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Abstract

Many machine learning models require setting a parameter that controls their
size before training, e.g. number of neurons in DNNs, or inducing points in GPs.
Increasing capacity typically improves performance until all the information from
the dataset is captured. After this point, computational cost keeps increasing
without improved performance. This leads to the question “How big is big enough?”
We investigate this problem for Gaussian processes (single-layer neural networks)
in continual learning. Here, data becomes available incrementally, and the final
dataset size will therefore not be known before training, preventing the use of
heuristics for setting a fixed model size. We develop a method to automatically
adjust model size while maintaining near-optimal performance. Our experimental
procedure follows the constraint that any hyperparameters must be set without
seeing dataset properties. For our method, a single hyperparameter setting works
well across diverse datasets, showing that it requires less tuning compared to others.

1 Introduction

Continual learning aims to train models when the data arrives in a stream of batches, without storing
data after it has been processed, and while obtaining predictive performance that is as high as possible
at each point in time [35]. Selecting the size of the model is challenging in this setting, since typical
non-continual training procedures do this by trial-and-error (cross-validation) using repeated training
runs, which is not possible under our requirement of not storing any data. Selecting model size is
crucial, since if the model is too small, predictive performance will suffer. One solution could be
to simply make all continual learning models so large, that they will always have enough capacity,
regardless of what dataset and what amount of data they will be given. However, this “worst-case”
strategy is wasteful of computational resources.

A more elegant solution would be to grow the size of the model adaptively as data arrives, according
to the needs of the problem (see Figure 1 for an illustration). For example, if data were only ever
gathered from the same region, there would be diminishing novelty in every new batch, leading to
a possible halt in growth, with growth resuming once data arrives from new regions. In this paper,
we investigate a principle for determining how to select the size of a model so that it is sufficient to
obtain near-optimal performance, while otherwise wasting a minimal amount of computation. In
other words, we seek to answer the question of “how big is big enough?” for setting the size of
models throughout continual learning.

We investigate this question for Gaussian processes where excellent continual learning methods exist
but assume a fixed model capacity that is large enough. We introduce a criterion for determining
the necessary number of inducing variables as new data arrives. Our method achieves near-optimal
performance with fewer computational resources than other continual methods. With only one
hyperparameter to balance cost and accuracy, a single value works effectively across datasets,
enabling all modelling decisions to be made upfront. For related work, see App. B.
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Figure 1: Three continual learning scenarios with different capacity requirements. Top: Three
consecutive batches for 1) a growing input space 2) i.i.d. samples from a uniform distribution, and 3)
narrow-range samples with occasional outliers. Bottom: Number of inducing points selected using
the VIPS algorithm at each batch. We observe: 1) a linear increase, 2) after initial training, we see a
halt in growth, and 3) low model size until it encounters outliers.

2 Background

2.1 Sparse Variational Gaussian Processes

We consider the typical regression setting, with training data consisting of N input/output pairs
{xn, yn}Nn=1,xn 2 RD

, yn 2 R. We model yn by passing xn through a function followed by
additive Gaussian noise yn = f(xn) + ✏n, ✏n ⇠ N (0,�2), and take a Gaussian process prior on
f ⇠ GP(0, k✓(·, ·)) with zero mean, and a kernel k with hyperparameters ✓. While the posterior (for
prediction) and marginal likelihood (for finding ✓) can be computed in closed form [34], they have a
computational cost of O(N3) that is too high, and require all training data (or statistics greater in size)
to be stored, both of which are prohibitive for continual learning. Variational inference can provide
an approximation at a lower O(NM

2) computational and O(NM) memory costs by selecting an
approximation from a set of tractable posteriors

q(f(·)) =
Z

p(f(·)|u, ✓)q(u)du (1)

= N
�
f(·);k·uK

�1
uum, k(·, ·)� k·uK

�1
uu(Kuu � S)K�1

uuku·
�
, (2)

with [Kuu]ij = k(zi, zj), [k·u]i = [kT
u·]i = k(·, zi),Z = {zm}Mm=1, and q(u) = N (u;m,S). The

variational parameters m,S,Z and hyperparameters ✓ are selected by maximising the Evidence
Lower Bound (ELBO). This simultaneously minimises KL gap KL[q(f) || p(f |y, ✓)] between the
approximate and true GP posteriors [26, 25], and maximises an approximation to the marginal
likelihood of the hyperparameters:

LELBO =
NX

i=1

Eq(f(xi))[log p(yi|f(xi), ✓)]�KL [q(u) k p(u|✓)] . (3)

The variational approximation has the desirable properties [44] of 1) providing a measure of discrep-
ancy between the finite capacity approximation, and the true infinite capacity model, 2) resulting in
arbitrarily accurate approximations if enough capacity is added [3], and 3) retaining the uncertainty
quantification over the infinite number of basis functions. In this work, we will particularly rely on
being able to measure the quality of the approximation to help determine how large M should be.

2.2 Sparse Gaussian Processes are Equivalent to Single-Layer Neural Networks

For inner product kernels k(x,Z) = �(Zx) like the arc-cosine kernel [6], the mean is equivalent to
a single-layer neural network with Z as the input weights, and K�1

uum as the output weights. This
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construction also arises from other combinations of kernels and inter-domain inducing variables
[9, 40], and has also shown equivalences between deep Gaussian processes and deep neural networks
[10]. As a consequence, our method for determining the number of inducing variables needed in a
sparse GP, equivalently finds the number of neurons needed in a single-layer neural network.

2.3 Online Sparse Gaussian Processes

We use the extension of the sparse variational GP approximation to the continual learning case devel-
oped by Bui et al. [2]. We update our posterior and hyperparameter approximations after each batch of
new data {Xn,yn}. While we do not have access to data from older batches {Xo,yo}, the parameters
specifying the approximate posterior qo(f) = p(f 6=a|a, ✓o)qo(a) are passed on. This approximate
posterior is constructed as in eq. (1) but with a = f(Zo) and the old hyperparameters ✓o. Given
the “old” qo(f), online sparse GPs construct a “new” approximation qn(f) = p(f 6=b|b, ✓n)qn(b),
where b = f(Zn) and ✓n is the new hyperparameter, of the posterior distribution for all observed
data p(f |yo,yn, ✓n). This is done by maximising the following the training objective:

bL :=

Z
qn(f)


log

p(b|✓n)qo(a)p(yn|f)
qn(b)p(a|✓o)

�
df, (4)

which we refer to as the “online ELBO”. We provide technical details of this quantity in App. B.1,
where we modify the typical derivation to 1) clarify how the online ELBO provides an estimate to the
full-batch ELBO, and 2) clarify when this approximation is accurate.

To achieve a fully black-box solution, we must specify how to choose the hyperparameters ✓n, the
number of inducing variables Mb, and the inducing inputs Zn. We select ✓n by maximising bL using
L-BFGS and determine Zn using the “greedy variance” criterion [12, 13, 3]. This leaves only the
number of inducing variables Mb to be chosen.

3 Automatically Adapting Approximation Capacity

We propose a method for adjusting the capacity of the approximation Mb to maintain accuracy. We
keep inducing points from old batches fixed, and select new inducing points from each incoming
batch, with their locations set using the “greedy variance” criterion [3, 12, 13]. While optimising all
inducing points leads to a strictly better approximation, we avoid this for simplicity. The question
remains: To achieve a certain level of accuracy, “how big is big enough?” To answer this, we consider
the online ELBO as a function of the capacity bL(Mb), and propose a threshold after which to stop
adding new inducing variables.

3.1 Online Log Marginal Likelihood (LML) Upper Bound

The problem of selecting enough inducing variables remains open in the full-batch setting. One
possible strategy is to derive an upper bound on the marginal likelihood (U ) and stop adding inducing
variables the difference U �L (which upper bounds KL[q(f)||p(f |y)]) falls below a tolerance ↵ [42].
Similarly, we consider the maximum possible value of our lower bound, which in the online setting is
obtained by retaining previous inducing inputs and adding each new datapoint to the inducing set:

L⇤ := bL(Nn +Ma) = logN
�
ŷ; 0 ,Kf̂ f̂ + ⌃ŷ

�
+�a with Kf̂ f̂ =


K↵ Kfa

Kaf Kaa

�
. (5)

Using properties of positive semi-definite matrices, we derive an upper bound bU(M) to eq. (5):

L⇤  � (Nn +Ma)

2
log(2⇡)� 1

2
log |Qf̂ f̂ + ⌃ŷ|�

1

2
ŷT

�
Qf̂ f̂ + tI + ⌃ŷ

��1
ŷ +�a := bU(M),

where t = tr(Kf̂ f̂ �Qf̂ f̂ ) and Qf̂ f̂ = Kf̂bK
�1
bbKbf̂ and M is the number of inducing points used to

calculate the bound (which can be unequal to Mb).

3.2 Approximation Quality Guarantees

Adding inducing points will eventually increase bL until it reaches L⇤ [1, 25, 3]. If we add inducing
points until bU(M)� bL(Mb)  ↵ we can guarantee the following:
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Guarantee. Let M be a fixed integer and Mb be the number of selected inducing points such that
bU(M)� bL(Mb)  ↵. Assuming that ✓n = ✓o, we have two equivalent bounds:

KL[qn(f) || p(f |yo,yn, ✓o)]  ↵+ (6)
KL[qn(f) || q⇤n(f)]  ↵ (7)

where  =
R
qn(f) log

q⇤n(f)
p(f |yn,yo)

df and q
⇤
n(f) = Z�1

qo(f)p(yn | f) represents the variational

distribution associated with the optimal lower bound L⇤ = bL(Nn + Ma), with Z denoting the
marginal likelihood that normalises q⇤n(f).

Proof. We cease the addition of points when bL(Mb) � bU(M) � ↵. Given that bU(M) � L⇤, and
assuming ✓n = ✓o, the rest follows from algebraic manipulation of eq. (9). See App. C for the
complete proof.

The first bound shows that if  is near zero, the KL to the true posterior is bounded by ↵. While
 depends on the true posterior and therefore cannot be computed, if the posterior in the previous
iteration was exact,  would be equal to zero. The second bound shows that we are guaranteed to
have our actual approximation qn(f) be within ↵ nats of the best approximation that we can develop,
given the limitations of the approximations made in previous iterations.

3.3 Selecting a Threshold

In this final step of our online learning method, we must specify a heuristic for selecting ↵ that does
not require knowing any data in advance, while also working in a uniform way across datasets with
different properties. A constant value for ↵ does not work well, since the scale of the LML depends
strongly on properties such as dataset size, and observation noise. This means that a tolerance of 1
nat [7] may be appropriate for a small dataset, but not for a large one.

As a principle for selecting the threshold, we take loose inspiration from compression and MDL
[18], which takes the view of the ELBO being proportional to negative the code length that the
model requires to encode the dataset. Intuitively, our desire is to select an ↵ such that our method
captures a high proportion (e.g. 95%) of all the information in each batch, so that we can compress to
within a small fraction of the optimal variational code. To address the issue of undefined quantisation
tolerance, we use an independent random noise code as our baseline and choose ↵ to be within a
small fraction of the optimal variational code relative to the random noise code. We want to be able
to capture a high proportion of the additional information provided by our model relative to the noise
model, i.e. we want our threshold to be:

↵ = �(L⇤ � Lnoise) , Lnoise =
NnX

n=1

logN (yn; µ̂, �̂
2)

where µ̂ and �̂
2 are the average and variance of the observations for up to the current task and � is a

user-defined hyperparameter. We validate that this approach leads to values of � giving consistent
behaviour across a wide range of datasets, which allows it to be set in advance without needing much
prior knowledge of the dataset characteristics.

Calculating this threshold is intractable for large batch sizes Nn. However, if we change our stopping
criterion to the more stringent upper bound

↵̄ = �( bU(M)� Lnoise) (8)

and increase M for calculating bU as Mb is increased for calculating bL, we obtain the same guarantees
as before but at a lower computational cost. However, this strategy is only worthwhile for very large
batch sizes Nn, due to the importance of constant factors in the computational cost. In the common
continual learning settings we investigate Nn is small enough to allow computing L⇤.

The algorithm for our inducing point selection method can be found in App. D. We name our approach
Vegas Inducing Point Selection (VIPS), drawing an analogy to Las Vegas Algorithms. These methods
guarantee the accuracy of the output, however, their computational time fluctuates for every run [29].
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Table 1: Mean (std) over different training/test splits of the number of inducing points for the last
batch for operating point (sec 4.2). The cross (7) denotes unmet accuracy constraint, while “Max.”
indicates that maximum capacity was reached.

UCI Dataset Dimension (N, D) Conditional Variance (CV) OIPS [14] VIPS (Ours)

Concrete 1030, 8 461(59) 409(87) 385(84)
Skillcraft 3338, 19 599(30) 332(82) 141(4)
Kin8nm 8192, 8 6194(13) 6539(9) 2953(72)
Naval 11934, 14 35(3) 7 127(5)
Elevators 16599, 18 2501(100) 643(135) 332(8)
Bike 17379, 17 Max. 7000 5131(65) 1037(24)

4 Experiments

We evaluate the performance of our adaptive inducing point selection, VIPS, in a range of streaming
scenarios where we assume the total number of observations is unknown. In all cases, the variational
distribution and kernel hyperparameters are optimised using the online lower bound (Eq. (13)).

Continual learning scenarios pose unique challenges: memory allocation cannot be pre-determined
due to unknown input space coverage, and cross-validation for hyperparameter tuning is infeasible
as it requires storing all data. Thus, an effective method must 1) have an adaptive memory that can
grow with the demands of the data, 2) work with hyperparameters that can be set before training. Our
experiments aim to illustrate these points. Details and additional experiments are provided in App. F.

4.1 Model size and data distribution

Figure 1 shows VIPS’s ability to adapt across datasets with different characteristics, each divided into
ten batches, illustrating how input distribution drives model growth as more data is seen. In the first
dataset, each batch introduces new data, causing the model size to grow linearly. The second dataset
remains within a fixed interval, leading to reduced novelty in batches and a converging model size.
The third dataset combines narrow-range samples with occasional outliers, resulting in low model
size with occasional growth when novelty appears (details in App. F.1).

4.2 Continual learning of UCI datasets

We compare VIPS to two other inducing point selection methods: Conditional Variance (CV) and
OIPS [14] (details in App. E). We use six datasets from the UCI repository [8], simulating a continual
learning scenario by sorting the data along the first dimension and dividing it into batches. For each
method, we assess multiple hyperparameter settings and identify the one that minimises model size
while achieving RMSE within 10% of a full-batch GP across all datasets, considered equivalent
to near-exact performance. Table 1 shows the number of inducing points used for that particular
hyperparameter value. The method CV often leads to larger model sizes (excessive for “bike”). For
the noiseless “naval” dataset, CV uses fewer inducing points but obtains poor uncertainty estimates
(details in App. F.3.2) and OIPS fails to meet the accuracy constraint within its tested hyperparameter
range. Meanwhile, VIPS consistently meets accuracy requirements and uses fewer inducing points in
the majority of datasets, suggesting it requires less hyperparameter tuning (details in App. F.3).

5 Discussion

In this work, we propose a method to dynamically adjust the number of inducing variables in
streaming GP regression, providing a capacity control criterion with approximation guarantees. Our
method achieves a performance close to full-batch approaches while minimising model size. It relies
on a single hyperparameter to balance accuracy and complexity, and we demonstrate that a single
setting performs well across diverse datasets. This reduces the need for extensive hyperparameter
tuning and eliminates the requirement to pre-define model size, thereby addressing a significant
bottleneck in traditional methods. While our current focus is on GPs, we aim to extend this method
to larger neural architectures.

5



Acknowledgments and Disclosure of Funding

GPB is supported by EPSRC through the Statistical Machine Learning (StatML) CDT programme,
grant no. EP/S023151/1.

References
[1] M. Bauer, M. van der Wilk, and C. E. Rasmussen. Understanding probabilistic sparse Gaussian process

approximations. Advances in neural information processing systems, 29, 2016.

[2] T. D. Bui, C. Nguyen, and R. E. Turner. Streaming sparse gaussian process approximations. Advances in
Neural Information Processing Systems, 30:3299–3307, 2017. ISSN 1049-5258.

[3] D. R. Burt, C. E. Rasmussen, and M. van der Wilk. Convergence of sparse variational inference in Gaussian
processes regression. The Journal of Machine Learning Research, 21(1):5120–5182, 2020.

[4] P. E. Chang, P. Verma, S. John, A. Solin, and M. E. Khan. Memory-Based dual gaussian processes for
sequential learning. In International Conference on Machine Learning, pages 4035–4054. PMLR, June
2023.

[5] P. G. Chang, G. Durán-Martín, A. Shestopaloff, M. Jones, and K. P. Murphy. Low-rank extended kalman
filtering for online learning of neural networks from streaming data. pages 1025–1071, 2023.

[6] Y. Cho and L. Saul. Kernel methods for deep learning. Advances in neural information processing systems,
22, 2009.

[7] T. M. Cover. Elements of information theory, page 14. John Wiley & Sons, 1999.

[8] D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.

[9] V. Dutordoir, N. Durrande, and J. Hensman. Sparse gaussian processes with spherical harmonic features.
In International Conference on Machine Learning, pages 2793–2802. PMLR, 2020.

[10] V. Dutordoir, J. Hensman, M. van der Wilk, C. H. Ek, Z. Ghahramani, and N. Durrande. Deep neural
networks as point estimates for deep gaussian processes. Advances in Neural Information Processing
Systems, 34:9443–9455, 2021.

[11] S. Farquhar and Y. Gal. Towards robust evaluations of continual learning. arXiv preprint arXiv:1805.09733,
2018.

[12] S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel representations. Journal of
Machine Learning Research, 2(Dec):243–264, 2001.

[13] L. Foster, A. Waagen, N. Aijaz, M. Hurley, A. Luis, J. Rinsky, C. Satyavolu, M. J. Way, P. Gazis, and
A. Srivastava. Stable and efficient gaussian process calculations. Journal of Machine Learning Research,
10(4), 2009.

[14] T. Galy-Fajou and M. Opper. Adaptive inducing points selection for Gaussian Processes. In Continual
Learning Workshop, July 2021.

[15] Z. Ghahramani. Bayesian non-parametrics and the probabilistic approach to modelling. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1984):
20110553, 2013.

[16] Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):452–459,
2015.

[17] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical investigation of catastrophic
forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

[18] P. Grünwald and T. Roos. Minimum description length revisited. International journal of mathematics for
industry, 11(01):1930001, 2019.

[19] S. Kapoor, T. Karaletsos, and T. D. Bui. Variational auto-regressive gaussian processes for continual
learning. In International Conference on Machine Learning, pages 5290–5300. PMLR, 2021.

[20] S. Kessler, V. Nguyen, S. Zohren, and S. J. Roberts. Hierarchical indian buffet neural networks for bayesian
continual learning. In Uncertainty in artificial intelligence, pages 749–759. PMLR, 2021.

6

http://archive.ics.uci.edu/ml


[21] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ra-
malho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 114(13):3521–3526, 2017.

[22] Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947, 2017.

[23] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. Advances in neural
information processing systems, 30, 2017.

[24] W. J. Maddox, S. Stanton, and A. G. Wilson. Conditioning sparse variational gaussian processes for online
decision-making. Advances in Neural Information Processing Systems, 34:6365–6379, 2021.

[25] A. G. d. G. Matthews. Scalable Gaussian process inference using variational methods. PhD thesis, 2017.

[26] A. G. d. G. Matthews, J. Hensman, R. Turner, and Z. Ghahramani. On sparse variational methods and
the Kullback-Leibler divergence between stochastic processes. In A. Gretton and C. C. Robert, editors,
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, volume 51 of
Proceedings of Machine Learning Research, pages 231–239, Cadiz, Spain, 2016. PMLR.

[27] A. G. d. G. Matthews, J. Hron, M. Rowland, R. E. Turner, and Z. Ghahramani. Gaussian process behaviour
in wide deep neural networks. In International Conference on Learning Representations, 2018.

[28] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pages 109–165. Elsevier, 1989.

[29] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[30] K. P. Murphy. Probabilistic Machine Learning: Advanced Topics, chapter 29.7.2. MIT Press, 2023.

[31] R. M. Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media,
1996.

[32] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner. Variational continual learning. In International Conference
on Learning Representations, Oct. 2018.

[33] A. Panos, P. Dellaportas, and M. K. Titsias. Fully scalable gaussian processes using subspace inducing
inputs. arXiv preprint arXiv:1807.02537, 2018.

[34] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Nov. 2005.
ISBN 9780262182539.

[35] M. B. Ring. Child: A first step towards continual learning. Machine Learning, 28(1):77–104, 1997.

[36] T. G. Rudner, F. B. Smith, Q. Feng, Y. W. Teh, and Y. Gal. Continual learning via sequential function-space
variational inference. In International Conference on Machine Learning, pages 18871–18887. PMLR,
2022.

[37] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and
R. Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.

[38] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and R. Hadsell.
Progress & compress: A scalable framework for continual learning. In International conference on machine
learning, pages 4528–4537. PMLR, 2018.

[39] A. Solin, M. Kok, N. Wahlstrom, T. Schon, and S. Sarkka. Modeling and interpolation of the ambient
magnetic field by gaussian processes. IEEE Transactions on Robotics, 34(4):1112–1127, 2018. ISSN
1552-3098. doi: 10.1109/TRO.2018.2830326.

[40] S. Sun, J. Shi, and R. B. Grosse. Neural networks as inter-domain inducing points. In Third Symposium on
Advances in Approximate Bayesian Inference, 2020.

[41] M. K. Titsias. Variational learning of inducing variables in sparse gaussian processes. In Proceedings
of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), volume 5 of
Proceedings of Machine Learning Research, pages 567–574. PMLR, 2009.

[42] M. K. Titsias. Variational inference for Gaussian and determinantal point processes. In Workshop on
Advances in Variational Inference (NIPS), 2014.

7



[43] A. van der Vaart and J. van Zanten. Rates of contraction of posterior distributions based on gaussian
process priors. The Annals of Statistics, 36(3):1435–1463, 2008.

[44] M. van der Wilk. Sparse Gaussian process approximations and applications. PhD thesis, 2019.

[45] J. Yoon, E. Yang, J. Lee, and S. J. Hwang. Lifelong learning with dynamically expandable networks. In 6th
International Conference on Learning Representations, ICLR 2018. International Conference on Learning
Representations, ICLR, 2018.

A Code

The methods discussed in this work, along with the code to reproduce our results, are available online
at https://github.com/guiomarpescador/vips.

B Related Work

The most widely discussed problem in continual learning is that of catastrophic forgetting, where
previously acquired knowledge is lost in favour of recent information [28, 17]. Many solutions
have been proposed in the literature, such as encouraging weights to be close to values that were
well-determined by past data [21, 38], storing subsets or statistics of past data to continue to train the
neural network in the future [22, 23], and approximate Bayesian methods that balance uncertainty
estimates of parameters with the strength of the data [32, 36, 5]. Within continual learning, many
different settings have been investigated, which vary in difficulty [11]. Across these tasks, the gap in
performance to a full-batch training procedure therefore also varies, but despite progress, some gap
in performance remains.

Bayesian continual learning methods have been developed because the posterior given past data
becomes the prior for future data, making the posterior a sufficient quantity to estimate [30]. For
the special case of linear-in-the-parameters regression models, the posterior and updates can be
calculated in closed form, leading to continual learning giving exactly the same result as full-batch
training. In most cases (e.g. for neural networks), the posterior cannot be found exactly, leading to
the aforementioned methods [32, 36, 5] that focus on finding an approximation to the posterior and
using this as the sufficient quantity.

Even with a perfect solution to catastrophic forgetting (e.g. in the case of linear-in-the-parameters
regression models), continual learning methods face the additional difficulty of ensuring that models
have sufficient capacity to accommodate the continuously arriving information. In continual learning,
it is particularly difficult to determine a fixed size for the model, since the number of data or tasks
are not yet known, and selecting a model that is too small can significantly hurt performance. To
improve over a fixed model size, methods can be made to grow with the data size. For example, Rusu
et al. [37] extend hidden representations by a fixed amount for each new batch of data that arrives,
and allows the weights of the extended representation to depend on the representation of all previous
tasks. Yoon et al. [45] argue that extension by a fixed amount is wasteful and should instead be data
dependent, specifically by copying neurons if their value changes too much, and adding new neurons
if the training loss doesn’t reach a particular threshold. Kessler et al. [20] propose to use the Indian
Buffet Process as a more principled way to regularise how fast new weights are added with tasks.
While the data dependence that both these methods introduce is necessary to prevent computational
waste, both methods have hyperparameters that need to be tuned to dataset characteristics, which is
difficult when the dataset characteristics are not known at the start of training.

Growing model capacity with dataset size was one of the main justifications for research into
(Bayesian) non-parametric models [15, 16]. This approach defines models with infinite capacity,
with Bayesian inference naturally using an appropriate finite capacity to make predictions, with finite
compute budgets. Gaussian processes (GPs) [34] are the most common Bayesian non-parametric
model for supervised learning, and are equivalent to infinitely-wide deep neural networks [31, 27]
and linear-in-the-parameters models with an infinite feature space. Their infinite capacity allows them
to recover functions perfectly in the limit of infinite data [43], and their posterior can be computed in
closed form. These two mathematical properties provide strong principles for providing high-quality
solutions to both catastrophic forgetting and ensuring appropriate capacity, and therefore make GPs
an excellent model for studying continual learning.
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However, developing practical continual learning in GPs is not as straightforward as it is in finite
dimensional linear models, because (for N datapoints) the posterior requires 1) O(N3) operations
to compute it exactly, which becomes intractable for large datasets, and 2) storing the full training
dataset, which breaks the requirements of continual learning. Sparse variational inducing variable
methods have been proposed to solve these problems [41], by introducing a small number of M
inducing points that control the capacity of the posterior approximation. In certain settings, this
approximation is near-exact even when M ⌧ N [3]. This property has allowed continual learning
methods to be developed for GPs that perform very closely to full-batch methods [2, 24, 4], provided
M is large enough.

As in neural network models, selecting the capacity M is an open problem, with several proposed
solutions. Kapoor et al. [19] acknowledge the need for scaling the capacity with data size, and
propose VAR-GP (Variational Autoregressive GP) which adds a fixed number of inducing points
for every batch. However, this number may be too small, leading to poor performance, or too large,
leading to wasted computation. Galy-Fajou and Opper [14] propose OIPS (online inducing point
selection), which determines M through a threshold on the correlation with other inducing points,
which needs to be tuned based on dataset properties.

In this work, we propose to instead select the capacity of the variational approximation by selecting
an appropriate tolerance in the KL gap to the true posterior. This criterion works within the same
computational constraints as existing GP continual learning methods, adapts the capacity to the
dataset to minimise computational waste while retaining near-optimal performance. Our method has
a single hyperparameter that we keep fixed to a single value, and that produces similar trade-offs
across benchmark datasets with significantly different characteristics.

B.1 Online Sparse Gaussian Processes

In this work, we use the extension of the sparse variational GP approximation to the continual learning
case developed by Bui et al. [2]. We modified the typical derivation to 1) clarify how the online ELBO
provides an estimate to the full-batch ELBO, and 2) clarify when this approximation is accurate.

In this online setting, we aim to update our posterior and hyperparameter approximations after each
batch of new data {Xn,yn}. While we do not have access to data from older batches {Xo,yo},
the parameters specifying the approximate posterior qo(f) = p(f 6=a|a, ✓o)qo(a) are passed on. This
approximate posterior is constructed as in eq. (1) but with a = f(Zo) and the old hyperparameters
✓o. Given the “old” qo(f), online sparse GPs construct a “new” approximation qn(f) of the posterior
for all observed data p(f |yo,yn, ✓n), which can be written as:

p(f |yo,yn, ✓n) =
p(f |✓n)p(yn|f)p(yo|f)

p(yn,yo|✓n)
=

p(f |✓n)p(yn|f)
p(yn,yo|✓n)

p(f |yo, ✓o)p(yo|✓o)
p(f |✓o)

.

We denote the new variational distribution as qn(f) = p(f 6=b|b, ✓n)qn(b) where b = f(Zn) and
✓n is the new hyperparameter which can differ from ✓o. The KL divergence between the exact and
approximate posterior at the current batch is given by:

KL[qn(f) || p(f |yo,yn, ✓n)] = log
p(yn,yo|✓n)
p(yo|✓o)

�
Z

qn(f) log
p(f |✓n)p(yn|f)p(f |yo, ✓o)

qn(f)p(f |✓o)
df .

The posterior distribution p(f |yo, ✓o) is not available, however by multiplying its approximation
qo(f) in both sides of the fraction inside the log, we obtain:

KL[qn(f) || p(f |yo,yn, ✓n)] = log
p(yn,yo|✓n)
p(yo|✓o)

�
Z

qn(f) log
p(f |✓n)p(yn|f)qo(f)

qn(f)p(f |✓o)
df+� (9)

where � = �
R
qn(f) log

p(f |yo,✓o)
qo(f)

df . We cannot compute � due to its dependence on the exact
posterior, so we drop it and use the following “online ELBO” as our training objective:

bL :=

Z
qn(f)


log

p(b|✓n)qo(a)p(yn|f)
qn(b)p(a|✓o)

�
df. (10)

Maximising bL will accurately minimise the KL to the true posterior when � is small, which is
the case when the old approximation is accurate, i.e. qo(f) ⇡ p(f |yo, ✓o) for all values of f (with
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� = 0 in the case of equality). In our continual learning procedure, we will keep our sequence of
approximations accurate by ensuring they all have enough inducing points.

To get our final bound, we perform a change of variables for the variational distribution qo(a) =
N (a;ma,Sa) to use the likelihood parametrisation [33]:

qo(a) =
N (a; m̃a,Da)N (a; 0,K0

aa)R
N (a; m̃a,Da)N (a; 0,K0

aa)da
=

l(a)p(a | ✓o)
N (a; 0,Da +K0

aa)
, (11)

where Da =
�
S�1
a �K0�1

aa

��1 and m̃a = K0�1
aa ma are the variational parameters, K0

aa is the
covariance for the prior distribution p(a | ✓o) and l(a) := N (a; m̃a,Da). In this formulation, the
variational parameters m̃a,Da effectively form a dataset that produce the same posterior as the
original dataset, but which we have chosen to be smaller in size, M < N . This makes our online
ELBO from eq. (10)
bL = Eqn(f) [log p(yn|f)] + Eqn(f) [log l(a)]�KL [qn(b) || p(b|✓n)]� logN (a; 0,K0

aa +Da) ,
(12)

which has the nice interpretation of being the normal ELBO, but with an additional term that includes
the approximate likelihood l(a) which summarises the effect of all previous data.

While bL is all that is needed to train the online approximation, it differs from the true marginal
likelihood by the term log p(yo|✓o). To approximate it, we could drop the term logN (a; 0,K0

aa+Da)
from bL, since this term also approximates log p(yo|✓o), with equality when the posterior is exact, but
with no guarantee of being a lower bound.

Although bL is a useful training objective for general likelihoods, the regression case we consider
allows us to analytically find q(b) (refer to Bui et al. [2] for derivations) resulting in the lower bound

bL = logN
�
ŷ;0,Kf̂bK

�1
bbKbf̂+⌃ŷ

�
+�a�

1

2
tr
⇥
D�1

a (Kaa�Qaa)
⇤
� 1

2�2
tr(K↵�Q↵ ) ,

(13)

ŷ =


yn

DaS�1
a ma

�
,Kf̂b =


Kfb

Kab

�
,⌃ŷ =


�
2
ŷI 0
0 Da

�
, (14)

�a = �1

2
log

|Sa|
|K0

aa||Da|
+

Ma

2
log(2⇡)� 1

2
mT

aS
�1
a ma +

1

2
mT

aS
�1
a DaS

�1
a ma , (15)

with Q↵ = KfbK
�1
bbKbf and Qaa = KabK

�1
bbKba. All covariances are computed using the new

hyperparameters ✓n, except for K0
aa which is the covariance for the prior distribution p(a | ✓o).

Finally, Ma = |a| is the number of inducing points used at the previous batch. The computational
complexity and memory requirements for calculating bL at each batch is O(NnM

2
b+M

3
b) and O(M2

b)
respectively where Mb is the total number of inducing points for the current batch.

C Proof of Guarantee

Guarantee. Let M be a fixed integer and Mb be the number of selected inducing points such that
bU(M)� bL(Mb)  ↵. Assuming that ✓n = ✓o, we have two equivalent bounds:

KL[qn(f) || p(f |yo,yn, ✓o)]  ↵+ (16)
KL[qn(f) || q⇤n(f)]  ↵ (17)

where  =
R
qn(f) log

q⇤n(f)
p(f |yn,yo)

df and q
⇤
n(f) = Z�1

qo(f)p(yn|f) represents the variational

distribution associated with the optimal lower bound L⇤ = bL(Nn + Ma), with Z denoting the
marginal likelihood that normalises q⇤n(f).

Proof. We cease the addition of points when bU(M) � bL(Mb) < ↵. Since bU(M) � L⇤, then
� bL(Mb) < ↵� bU(M) < ↵� L⇤. Eq.(4) can be bounded as:

KL[qn(f) || p(f |yo,yn, ✓n)] = log
p(yn,yo|✓n)
p(yo|✓o)

� bL+ �

 log
p(yn,yo|✓n)
p(yo|✓o)

+ ↵� L⇤ + �

(18)
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where � = �
R
qn(f) log

p(f |yo,✓o)
qo(f)

df . Let q⇤n(f) = Z�1
qo(f)p(yn|f) be the variational distribu-

tion associated with L⇤ = bL(Nn +Ma). Then, by expanding the true posterior and multiplying by
the variational distributions q⇤n(f) on both sides of the fraction inside the log, we obtain:

� =

Z
qn(f) log

qo(f)

p(f |yo, ✓o)
df

=

Z
qn(f) log

qo(f)p(yo|✓o)
p(yo|f)p(f |✓o)

df

=

Z
qn(f) log

qo(f)p(yo|✓o)
p(yo|f)p(f |✓o)

q
⇤
n(f)

q⇤n(f)
df

=

Z
qn(f) log ���qo(f)p(yo|✓o)

p(yo|f)p(f |✓o)
q
⇤
n(f)

Z�1
���qo(f)p(yn|f)

df

=

Z
qn(f) log

p(yo|✓o)q⇤n(f)
p(f |yn,yo, ✓o)p(yn,yo|✓o)

df + logZ.

=

Z
qn(f) log

q
⇤
n(f)

p(f |yn,yo, ✓o)
df + logZ � log

p(yn,yo|✓o)
p(yo|✓o)

(19)

Using the above expansion for �, eq. (18) becomes,

KL[qn(f) || p(f |yo,yn, ✓n)]

 log
p(yn,yo|✓n)
p(yo|✓o)

+ ↵� L⇤ + �

 log
p(yn,yo|✓n)
p(yo|✓o)

+ ↵� L⇤ +

Z
qn(f) log

q
⇤
n(f)

p(f |yn,yo, ✓o)
df + logZ � log

p(yn,yo|✓o)
p(yo|✓o)

.

(20)
Assuming that ✓n = ✓o, the above can be simplified to

KL[qn(f) || p(f |yo,yn, ✓n)]  ↵+

Z
qn(f) log

q
⇤
n(f)

p(f |yn,yo, ✓n)
df (21)

Again by multiplying by qn(f) both sides of the fraction inside the log, we obtain:

KL[qn(f) || p(f |yo,yn, ✓o)] 
Z

qn(f) log
q
⇤
n(f)

p(f |yn,yo, ✓n)

qn(f)

qn(f)
df + ↵

KL[qn(f) || p(f |yo,yn, ✓n)]  KL[qn(f) || p(f |yo,yn, ✓n)]�KL[qn(f) || q⇤n(f)] + ↵

KL[qn(f) || q⇤n(f)]  ↵.

(22)

D Vegas Inducing Point Selection (VIPS) Algorithm

To select the location of our new inducing points we use the location selection strategy “greedy
variance” proposed in [3]. This strategy iteratively selects points from a set based on a preference
criterion until a stopping condition is met. In particular, it chooses the location of the next inducing
point to maximise the marginal variance in the conditional prior p(f 6=u|u). This is equivalent to
maximising diag[K↵ � Q↵ ]. In continual learning, Chang et al. [4] use the “greedy variance”
criterion by defining {Zo,Xn} as the selection pool from which inducing point locations are selected
and maintaining a fixed number of inducing points. Similarly, Maddox et al. [24] extends the “greedy
variance” criterion to heteroskedastic Gaussian likelihoods and also uses a fixed size approach. In
our case, we tested the location strategy with our stopping criterion using both {Zo,Xn} and {Xn}
as candidates pool for the locations of the inducing points. We did not find a substantial difference
between the methods and hence opted for the simpler version where we keep the old inducing point
locations fixed and choose the new set of inducing points from among the locations in Xn.

Algorithm 1 presents an inducing point selection method using our stopping criterion combined
with the location selection strategy “greedy variance”. The method takes as input a value for the
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hyperparameter ✓n. In practice, we will set ✓n = ✓o to select the number of inducing points; the
hyperparameter ✓n is inferred by optimising bL(Mb) once the inducing point locations Zn have been
chosen. In Algorithm 1, bU(M) is used to calculate the stopping criterion. However, in practice, since
for the continual learning settings we investigate Nn is small enough, we will use bU(Ma+Nn) = L⇤.
This value is calculated once at the beginning of the process. The algorithm’s complexity depends
on the number of inducing points Mb used to compute the lower bound bL(Mb) at each iteration.
The computational complexity for calculating bL at each batch is O(NnM

2
b +M

3
b), and the memory

requirement is O(M2
b), where Mb represents the total number of inducing points in the current batch.

Algorithm 1 Vegas Inducing Point Selection (VIPS)

Input: Xn = {xi}Nn
i=1, Zo = {zm}Ma

m=1, µ̂, �̂, ✓n, kernel k(·, ·|✓n), threshold parameter �.
Output: Updated set Zn = Zo [ {xm0}M 0

m0=1, where |Zn| = Mb.
Initialise Zn = Zo.
while bU(M)� bL(Mb)  �| bU(M)� Lnoise(µ̂, �̂)| do

Select x = argmaxx2Xn
k(x,x)� kb(x)>K

�1
bbkb(x).

Add x to the set of inducing points: Zn = Zn [ {x}.
end while

E Adaptive Inducing Points Selection Methods

In the experiments, we compare our method, VIPS, to two other adaptive approaches: Conditional
Variance (CV) and OIPS [14]. This section contains details about both methods and their implemen-
tation.

E.1 Conditional Variance

The implementation of the Conditional Variance method is presented in Algorithm 2. This method
uses the “greedy variance” strategy that iteratively chooses the location of the next inducing point.
As a stopping criterion, it uses the trace quantity tr (K↵ �Q↵ ). In this algorithm, new inducing
points are no longer added once tr (K↵ �Q↵ ) falls below a chosen tolerance value ⌘. Although,
this approach was mentioned in Burt et al. [3], this stopping criterion has not yet been tested in the
literature. The hyperparameter ⌘ is determined by the user.

Algorithm 2 Conditional Variance (CV)

Input: Xn = {xi}Nn
i=1, Zo = {zm}Ma

m=1, ✓n, kernel, k(·, ·|✓n), threshold ⌘.
Output: Updated set of inducing points Zn = {zm}M 0

m=1 [ {xm0}Mb�M 0

m0=1 .
Initialise location selection pool: Xpool = Zo [Xm.
Initialise Zn = argmaxx2Xpool

k(x,x).
while tr (K↵ �Q↵ )  ⌘ do

Select x = argmaxx2Xpool
k(x,x)� kb(x)>K

�1
bbkb(x).

Add x to the set of inducing points: Zn = Zn [ {x}.
end while
return Zn

E.2 Online Inducing Point Selection (OIPS)

Galy-Fajou and Opper [14] introduced the Online Inducing Points Selection (OIPS) algorithm, which
iteratively adds points from Xn to the set of inducing points. The algorithm assesses the impact of
each new point on the existing inducing set, based on a covariance threshold. A point x is added
if the maximum value of ku(x) falls below a user-defined threshold ⇢. Algorithm 3 presents our
implementation of this method, adapted from the original algorithm in Galy-Fajou and Opper [14].

Table 2 shows a summary of the properties of these methods, as well as the fixed size approach used
in Bui et al. [2].
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Algorithm 3 Online Inducing Point Selection (OIPS)

Input: Xn = {xi}Nn
i=1, Zo = {zm}Ma

m=1, kernel function k(·, ·|✓n), kernel hyperparameters ✓n
(including variance �

2
f ), acceptance threshold 0 < ⇢ < 1.

Output: Updated set Zn = Zo [ {xm0}M 0

m0=1, where |Zn| = Mb.
Initialise Zn = Zo.
Initialise ⇢̄ = ⇢ · �2

f .
for all xi 2 Xn do
d = maxj (k (xi, zj |✓n)) , 8 zj 2 Zn.
if d < ⇢̄ then

Add xi to the set of inducing points: Zn = Zn [ {xi}.
end if

end for

Table 2: Properties of inducing points selection method for updating an online GP regression model.

Method Type Selection Pool Selection Criterion Stopping Criterion

Bui et al. [2] Fixed Random sample Gradient optimisation M constant
Cond. Variance (CV) Adaptive {Xnew, Zold} “greedy variance” tr (K↵ �Q↵ )  ⌘

OIPS [14] Adaptive {Xnew} maxku(x)  ⇢ Selection criterion met
VIPS Adaptive {Xnew} “greedy variance” bU � bL  ↵

F Further Experimental Details and Results

For all experiments and methods, we use the L-BFGS optimiser.

F.1 Model size and data distribution

For the synthetic dataset, we generate random noisy observations from the test function f(x) =
sin(2x) + cos(5x). We used a Squared Exponential kernel initialised with lengthscale 0.5 and
variance 1. The noise variance was initialised to 0.5. For VIPS, we use � = 0.05.

Dataset 1: We use N = 500 observations uniformly distributed from 0 to 10. The data is ordered
and divided into ten batches.

Dataset 2: We simulate a scenario where small batches of data are received but the data is distributed
across the input space. We use N = 150 observations uniformly distributed from 0 to 10. The data is
shuffled and divided into ten batches.

Dataset 3: We simulate a scenario where only outliers are encountered from time to time and the
rest of the data is concentrated around a small part of the input space. We use two sets of data: the
first set is sampled from a uniform distribution from 4 to 6, with N = 1000 and the second set is
sampled from a Cauchy distribution with a mean of µ = 5, with N = 300. The data is divided into
ten batches, where the first batches only contain observations from the 4 to 6 range and the Cauchy
observations are observed in the latter batches.

F.2 The impact of model capacity in accuracy and training time

F.2.1 Accuracy comparison

For the synthetic dataset, we generate 1000 random noisy observations from the test function
f(x) = sin(2x) + cos(5x). We used a Squared Exponential kernel initialised with lengthscale 0.5
and variance 1.0. The noise variance was initialised to 0.5. The performance was measured on a test
grid of 500 points. For VIPS, we use � = 0.05.
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Figure 2: Plot of the three datasets considered in Section F.1.

F.2.2 Training cost comparison

This experiment was performed on an Nvidia RTX 6000’s GPU on a high-performance computing
cluster. We used a Squared Exponential kernel with hyperparameters initialised to 1. The noise
variance was initialised to 0.1. The dataset was divided into 20 batches, and we recorded the time in
training per batch. For VIPS, we use � = 0.05.

F.3 UCI datasets

These experiments were performed on an Nvidia RTX 6000’s GPU on a high-performance computing
cluster. We used a Squared Exponential kernel with hyperparameters initialised to 1 for all datasets.
The noise variance was initialised to 0.1. We consider six UCI [8] datasets of different characteristics:
Concrete (1030, 8), Skillcraft (3338, 19), Kin8nm (8192, 8), Naval (11934, 14), Elevators (16599, 18),
and Bike (17379, 17). The data was sorted by the first dimension. The smaller datasets (< 12000)
were divided into 20 batches, and the larger (> 12000) into 50 batche.

Increasing the model size enhances performance until all relevant dataset information is captured;
beyond this point, only computational costs increase. Therefore, when comparing inducing point
methods, it is essential to consider the size-performance trade-off, rather than focusing solely on
performance gains. This trade-off is typically controlled by a hyperparameter of the model. However,
in continual learning, traditional cross-validation for hyperparameter tuning is not feasible, as it would
require storing all historical data. Consequently, an effective method must work with hyperparameters
that can be set before training and still perform well across diverse datasets. We compare our
method, VIPS, with two other adaptive approaches: Conditional Variance (CV) and OIPS. Our goal
is to determine if there is a single hyperparameter for each method that performs consistently well
across different datasets. To do this, we evaluate various hyperparameter settings for each method
and report the Pareto front, showing the trade-off between model size and performance. For each
method, we identify the hyperparameter values that achieve a root mean square error (RMSE) within
10% of the full-batch GP across all datasets, which we considered similar to achieving near-exact
performance. From these, we select the one that results in the smallest model size. For CV and VIPS,
this corresponds to the largest hyperparameter value, while for OIPS, it corresponds to the smallest
hyperparameter value (see Table 2 for a summary of the methods). With the optimal hyperparameter
selected, all methods achieve the desired performance threshold. Therefore, the preferred method
will be the one that minimises model size among the three for each dataset.

Figures 3, 4, 5, 6, 7, 8 present the Pareto fronts for the datasets considered. The selected hyperparam-
eter for each method is highlighted in the plots, indicating the point where each method meets the
accuracy constraint while aiming to minimise model size. For CV, ⌘ = 0.01, for OIPS, ⇢ = 0.96,
for VIPS � = 0.05. Table 1 in the main paper shows the specific number of inducing points selected
for each method with these particular values at the end of continual learning. VIPS appears to be
the preferred method, as its hyperparameter chooses the least inducing points across most datasets.
In contrast, CV typically selects the highest number of inducing points. OIPS exhibits variable be-
haviour, sometimes aligning more closely with CV and other times with VIPS. The hyperparameters
for CV and OIPS sometimes lead to excessive model size, for example, in the Kin8nm dataset both
methods end up selecting around 80% of the available points, more than double that VIPS.
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F.3.1 Detailed performance for optimal hyperparameters

For the operating hyperparameters, we plot in Figure 9 the selected number of inducing points,
RMSE and NLPD versus the number of data points observed throughout the task. The test set
for each batch consists only of data from the current and previous batches, therefore we expect
the performance metrics to be similar across all batches, provided the model does not experience
catastrophic forgetting. As a benchmark, we also plot the exact GP at the first, middle, and last batch
of the task, which has access to all observations up to that current batch.

Figure 3: “Concrete” UCI dataset Pareto curve of size and performance for different hyperparameters.
for Conditional Variance (range: [0.001, 0.5]), OIPS (range: [0.3, 0.99]) and VIPS (ours, range:
[0.001, 4.0]). The plot shows the mean 5-fold test RMSE on the last batch of the task. The shaded
region represents the mean 5-fold test RMSE within 10% of the full-batch method. The stars highlight
the operating point for each method, with their values listed above.

Figure 4: “Skillcraft” UCI dataset Pareto curve of size and performance for different hyperparameters.
for Conditional Variance (range: [0.005, 2.0]), OIPS (range: [0.0001, 0.98]) and VIPS (our method,
range [0.0005, 1.0], we note that for values of � � 1.0, M stays consistent). The plot shows the mean
5-fold test RMSE on the last batch of the task. The shaded region represents the mean 5-fold test
RMSE within 10% of the full-batch method. The stars highlight the operating point for each method,
with their values listed above.

F.3.2 The Naval dataset

For the Naval dataset, Conditional Variance (CV) achieves the accuracy constraint with the fewest
inducing points but shows a decline in NLPD throughout the task (Figure 9). OIPS struggles within
the tested hyperparameter range [0.96, 0.999], likely due to the dataset’s noiseless nature. However,
when the data is randomly shuffled (i.i.d. samples), OIPS meets performance requirements with the
same hyperparameters (Figure 10), highlighting its sensitivity to data distribution. Despite this, OIPS
ends with the highest NLPD, possibly from insufficient inducing points (Table 3). In the i.i.d. setting,
CV adds inducing points and improves uncertainty estimates, matching VIPS, which shows minimal
sensitivity to distribution changes and robust performance across scenarios. These results emphasise
the need for hyperparameters that work consistently across diverse data settings.
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Figure 5: “Kin8nm” UCI dataset Pareto curve of size and performance for different hyperparameters.
for Conditional Variance (range: [0.001, 16.0]), OIPS (range: [0.1, 0.97]) and VIPS (ours, range:
[0.001, 2.5]). The plot shows the mean 5-fold test RMSE on the last batch of the task. The shaded
region represents the mean 5-fold test RMSE within 10% of the full-batch method. The stars highlight
the operating point for each method, with their values listed above.

Figure 6: “Naval” UCI dataset Pareto curve of size and performance for different hyperparameters.
for Conditional Variance (range: [0.0005, 0.5]), OIPS (range: [0.96, 0.999]) and VIPS (ours, range:
[0.01, 5.0]). The plot shows the mean 5-fold test RMSE on the last batch of the task. The shaded
region represents the mean 5-fold test RMSE within 10% of the full-batch method. The stars highlight
the operating point for each method, with their values listed above.

Figure 7: “Elevators” UCI dataset Pareto curve of size and performance for different hyperparameters.
for Conditional Variance (range: [0.01, 2.1]), OIPS (range: [0.0001, 0.98]) and VIPS (ours, range:
[0.0001, 100]). The plot shows the mean 5-fold test RMSE on the last batch of the task. The shaded
region represents the mean 5-fold test RMSE within 10% of the full-batch method. The stars highlight
the operating point for each method, with their values listed above.

16



Figure 8: “Bike” UCI dataset Pareto curve of size and performance for different hyperparameters. for
Conditional Variance (range: [0.01, 3.0]), OIPS (range: [0.1, 0.97]) and VIPS (ours, range: [0.007,
1.0]). The plot shows the mean 5-fold test RMSE on the last batch of the task. The shaded region
represents the mean 5-fold test RMSE within 10% of the full-batch method. The stars highlight the
operating point for each method, with their values listed above.

Table 3: Mean (std) of the RMSE, NLPD, and number of inducing points (M) at the end of continual
learning on the Naval dataset under two scenarios: data ordered by the first dimension and divided
into batches, and data randomly distributed across batches (i.i.d. batches). The table compares the
performance of the CV, OIPS, and VIPS methods in both settings, with the Exact GP as benchmark.

Metrics Exact GP CV OIPS VIPS CV i.d.d. OIPS i.d.d. VIPS i.d.d.

RMSE 00(.00) .09(.03) 5.98(1.28) .01(.01) .01(.01) .04(.01) .01(.01)
NLPD -5.64(.01) .98(1.5) 3.56(.4) -4.18(.14) -3.27(.11) -1.44(.16) -3.68(.21)
M N/A 35(3) 21(1) 127(5) 61(2) 33(1) 66(6)

Figure 10: “Naval” UCI dataset Pareto curve of size and performance for different hyperparameters
when data is randomly distributed across batches (i.i.d. batches), for Conditional Variance (range:
[0.001, 0.2]), OIPS (range: [0.8, 0.999]) and VIPS (ours, range: [0.03, 4.0]). The plot shows the
mean 5-fold test RMSE on the last batch of the task. The shaded region represents the mean 5-fold
test RMSE within 10% of the full-batch method. The stars highlight the operating point for each
method, with their values listed above.

F.4 Magnetic anomalies

The data used in this experiment is obtained from Solin et al. [39] and is available on GitHub. The
objective of this task is to detect local anomalies in the Earth’s magnetic field online, caused by
the presence of bedrock and magnetic materials in indoor building structures. For this purpose, a
small robot with a 3-axis magnetometer moves around an indoor space of approximately 6 meters
by 6 meters and measures the magnetic field strength. Out of the 9 available trajectories, we
use trajectories 1, 2, 3, 4, and 5 (with n = 8875, 9105, 9404, 7332, 8313, respectively) for the
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Figure 9: Plot of the mean number of inducing points, RMSE and NLPD over five 80%-train 20%-test
random splits versus the number of data points, denoted by N, observed up to and including the
current batch for different inducing point selection methods. The corresponding dataset is indicated
at the left of the graph and each column corresponds to one of the metrics. The exact GP has access
to all data up to and including the current batch.
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experiments. Specifically, we use trajectories 1, 2, 4 and 5 for the first experiment and trajectory 3 for
the second.

We use the experimental setup proposed in Chang et al. [4]. The proposed model applies a GP prior
to magnetic field strength, given by GP

⇣
0,�2

0 + 
Mat
�2,` (x,x

0)
⌘

(in µT ), where the kernel consist
of a constant kernel and a Matérn-⌫/2 kernel. The model assumes the spatial domain is affected by
Gaussian noise with a variance �

2
n. The initial variance for the constant kernel is set to 500, and the

Gaussian likelihood is initialised with a noise variance of 0.1.

Our aim for this experiment is to test the optimal hyperparameters identified in the previous section
for each adaptive method in a real-world setting. The setting simulates an ever-expanding domain,
where the robot is not confined to a predefined area. In this context, the model continuously learns
new parts of the space. Therefore, a method that works will need to sufficiently expand the model’s
size to accommodate new data without letting it grow uncontrollably.

In the first experiment, we aim to sequentially learn the paths taken by the robot using trajectories 1,
2, 4 and 5, i.e. an entire path will correspond to one batch. We investigate whether the method can
adapt to changes in the environment and adjust the number of inducing points accordingly. During
this process, we concurrently learn the hyperparameters �

2
0 , �2, `, and �

2
n. As a test set, we use

trajectory 3. Figures 11, 13, 15 show the temporally updating field estimate over batches alongside
the corresponding path travelled in each batch.

In the second experiment, we focus on the streaming learning of trajectory 3. The trajectory is split
into 20 batches. We compare the number of inducing points selected and the estimate obtained by the
three methods, Conditional Variance (CV), OIPS and VIPS (ours). Detailed learning of the path for
each method is shown in figures 12, 14 and 16. As a test set, we use trajectories 1, 2, 4, and 5. We
observed how Conditional Variance chooses an excessive number of inducing points, indicating that
its hyperparameter needs tuning, which is impractical in the continual learning setting. OIPS selects
the fewest inducing points, concentrating them at the start of the path and becoming sparse towards
the end. However, its estimates differ significantly from those in the previous experiment, indicating
that it fails to add sufficient capacity to capture changes in the environment. VIPS provides the
middle ground, selecting a moderate number of inducing points that effectively balance accuracy and
memory size. This choice allows VIPS to maintain a robust estimate of the magnetic field obtained
when compared to learning by paths without excessive computational overhead.

In the last two sections, when compared to both alternative approaches, VIPS achieved the best
trade-off between performance and model size without requiring hyperparameter tuning, making it
the preferred method among the three.

After path #1 After path #2 After path #4 After path #5

Figure 11: VIPS (Ours). A small robot with wheels is used to perform sequential estimation of
magnetic field anomalies. We show the estimate of the magnitude field learned sequentially after
travelling the path shown in a dotted line. The degree of transparency represents the marginal
variance.
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Batch 1, M = 5. Batch 5, M = 35. Batch 10, M = 80. Batch 15, M = 133. Batch 20, M = 174.

Figure 12: VIPS (Ours). A small robot with wheels is used to perform sequential estimation of
magnetic field anomalies. Data is collected continuously as the robot moves along the path. The
inducing points are represented as black dots and the line represents the travelled part of the path. We
indicate the batch number and number of inducing points (M). Final RMSE = 7.59.

After path #1 After path #2 After path #4 After path #5

Figure 13: Conditional Variance. A small robot with wheels is used to perform sequential estimation
of magnetic field anomalies. We show the estimate of the magnitude field learned sequentially
after travelling the path shown in a dotted line. The degree of transparency represents the marginal
variance.

Batch 1, M = 12. Batch 5, M = 597. Batch 10, M = 2206. Batch 15, M = 4071. Batch 20, M = 5000.

Figure 14: Conditional Variance. A small robot with wheels is used to perform sequential estimation
of magnetic field anomalies. Data is collected continuously as the robot moves along the path. The
inducing points are represented as black dots and the line represents the travelled part of the path. We
indicate the batch number and number of inducing points (M). Final RMSE = 10.66.

After path #1 After path #2 After path #4 After path #5

Figure 15: OIPS. A small robot with wheels is used to perform sequential estimation of magnetic
field anomalies. We show the estimate of the magnitude field learned sequentially after travelling the
path shown in a dotted line. The degree of transparency represents the marginal variance.

Batch 1, M = 15. Batch 5, , M = 43. Batch 10, M = 52. Batch 15, M = 63. Batch 20, M = 71.

Figure 16: OIPS. A small robot with wheels is used to perform sequential estimation of magnetic
field anomalies. Data is collected continuously as the robot moves along the path. The inducing
points are represented as black dots and the line represents the travelled part of the path. We indicate
the batch number and number of inducing points (M). Final RMSE = 9.81.
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G Further derivations and implementation details

G.1 Derivation of L⇤

Recall that
L⇤ = logN

�
ŷ; 0 ,Kf̂ f̂ + ⌃ŷ

�
+�a, (23)

with Kf̂ f̂ =


K↵ Kfa

Kaf Kaa

�
.

The first term can be lower bounded using Jensen’s inequality as,
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where Kf̂bK
�1
bbKbf̂ is the Nyström approximation of Kf̂ f̂ . The trace will be small when b =

{f(xnew,a)} and can be simplified as follows:
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which recovers the expression for bL��a .

G.2 Online Upper Bound Implementation

In this section, we provide efficient forms for practical implementation of the online upper bound bU .
As the second term is constant we focus on the first term,

bU2 = � (N +Ma)

2
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��1
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This term is an upper bound for the first term of L⇤ = logN

�
ŷ; 0 ,Kf̂ f̂ + ⌃ŷ

�
+�a.

G.2.1 Determinant term

Letting Kbb = LbLT
b and using the matrix determinant lemma, we can rewrite the determinant term

as
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b . Note that,
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G.2.2 Quadratic term

Given the quadratic term,
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Letting b⌃ŷ = tI+ ⌃ŷ and by Woodbury’s formula, we obtain:
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Putting this back into the upper bound:
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ŷ ŷ+
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The upper bound for L⇤ is therefore
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