient (InPG) where we ignore the original
IVR weights wjyg(s,a) and instead think of those weights as learnable variables. In-sample PG
projects the MaxQ gradient into the weighted BC gradient by learning the new optimal weights
wiipg (8, @) such that

2
whpg(s,a) = argmin Eg p|(Gps — Gpe(w
inpG (85 @) min p[(Gre sc(w))”] -
where  Gpg = Vg Eqmr, [Q(s,a)] and Gpe(w) = Eqnp [w(s, a)Vglogmg(als)].

Ggc(w) is the gradient vector of using weighted BC, we can modify the direction of this vector
by changing the weight value on different (s, a), and we want to find a non-negative w metric to
make the resulting vector stay as close as possible to the MaxQ gradient vector. Note that Eq.(7)
is a constrained quadratic programming (QP) problem (Nocedal and Wright, 2006). Rather than
solving it exactly using QP solvers (Stellato et al., 2020), we parameterize w as a neural network and
optimize it by minimizing the Lo loss in Eq.(7) via gradient descent. We clip the w at O during policy
extraction to ensure weight non-negativity.

Thpe = A1gMax By p o [1ispc(5, 0) - log m(als)]. ®)

Using wiipg (s, a) as the BC weight enables better utilization of the Q function since using wjyg (s, a)
cannot guarantee the policy is maximizing the Q function. It also makes the new weighted BC loss



more mode-seeking, enabling policy extraction under a support constraint since the BC actions are
always within the support of the reference policy.

Theoretically, we find InPG could potentially enable a larger performance improvement than 7,z
by increasing J (). In fact, InPG is optimizing towards the constraint learning objective from Eq.(1)
while 7y is the solution of Eq. (2), the relaxed Lagrangian of Eq. (1).
Theorem 1. Define wmin = min, w(z), Wmax = max, w(z) and Z = By [w(x)] € [Wiin, Wiax)s
the f-divergence between T pi; and v is bounded by
Wmin * Wmax

F(5") < Dy(ieolli) < F(25).

Theorem 2. There exists a range of Wmin and Wmax that satisfies J (7 pg) > J(Tyr)-

We give the proof of these two theorems in Appendix A. These two theorems reveal that using
in-sample policy gradient is actually finding the best policy (i.e., maximizes the Q function) within a
fixed constraint (depends on wny,, and wp,y) rather than treating that constraint as a penalty, which is
more aligned with the original optimization problem Eq. (1). This gives more freedom and allows for
better policy extraction. The following theorem further demonstrates the necessity of applying the
in-sample projection to the policy gradient, since directly using policy gradient has no improvement
guarantee over the reference policy (also known to suffer from overestimation error in offline RL).

Theorem 3. Define wj; = arg max, Esop or[Q(S, a)], there is no guarantee that J(mhg) > J ().

We use the maze2d-umaze dataset in D4RL (Fu et al., - Weighted BC _ .'ﬂc‘ S
2020) as an example to demonstrate the effect of using

InPG. The Maze2D domain is a navigation task in which . . s {
a 2D agent must reach a fixed goal location as quickly as
possible; the action corresponds to the velocity along the
(z,y) axes. We visualize actions sampled from policies ~
learned with TVR (wjyg (s, a)) and Uni-RL (wjpg(s,a)) = ALl
in Figure 3. As shown, IVR tends to produce actions that X Velocity X Velocity

are centered around the offline action distribution due to  Figure 3: InPG discovers better actions from
its mode-covering nature. In contrast, Uni-RL generates D (grey points) than weighted BC.

better actions that are near the boundaries of the action space by effectively using the value function.
Intuitively, weighted behavior cloning can also exhibit mode-seeking behavior if appropriate weights
are assigned to different actions. Notably, in-sample policy gradient does not require sensitive
hyperparameter tuning like MaxQ+BC (Tarasov et al., 2024a; Park et al., 2025); it only requires
setting a lower and upper weight threshold and we use the same value across all experiments.

Y Velocity
o

Scalable to advanced generative models. In- Algorithm 1 Unified Implicit Value Regularization
sample policy gradient can easily scale to the
usage of generative models like diffusion and
flow matching models. Maximizing the log- 5
likelihood objective in InPG is equivalent to min- 3. procedure UNI-RL (1, 11, D)
imizing the matching loss of different generative  4: Sample transitions (s, a,r,s’) ~ D
models (Song et al., 2021). For flow matching  5: Update V by Eq.(3) with a ~ u, Q and D

6.

7

8

Require: D, a.
. Initialize Q, V, w, 7
: © Unified value and policy learning

models, we have the following matching loss Update @ by Eq.(4) with V and D
Lrow(0) (Lipman et al., 2022). Update 7 by Eq.(7,8) with a ~ p, Q and D
" 1 0N 112 : > Offline training (offline and offline-to-online)
]ESND,a:xlfvu, “|v9(t757x ) - (l‘ - )” ] ) 9: fort=1,2,---, M do
«®~N(0,1), 10: | UNI-RL (7, 7p, D)

t~Unif([0,1]) . . 11: > Online finetuning (online and offline-to-online)
where vy (t, s, x) is a state-and-time dependent  12: for¢t=1,2,--- , N do

vector field with parameter . For the use of dif- 13: Explore using 7 and append (s, a,7,s’) to D
fusion models, we have the following matching 14: UNI-RL (7, 7, D)

loss Lpifrusion (6) based on Ho et al. (2020). 15: Update 7 by Eq.(5)
EgD,amp,em (0,1),t~Unif([1,7]) |16 — €0 (V@a + V1 — aye, s,t) ||2] . )]

In summary, InPG provides a unified policy extraction method based on the weighted BC objective,
which uses zero-order gradient while being mode-seeking to maximize Q values. InPG avoids value
overestimation errors and scales to implicit behavior cloning through generative modeling, bringing
better generalization. The full Uni-RL algorithm combines the unified policy extraction module with
the unified value learning module. The pseudocode of Uni-RL is provided in Algorithm 1.



4 Prior Work

Online RL. Model-free online RL algorithms can be categorized into on-policy and off-policy
methods. While on-policy methods only use experience from the current policy to perform up-
dates (Kakade, 2001; Mnih et al., 2016), off-policy methods, in general, can utilize experience from
any arbitrary policy (Watkins and Dayan, 1992; Haarnoja et al., 2018; Fujimoto et al., 2018). To
stabilize training, previous methods (Schulman et al., 2015, 2017) add an explicit trust-region policy
constraint that limits the derivation from the previous policy. However, this results in on-policy
learning, while Uni-RL uses an implicit value regularization that is off-policy. Some works also use
a weighted BC style loss (Abdolmaleki et al., 2018b,a; Oh et al., 2018; Tomar et al., 2020) in the
policy extraction step. However, they don’t impose regularization in the value learning. Their value
learning and policy learning are coupled, causing the overestimation issue in the offline setting. Note
that Uni-RL decouples the value and policy learning owing to the implicit value regularization.

Offline RL. To tackle the distributional shift problem, most model-free offline RL methods augment
existing off-policy methods with a dataset behavior regularization term. One class of methods
imposes behavior regularization explicitly as a divergence penalty (Wu et al., 2019; Kumar et al.,
2019; Fujimoto and Gu, 2021) or intervene in the value learning to encourage staying near the
behavioral distribution and being pessimistic about unknown state-action pairs (Nachum et al., 2019;
Kumar et al., 2020; Kostrikov et al., 2021a; Xu et al., 2022; Wu et al., 2021; An et al., 2021). The
other class of methods implicitly impose the behavior regularization through weighted behavior
cloning (Kostrikov et al., 2021b; Xu et al., 2023), which filters useful actions to perform behavior
cloning based on how advantageous they are. Compared with the first class, Uni-RL is inherently
more stable due to its imitation-style policy update. Compared with the second class, Uni-RL is
better at utilizing the value function to avoid suboptimal policy extraction.

Offline-to-online RL. Offline-to-online RL aims to overcome the suboptimality of pure offline
learning by collecting more high-quality data with online fine-tuning (Lee et al., 2022; Zhang et al.,
2023; Li et al., 2023). To prevent performance drop caused by distribution shift from the offline to
online stage, previous methods impose regularization to stay close to the offline data or the offline
pretrained policy during online fine-tuning Nair et al. (2020); Kostrikov et al. (2021b); Lee et al.
(2022); Nakamoto et al. (2023); Zhao et al. (2022). However, these methods are over-conservative
since the offline data could be highly suboptimal. Uni-RL solves this issue by enforcing an iteratively
refined behavior policy initialized from an offline-pretrained policy, allowing us to gradually release
the dataset constraint to continue improving throughout training. There are also some works that try
to avoid the performance drop issue by ignoring the offline stage and learning from scratch using
offline data (Song et al., 2022; Ball et al., 2023). However, these methods are less sample efficient
since they lack the usage of pretrained value functions to perform effective exploration.

Other prior works related to unified RL. There are several other works that try to provide
unification for general RL settings. Uni-O4 (Lei et al., 2023) provides unification of offline RL
and offline-to-online RL based on on-policy policy gradient, but suffers from sample inefficiency
compared to Uni-RL, which is off-policy. Policy Agnostic RL (Mark et al., 2024) provides unification
for policy extraction methods, whereas Uni-RL also achieves a principled unification of value learning
for general RL settings. Note that although some DICE-based methods (Lee et al., 2021a; Sikchi
et al., 2023; Mao et al., 2024a) have a similar optimization objective with Uni-RL, they can’t be
unified in both the online and offline settings. Specifically, if we apply DICE-based methods to the
online setting, sampling from the stationary distribution d*(s, a) of the reference policy is needed.
This is intractable in the online setting, making DICE-based methods only work for the offline setting.

5 Experiments

Online RL. We first test Uni-RL in the online setting. We choose 8 environments from OpenAl
Gym (Brockman et al., 2016), DeepMind Control Suite (Tassa et al., 2018), and PyBullet (Coumans
and Bai, 2016), representing a large and diverse set of domains based on Box2D (Catto, 2011),
MuJoCo (Todorov et al., 2012) and Bullet (Coumans et al., 2010) physics engines. To demonstrate
the effectiveness of our method, we compare Uni-RL with several state-of-the-art model-free online
RL algorithms including TD3 (Fujimoto et al., 2019), SAC (Haarnoja et al., 2018), PPO (Schulman
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Figure 4: Results in online RL. Learning curves are plotted across 5 seeds with a smoothing window of 5000.
Shading represents one standard deviation.

Table 1: Results in offline RL. Scores are averaged over the final 10 evaluations across 5 seeds with standard
deviation reported, we highlight the best score in integer-level.

Dataset 10%BC TD3+BC  CQL QL IVR  Diffusion-QL  IDQL (CU“"I?L ) (];{;‘f‘l;g(fn)
halfcheetah-m 05 483 440 08 474102 483102  SL1.05 510 | 494102 580 106
hopper-m 56.9 593 585400 663457  75.5:34 905446 654 | 99511 1013 06
walker2d-m 75.0 837 725408 725487  842:46 870409 825 | 893403 923 0.1

halfcheetah-m-r || 40.6 446 455405 442410 448407 478403 459 | 453403 484 400
hopper-m-r 759 609 950164 952486 997433 1013 £0.6 921 | 101427 1013 +2.1
walker2d-m-r 625 818 772455 761473 812438 955415 851 | 866-1.1  908+16

halfcheetah-m-e || 92.9 907 907443 867453  940-04 96803 959 | 942406  97.3 406
hopper-m-c 1109 980 1054468 101573 1118 +22 11LI +13 1086 | 1110 £0.6 1112 +0.3
walker2d-m-e 1090 11001 109.6407 110.6+41.0 1100408 1101403 1127 | 1108402 1141405
antmaze-u 628 786 848123 855110 922014 934134 940 | 941:16 981 .18
antmaze-u-d 502 TL4 434454 667440  TAOL23 662486 802 | 804123 820 L14
antmaze-m-p 54 106 652448 722453 802437 7661108 845 | 860126 885 3.

antmaze-m-d 93 30 5404117 710432 791442 7864103 848 | 827434 897 428
antmaze-l-p 0.0 02 3844123 396445 532048 464483 635 | 599920 686 136
antmaze-1-d 6.0 00 316195 475444 523452 566476 679 | 602:38  69.0 +45

et al., 2017) and MPO (Abdolmaleki et al., 2018b). All baselines use a Gaussian policy, so we also
use a Gaussian policy with Uni-RL for a fair comparison. The solid curve represents the average
return, and the transparent shaded region represents the standard deviation. Each experiment was
conducted over 5e5 training steps. According to the learning curves in Figure 2, Uni-RL achieves
state-of-the-art performance and sample efficiency compared to the other four baseline algorithms,
especially on challenging tasks in DMControl (e.g., finger-tune_hard and quadruped-walk).

Offline RL. In the offline setting, we evaluate Uni-RL on the D4RL benchmark (Fu et al., 2020)
and compare it with several state-of-the-art algorithms. For the evaluation tasks, we select MuJoCo
locomotion tasks and AntMaze navigation tasks which require both locomotion and navigation. While
MulJoCo tasks are popular in offline RL, AntMaze tasks are more challenging due to their stronger
need for selecting optimal parts of different trajectories to perform stitching. For baseline algorithms,
we selected state-of-the-art methods not only from traditional methods that use a Gaussian policy
but also methods that use diffusion models. Gaussian-policy-based baselines include 10%BC (Chen
etal.,, 2021), BCQ (Fujimoto et al., 2018), TD3+BC (Fujimoto and Gu, 2021), CQL (Kumar et al.,
2020), IQL (Kostrikov et al., 2021a) and IVR (Xu et al., 2023). Diffusion-policy-based baselines
include Diffusion-QL (Wang et al., 2023) and IDQL (Hansen-Estruch et al., 2023).

We implement Uni-RL with both Gaussian policy and Diffusion policy as in Eq.(9). The results
in Table 1 show that Uni-RL with Gaussian policy already matches or outperforms most baseline
algorithms, especially on MuJoCo medium, medium-replay datasets, and AntMaze datasets. The use
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Figure 5: Results in offline-to-online RL. Learning Curves is plotted after 250k offline pretraining (5 seeds).
Shading represents one standard deviation.

of diffusion models in Uni-RL further enhances its performance on tasks with multi-modal datasets,
demonstrating the scalability of Uni-RL. Additionally, the consistently better performance of Uni-RL
over IVR demonstrates the benefit of policy extraction using in-sample policy gradient.

Offline-to-online RL. In the offline-to-online setting, we conduct extensive experiments on
AntMaze and Adroit tasks with D4RL datasets to demonstrate the stable, optimal policy learn-
ing and adaptability of Uni-RL. We compare Uni-RL with the following baselines: (i) AWAC (Nair
et al., 2020): an offline-to-online method that learns the finetuning policy using AWR-style (Peng
et al., 2019) policy loss. (ii) IQL (Kostrikov et al., 2021b): a SOTA offline RL approach based on
weighted BC that can directly transfer to online finetuning. (iii) Cal-QL (Nakamoto et al., 2023): a
SOTA offline-to-online approach specially designed based on CQL offline training. (iv) RLPD (Ball
et al., 2023): a method that uses offline data to accelerate online training, it ignores the offline
pretraining stage and learns from scratch. Note that we remove the high update-to-data trick in RLPD
(i.e., adding layer normalization and ensembles to the Q-function) for a fair comparasion.

Figure 5 shows that existing constraint-based approaches (IQL, AWAC) in most cases only marginally
improve the offline pretrained policy, due to the over-conservatism introduced by the constraint w.r.t.
the offline dataset. This is especially pronounced when the offline dataset or pretrained policy is
highly-suboptimal such as in Adroit and Antmaze tasks. In contrast, Uni-RL enjoys stable initial
finetuning and superior final performance owing to the iteratively refined policy regularization.
Cal-QL is limited to CQL, making it hard to yield reasonable performance when the tasks are too
difficult for CQL to obtain good results (e.g., Adroit and Antmaze-large tasks). While RLPD achieves
appealing results in some tasks, the sample efficiency is greatly limited in tasks with diverse or good
offline data (e.g., Antmaze tasks).

6 Limitations and Future Work

In this paper, we propose Uni-RL, a scalable framework that unifies different reinforcement learning
settings, including online RL, offline RL, and offline-to-online RL. Uni-RL builds on the Implicit
Value Regularization framework but generalizes the offline data constraint to a reference policy
constraint, resulting in unified value learning and policy extraction objectives based on in-sample
learning. Uni-RL is simple, effective, and scalable, and achieves superior performance across diverse
RL settings. Uni-RL only considers the model-free setting and future directions include incorporating
Uni-RL with model-based RL methods, and extending it to the LLM+RL setting. We believe that
Uni-RL represents a concrete step toward building general and scalable off-policy RL algorithms.
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A Proof

Theorem 1. Define wmin = min, w(x), Wmax = Max, w(z) and Z = By [w(2)] € [Wiin, Wmax),
the f-divergence between T p and v is bounded by

F(ZHR) < Dy(miwll) < F(Z52).

Proof. Remember that 7}, has the following expression:

Tiwpa (als) = plals)w*(s,a)
InPG Yo i(a|s)w* (s, a’)

The f-divergence between 7 and y is defined as:
| Z ﬂ—InPG(x Z M
7TInPG /~L ,u (x) ,u f'
Sl oe )

Given that w(z) is bounded as:

Wmin S 'U}(.’E) S Wmax an

we obtain the following bounds:

Thus, the f-divergence between 7} p and p is bounded. O
Theorem 2. There exists Wyin and wmayx that satisfies J(mfpg) > J(Tiyr)-

Proof. Remember that IVR considers a new MDP where the reward is augmented with a behavior
regularization term (r(s,a) = r(s,a) — ag(w(als)/u(als))), so the J(m) we consider here is equal
to the value V™. And an ideal algorithm wants to make sure that V™ (s) > V*#(s),s ~ D, i.e., safe
policy improvement over the behavior policy over the replay buffer.

According to IVR,

V(5) = Eanr [cxs,a) —a g(zgjg)]

S}inc(g 7f71*nPG is the oliltimal solution of Eq. (7), i.e., the optimal behavior cloning weight that maximizes
the unction, we have
i =i o ()

g (als
> Eonp anmiyy [Q(5,0)] — ABsup amm o {g ( InP(G(|S|> ))]

_]ESNDMNﬂ—I*VR(Ms) l:Q(Saa) - ag( ’u(a|s) >:| +O[E3ND70‘N7TI*VR |:g( M(a|3) ):|

Tinpg (@l$)
_aEsr\/'D,aNﬂ'f;PG[ ( > (als)

bt e (als)
J(,]TIVR) + aESND AT R |: ‘J? >:| - aEs~D,a~ﬂ'1*“PG |:g (m)} .
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To make J(71ipg) = J(myr). one safe condition to satisfy is,
TinpG (@]5)

Eoup [D(mps (- . =Eep qgrons ZInPGAHP/
o [0 (o (19 15))] = Euvry, |9 (T2

< Euopiang, [g <”u((|'))ﬂ = By [Dy(ni(19)lla(1s))]

Note that in Theorem 1 we have f(wmin/Z) < Dy(mfpglltt) < flwmax/Z). Let f(wmax/Z) <
Eq [Dg(mivg (-|s)||pe(-|s ))] will satisfy this condition. In conclusion, the range of Wiy and Wyay O
satisfy J(mppg, 1) 2> J (v, 1) is

Wmax _ *
— <7 Bonp [Dy(mive(19)1(15))]) -
Note that some weaker conditions could also satisfy J(mf,pg) > J(mjyg). For example, we could

choose wi; pg to be close to wiyg such that Dy (mf o (-|8)||e(:]s)) = Dy (miyr(-|9)|(-|s)). Also, in
the worst case, setting wy pg (s, a) = wir(s, a) we have J (7} pg) = J (Tyr)- O

Theorem 3. Define mj; = argmaxy; Eswp o~ |Q(8, a)], there is no guarantee that J(mhg) >
J(w).

Proof. Since mp is the policy that maximizes E;.p o~z [@(S, a)], we have

i) = B, [0 -5 (T
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|-o®

)] - ememems o (B
= )~ 0B, | (”M(()))] — (1) = B | Dy (i 1910 |

This inequality leverages the fact that g(1) = 1 % f(1) = 0. Since D (mpg(:|s)||p(-|s)) > 0, there is
no guarantee that J(mpg) > J(u). O

- Esw'D,aN,u |:Q(Sa a) —ag <

B Experimental Details

B.1 Online RL experimental details

Environments, Tasks, and Datasets We evaluate Uni-RL on 8 standard continuous control
environments from OpenAl Gym, DeepMind Control Suite (DM Control), and PyBullet. These
tasks vary in agent morphology, dimensionality, and dynamics complexity, ensuring a comprehensive
evaluation of our method.

* AntBulletEnv-vO: It has a 28-dimensional state space consisting of joint positions, velocities,
and body orientation features, and an 8-dimensional action space where each action dimension
lies in [-1, 1]. The agent is a quadruped ant-like robot simulated using the PyBullet physics engine.
The task requires learning stable and efficient forward locomotion under noisy and contact-rich
dynamics.

* BipedalWalker-v3: This task has a 24-dimensional state space including hull angle, angular
velocity, leg joint positions, and contact sensor readings, and a 4-dimensional continuous action
space. The system represents a planar biped that must walk across varying terrain. The challenge
lies in foot placement, balance control, and adapting to sparse footholds.

» finger-turn-hard: The environment has a 12-dimensional state space and a 6-dimensional
action space. It features a robotic finger that must rotate an object to a specific target orientation.
The dynamics are sensitive, the rewards are sparse, and the task demands fine motor control and
long-horizon reasoning. This environment is from the DeepMind Control Suite.
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Figure 6: Tasks used in online RL.

* HalfCheetah-v3: The task includes a 17-dimensional state space representing joint positions
and velocities, and a 6-dimensional action space. The system models a planar cheetah-like robot
that learns to run forward as fast as possible. It is a widely used benchmark for evaluating the
stability and efficiency of learned locomotion policies.

* Hopper-v3: The environment has an 11-dimensional state space and a 3-dimensional action
space. It consists of a one-legged robot that must learn to hop forward without falling. The task is
sensitive to small disturbances and evaluates learning in unstable, underactuated systems.

* Humanoid-v3: This is a high-dimensional task with a 376-dimensional state space and a 17-
dimensional action space. The agent is a humanoid robot with 21 actuated joints and must learn to
walk upright. The complexity of the dynamics and control makes it one of the most challenging
continuous control benchmarks.

* quadruped-walk: The task includes a 78-dimensional state space representing joint and body
kinematics and a 12-dimensional action space. The system models a quadrupedal robot using the
DeepMind Control Suite. The goal is to learn stable walking behavior in a realistic 3D setting
with proprioceptive sensing.

* Walker2d-v3: The environment has a 17-dimensional state space and a 6-dimensional action
space. It simulates a planar bipedal robot that must learn to walk forward using two legs with
multiple joints. This task provides a balanced challenge, commonly used to evaluate both stability
and learning efficiency.

Methods and Hyperparameters In all tasks, we computed the average mean returns over 10
evaluations every 5 - 10° training steps, across 5 different seeds.

For the network, we use 3-layer MLP with 256 hidden units and Adam optimizer (Kingma and Ba,
2015) with a learning rate of 1 x 103 for both policy and value functions in all tasks. We also use a
target network with soft update weight 5 x 103 for Q-function. We clip the output of the weight
function by max(w(z),0) to ensure a non-negative BC weight. We use 0-1 normalization to the
weight in each batch and then clip it to [Wnin, Wiax] Where we set Wi to 0.1 and wy,y to 0.9 through
all the datasets.

We implemented Uni-RL using PyTorch and ran it on all datasets. We followed the same reporting
methods as mentioned earlier. In online experiments, we run baselines using the implementation
from ACME (Hoffman et al., 2020)*. We use the reported hyperparameters in each paper.

In Uni-RL, we have two hyperparameters: regularization weight a and reference policy updating
frequency A. We search « over [0.1,0.5,1.0,2.0] and A over [0.01, 0.05, 0.1, 0.2] The best value of
« and X for all environments are listed in Table 3.

B.2 Offline and Offline-To-Online RL experimental details

Environments, Tasks, and Datasets In offline and offline-to-online, Uni-RL is evaluated on
different kinds of datasets from various environments.

*https://github.com/google-deepmind/acme
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For MuJoCo environments, we have the following datasets.

* halfcheetah/hopper/walker2d-m (medium): Collected by a policy with moderate perfor-
mance, typically reaching around one-third of expert returns. These datasets represent structured
but suboptimal behavior.

* halfcheetah/hopper/walker2d-m-r (medium-replay): Contains the replay buffer of the
mediocre SAC policy. It includes a wide range of off-policy transitions, many of which are
suboptimal or noisy.

* halfcheetah/hopper/walker2d-m-e (medium-expert): A 50-50 mixture of medium and
expert trajectories. These datasets are designed to test whether algorithms can leverage near-
optimal data when it is partially present.

The AntMaze environments involve a quadruped ant navigating through a 2D maze using sparse
goal-based rewards. The agent has a 29-dimensional state space and an 8-dimensional action space,
corresponding to joint positions, velocities, and target location encoding. The tasks are particularly
challenging due to long-horizon planning and sparse supervision.

* antmaze-u (umaze): A small maze where the agent must reach a fixed goal location using sparse
rewards. The environment is relatively easy due to short trajectories.

* antmaze-u-d (umaze-diverse): Similar to umaze, but with broader trajectory diversity collected
from random exploration.

* antmaze-m-p (medium-play): A medium-sized maze where data is collected via a play policy.
The task is harder due to longer horizons and sparse goal rewards.

* antmaze-m-d (medium-diverse): Features more diverse and noisy behavior than medium-play,
increasing exploration coverage but decreasing consistency.

* antmaze-1-p (large-play): A large maze with random play data. The agent must navigate long
distances, making the task especially difficult under sparse reward signals.

* antmaze-1-d (large-diverse): Similar to large-play, but with broader and more varied be-
havior. It is one of the most challenging offline datasets due to the size of the environment and
variability in data.

The Adroit environments are high-dimensional dexterous manipulation tasks based on a 24-DoF
Shadow Hand. Each environment has a 100-dimensional state space that includes joint angles,
velocities, and object pose information, and a 24-dimensional continuous action space controlling
finger joints. The cloned datasets are generated by behavior cloning from expert demonstrations and
represent a moderate level of task success.

* pen-cloned-v1: The task requires rotating a pen to a target orientation using a 24-DoF anthro-
pomorphic hand. The dataset is generated by cloning expert demonstrations. It is highly sensitive
to precision and coordination.

* door-cloned-v1: A dexterous hand must unlock and open a door by grasping and rotating
the handle. This task involves contact-rich control and precise force application, with cloned
demonstrations as the data source.

* hammer-cloned-v1: The agent must use a hammer to drive a nail into a board. This involves
both grasping and tool use, making it one of the most complex manipulation tasks in D4RL.

* relocate-cloned-v1: The goal is to pick up a ball and move it to a target location using precise
grasping and positioning. The cloned dataset reflects human-like strategies but is difficult to
exploit due to sparse rewards and high-dimensional dynamics.

Methods and Hyperparameters In Mujoco locomotion tasks, we computed the average mean
returns over 10 evaluations every 5 - 103 training steps, across 5 different seeds. For Antmaze and
Kitchen tasks, we calculated the average over 50 evaluations every 2 - 10* training steps, also across 5
seeds. We measure binary task success rates (in percentage) for AntMaze and normalized returns for
Adroit, following the original evaluation scheme (Fu et al., 2020). Following previous research, we
standardized the returns by dividing the difference in returns between the best and worst trajectories
in MuJoCo tasks. In AntMaze tasks, we subtracted 1 from the rewards.
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Figure 7: Tasks used in offline and offline-to-online RL.

Table 2: Hyperparameters for Uni-RL.

Hyperparameter | Value

Learning rate 0.0002 (offline), 0.001 (offline)
Optimizer Adam

Gradient steps 500000

Minibatch size 256

MLP dimensions [256, 256, 256, 256]
Target network smoothing coefficient | 0.005

Discount factor vy 0.99

Diffusion steps (if used) 10

Regularization weight o Tables 3 and 4

7 updating frequency A Tables 3 and 4

For the network, we use 4-layer MLP with 256 hidden units and Adam optimizer (Kingma and Ba,
2015) with a learning rate of 2 x 10~* for both policy and value functions in all tasks. We also use a
target network with soft update weight 5 x 10~ for Q-function. For Uni-RL with Diffusion models
as the policy, the score network €y we used is based on a U-net architecture, which is fairly common
in diffusion-based RL algorithms (Ajay et al., 2022; Mao et al., 2024b). We clip the output of the
weight function by max(w(z), 0) to ensure a non-negative BC weight. We use 0-1 normalization
to the weight in each batch and then clip it to [Win, Wmax] Where we set Wi, to 0.1 and wyax to 0.9
through all the datasets.

We implemented Uni-RL using PyTorch and ran it on all datasets. We followed the same reporting
methods as mentioned earlier. In offline experiments, baseline results for other methods were directly
sourced from their respective papers. In offline-to-online experiments, we run baselines using
the pytorch implementation from CORL (Tarasov et al., 2024b)*. Since CORL doesn’t have the
implementation of RLPD, we re-implement it in the codebase. We use the reported hyperparameters
in each paper.

In Uni-RL, we have two hyperparameters: regularization weight « and reference policy updating
frequency A. We search « over [0.1,0.5, 1.0, 2.0] and A over [0.01,0.05, 0.1, 0.2] The best value of
« and ) for all datasets are listed in Table 4 and Table 5.

*https://github.com/corl-team/CORL
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Table 3: Uni-RL hyperparameters in online RL.

Env | « A

AntBulletEnv-v0 | 1.0 0.1
BipedalWalker-v3 | 1.0 0.1
finger-turn-hard 0.5 0.1
quadruped-walk 0.5 0.1
HalfCheetah-v3 1.0 02

Hopper-v3 1.0 0.2
Humanoid-v3 1.0 0.2
Walker2d-v3 1.0 0.2

Table 4: Uni-RL hyperparameters in offline RL.

Env | «
halfcheetah-medium-v2 1.0
hopper-medium-v2 1.0
walker2d-medium-v2 1.0
halfcheetah-medium-replay-v2 | 1.0
hopper-medium-replay-v2 1.0

walker2d-medium-replay-v2 1.0
halfcheetah-medium-expert-v2 | 1.0

hopper-medium-expert-v2 1.0
walker2d-medium-expert-v2 1.0
antmaze-umaze-v2 0.1
antmaze-umaze-diverse-v2 2.0
antmaze-medium-play-v2 0.1
antmaze-medium-diverse-v2 0.1
antmaze-large-play-v2 0.1
antmaze-large-diverse-v2 0.1

Table 5: Uni-RL hyperparameters in offline-to-online RL.

Env | « A
pen-cloned-v1 1.0 0.01
door-cloned-v1 2.0 0.01
hammer-cloned-v1 2.0 0.01
relocate-cloned-v1 2.0 0.01
antmaze-medium-play-v2 0.5 0.01
antmaze-medium-diverse-v2 | 0.5 0.01
antmaze-large-play-v2 0.5 0.01
antmaze-large-diverse-v2 0.5 0.01
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a scalable RL framework that unifies online, offline, and offline-
to-online RL.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the Limitations and Future Work section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix A for full proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix B for full experimental details.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: Code will be released upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix B for full experimental details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error bars in all figures.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix B for full experimental details.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper follows the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix for details.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: For this paper, no safeguards are needed.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all the data and simulator environments used in the paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: Code will be released upon acceptance.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No such experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No such experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: This paper only uses LLM for polishing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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