
From Space to Time: Enabling Adaptive Safety with
Learned Value Functions via Disturbance Recasting

Sander Tonkens† Nikhil Uday Shinde† Azra Begzadić†
Michael C. Yip Jorge Cortés Sylvia L. Herbert

University of California San Diego

https://stonkens.github.io/space2time

Abstract: The widespread deployment of autonomous systems in safety-critical
environments such as urban air mobility hinges on ensuring reliable, performant,
and safe operation under varying environmental conditions. One such approach,
value function-based safety filters, minimally modifies a nominal controller to en-
sure safety. Recent advances leverage offline learned value functions to scale these
safety filters to high-dimensional systems. However, these methods assume detailed
priors on all possible sources of model mismatch, in the form of disturbances in the
environment – information that is rarely available in real world settings. Even in
well-mapped environments like urban canyons or industrial sites, drones encounter
complex, spatially-varying disturbances arising from payload-drone interaction,
turbulent airflow, and other environmental factors. We introduce SPACE2TIME,
which enables safe and adaptive deployment of offline-learned safety filters under
unknown, spatially-varying disturbances. The key idea is to reparameterize spatial
variations in disturbance as temporal variations, enabling the use of precomputed
value functions during online operation. We validate SPACE2TIME on a quadcopter
through extensive simulations and hardware experiments, demonstrating significant
improvement over baselines.

Keywords: Disturbance-aware safety, Reachability analysis, OOD Reliability

1 Introduction

Autonomous systems are increasingly deployed in safety-critical environments subject to variable
conditions, where ensuring reliable and safe operation is of paramount importance. For instance, a
drone operating in mapped environments such as urban canyons or shipyards must remain within a
known safe region despite complex, spatially-varying wind disturbances. Rather than designing a
bespoke performant, yet safe, controller for each task, a more modular approach uses a safety filter.
These filters monitor a nominal, high-performance controller in real-time and intervene minimially-
only when necessary to enforce guarantees without unduly compromising task performance [1].
Popular approaches for constructing such filters include Control Barrier Functions (CBFs) [2] and
Hamilton-Jacobi Reachability (HJR) analysis [3]. A recent line of work merges these two paradigms,
leveraging reachability-based value functions as barrier certificates to construct safety filters with
formal guarantees [4, 5, 6].

However, these methods face significant practical challenges. A primary limitation is their reliance
on an accurate, pre-specified model of the system’s dynamics and its operational domain-the set
of conditions, such as expected wind patterns, the system is designed to operate in. Second, each
method faces inherent hurdles: HJR analysis is limited by the curse of dimensionality, making it
intractable for high-dimensional systems, while the systematic synthesis of a valid CBF for general
nonlinear systems remains an open problem.

To overcome these practical limitations, learning-based approaches have gained prominence, seeking
to approximate safety value functions or barrier certificates directly from data [7, 8, 9]. However, these

† Equal contribution. Correspondance to stonkens@ucsd.edu, nshinde@ucsd.edu

Workshop on Safe and Robust Robot Learning for Operation in the Real World at CoRL 2025.

https://stonkens.github.io/space2time
stonkens@ucsd.edu
nshinde@ucsd.edu

Reparamerization

usafe

x, d, ḋ

Safety Filter

πnom

x, t, ḋ

CI

Value functions

Offline Online
SPACE2TIME

V, V̇ ,∇Vt 0

Figure 1: Conceptual overview of the SPACE2TIME framework. Offline, we learn a family of safety value
functions, each corresponding to a system evolving under a different time-varying disturbance profile. Online,
we reparameterize an estimate of the disturbance and its derivative into its temporal equivalent to query the
adaptive value function-based safety filter. SPACE2TIME ensures the system is realistic about the present (based
on the current disturbance) and pessimistic about the future (assuming the worst-case rate of change to persist).

learned approaches often assume a static operational domain that is known beforehand. This makes
them brittle when faced with environmental conditions that shift during and across deployments,
forcing a choice between unsafe behavior in the face of novelty or an overly conservative policy
designed for the worst case [10].

Offline learning of a value function for a safety filter relies on a joint system-environment model
that captures the true system’s runtime behavior. Such a model is infeasible in environments with
spatially varying disturbances, e.g., wind in urban canyons [11, 12], which are unknown a priori and
even differ across deployments. A compounding challenge arises because disturbance measurements
are typically obtained at a slower rate than control inputs, due to practical sensing and computational
constraints. However, this slower update rate means unmodeled spatial variation can cause significant
changes between consecutive measurements, leading to safety violations if ignored. Our insight is
that spatial variations in disturbance appear as temporal variations along a trajectory. By learning a
time-varying safety value function that explicitly accounts for disturbance evolution over time, we
implicitly capture spatial variations along trajectories, enabling their use as online safety filters. This
work takes a step towards bridging offline-learned value functions with online adaptation in evolving
operational domains. Our main contributions are:

• We introduce a safety value function formulation that is explicitly conditioned on a disturbance’s
temporal rate of change.

• We use this value function formulation to propose SPACE2TIME. Our approach reparameterizes
spatial variations as temporal variations in disturbance. This ensures safety in the presence of
unknown, spatially varying disturbances through the use of an adaptive safety filter that leverages
our offline-learned value functions.

• We validate SPACE2TIME on a quadcopter through extensive simulations and hardware experi-
ments demonstrating substantial improvements in safety compared to existing approaches without
significantly sacrificing performance.

2 Related Work

The past decade has seen major progress in safety filtering for robotic systems, particularly through
approaches grounded in HJR and CBFs. We highlight relevant approaches to our setting and point
readers to recent surveys that explore safety filters and their trade-offs [13, 14].

Learning-Based Approaches for Hamilton Jacobi Reachability analysis. HJR produces a value
function whose zero level set encodes the set of initial conditions from which a system may reach
a goal and/or avoid an obstacle despite worst-case disturbance [3]. Traditional approaches to solve
HJR rely on dynamic programming and therefore scale exponentially with the dimensionality of
the system. In recent years, learning-based approaches have vastly improved the scalability of HJR.
Reinforcement learning-based methods have been developed to estimate HJR value function using a
specific safety Bellman Equation [15], with success in many applications [8, 10]. Physics-informed
neural networks (PINNs) have also been employed in a self-supervised manner to approximate the

2

value function [7]; an extension of this work learns a parameterized version of the reachability value
function based on different disturbance bounds [16]. This approach inspires our work, as it can
provide safety across a range of operational domains, each with a different maximum disturbance
level. However, the prior work assumes that the disturbance bound is constant over space and time;
in an environment with spatially varying disturbances, this approach would not preserve safety.

Learning-Based Approaches for Control Barrier Functions. Safety is also frequently ensured
through the use of Control Barrier Functions (CBFs) [2]. When a CBF is available, synthesizing a safe
controller involves formulating an optimization-based safety filter that minimally adjusts potentially
unsafe control inputs and has been widely deployed in robotics [17, 18, 19]. The construction of
a valid CBF and feasibility of the safety filter remains a challenge [13]. Recently, learning-based
approaches have been introduced to obtain CBFs, but they often lack formal guarantees or rely on
restrictive assumptions [20, 9, 21, 22]. As an alternative, recent work has shown that CBFs can be
constructed directly using techniques from HJR [4].

3 Background

Consider a control- and disturbance-affine system of the form:

ẋ = f̃(x, u, d) = f(x) + g(x)u+ d, (1)

where x ∈ Rn is the state and u ∈ U ⊆ Rp is the control input. The state-dependent disturbance
d ∈ D ⊆ Rq is determined by a disturbance field w : X → D, such that at any state x, the
disturbance value is d = w(x). U and D are convex and compact sets. We consider a time
horizon [t, 0], where the initial time t ≤ 0. For each initial time t ≤ 0, we denote the sets of
admissible control and disturbance signals by U(t) := {u : [t, 0] → U | u is measurable} and
D(t) := {d : [t, 0] → D | d is measurable}. Throughout this work, we make the following
assumption about the dynamics f̃ .

Assumption 1 The function f̃ : Rn×U ×D → Rn is above bounded by Mf̃ and globally Lipschitz.

Under this assumption, given an initial time and state t and x, a control signal u and disturbance signal
d there exists a unique solution xu,d

x,t : [t, 0]→ Rn of the system with initial condition x(t) = x.

Hamilton-Jacobi Reachability (HJR) is a model-based optimal control framework that characterizes
the set of initial states from which a system can reach a target set and/or avoid a failure set [3]. Here,
we consider both the avoid problem and the reach-avoid problem. For both problems, we consider
a constraint function g : Rn → R describing the failure set F := {x ∈ Rn | g(x) ≤ 0}. Then, the
reward function associated with the avoid problem is:

rA(x, t,u,d) = min
τ∈[t,0]

g(xu,d
x,t (τ)). (2)

This encodes the minimum value of g attained by the trajectory over the time horizon. If this minimum
is smaller than 0, the trajectory entered the failure set. For the reach-avoid problem, additionally
consider a target function l : Rn → R describing the target set T := {x ∈ Rn | l(x) ≥ 0}. Then, the
reward function associated with the reach-avoid problem is:

rRA(x, t,u,d) = max
τ∈[t,0]

min{l(xu,d
x,t (τ)), min

s∈[t,τ]
g(xu,d

x,t (s))}. (3)

A trajectory has a positive reward if it reaches the target T at some time τ1, i.e., l(xu,d
x,t (τ1)) ≥ 0

while having stayed clear of the failure set F until that time τ1, i.e., g(xu,d
x,t (s)) ≥ 0 for all s ∈ [t, τ1].

HJR considers a game in which one player, here the control u, tries to maximize the reward, whereas
a second player, here the disturbance d, acts antagonistically and attempts to minimize the reward.
The value function of this game is defined as V (x, t) = mind∈D maxu∈U r(x, t,u,d). For the
avoid problem, the value function encodes the avoid tube A(F , t) := {x ∈ Rn | V (x, t) ≥ 0},
which is the set of states that can avoid the failure set for time t. Alternatively, the reach-avoid tube

3

RA(T ,F , t) := {x ∈ Rn | V (x, t) ≥ 0} represents the set of states from which the system is
guaranteed to safely reach the target while avoiding the failure set within time t. Appendix A and B
discuss how the reach and reach-avoid problems can be solved directly with dynamic programming
programming [3] and approximately with self-supervised learning [7].

Control Barrier Functions (CBFs) provide a framework to prevent a system from entering
the failure set. Typically, CBFs are used for control-affine systems without disturbances, i.e.,
ẋ = f(x) + g(x)u [2]. A continuously differentiable function h is a CBF if 1) we can represent a
given safe set C as the 0-superlevel set of h, and 2) there exists an extended class K function α such
that, for each x ∈ C, there exists u ∈ Rm satisfying ∇h(x)⊤(f(x) + g(x)u) + α(h(x)) ≥ 0. For
details on this formulation, see Appendix A.

If a Lipschitz continuous controller k : Rn → Rm, defined as u = k(x), satisfies the CBF constraint
for all x ∈ C, it can be used to ensure safety. Given any nominal control law unom : Rn → Rp that
may violate safety, CBFs allow for minimal correction using the following optimization problem:

u∗(x) = argmin
u
∥u− unom (x)∥22 subject to∇xh(x)⊤(f(x) + g(x)u) + α(h(x)) ≥ 0. (4)

As we consider control-affine dynamics, such optimization problems are quadratic programs, resulting
in a computationally efficient safety filter. The main challenge with CBFs is in finding a valid CBF.
To address this, CBFs can be constructed using HJR [4, 6], which incorporates finite time horizons,
control bounds, and disturbance bounds.

4 Problem Statement

We consider safety-filter synthesis for control- and disturbance-affine systems operating under
spatially varying disturbances. This disturbance field w(x) : X → Dmax is unknown, but its
magnitude is bounded by dmax ∈ Rq, i.e. Dmax = {d ∈ Rq | |d| ≤ dmax} and it is Lipschitz
continuous with a known constant Ld. Given a prescribed failure set F ⊂ X , our objective is to
design a safety filter that adapts to the spatially-varying disturbance, guarantees avoidance of F , and
admits an offline-learnable value function for formal safety certification. We consider the following
approaches that have been pursued in the literature for this problem formulation.

Constant Maximum Disturbance (Worst Case). Classical reachability-based formulations typically
assumes fixed control and disturbance sets U and D [3]. While control inputs are often (in practice)
spatially invariant across the environment, disturbances such as wind may vary more smoothly
over space. Based on the operational design domain, a maximum allowable disturbance set Dmax

is typically considered to account for worst-case conditions. However, naively assuming that the
disturbance can take any value within Dmax at all states might result in a very conservative value
function V (x, t,U ,Dmax), particularly if this maximum disturbance is localized in the state space.

Perfect Information (Oracle). An oracle value function would have perfect access to the complete
deterministic state-dependent disturbance fieldw(x) ∈ Dmax, and compute the optimal value function
with Doracle(x) = {w(x)}, to find Voracle = V (x, t,Doracle). In practice, however, the disturbance
field w(x) is unknown prior to deployment making it unsuitable for offline learning. Pretraining for
every possible spatially-varying disturbance landscape is intractable.

Parameterizing the Pretrained Value Function by Constant Disturbance Sets (Naive). An
alternative is to pretrain a value function for a range of potential maximum disturbances that are
constant across space, i.e., an ensemble of K value functions, where each member k corresponds to a
constant disturbance bound set Dk satisfying D1 ⊆ · · · ⊆ DK ⊆ Dmax. This yields a family of value
functions V1(x, t), . . . , VK(x, t) that can be used to approximate the true disturbance-dependent
behavior [16, 23]. It can be used to naively switch between the K value functions based on the
locally observed disturbance online. In place of an ensemble, one could also learn a single-value
function directly parameterized by the disturbance bound. However, each value function assumes
that the current disturbance bound will remain constant over space and time. In spatially-varying
environments it therefore does not guarantee safety, which can induce safety-critical failures.

4

Fine-tuning the Value Function Online. In contrast, for low-dimensional systems, [24, 25] propose
iteratively collecting data to estimate (using Gaussian Processes [26]) and update the spatially
varying disturbance set D(x) and compute the corresponding value function with HJR using dynamic
programming (DP). It is therefore limited to low-dimensional systems, where DP is tractable. This
approach, however, is not suitable for high-dimensional systems for which value functions are
typically learned, as training (or finetuning) neural networks cannot occur in the loop.

Given the limitations of each approach described above, there is a need to formulate a value function
that is amenable to offline learning, but can be used in an adaptive manner online in the face of
changing disturbances while maintaining safety. This is the problem tackled in this paper.

5 From Space to Time: Time-Varying Disturbances for Adaptive Safety

5.1 Offline Safety Value Function Learning

t

d d

x

Figure 2: Change in disturbance bounds over state
x is encoded as change in bounds over time t. The
disturbance bounds increase towards the red region
in the left image. This is encoded as a temporal
disturbance increase shown in the plot on the right.

Our key insight is that changes in disturbance bounds
over space can be encoded as changes in disturbance
bounds over time as the system moves through the
environment as shown in Fig. 2. Typically, the oper-
ational domain is specified by both a maximum dis-
turbance magnitude and a bound on the disturbance’s
maximum rate of change over space, specified by
the disturbance Lipschitz constant Ld. For offline
learning, we reformulate this spatial variation as a
disturbance that grows linearly with time, along the
system’s trajectory. Specifically, the disturbance grows at a rate bounded by ḋmax = LdMf̃ , where
Mf̃ bounds the system dynamics f̃ . By assuming these time-varying dynamics, where disturbances
increase over time, we obtain robustness to spatially varying disturbances encountered along the
trajectory. For notational simplicity, we first consider a one-dimensional disturbance, i.e., d : X → R.
Given a rate of change of a disturbance ḋ, we define the associated time-varying disturbance set as

Dtv(ḋ, t) =
{
d ∈ R | |d| ≤ max{0, dmax − |t|ḋ}

}
. (5)

In practice, to reduce conservativeness and improve flexibility, we construct an ensemble of K value
functions, each associated with a constant disturbance rate ḋ1 ≤ · · · ≤ ḋK ≤ ḋmax (or a value
function parameterized by the disturbance rate). Intuitively, as the system moves forward in time,
the disturbance set Dtv gets larger. To capture this evolution, we augment the dynamics to explicitly
model the disturbance rate, resulting in

ż = f̂(z, u, η) =

[
ẋ

d̈

]
=

[
f(x) + g(x)u+ η

0

]
, (6)

where z = [x, ḋ] ∈ Rn × Ḋ, with Ḋ = {ḋ ∈ Rq | 0 ≤ ḋ ≤ ḋmax}, is the joint state and η ∈ Dtv(ḋ, t)
is the disturbance subject to time-varying bounds. This formulation is particularly relevant for
robotic systems operating in environments where disturbances vary smoothly over space as the robot
navigates through them (thus also smoothly over time), such as aerial vehicles encountering structured
wind fields, or ground robots traversing regions with gradual changes in terrain or material properties.

Our proposed approach requires introducing a target set T which is control-invariant under worst-case
disturbance, i.e., for all x ∈ T there exists a control input u ∈ U such that the system remains in T
for all disturbances d ∈ Dmax. Such a set can be learned a priori or expertly-chosen, see e.g., [10].
This set can be interpreted as a fallback region, such as a docking location or an open-sky area above
a city. Having designed a constraint function g describing the environment’s failure set F and a
target function l for the above-defined target set T , we can compute or learn the value function
V (z, t) associated with the reach-avoid game (3) under dynamics (6). In the one-dimensional case,
the disturbance magnitude d is determined by the time t and disturbance rate ḋ through the relation
d = dmax − |t|ḋ. Thus, for the resulting value function, its arguments implicitly capture the current
disturbance magnitude.

5

The disturbance-rate parameterized value function V (z, t) for the dynamics in (6) can be effectively
learned offline using the self-supervised methods outlined in Appendix B. The design of a safety filter
based on the proposed value function and its online application is presented in the subsequent section.

5.2 SPACE2TIME: Online Deployment of Temporally-Varying Value Functions

Algorithm 1 SPACE2TIME

Require: V (z, t), πnom(x)
1: Measure state x
2: Update d̄, Df̃d (Measured at a slower rate)

3: treturn ← min

{
dmax−d̄
Df̃d

}
, z ← [x,Df̃d]

4: V̇ ,∇zV, V ← NN(V (z, treturn))
5: u∗ ← CBF(z, V, ∂∂tV,∇zV, πnom(x))
6: Apply u∗ to system.

Our objective is designing a safety filter based
on the ensemble of reach-avoid value functions
for dynamics (6) to ensure safety online for
the system subject to the dynamics (1) with
spatially varying disturbances. We consider
a setting where disturbances d and its direc-
tional derivative with respect to the dynamics
Df̃d = ∇xd⊤f̃ can be estimated online1. Re-
call ḋmax = LdMf̃ , where Ld is the Lipschitz
constant associated with the disturbance field
w(x) and Mf̃ upper-bounds the dynamics. Then, |Df̃d| ≤ ḋmax. An overly cautious, yet verifiably
safe, safety filter could then consider the worst-case scenario at all times by querying the value
function at the maximum disturbance rate ḋmax at all states x and its associated estimated disturbance
d. While this ensures that safety is preserved regardless of the actual disturbance evolution, it is very
conservative and impedes the system’s nominal objectives.

Instead, we propose an adaptive strategy that leverages estimates of both the disturbance d and its
directional flow Df̃d. We store the past H estimated values for Df̃d, and select the maximum (per
dimension) value over the horizon H as our directional derivative sample, while using the most recent
estimate of d. Given estimates d̄ and Df̃d, the time to return to the control invariant set T is given by:

treturn = min

(
dmax − d̄
Df̃d

)
, (7)

and the value at the current state is given by V (z, treturn), with z = [x,Df̃d] Then, given a nominal
controller unom = πnom(x), we synthesize a control input u∗ using the VB-CBF-based safety filter [6]:

u∗(z, treturn) = argmin
u∈U
∥u− unom∥22

s.t.
∂

∂t
V (z, treturn) + min

η∈E
∇zV (z, treturn)

⊤f̂(z, u, η) ≥ −α(V (z, treturn)),
(8)

with E = Dtv(Df̃d, treturn). This safety filter ensures the system is realistic about the present (using
the current disturbance d̄) and pessimistic about the future (assuming the worst-case rate of change
to persist), which strongly reduces conservativeness while still providing a margin of safety in face
of varying disturbances. Algorithm 1 and Fig. 2 provide an overview of the overall SPACE2TIME
framework.

6 Experimental Results

We evaluate SPACE2TIME extensively in both simulation and hardware. Our experiments highlight
how our disturbance reparameterization improves safety and goal-reaching performance compared to
baselines that do not explicitly account for disturbance variations.

Learning Value Functions We learn value functions using Deepreach [7], a self-supervised PINN,
across a wide range of disturbances rates ḋ, for our method, and disturbance magnitudes |d| for
the baselines. Unlike the baselines, SPACE2TIME solves a reach-avoid problem with the additional
requirement that the reach set be control invariant. This requires formulating the problem as a
reach-set avoid-tube problem [6], which we find empirically easier to learn than the standard avoid
tube formulation (see Appendix C for training details and visualizations of the learned safe sets).

1In practice, the directional derivative is approximated through a finite difference approach, i.e. Df̃d ≈ ∆d
∆t

.

6

Worst case

DR naive
DR ours

Safe target set
Target set

(a) Simulation environment (b) Real-world setup with obstacles and a trajectory rollout

Figure 3: Fig. 3a illustrates the cityscape simulation environment along with simulation results. The blue color
gradient indicates increasing wind disturbance in the urban canyons. The drones in the figure illustrate the
performance of our method and the baselines when attempting to go to the goal region denoted by the dark gray
oval. Fig. 3b illustrates our real world experiment setup using crazyflies (with motion capture), mimicing Fig. 3a.
A single successful SPACE2TIMErollout is overlayed.

Simulation Experiments We validate our approach in a planar drone environment with state
[px, pz, vx, vz], where the drone navigates the x-z plane through a simulated cityscape, depicted in
Fig. 3a. This setup allows us to validate the proposed reparameterization in SPACE2TIME with ground
truth value functions computed via dynamic programming-based Hamilton Jacobi Reachability (HJR).
We conduct extensive evaluations of SPACE2TIME using both learned and HJR-computed value func-
tions. In our experiments we compare the following controllers: i) HJR Ours: SPACE2TIME with
an ensemble of HJR value functions with different fixed disturbance rates. ii) Deepreach (DR) Ours:
SPACE2TIME with a learned value function parameterized by disturbance rate. iii) HJR Naive: An
ensemble of HJR value functions each computed with different disturbance bounds. iv) HJR Naive
Worst-Case: HJR value function assuming the worst-case disturbances Dmax everywhere. v) DR
Naive: Learned value function parameterized by disturbance bounds [16].

In our simulated cityscape environment, spatial variations in wind intensity are modeled as an
exponential function of altitude, z, intensifying towards the bottom of an urban canyon. Disturbances
act on both position and velocity states in the dynamics. The parameters characterizing the wind are
randomized for every trajectory. The safe control-invariant reach set corresponds to a fly-over zone
above all buildings. This scenario reflects real-world inspection and delivery tasks, where drones must
traverse high-disturbance regions near structures while reaching multiple sequential goals. Additional
modeling details are in Appendix D.

All compared methods use a recency-based disturbance estimation strategy with H = 1, where they
receive disturbance measurements at a rate of 4Hz. The drone controller is run at a faster rate of 40Hz.
Results are summarized in Table 1. Our method consistently achieves lower safety violation rates and
better goal-reaching performance. The higher violation rate for DR Ours is largely due to inaccuracies
in the learned value function, with many violations occurring outside the wind-affected areas. Fig. 3a

Table 1: Comparison of our approach against baselines using HJR and Deepreach based value functions. Metrics
are generated over 50 trajectories across randomized wind fields, with 10 goals and 1000 control steps each.
% Safety Violations indicates the % of failed trajectories, Mean Goal Distance reflects the average minimum
distance to each goal, and Mean Trajectory Length refers to the mean trajectory length before failure with a max
of 1000. The table highlights how SPACE2TIME provides the best balance between safety and performance.

Approach % Safety Violations ↓ Mean Goal Distance ↓ Mean Trajectory Length ↑
HJR Naive 96% 1.09 415
HJR Naive Worstcase 0% 1.95 1000
DeepReach Naive 90% 1.19 472
DeepReach Ours 34% 1.02 781
HJR Ours 2% 0.78 993

7

4 3 2 1 0 1 2 3 4
Horizontal Position (m)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Hardware trajectories: DR Naive
Exp 1
Exp 2
Exp 3
Exp 4

4 3 2 1 0 1 2 3 4
Horizontal Position (m)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Hardware trajectories: DR Ours
Exp 1
Exp 2
Exp 3
Exp 4

Figure 4: Trajectories of real-world hardware experiments, comparing Naive (left) and Ours (right).
SPACE2TIMEsuccessfully accounts for the disturbance increase as we descend the urban canyons. In con-
trast, Naive fails to adequately adapt, leading to a crash in 4 out of 5 rollouts.

also shows representative trajectories comparing DR ours (green drone) to DR Naive (red drone) and
HJR Worst Case baseline (blue drone). HJR Worst-Case is overly conservative and often never leaves
the initial safe region; DR Naive fails to adapt to changing disturbances and crashes; in contrast, DR
Ours safely navigates to the goal. Traces of all simulated trajectories are visualized in Fig. 9 and
Fig. 10 in Section D of the Appendix.

Hardware Experiments: We validate our approach on hardware using Crazyflie drones and an
OptiTrack motion capture system. To capture realistic drone behavior, we use a more complex 6D
drone model with state [px, vx, θx, ωx, pz, vz] where θx is the pitch and ωx is the angular velocity
and control inputs of desired pitch and thrust. Due to the high dimensionality (8D including
parametric dimensions), traditional HJR methods (and therefore online fine-tuning methods [24, 25]
are computationally intractable, motivating the need for learned value functions which capture
changes in disturbance bounds.

We recreate the simulated urban environment using stacked boxes, as shown in Fig. 3b. Given the
Crazyflies’ sensitivity to non-uniform wind gusts, we instead spoofed disturbances for our hardware
experiments by adding them directly to the state observations from the OptiTrack. We run the drone
with a control rate of 50Hz, while disturbance sampling is run at 5Hz. We compare SPACE2TIME
(DR Ours) against DR Naive [16] which naively switches between fixed disturbance bounds. As in
simulation, our method preserves safety over 5 trials, while the naively switching baseline crashes
(4/5 trials) as the drone fails to adequately adapt to the changing disturbances, see Fig. 4. The
results underscore the necessity of our approach for safe navigation in real-world disturbance varying
environments. Appendix D provides further details on the experimental setup and results.

7 Conclusion

This paper introduced SPACE2TIME, a novel framework for enabling learning value functions offline
for deployment in environments with unknown, spatially-varying disturbances. Specifically, by
reparameterizing spatial disturbances into temporally varying disturbances, our method leverages the
scalability of offline learning, while providing the adaptability required for real-world operation. We
validated SPACE2TIME through extensive simulations and real-world experiments, demonstrating
improved safety performance compared to baselines that do not explicitly account for changing distur-
bances in their value functions. Reducing conservativeness through tighter online learning integration
and improving robustness to model uncertainty are key directions to broaden the applicability of our
framework in more complex environments.

8

References
[1] K.-C. Hsu, H. Hu, and J. F. Fisac. The Safety Filter: A Unified View of Safety-Critical Control

in Autonomous Systems. Annu. Rev. Control. Robotics Auton. Syst., 7, 2023.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control Barrier Function based quadratic
programs for safety critical systems. In IEEE Transactions on Automatic Control, volume 62,
pages 3861–3876, 2017.

[3] S. Bansal, M. Chen, S. L. Herbert, and C. J. Tomlin. Hamilton-Jacobi reachability: A brief
overview and recent advances. In Proc. IEEE Conf. on Decision and Control, 2017.

[4] J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert. Robust Control Barrier-Value
Functions for safety-critical control. In Proc. IEEE Conf. on Decision and Control, 2021.

[5] S. Tonkens and S. Herbert. Refining Control Barrier Functions through Hamilton-Jacobi
reachability. In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2022.

[6] A. Begzadić, N. Shinde, S. Tonkens, D. Hirsch, K. Ugalde, M. C. Yip, J. Cortés, and S. Herbert.
Back to Base: Towards Hands-Off Learning via Safe Resets with Reach-Avoid Safety Filters.
ArXiv, abs/2501.02620, 2025.

[7] S. Bansal and C. J. Tomlin. DeepReach: A Deep Learning Approach to High-Dimensional
Reachability. In Proc. IEEE Conf. on Robotics and Automation, 2021.

[8] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac. Safety and Liveness Guarantees
through Reach-Avoid Reinforcement Learning. In Robotics: Science and Systems, 2021.

[9] O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge, N. Roy, and C. Fan. How to Train
Your Neural Control Barrier Function: Learning Safety Filters for Complex Input-Constrained
Systems. In Proc. IEEE Conf. on Robotics and Automation, 2024.

[10] D. P. Nguyen, K.-C. Hsu, W. Yu, J. Tan, and J. F. Fisac. Gameplay Filters: Robust Zero-Shot
Safety through Adversarial Imagination. In Conf. on Robot Learning, 2024.

[11] L. Hunter, I. Watson, and G. Johnson. Modelling air flow regimes in urban canyons. Energy
and Buildings, 15(3):315–324, 1990.

[12] F. Achermann, N. R. J. Lawrance, R. Ranftl, A. Dosovitskiy, J. J. Chung, and R. Siegwart.
Learning to predict the wind for safe aerial vehicle planning. In Proc. IEEE Conf. on Robotics
and Automation, 2019.

[13] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe
Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning. Annual
Review of Control, Robotics, and Autonomous Systems, 5:411–444, 2022.

[14] K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tomlin, A. Ames, and M. N.
Zeilinger. Data-Driven Safety Filters: Hamilton-Jacobi Reachability, Control Barrier Functions,
and Predictive Methods for Uncertain Systems. IEEE Control Systems, 43:137–177, 2023.

[15] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin. Bridging Hamilton-
Jacobi safety analysis and reinforcement learning. In Proc. IEEE Conf. on Robotics and
Automation, 2019.

[16] J. Borquez, K. Nakamura, and S. Bansal. Parameter-Conditioned Reachable Sets for Updating
Safety Assurances Online. In Proc. IEEE Conf. on Robotics and Automation, 2022.

[17] M. Tayal and S. N. Y. Kolathaya. Control Barrier Functions in Dynamic UAVs for Kinematic
Obstacle Avoidance: A Collision Cone Approach. In American Control Conference, 2023.

9

[18] M. Yu, C. Yu, M.-M. Naddaf-Sh, D. Upadhyay, S. Gao, and C. Fan. Efficient Motion Planning
for Manipulators with Control Barrier Function-Induced Neural Controller. In Proc. IEEE Conf.
on Robotics and Automation, 2024.

[19] R. Grandia, A. J. Taylor, A. Ames, and M. Hutter. Multi-Layered Safety for Legged Robots via
Control Barrier Functions and Model Predictive Control. In Proc. IEEE Conf. on Robotics and
Automation, 2020.

[20] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni. Learning
Control Barrier Functions from Expert Demonstrations. In Proc. IEEE Conf. on Decision and
Control, 2020.

[21] M. Tayal, H. Zhang, P. Jagtap, A. Clark, and S. N. Y. Kolathaya. Learning a Formally Verified
Control Barrier Function in Stochastic Environment. In Proc. IEEE Conf. on Decision and
Control, 2024.

[22] L. Manda, S. Chen, and M. Fazlyab. Learning Performance-oriented Control Barrier Functions
Under Complex Safety Constraints and Limited Actuation. In Conf. on Robot Learning, 2025.

[23] H. J. Jeong, Z. Gong, S. Bansal, and S. L. Herbert. Parameterized Fast and Safe Tracking
(FaSTrack) using Deepreach. In Learning for Dynamics & Control, 2024.

[24] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. H. Gillula, and C. J. Tomlin.
A general safety framework for learning-based control in uncertain robotic systems. In IEEE
Transactions on Automatic Control, volume 64, pages 2737–2752, 2017.

[25] S. L. Herbert, J. J. Choi, S. Qazi, M. T. Gibson, K. Sreenath, and C. J. Tomlin. Scalable Learning
of Safety Guarantees for Autonomous Systems using Hamilton-Jacobi Reachability. In Proc.
IEEE Conf. on Robotics and Automation, 2021.

[26] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press,
Cambridge, 2006.

10

A Theoretical Background

A.1 Computing the Reachability Problem

Recall that Hamilton–Jacobi reachability (HJR) formulates the problem as a differential game between
two players: the control input u, which seeks to maximize the reward, and the disturbance d, which
acts adversarially to minimize it. Then, the value function of this game is defined as

V (x, t) = min
d∈D(t)

max
u∈U(t)

rRA(x, t,u,d) = min
d∈D(t)

max
u∈U(t)

max
τ∈[t,0]

min{l(xu,d
x,t (τ)), min

s∈[t,τ]
g(xu,d

x,t (s))}.

(9)
In general, solving the value function optimization problem in (9) is non-convex and therefore
challenging. However, using dynamic programming (backwards in time), the value function V is the
unique viscosity solution of the following Hamilton-Jacobi-Isaacs Variational Inequality (HJI-VI)

0 = min

{
g(x)− V (x, t),max

{
l(x)− V (x, t),

∂

∂t
V (x, t) +H(∇V (x, t), x)

}}
, (10)

with the Hamiltonian defined by H(λ, x) = max
u∈U

min
d∈D

λ⊤f(x, u, d) and terminal cost V (x, 0) =

min{l(x), g(x)}. The gradients of this function enable the computation of the optimal safety control
u∗(x, t) such that

u∗(x, t) = argmax
u∈U

min
d∈D
∇V (x, t)⊤f̃(x, u, d). (11)

Value functions can be computed effectively via dynamic programming in low-dimensional systems
by discretizing the state space to form a high-resolution grid [3]. However, the reliance on grid-based
discretization makes such methods scale exponentially with the system’s state dimension, making
these methods unsuitable for systems with more than 5− 6 state variables.

A.2 Blending Reachability Analysis with Control Barrier Functions

Constructing valid CBFs for complex systems with input bounds and disturbances is often challenging,
especially when the safe set is difficult to characterize analytically. By leveraging reachability analysis,
one can systematically synthesize CBF-like safety filters to ensure safety. For instance, HJR reach-
avoid problems, with value function hv, can be integrated with CBFs, leading to the following
definition.

Definition A.1 (Viscosity-Based Control Barrier Function [6]) Consider a continuous function
hv : Rn × (−∞, 0] → R, and for each t ≤ 0, let Cv(t) = {x ∈ Rn | hv(x, t) ≥ 0}. Then hv
is a viscosity-based control barrier function (VB-CBF) for system (1) on Cv(·) if there exists an
extended class K function α such that for all t < 0 and all x ∈ Cv(t), the inequality ∂

∂thv(x, t) +

maxu∈U mind∈D∇xhv(x, t)⊤f̃(x, u, d) ≥ −α(hv(x, t)) holds in a viscosity sense.

Given a nominal control policy unom that may violate input or safety constraints, viscosity-based
control barrier functions enable minimal modification of the nominal input via a quadratic program.
The resulting minimally invasive safety filter not only ensures constraint satisfaction but also guides
the system away from unsafe regions and back toward the desired target set.

B Learning-Based Reachability Analysis

Several learning-based approaches have been developed to approximate the reach-avoid reachability
value function. Although our framework is compatible with a broad range of methods (including self-
supervised learning [7] and reinforcement learning [8]), we implement our method using Deepreach:

Self-Supervised Learning of Reachability Value Functions To avoid solving HJI-VI with
grid-based discretization, we employ a Physics-Informed Neural Network (PINN) to learn the
value function used in minimally invasive safety filters. In particular, we leverage the DeepReach
framework to approximate the safety value function by employing a sinusoidal deep neural network

11

architecture [7]. Consequently, the computational and memory demands of training depend on the
intrinsic complexity of the value-function approximation rather than on the grid resolution. For a
reach-avoid problem, the loss function L used for training DeepReach is given by

L(θ) = Ez,t

[∥∥∥∥∥min

{
g(x)− Vθ(z, t),max

{
l(x)− Vθ(z, t),

∂Vθ
∂t

+H(∇zVθ, z)
}}∥∥∥∥∥

]
, (12)

where Vθ(z, t) = min{l(x), g(x)} − t · NNθ(z, t), with z = [x, p] the joint state, x the model state
and p the parameterized state, which are discussed in more detail in Appendix D.

The loss function (12) involves nested min and max operations; These operations induce non-smooth
behavior in the loss function This poses a challenge for neural networks, as learning relies on
backpropagation and smooth gradient flow to update the model parameters effectively. Moreover, the
smoothness of the learned value function is critical, as our safety filter relies directly on the gradient
of the value function to ensure safe control inputs (motivating [7]’s use of sinusoidal activation
functions, which we also employ).

To improve the learning process, we leverage a key observation relevant to our application; The
target set characterizing the reach-avoid tube problem is control invariant. That is, once the drone
reaches the target set, it can remain within this set and maintain safety under any level of disturbances.
This property allows reformulating the learning objective by shifting the focus from learning a
value function to reach a target while avoiding unsafe regions over time, to instead learning or
defining a control-invariant set and learning a value function to avoid unsafe regions over time, while
only implictly encoding the reaching of the target in the boundary condition. Hence, the modified
reach-avoid control-invariant loss function for DeepReach is given by

L(θ) = Ez,t
[∥∥∥∥min

{
g(x)− Vθ(z, t),

∂Vθ
∂t

+H(∇zVθ, z)
}∥∥∥∥] , (13)

where Vθ(z, t) = min{l(x), g(x)} − t · NNθ(z, t), like before. We empirically observe smoother
gradients and a better-learned solution employing (13).

C DeepReach Training Details

To evaluate our method and relevant baselines, we adopt a modified, parameterized version of
DeepReach (DR) to learn the value function under different environmental conditions.

For the DR Naive baseline, the parameterized inputs correspond to the disturbance magnitude (applied
to position and velocity in x and z directions in the 4D model and only to the velocity components in
the x and z directions in the 6D model).

For DR ours, the parameterized inputs correspond to the disturbance rate, which defines how the
disturbance magnitude varies with the environment. This includes disturbance rates over both position
and velocity disturbance magnitudes in the x and z directions in the 4D model and disturbance rates
for the velocity disturbance magnitude in the x and z directions in the 6D model.

Parameterized Value Function Using DeepReach. To incorporate these parameters, we modify DR
following the approach in [16] to account for the environmental conditions, such as disturbance bounds
or rates, as part of the input space. We augment the system with the disturbance rate ḋ as in (6) and
compute the backward reachable tube for the resulting parameterized system using DR. Accordingly,
the neural network takes as input the state z = [x, ḋ] and time t, and outputs the corresponding
value function Vθ(z, t), where θ denotes the network parameters. For the baselines we consider the
joint state z = [x, d], with d the disturbance magnitude. We generate training inputs using uniform
sampling over both the state and parameter dimensions, covering the desired range of environmental
conditions. The model is trained with default Deepreach settings, most importantly a batch size of 65k
states, over 100k steps with a learning rate η = 2e−5. It uses the default parameters of the Deepreach
repository https://github.com/smlbansal/deepreach/tree/public_release. For the 4D
simulation model, we use (12) for the loss, which had adequate performance for this setting. However,

12

https://github.com/smlbansal/deepreach/tree/public_release

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Low disturbance rate regime

V = 0 for varying disturbance levels

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Medium disturbance rate regime

V = 0 for varying disturbance levels

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

High disturbance rate regime

V = 0 for varying disturbance levels

Figure 5: The 0-level set of the learned value function for a fixed disturbance rate ḋ for increasing levels (light
to dark blue) of disturbance d. Left-to-right visualizes a low fixed disturbance rate, a medium disturbance rate,
and a high disturbance rate respectively. This is evaluated for the vx = 0, vz = 0 slice. ḋ is encodes through the
parameterized state, whereas d is encoded through the time slice of the value function with t = (dmax − d)/ḋ

for the 6D hardware experiments, we adopt the reach-avoid control-invariant loss (13) which leads to
a better solution.

Training Challenges. For the DR baselines, we initially aimed to learn a time-invariant always-avoid
value function for the environment with varying maximum disturbance bounds. However, due to
convergence difficulties, this approach did not yield a sufficiently performant solution. To ensure a
fair comparison, we instead trained DR naive on a reach-avoid formulation toward the same target set
as our method, while instead parameterizing over the disturbance bounds. This formulation enabled
successful training and produced reliable value functions. During deployment, we evaluated the value
function solely at the final time point, effectively considering an avoid-only value function, which
allowed us to construct a time-invariant, minimally invasive safety filter.

Interpreting learned value functions Figures 5 and 6 visualize the 0-level sets of the learned value
functions in the considered environment. Specifically, the left, center, and right figures in Fig. 5
showcase a varying disturbance magnitude level (from light blue to dark blue) for fixed low, medium
and high disturbance rates. This showcases that even for high disturbance magnitudes as long as the
disturbance rate is small (left) the safe region is relatively large, while for a high disturbance rates the
safe region is much smaller (right).

Next, the left, center, and right figures in Fig. 6 showcase a varying disturbance rate (from light blue
to dark blue) for fixed low, medium, and high disturbance magnitudes. This figures showcases that as
long as the current disturbance magnitude is small (left) the safe region is relatively large even for
high disturbance rates, while for high current disturbance magnitudes (right) the safe region is only
slightly larger than the control invariant set (right).

D Experimental Details

D.1 Simulation Experiments

We consider a 4D drone dynamics model given byṗxṗzv̇x
v̇z

 =

 vx + d1
vz + d2
gu1 + d3
u2 − g + d4

 , (14)

where the control input is denoted by [u1, u2]
⊤ and the state vector is given by [px, pz, vy, vz]

⊤,
with py and pz denoting the position of drone, and vx and vz representing the corresponding velocity
components2. The disturbances d1, d2, d3 and d4 represent wind, and g is gravity. We choose this

2In the main body of the work we consider the state [x, z, ẋ, ż] which overloads the notation on xtherefore
consider position p and velocity v with subscripts for its components

13

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Low disturbance regime

V = 0 for varying disturbance rates

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

Medium disturbance regime

V = 0 for varying disturbance rates

4 2 0 2 4
Horizontal Position (m)

0.0

0.5

1.0

1.5

2.0

2.5

Ve
rt

ic
al

 P
os

iti
on

 (m
)

High disturbance regime

V = 0 for varying disturbance rates

Figure 6: The 0-level set of the learned value function for a fixed disturbance level d for increasing (light to dark
blue) disturbance rates ḋ. Left-to-right visualizes a low fixed disturbance level, a medium disturbance level, and
a high disturbance level respectively. This is evaluated for the vx = 0, vz = 0 slice. ḋ is encodes through the
parameterized state, whereas d is encoded through the time slice of the value function with t = (dmax − d)/ḋ.

low-dimensional model to highlight the performance of SPACE2TIME for a ground truth value function
using HJR (i.e. without the approximation errors inherent in learned approaches). Moreover, it allows
us to demonstrate that our method generalizes across various strategies for computing the value
function. While wind typically only affects the velocity components of the dynamics, we include the
positional disturbances to circumvent the CBF (and value function) from learning to cancel out the
disturbances directly in the control input (and thus effectively just reducing the control input bounds).
Instead, by considering positional disturbances, the problem is interesting (while remaining tractable
to solve with HJR methods).

Environment Setup. We design a city-like environment with multiple tall buildings that the drone
must avoid during its operation. The environment is defined in between px ∈ [−5, 5] and pz ∈
[−0.2, 2.8], and includes three rectangular buildings located at: (px, pz) ∈ [−3.1,−1.3]× [0, 1.5],
(px, pz) ∈ [0.0, 1.2] × [0.0, 1.0], and (px, pz) ∈ [2.0, 3.2] × [0.0, 2.0]. A spatial boundary restricts
the drone to remain within px ∈ [−4.0, 4.0] and pz ∈ [0.0, 2.5], and the velocity of the drone is
constrained within [−1.9, 1.9] for both vx and vy. A safe target region, representing a designated
flyover corridor above the cityscape, is defined as a rectangular set with (px, pz) ∈ [−2.5, 1.5] ×
[1.7, 2.3]. To render the set approximately control invariant, both vx and vz are restricted to the range
[−1.0, 1.0] within the target region. All obstacles and boundaries are indicated in red while the target
region is depicted in green in Figure 7. While our proposed method is capable of handling arbitrary
disturbance models, we evaluate it in a specific urban canyon scenario. In this setup, wind is modeled
as a deterministic disturbance with fixed direction in each state [1, -1, 1, -1]. The magnitude of the
wind is bounded and increases toward the bottom of the canyons, capturing the channeling effects of
urban geometry. The wind is shown in blue in Figure 7. The opacity of the blue corresponds to the
wind magnitude which increases as we descend (lower pz). We model the increase in wind magnitude
using an exponential function defined as

f(WL) = D ·W ·
(
1− exp

(
− r · (WL −Wmin)

(Wmax pos −Wmin)

))
(15)

where D denotes the disturbance factor. W is the maximum wind value magnitude. r is the
exponential ramp rate. WL is wind location which denotes the state of the robot where the wind is to
be evaluated.Wmin is the lower bound of the state range where the wind is defined. Wmax pos is the
position of the maximum wind value. This wind function defines the magnitude of the wind between
Wmin,Wmax and the wind magnitude is 0 outside these bounds. These wind functions are defined for
every state dimension and composed.

Value Function Learning. In simulation, we compare both the HJR and DR variants of our method
against corresponding HJR and DR implementations of a baseline approach. Below, we outline the
specific setup used for each method.

14

Figure 7: Environment setup used in our simulations. This environment shows a quadcopter flying in a 2D
px, pz slice where px is the horizontal axis and pz is the vertical axis. The quadcopter is denoted using a blue
oval, while a current goal is shown using a green oval. All the obstacles in the environment, that denote unsafe
regions for the quadcopter to enter, are shown in red. The safe control invariant target set that is used for our
method is the translucent rectangle in free space shown in green. The wind between the urban canyon is shown
in blue, where the darkness of the color corresponds to increased wind magnitude. For our experiments all wind
disturbance is in the positive x direction and negative z direction.

DR Ours. The DeepReach network is trained to approximate the reach-avoid value function
over a time horizon from 0.0 to 5.0 seconds. The training time is approximately 2 hours.

DR Naive. As discussed in Section B, due to challenges in obtaining a good performing value
function for the avoid-only problem, we train DR to solve a reach-avoid problem, over a time horizon
from 0.0 to 5.0 seconds. The training time is approximately 2 hours.

HJR Ours We compute the value function using dynamic programming via the JAX-based HJ
Reachability Toolbox, https://github.com/StanfordASL/hj_reachability. The extended
dynamics system, including disturbances, is of dimension 8 and therefore cannot be computed directly
using grid-based dynamic programming (limited to 4− 5 dimensions on a GPU, 6 dimensions on a
CPU, albeit taking hours to solve). Therefore, to account for varying environmental conditions, we
precompute 5 value functions corresponding to disturbance rate magnitudes evenly spaced between
zero and the maximum disturbance magnitude (with equivalent relative size for each disturbance
dimension). During runtime, the safety filter associated with the smallest precomputed disturbance
rate that exceeds the detected disturbance rate magnitude is selected and applied.

HJR Naive This approach uses the same dynamic programming framework as HJR Ours.
In this case, the five precomputed value functions correspond to different maximum disturbance
magnitudes, evenly spaced between zero and the upper bound. At runtime, the safety filter associated
with the smallest disturbance bound that exceeds the detected disturbance magnitude is selected for
execution.

HJR Worst Case This method computes a single safety value function using dynamic
programming, based on the worst-case disturbance bounds observed in the environment.

Experimental Results. We evaluate performance across 50 trajectories, each consisting of 10 random
goals, with the drone navigating through the city environment under the wind, as summarized in
Table 1 in the main paper. The drone is controlled using a naive nominal controller based on Linear
Quadratic Regulation (LQR), which does not account for obstacles in the environment. Goals are
generated in a cyclical manner every 100 time steps to ensure diversity in target locations while
remaining reachable by the nominal controller. Specifically, the first goal is placed above a randomly

15

https://github.com/StanfordASL/hj_reachability

selected urban canyon, the second is set near the bottom of that same canyon, and the third is placed
near the top. This three-step cycle is repeated to yield 10 goals per trajectory.

To test the robustness of our algorithm the wind field in the environment is randomized for every
10 goal trajectory. For each wind field, the exponential rate governing the wind magnitude profile
is sampled uniformly between 3 and 7, while the height at which the wind reaches its maximum
is selected randomly between 0.1 and one-third of the wind field height. We visualize all of the
trajectories pertaining to our method in Figure 9 and all the baseline trajectories in Figure 10. From
these figures we see the major impact of our method, where by properly reasoning about the potential
increase in spatial disturbances our method does not descend far in the urban canyons and thus
remains safe. Meanwhile, the naive baselines fail to reason about the spatially changing disturbances
and ends up crashing (therefore cutting their trajectories short). This is also visible by looking at the
density of the trajectory traces, where our ability to fly safely for longer is visualized through denser
trajectory traces compared to the baselines that fail. The HJR Worst Case baseline, while safe, ends
up being too conservative and is confined to a very small region of the environment.

Ablation Study We conduct an ablation study on our recency based approach by varying H =
(1, 2, 5, 10), see Appendix Section E for more details on how its employed. We observe that changing
the value of H does not have a large affect on performance. In the case of HJR Ours, larger H values
reduce safety violations without adversarially affecting performance. We observe a slight increase in
the crash rate for DR Ours, which we hypothesize is due to inaccuracies in the learned value function.
Namely, the increased conservativeness causes the drone to spend more time hovering higher in the
environment, which coincidentally corresponds to areas where our particular trained value function
has a larger error compared to the HJR value function (ground truth). For all other methods the
impact of H is minimal.

Figure 8: H ablation experiment This figure shows the result of the ablation experiment where H is varied
between (1, 2, 5, 10). Changing the value of H does not have a large affect on performance. In the case of
HJR ours larger H values reduce safety violations without adversarially affecting performance. The increase in
crash rate seen in DR Ours are attributed to inaccuracies in the learned value function. For all other methods the
impact of H is minimal.

16

(a) DR Ours (b) HJR Ours

Figure 9: Our Method Trajectories: Figures showing 100 of our trajectories moving between 15 random
goals through the city environment with randomized wind fields. Notice that our safety filter prevents a majority
of our trajectories from going too far down the urban canyon in response to increasing disturbance rate estimates.
This leads to safer trajectories that fail less often. Fig. 9a (on the left) shows these trajectories using our method
with a learned value function using Deepreach with the 4 dimensional quadcopter model. Fig. 9b shows these
trajectories using our method with value functions computed using HJR with the 4D quadcopter model.

(a) DR Naive (b) HJR Naive (c) HJR Worst Case

Figure 10: Baseline Trajectories: Figures showing 100 of our trajectories moving between 15 random goals
through the city environment with randomized wind fields. Fig. 10a (on the left) shows trajectories from the
naive parameterized baseline using a value function learned with deepreach. Fig. 10b (in the center) shows
trajectories from the naive parameterized baseline using a value function computed using HJR. Notice that these
trajectories fail to properly consider the unknown spatially varying disturbance and as a result go much further
down the canyon and end up crashing. Notice that compared to our method showin in Figures 9a and 9b the
trajectory tracks are less dense. This is as a majority of the naive trajectories are cut short by the drones crashing
whereas our method is able to continue for much longer. Finally Fig. 10c shows the trajectories when using the
HJR computed safety value function for the worst case disturbance bounds. Only considering the worst case
results in extremely conservative, non-performant trajectories that fail to move beyond a small set away from the
obstacles.

D.2 Hardware experiments

This hardware experiment setup discussion supplements the discussion in the main paper, Sec. 6
The hardware experiments are conducted in a planar x − z plane, with the following state range
px ∈ [−4.0, 4.0] and pz ∈ [0.0, 2.0]. On a quadcopter, unlike in simulation, we cannot set the
pitch rate θx directly. Instead, we consider a cascaded model, inspired by [25], with as inputs the
desired pitch rate Sx and the combined thrust T . The control inputs for the full system are Sx,
Sy, ψ̇, and T , with Sy the desired roll rate and ψ̇ the yaw rate. The nominal controller is an LQR-
based controller for xLQR = [px, vx, py, vy, pz, vz, ψ]. Then, Sx,nom = Kpx(px − px,goal) +Kvxvx,
Sy,nom = Kpy (py − py,goal) +Kvyvy , ψ̇nom = Kψ(ψ − 0), and Tnom = Kpz (pz − pz,goal) +Kvzvz .
Specifically, we set Kpx = Kpy = Kvx = Kvy = −0.2, Kψ = −20.0 and Kpz = Kvz = −10.0
As our experiments are planar the nominal model considered for our CBF is unom = [Sx,nom, T].
The nominal desired roll attitude and yaw rate are directly fed into the system, with the objective of

17

keeping py = py,goal = 0.0 throughout the trajectory and keeping ψ = 0. We consider a 6D drone
dynamics model given by


ṗx
v̇x
θ̇x
ω̇x
ṗz
v̇z

 =


vx

g tan(θx) + dx − cxvx
−d1θx + ωx
−d0θx + n0Sx

vz
kTTz − g + dz

 (16)

where the desired pitch is given by Sx and the state vector is given by [px, vx, θx, ωx, pz, vz]
⊤,

with px and pz denoting the position of drone, vx and vz representing the corresponding velocity
components, θx denothing pitch, and ωx denoting pitch rate. The disturbances dx and dz represent
wind, and g is gravity. Extending upon [25], we consider a drag term which we found to be necessary
to achieve a good model fit. The parameters cx, d1, d0, n0, kT that we used were fit using system-
identification on a 1 minute trajectory with random setpoints in [px, py, pz] updated every 6 seconds,
and are cx = 0.3, d1 = 4.5, d0 = 20.0, n0 = 18.0, and kT = 0.83.

Environment Setup. Our hardware experiments are conducted in an OptiTrack motion capture
arena for precise state estimation. To emulate the simulation conditions, we construct a mock urban
environment consisting of three tower-like obstacles built from stacked boxes. However, due to the
space constraints of the flight arena the boundary’s and each obstacle’s x positions are scaled by
a factor of 0.8 and z positions are scaled by a factor of 0.75. For the results shown in Figure 4,
we introduce artificial disturbances into the state measurements to mirror the simulated dynamics.
Specifically, we use the OptiTrack system to measure the drone’s state in real time, evaluate the
corresponding disturbance (using the same wind function employed in our simulation experiments),
and add the resulting values into the velocity components along the x and z axes, vx and vz . This
setup effectively spoofs the model to think it is perturbed by actual wind, thus allowing for consistent
(non-turbulent) airflow, while mimicking the wind profile of urban canyons. This setup enables
consistent comparison between our proposed method and baselines under equivalent disturbance
profiles. The fans are placed in the environment for conceptual visualization only. The reasons for
not using fans are two-fold: 1) The airflow profile of radial fans causes a very rapid increase in
wind disturbance at the edge of the fans, destabilizing the drone. 2) Measuring the wind disturbance
without an airflow sensor is difficult and relies on single-step error measurements from the Optitrack
system has too much variance to provide useful estimates. The drone platform itself has very limited
compute and is purely used for state estimation using its IMU (in combination with the external
Optitrack system) and sending input commands. A workstation (NVIDIA 4090 GPU, 64 GB RAM)
runs the safety filter on a workstation and broadcasts the low-level (desired pitch and combined
thrust) control commands. In addition a nominal controller ensures the yaw and roll of the quadcopter
remain near 0.

Value Function Training. We evaluate different strategies for learning value functions under varying
environmental conditions and disturbance models:

DR Ours. We train a reach-avoid value function for the 6D quadrotor model in the urban
environment, parameterized by the disturbance rate affecting the x and z velocity components, vx
and vz . The environment includes time-varying dynamics, with maximum disturbance magnitudes of
0.75 in both velocity directions, and maximum disturbance rate of 1.5 in both velocity directions.
The time horizon is from 0.0 to 5.0 seconds and the value function is learned using the reach-avoid
control-invariant loss (13).

DR Naive. As in the simulation experiments, directly learning an avoid-only safety value
function leads to poor convergence and suboptimal performance. Instead, we train a reach-avoid
value function under time-invariant dynamics with maximum disturbance magnitudes of 0.75 in both
velocity directions. The time horizon is from 0.0 to 5.0 seconds and the value function is learned
using the reach-avoid control-invariant loss (13).

18

Table 2: Comparison of DR Ours approach against DR Naive in hardware (over 5 trajectories). We define a
trajectory as a success if no crash occurs.

DR Naive DR Ours

Success Rate 20% 100%

Experimental results We evaluate DR Ours and DR Naive over 5 trajectories. We measure a
trajectory as successful if there is no collision, see Table 2 for details and Fig. 4 in the main paper for
the visualization of the observed state trajectories in hardware for the trajectories.

E SPACE2TIME: Implementation details

The SPACE2TIME algorithm (Alg. 1) is extensively detailed in the main paper and algorithm block
(Alg. 1). However, the implementation of Line 2 of Alg. 1 (determining the disturbance magnitude
and the disturbance magnitude rate) is nuanced, as explained below.

We consider a typical scenario where the control frequency is higher than the update rate ∆d of
the disturbance estimator. For each update to the current disturbance magnitude |d|, we estimate
the directional derivative as Df̃d = max

{
0,

|d|−|dprev|
∆d

}
, where |dprev| is the previous disturbance

magnitude estimate. We consider only the disturbance magnitude as we consider the setting in which
the maximum disturbance is bounded by a 0-centered hyperrectangle, i.e. Dmax = {d ∈ Rq | |d| ≤
dmax}.

Dealing with decreasing disturbances requires extra care. Our formulation does not capture decreasing
rates, instead conservatively assuming the disturbance magnitude stays constant. However, the value
function V (z, t) for state z = [x, ḋ = 0] only capture the constant but maximum disturbance
magnitude dmax. Thus we bound Df̃d = max{Df̃d,

dmax
tmax
}, where tmax is the horizon for which the

value function is learned or computed.

Next, we discuss the implementation of the horizon H , which determines d and Df̃d. Consider the
last disturbance measured is at time t −∆d ≤ td ≤ t, with t the current time, and we keep track
of the last H estimated disturbance rates. Then, we select the largest directional flow magnitude
Df̃d = maxh∈0,..,H−1Df̃d(td −∆dh) along with the most recently estimated disturbance, d =
|d(td)|. For the naive baseline approaches, we keep track of the last H estimated disturbances and
use the disturbance with the max magnitude, i.e. d = maxh∈0,..,H−1|d(td − h)|. Lastly we clip d̄ to
[0, dmax] and Df̃d to [0, ḋmax] respectively.

Lines 3-5 of Alg. 1 are explicit. They involve NN inference with gradients (for deepreach) or
interpolating the value function and its gradients over a grid (for HJR) and solving a quadratic
program (QP). The deepreach implementation can be run at up to 500Hz, but the HJR formulation is
limited to approx. 40Hz for our workstation (NVIDIA 4090 GPU, 64GB RAM).

19

	Introduction
	Related Work
	Background
	Problem Statement
	From Space to Time: Time-Varying Disturbances for Adaptive Safety
	Offline Safety Value Function Learning
	space2time: Online Deployment of Temporally-Varying Value Functions

	Experimental Results
	Conclusion
	Theoretical Background
	Computing the Reachability Problem
	Blending Reachability Analysis with Control Barrier Functions

	Learning-Based Reachability Analysis
	DeepReach Training Details
	Experimental Details
	Simulation Experiments
	Hardware experiments

	space2time: Implementation details

