
Counterfactual Sentence Generation with
Plug-and-Play Perturbation

Abstract—Generating counterfactual test-cases is an important
backbone for testing NLP models and making them as robust
and reliable as traditional software. In generating the test-cases, a
desired property is the ability to control the test-case generation
in a flexible manner to test for a large variety of failure cases
and to explain and repair them in a targeted manner. In this
direction, significant progress has been made in the prior works by
manually writing rules for generating controlled counterfactuals.
However, this approach requires heavy manual supervision and
lacks the flexibility to easily introduce new controls. Motivated
by the impressive flexibility of the plug-and-play approach of
PPLM, we propose bringing the framework of plug-and-play to
counterfactual test case generation task. We introduce CASPer, a
plug-and-play counterfactual generation framework to generate
test cases that satisfy goal attributes on demand. Our plug-and-
play model can steer the test case generation process given any
attribute model without requiring attribute-specific training of the
model. In experiments, we show that CASPer effectively generates
counterfactual text that follow the steering provided by an
attribute model while also being fluent, diverse and preserving the
original content. We also show that the generated counterfactuals
from CASPer can be used for augmenting the training data and
thereby fixing and making the test model more robust.

I. INTRODUCTION

Machine learning and deep learning-based decision making
has become part of today’s software. This creates the need to
ensure that machine learning and deep learning-based systems
are as trusted as traditional software with increased deployment
and wider-use. Traditional software is made dependable by
following rigorous practice like static analysis, testing, debug-
ging, verifying, and repairing throughout the development and
maintenance life-cycle. Similarly, for testing and repairing NLP
systems, we need inputs where models can fail and thereby
bringing out issues early on [4], [5]. For this, counterfactual
text data [6], [7] can be used. By treating counterfactual text as
test cases, we are asking: Would the model fail if the input text
was modified to have different characteristics? Furthermore,
with such counterfactual text, NLP systems can be repaired
by augmenting the training samples with these counterfactual
test cases and its labels [8]. Hence, enabling model repair by
generating counterfactual text is a crucial step in deploying
these NLP systems more widely.

An important aspect of model testing and repair is to ensure
that we can control these counterfactual test cases. The ability to
control will allow us to test for specific types of failures that are
important for the deployed model. Controlled counterfactuals
can also allow us to fix the failures by creating new training
samples in a focused manner for augmenting the existing
training dataset. Thus we require a model that can generate

counterfactuals that can be controlled by providing some goal
attributes.

In addition to controlling the test-cases, we would also like
to have flexibility about which goal attributes to apply and the
flexibility to chain together multiple goal attributes in order
to test how the deployed model behaves for a wide variety
of textual characteristics. Bringing such flexibility requires a
model that allows us to plug-and-play new attribute goals as
and when required.

In this work, we propose a framework for counterfactual test-
case generation also called Counterfactual Sentence Generation
with Plug-and-Play Perturbation or CASPer that provides
both control and flexibility during test case generation. To
achieve these, we build on the framework of Plug-and-Play
Language Models or PPLMs [9]. PPLMs have shown an
impressive ability to flexibly steer pre-trained language models
to generate attribute-conditioned text samples. However, PPLMs
cannot be directly used for perturbing an input text and
generating counterfactual samples. In this work, instead of
steering language models, we steer a text-to-text model that
is pre-trained to reconstruct its text inputs and we steer this
model in a plug-and-play manner. Thus, like PPLM, our model
is plug-and-play and is capable of generating counterfactuals
for any arbitrary goal attributes provided at sampling time. In
CASPer, we take BART [10] as our text-to-text reconstruction
model. To generate each counterfactual, we perturb the hidden
layer of the BART model similarly to PPLM to sample the
counterfactual text. In experiments, we apply our framework
to generate counterfactuals by providing named-entity and
sentiment-based goal attributes. We show that our simple plug-
and-play framework can generate counterfactuals that are fluent
and content-preserving while also attaining the goal attributes
and being effective as training samples for data-augmentation
to improve the performance of the deployed model. We show
counterfactual samples generated by CASPer and from existing
models in Table I.

The main contribution of the paper can be seen as three folds:
1) We propose, CASPer, the first plug-and-play counterfactual
generation model that achieves both control and flexibility.
2) Empirically, we show that our approach can generate
fluent counterfactuals that preserve the content and also attain
the goal attribute. 3) We also show the effectiveness of our
counterfactuals as new training data in making the test models
robust.

Inputs Token-based
[1]

Adversarial
[2]

Polyjuice
[3] Ours

Input Text: Me and a
group of friends rent
horrible videos to laugh
at them, trust me it has
lead to some horribly
spent money but
also some great laughs.

Initial State : No location
named-entity is present
in the text.

Steering Goal: To make
the sentence contain at
least one location
named-entity.

Me and a group
of friends rent

youtube videos to
laugh at them,

trust me it
has lead to

some horribly spent
money but also

some great laughs.

Me and a group of
friends rent music
videos to laugh at

them, trust me it has
lead to some horribly

spent money but
also some great laughs.

Me and a group of
friends rent horrible

videos to laugh
at them ,

trust me it
has lead to

some horribly spent
money but also

some flavorful laughs .

Me and a group
of my friends

rent horrible videos
to laugh at

them , trust me
it has lead

to some horribly
spent money but

also some flavorful
laughs.

and a group of friends
rent videos to laugh
at them, trust me it

has lead to some horribly
spent money but also

some chuckles.

Me have a group
of lads in

Brisbane and rent
horrible videos to
get great laughs

at. Some extremely
expensive videos but

some very great..

Me and a group
of Fairfax Bay
friends like to
rent videos for

laughs. Have spent
some money but
had great laughs
at their terrible

videos.

TABLE I
OVERVIEW OF GENERATIONS FROM THE EXISTING MODELS. WE PROVIDE A TEXT AS INPUT TO THE MODEL WITH A STEERING GOAL OF INTRODUCING A

location named-entity INTO THE GIVEN TEXT. WE SHOW THE OUTPUTS FROM A TOKEN-BASED SUBSTITUTION MODEL [1], FROM ADVERSARIAL
GENERATION [2], FROM POLYJUICE [3] AND FROM OUR PROPOSED MODEL. WE NOTE THAT TOKEN-BASED SUBSTITUTION METHOD, RELYING ON

TEMPLATE MATCHING, FAIL TO MATCH A TEMPLATE AND ARE THUS NOT ABLE TO ACHIEVE THE STEERING GOAL. ADVERSARIAL, DUE TO ITS
GRADIENT-DESCENT-BASED TOKEN-SUBSTITUTION, FAILS TO GENERATE PLAUSIBLE TEXT. POLYJUICE, DUE TO ITS TEMPLATE MATCHING, CHANGES VERY

INSIGNIFICANT PART OF THE TEXT. OUR MODEL, TAKING ADVANTAGE OF BART AUTO-ENCODER, EFFECTIVELY ACHIEVES THE STEERING GOAL.

Notation Description

x Input text
y Perturbed text
a Steering target
t Word index
Ht Hidden state before applying LM head
ot Generated logits for word index t
yt Generated token at index t
DKL KL divergence
e BERT’s encoding output

TABLE II
A SUMMARY OF NOTATIONS USED IN THE PAPER.

II. PRELIMINARIES

A. Counterfactual Text Generation for Model Testing and
Repair

Taking a text x from the input distribution and modifying it
x → y is known as the task of counterfactual text generation.
However, our goal of counterfactual text generation is to help
improve NLP models by using counterfactual text as test-cases
in various stages of the model deployment. For such models,
we would like to i) test for failures, ii) explain when those
failures occur and iii) fix the failures by augmenting the training
data with new training samples.

However, from the perspective of model repair, it is not
enough to simply obtain uncontrolled and random perturbations
x → y to generate these test-cases. We would like these test-
cases to be controlled x

control−−−−−→ y through a given control

input. By controlling the generated test cases, we would be
able to i) test for specific types of failures that are important
for the deployed model, ii) explain which controls lead to high
failure and iii) create targeted data sets for augmenting the
training set and fixing the models. Hence, our work lies at the
intersection of counterfactual text generation and controlled
text generation. In the following subsection, we provide an
overview of controlled text generation.

B. Controlled Text Generation

The goal of controlled text generation is to generate samples
x from a controlled distribution p(y|a) which is conditioned
on a specific attribute or control a. For example, the language
model p(y|a) may be used to generate product reviews condi-
tioned on a specific product category by setting a = kitchen.

1) Plug-and-Play Language Models: Plug-and-Play Lan-
guage Models (or simply PPLMs) provide an attractive solution
to model the class-conditional distribution pθ(y|a). Plug-and-
play models take a pre-trained unconditional generative model
pθ(y) and use the reward signal from the attribute model p(a|y)
to quickly (in ∼10 gradient steps) modify the unconditional
generative model pθ(y) to generate samples from the desired
distribution pθ(y|a).

To achieve this, PPLMs [9] take GPT-2 to be the uncondi-
tional generative model pθ(y). In GPT-2, the text generation is
done iteratively word-by-word. In each iteration t, one word is
predicted and is fed back to the Transformer to predict the next

word. This generation process can be described as follows:

Ht = Transformer(y<t),

ot = PredictionHead(Ht),

yt ∼ Categorical(ot).

where t is the word position in the text, Ht is the last hidden
layer before the prediction head and ot are the log-probabilities
of the words in the vocabulary used for sampling the next word
yt. We shall refer to this model as the unmodified language
model and denote the distribution that it models for the next
word prediction as p(yt|y<t).

To generate a text from pθ(y|a) at test time, PPLMs learn
a perturbation for the hidden state Ht of the unconditional
model pθ(y). This is achieved as follows:

Ht = Transformer(y<t),

ot = PredictionHead(Ht +∆Ht),

yt ∼ Categorical(ot).

where ∆Ht is the learned perturbation. We shall refer to
this model as the modified language model and denote
the distribution that it models for the next word prediction
as p̄(yt|y<t). The learning of the perturbation parameters
{∆H1, . . . ,∆HT } is driven by the following objective:

LPPLM = − log p(a|y)

−
T∑

t=1

DKL(p(yt|y<t)||p̄(yt|y<t)),

where the first term provides the learning signal to steer the
generation towards the desired class or attribute by trying to
maximize the log-probability of the desired attribute. The sec-
ond term tries to keep the generations close to the unmodified
language model to ensure that the text remains fluent and
plausible. We note that this learning process is done separately
each time we need to generate a new sample. However, the
learning of the perturbation parameters {∆H1, . . . ,∆HT } can
be done very quickly and it only takes about 10 gradient steps.
This property makes PPLMs flexible during generation.

PPLMs provide some useful properties that are lacking in
other conditional generative models that are not plug-and-play.
Plug-and-play models are flexible during sampling – meaning
that new class-conditioning can be easily introduced at test
time by simply replacing the attribute model p(a|y) with
a new attribute model for the new class without requiring
costly retraining with respect to the new attribute. Furthermore,
plug-and-play models can support conditioning on logical
clauses by simply composing multiple attribute models together.
For instance, to generate product review text conditioned
on a logical clause kitchen + electronics + not
electrical, the attribute model p(a|y) can be written as
the product of individual attribute models p(kitchen|y) ·
p(electronics|y) · [1 − p(electrical|y)] and easily
plugged into the PPLM framework [9]. Our model architecture
is shown in Figure 1.

III. METHOD: PLUG-AND-PLAY COUNTERFACTUAL
GENERATION FRAMEWORK

We now describe our proposed method to generate controlled
counterfactual text in a plug-and-play fashion. In particular,
given a text x and a control attribute a, we seek to generate a
controlled counterfactual y. That is, we seek to draw samples
from a distribution p(y|x,a) where the generated sample y
depends both on the input text x and the given control attribute
a. Hence, our task is different and more challenging than the
simple controlled text generation task where the generated
samples need to depend only on the control attribute a.

Our main idea is as follows: Similar to how PPLM [9] steers
a pretrained text generator p(y) → p(y|a) using the control
attribute a, we shall steer a pretrained text-to-text generator
p(y|x) → p(y|x,a). In PPLM [9], the base model p(y) is a
pretrained GPT-2, while in our model, the base model p(y|x)
is a pretrained BART model.

A BART model is a text-to-text model that takes as input
a text x and produces a reconstruction y of the input text.
The BART text-to-text framework consists of two modules:
A BERT encoder and a GPT-2 decoder. That is, the model
takes an input text and the BERT encoder first returns a text
representation e. This text representation is then given to the
GPT-2 decoder to reconstruct the input text word-by-word.
This can be summarized as follows:

e = BERT(x),
Ht = Transformer(y<t, e),

ot = PredictionHead(Ht),

yt ∼ Categorical(ot).

where t is the word position in the text, Ht is the last hidden
layer before the prediction head and ot are the log-probabilities
of the words in the vocabulary used for sampling the next word
yt. We will refer to this as the unmodified BART model having
the next word prediction distribution p(yt|y<t,x). To steer
the BART model, similarly to PPLM, we add a learnable
perturbation ∆Ht to the hidden states Ht of the unmodified
BART model. This can be summarized as follows:

e = BERT(x),
Ht = Transformer(y<t, e),

ot = PredictionHead(Ht +∆Ht),

yt ∼ Categorical(ot).

We will refer to this as the modified BART model hav-
ing the next word prediction distribution p̄(yt|y<t,x) Sim-
ilarly to PPLM, the learning of the perturbation parameters
{∆H1, . . . ,∆HT } is driven by the following objective:

LCASPer = − log p(a|y)

−
T∑

t=1

DKL(p(yt|y<t,x)||p̄(yt|y<t,x)).

where the first term provides the learning signal to steer
the counterfactuals towards the desired goal attribute by

Fig. 1. Model Architecture of CASPer. The BERT encoder (shown in orange) takes the input text and returns a representation of the input text as a set of
vectors. These are provided to the GPT-2 decoder for cross-attention. At each step of decoding, the decoder returns an output hidden state (shown as green
circle). To this, we add a perturbation matrix (shown as blue circle). The perturbed hidden state is then provided to the language model head to obtain the
logits over the vocabulary for sampling the next token. These logits are also provided to the attribute model for computing the loss for steering the generation.
The KL divergence between the perturbed logits and the unperturbed logits is also minimized to keep the semantic content of the generated text close to the
original input text.

trying to maximize the log-probability of the desired attribute.
The second term tries to keep the generations close to the
unmodified BART to ensure that the text remains similar in
content to the original input text and also remains fluent and
plausible. We note that this learning process is done separately
each time we need to generate a new sample. However, the
learning of the perturbation parameters {∆H1, . . . ,∆HT }
can be done very quickly and it only takes about 100 gradient
steps. This property makes CASPer a flexible way to generate
counterfactuals of a given text.

Discussion. Note that if we simply obtain samples from a pre-
trained BART model p(y|x), a sample y can be considered as a
counterfactual of the input text x. However, this sample would
be an almost exact reconstruction of the input text. Hence from
the perspective of model testing, this type of counterfactual
would not be much useful. However, by applying steering to
p(y|x) using a control attribute a, we are able to control in

what way we want to modify the input text to generate the
counterfactual. Hence, from the perspective of model testing,
this type of counterfactual would be useful because we can
test how a deployed model will behave if the distribution of
its inputs are perturbed in a certain way.

IV. RELATED WORK

The task of controlled text generation is well studied in
literature. [11] propose a model aims to generate plausible
sentences conditioned on representation vectors with semantic
structure. Another work [12] focuses on controlled text genera-
tion, however, unlike the previous work [11], the conditioning
need not be simply a class label. The conditioning can be a
data structure such as a table. The model is trained end-to-
end similarly to the objective of [11]. PPLM [9] combine a
pre-trained language model, similarly to [13] with an attribute
classifier to perform controlled language generation and use the
attribute classifier to steer the text generation process without

further training of any of the two models. [14], adopting a
similar direction, deal with story completion with a desired
sentiment. [15] is a model that controls text generation via 50
rigid control codes predetermined at training time. However all
these works, cannot be used for counterfactual text generation
as these are purely class-conditional generative models and
do not allow generation conditioned on a given input text.
Some earlier works, including and not limited to, [9], [16]–
[20] propose the idea of steering Language Models but these
also can not be directly used for counterfactual generation task.

To tackle text-to-text generation tasks dealing with transfer of
style or content, models such as [21]–[23] have been proposed.
However, these works are not plug-and-play and lack the use
of attribute model that can plugged flexibly at sampling time.
This task of generating controlled counterfactuals has been
attempted in prior works by relying on template-matching and
token-based substitutions to generate the test-cases [1], [3].
However, this can require significant human-involvement to
curate the templates and the dictionaries. Hence, it cannot
scale well when template and dictionaries need to be updated
frequently. The work [1] employs a tool Checklist which is
one of the attempts to come up with generalized perturbations.
For generation, Checklist uses a set of pre-defined templates,
lexicons, general-purpose perturbations, and context-aware
suggestions. To better evaluate the deployed models, some prior
works have relied on human designed test examples or either
using templates [1], [24]–[29]. Polyjuice [3], while seeking
to automate the process, still requires paired dataset in the
form of text and their perturbed versions for different control
codes. Therefore the mapping between text and perturbed
version is learned through supervision. Another parallel work
Tailor [30] generates perturbations designed for different control
codes by making use of a combination of semantic roles and
content keywords. And thereby require supervision for different
controls. In contrast, CASPer does not require any task-specific
or control-code specific training and can be used to work with
different control code models given input text. One work related
to ours has been tackled in [31] which generates text samples
given a text with a controlling that specify the scope of the
generated text. LEWIS attempts to generate text perturbations
by introducing blanks via template matching and filling in using
pretrained language models [32]. However, this relies on rule-
based template matching and human supervision to develop
such templates. CATGen [33] tries to generate attribute-specific
text but it requires training of sequence to sequence model
with pre-determined control codes for perturbation. Hence,
it lacks the flexibility of a plug-and-play approach like ours.
MiCE [34] proposes a technique to generate counterfactual
explanations which are human interpretable and user-centric.
It fine-tunes a T5 model to generate counterfactual text and
use them as explanations for the behavior of the deployed
models but lack feature-attributions. Another work [30] tries
to generate perturbation with semantic controls but rely on
specific templates derived using semantic roles and other
labeling heuristics. A work close to ours, GYC, the inference
of latent representation of the input text with respect to a GPT-

2 decoder is done directly via optimization. This approach
fails to achieve good inference for long and complex text [31].
To target model failure, thus implicitly acting as a form of
model testing, prior works have attempted the use of adversarial
approaches [35]–[37] stemming from the need to build robust
models via adversarial testing [2], [38]–[40]. However, these
are still limited to specific domains and generations are likely to
be not plausible to be seen in the input text [41] or may require
additional human effort [42]. Some works have attempted to
change style attributes automatically either with no control
or with predefined style templates [43], [44]. The notion of
counterfactuals [6], [45] and their use in model testing for
has also been applied towards testing in models that consume
structured inputs [46]–[48]

V. EXPERIMENTS

The goal of the experiments is to: 1) show that a flexible
plug-and-play framework can effectively achieve controlled
counterfactual text generation and the generated text is fluent,
plausible, diverse and follows the steering provided by the
attribute model. 2) We evaluate how well the generated
perturbations can act as data-augmentation samples in order
to make a downstream classification task performance more
robust.

A. Datasets

We evaluate the models on the following data sets text.
1) YELP Sentiment Dataset. To evaluate how our model

is able to change the sentiment of the original text and
achieve the target sentiment, we use the YELP sentiment
dataset [49]. This dataset is also characterized by informal
text which can be seen in realistic user inputs.

2) IMDB Sentiment Dataset. To further evaluate how our
model is able to change the sentiment of the original
input text, we test on IMDB Sentiment Dataset [50]. This
dataset is also characterized by long and complex text
and is thus a challenging dataset.

B. Controlled Text Generation with Attribute Steering

We first evaluate the quality of our generated text with
respect to the steering signal. We expect our generated text to
preserve the semantic content and syntactic structure of the
input text while being fluent and diverse as we steer the text
towards the target attribute. The steering signal we evaluate
in this work is to make the sentiment of the target text from
negative to positive.

1) Baselines: To compare with state-of-the-art template-
based methods relying on token substitutions via dictionaries
we compare with Checklist [1]. We specifically consider the
perturbation helper that relies on RoBERTa [51] to fill-in-
the-blank. In comparison to this baseline, we expect ours to
generate more fluent and diverse text samples that is free
from the restrictions of the pre-specified templates. We also
compare against Masked-LM [52], which is a dictionary-free
approach but still relies on masking a specific token in the
input text and and letting the model fill-in the masked token.

Metrics Dataset RoBERTa Token-based GPT−2 Gradient-based Finetuning Ours
Mask−LM Checklist PPLM Hotflip Polyjuice CASPer

CP ↑ YELP 0.30 0.321 0.064 0.365 0.212 0.202
IMDB 0.29 0.30 0.048 0.291 0.317 0.231

Perplexity ↓ YELP 3.82 3.79 3.544 3.95 3.64 3.44
IMDB 3.05 3.12 3.35 3.69 3.331 2.80

BLEU−4 ↓ YELP 0.903 0.530 0.064 NA 0.521 0.309
IMDB 0.9027 0.909 0.042 NA 0.861 0.231

TABLE III
COMPARISON BETWEEN MODELS ON THE YELP AND IMDB DATASET. THE MODEL USED FOR STEERING IS A PRE-TRAINED SENTIMENT CLASSIFICATION

MODEL.

The randomness in this filling-in process leads to generation of
counterfactual samples. Hence this model generates only token-
level substitutions and does not generate fluent sentence-level
text. We expect CASPer to address this limitation of purely
token-level substitutions.

To compare with state-of-the-art adversarial methods we
compare with Hotflip [39] [2]. In comparison to this baseline,
we expect ours to generate more fluent samples. We expect
to see that content preservation of such approaches is high as
these methods rely on changing the highest gradient word with
another word that would flip the label.

To compare with state-of-the-art text generation methods we
compare with PPLM [9] based on GPT-2 [53] and Polyjuice
[3] based on finetuned GPT-2 [53]. In comparison to this
baseline, we expect ours to generate more fluent and diverse
samples. While for PPLM, since it simply takes a prompt text
and completes the text, it has no incentive to generate text
that preserves its content. Thus, we expect ours to preserve
content better. In diversity of the samples, PPLM, because it
is not tasked with preserving content, can generate arbitrary
and overly diverse samples. Thus we highlight that while we
perform a comparison of sample diversity between PPLM and
our model, still the performances are not directly comparable
because the expectations are different from both models. For
Polyjuice, we expect ours to generate more fluent and diverse
samples because, unlike Polyjuice, ours is free from specific
template-based generation.

2) Metrics: To assess the quality of generated counterfactual
text we focus on evaluating content preservation, fluency,
diversity and syntactic similarity. We use the following metrics
to measure the above characteristics.

1) Content Preservation. By measuring content preserva-
tion, we assess the similarity between input text and
the counterfactual text samples. For this, we use the
transformer model proposed in [54]. While higher content
preservation is desirable in general, this metric alone
does not provide the complete evaluation. Therefore for
proper evaluation, we will introduce a second metric that
measures sample diversity.

2) Diversity. This metric evaluates how different are the
generated samples from each other. We find the BLEU-
4 score between the input text and the generated text.
Hence, if this score is lower, then the generated coun-
terfactual samples have a high diversity at the token

level.
3) Fluency. Fluency of the generated samples is important

to evaluate because the samples must come from a
distribution that the test model is likely to see when it
is deployed. This is computed by finding the perplexity
score of the generated output. We take a GPT-2 model
for computing the perplexity. Lower perplexity implies
that the generated text is more fluent.

3) Quantitative Results: In Tab. III, our results on perplexity
show that CASPer outperforms the baselines significantly
and achieves a lower perplexity score. This shows that the
samples generated by CASPer are fluent and plausible. We
also show that CASPer is able effectively preserve the content
in its samples. We note that our model is competitive with
rule-based token substitution methods like Checklist. Lastly,
in terms of BLEU-4 score, we note that our model again
outperforms the baselines with our generated samples achieving
the lowest values of BLEU-4 score with the original input
text only exception being PPLM. This shows that our model
indeed generates diverse samples with that have low token-
level match with the input text. In diversity of the samples, the
baseline model PPLM, because it is not tasked with preserving
content, can generate arbitrary and overly diverse samples. Thus
we highlight that while we perform a comparison of sample
diversity between PPLM and our model, still the performances
are not directly comparable because the expectations are
different from both models. Considering the performance on all
the metrics together shows that CASPer is able to effectively
generate samples that preserve the original content, are fluent
and diverse in comparison to the baselines.

4) Qualitative Analysis: In Tab. IV, we show samples of
text generated by CASPer. We show two experiments. In the
first experiment, our steering goal was to take an input text
and perturb it so that the probability of its sentiment becomes
large. The probability of the sentiment is estimated using a
pre-trained sentiment classification model. The initial label of
the text was negative. On the right we note that CASPer has
successfully perturbed the text to change its sentiment label
to positive. Furthermore, note that the generated sample have
good content preservation as all the samples talk about movies
and actors. Furthermore, the model makes some important
changes to the content that result in a change in the sentiment
of the text. We also note that each sample is different from
the other thus producing diverse samples. Lastly, we note that

Inputs Generated Controlled Perturbations

Steering Goal : To maximize the probability of the
positive class label with respect to a pre-trained sentiment
classifier.

Input Text: We know from other movies that
the writers can’t solve problems, like
this one. The actors are also good.

Initial Label : Negative

We know from other movies that the actors are good but they
cannot help the movie. The premise was not too bad and is
enjoyable.
New Label : Positive

We know from other documentaries that the acting was quite
strong.
We can’t say the premise was good but the execution was good.
New Label : Positive

We know from other movies that the actors are good but they
must win over the fans. The premise was not too bad.
New Label : Positive

We know from other movies that the actors are good. They can
not help the movie. The premise was not too bad.
New Label : Positive

Steering Goal: To make the sentence contain at least
one location named-entity.

Input Text: A wonderful little
production.The filming technique is
very unassuming- very old-time-BBC
fashion.

Initial State : No location named-entity is present in the
text

A wonderful first look at this film from the UK. The filming is
unassertive.
¡/s¿io is also one of the best productions.
Location Named-Entity: UK

A wonderful little Theatre is an old-time BBC production, set in an old
London apartment block. The film is set in London landmarks
Location Named-Entity: London

A Wonderful Little Edition by BBC Films - set, out in UK now via
iPlayer. A wonderful little production with some nice twists.
Location Named-Entity: UK

A wonderful little series about a BBC crew in Africa. Well-executed
by
the team who are experienced in film and rigging procedures.
Location Named-Entity: Africa

A wonderful little show about BBC’s wartime bombing of Libya
contributed by Peter Bradshaw in 1959.
Location Named-Entity: Libya

Steering Goal : To maximize the probability of the
positive class label with respect to a pre-trained sentiment
classifier.

Input Text: I had the terrible misfortune
of having to view this "b-movie" in
it’s entirety. All I have to say is---
save your time and money!!

Initial Label : Negative

I have the wonderful misfortune of having to view this New Girl in
it’s entirety.
To view it positively, I must open up and say.
New Label : Positive

I had the terrible misfortune of having to view this ẗransform into... in
it’s entirety.
It’s truly amazing how some programs remain..
New Label : Positive

I had the terrible misfortune of having to view this movie in it endearing
ways. It’s a wonderful salute wives lenders acknowledge..
New Label : Positive

I had the terrible misfortune of having to view this in it’s full glory.
All I have to say is wow. everyone agrees.
New Label : Positive

Steering Goal : To maximize the probability of the
negative class label with respect to a pre-trained sentiment
classifier.

Input Text: For those who’d like to see
this movie? I’d say: go! Without the
narration it might be a very good
movie/documentary.

Initial Label : Positive

For those who’d like to see it I suggest that they see this movie without
narration. The movie isn’t a very good movie.
New Label : Negative

For those want to get to know the movie through its narration? I’d say:
go! Without the narration it might be a very bad movie.
New Label : Negative

TABLE IV
GENERATED CONTROLLED PERTURBATIONS FROM THE PROPOSED MODEL CASPER.

Model Dataset Mask-LM Checklist PPLM Hotflip Polyjuice CASPer

Accuracy - No Aug YELP 89.90 89.90 89.90 89.90 89.90 89.90
IMDB 90.10 90.10 90.10 90.10 90.10 90.10

Accuracy - With Aug YELP 90.50 90.53 90.82 90.15 90.98 92.00
IMDB 90.11 90.11 90.18 90.10 90.85 91.20

TABLE V
COMPARISON OF ACCURACY BETWEEN MODELS ON THE YELP AND IMDB DATASET. THE GENERATED DATA FOR NER TASK ON STEERING IS USED FOR

ROBUSTIFYING AN N-GRAM BASED SENTIMENT MODEL.

the samples are fluent and plausible text samples.
In the second experiment, our steering goal was to take a

sentence that does not contain a location named-entity and
perturb it so that contains a location named-entity. We see
that CASPer produces samples that contain a location named-
entity tag. We also note that the named entity that the model
introduces are diverse and are used in a variety of contexts in
the generated text. As before, the text samples are fluent and
preserve the content of the original input text. For this task, note
that these samples clearly retain the sentiment of the text and
only introduce some location entities. Because we expect the
actual location (i.e. UK or Libya) should not be a causal term
in prediction of the sentiment of the text, these samples can
act as effective samples for augmenting the training data when
we train a downstream sentiment model. While a model that is
biased may predict different labels based on the actual location
token used, this kind of data augmentation will regularize the
model to be more robust to such changes which should ideally
not affect the predicted label of the test model.

C. Controlled Text for Model Robustification

In this section, we evaluate how well our generated samples
can improve robustness of the test classifier. For this, we
generated text samples to introduce a location named-entity in
the input text. We assume that simply introducing a location
named-entity should not change the class label of the text with
respect to the test model. Hence, after generating the controlled
perturbations, we take the original label of the input text from
the training set and assign the same label to the generated
samples. These new examples are added to the training set and
producing data-augmented training set. Using this augmented
training set, we then train the test model.

1) Baselines and Metrics: We generate samples using
CASPer. We augment the generated samples to the training set
and train the test model. We compared the accuracy of the test
model trained without data augmentation and then trained with
data augmentation via our counterfactual generation method.

2) Quantitative Results: In Table V we show a comparison
between the models. We note that the samples generated by
CASPer using NER model 1 are effective in robustifying the test
model and produces significant improvement in the accuracy
as compared to when training with original samples.

VI. CONCLUSION

In this paper, we introduced CASPer, a plug-and-play
counterfactual text generation framework. We showed that

1https://github.com/kamalkraj/BERT-NER

our generated controlled perturbations preserve the content of
the original text while also being fluent, diverse and effective in
terms of the provided steering signal flexibly. We showed that
samples generated by CASPer can act as effective candidates
for training data augmentation and improve the robustness of
the target model and preventing the target model from modeling
spurious correlations between the target label and non-causal
aspects of the input text.

REFERENCES

[1] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond accu-
racy: Behavioral testing of nlp models with checklist,” arXiv preprint
arXiv:2005.04118, 2020.

[2] P. Michel, X. Li, G. Neubig, and J. M. Pino, “On evaluation of adver-
sarial perturbations for sequence-to-sequence models,” arXiv preprint
arXiv:1903.06620, 2019.

[3] T. Wu, M. T. Ribeiro, J. Heer, and D. S. Weld, “Polyjuice: Au-
tomated, general-purpose counterfactual generation,” arXiv preprint
arXiv:2101.00288, 2021.

[4] P. Ma, S. Wang, and J. Liu, “Metamorphic testing and certified mitigation
of fairness violations in nlp models,” in Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI-20,
C. Bessiere, Ed. International Joint Conferences on Artificial Intelligence
Organization, 7 2020, pp. 458–465, main track.

[5] K. Holstein, J. Wortman Vaughan, H. Daumé III, M. Dudik, and
H. Wallach, “Improving fairness in machine learning systems: What do
industry practitioners need?” in Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, 2019, pp. 1–16.

[6] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the gdpr,” Harv.
JL & Tech., vol. 31, p. 841, 2017.

[7] J. Pearl et al., “Models, reasoning and inference,” Cambridge, UK:
CambridgeUniversityPress, 2000.

[8] S. Garg, V. Perot, N. Limtiaco, A. Taly, E. H. Chi, and A. Beutel,
“Counterfactual fairness in text classification through robustness,” in
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society, 2019, pp. 219–226.

[9] S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski,
and R. Liu, “Plug and play language models: a simple approach to
controlled text generation,” arXiv preprint arXiv:1912.02164, 2019.

[10] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” arXiv preprint arXiv:1910.13461, 2019.

[11] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward
controlled generation of text,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
1587–1596.

[12] R. Ye, W. Shi, H. Zhou, Z. Wei, and L. Li, “Variational template machine
for data-to-text generation,” arXiv preprint arXiv:2002.01127, 2020.

[13] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug
& play generative networks: Conditional iterative generation of images
in latent space,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4467–4477.

[14] F. Luo, D. Dai, P. Yang, T. Liu, B. Chang, Z. Sui, and X. Sun,
“Learning to control the fine-grained sentiment for story ending
generation,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, pp. 6020–6026. [Online].
Available: https://aclanthology.org/P19-1603

[15] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher, “Ctrl:
A conditional transformer language model for controllable generation,”
arXiv preprint arXiv:1909.05858, 2019.

[16] J. Gu, G. Neubig, K. Cho, and V. O. Li, “Learning to translate in real-
time with neural machine translation,” arXiv preprint arXiv:1610.00388,
2016.

[17] J. Gu, K. Cho, and V. O. Li, “Trainable greedy decoding for neural
machine translation,” arXiv preprint arXiv:1702.02429, 2017.

[18] Y. Chen, V. O. Li, K. Cho, and S. R. Bowman, “A stable and
effective learning strategy for trainable greedy decoding,” arXiv preprint
arXiv:1804.07915, 2018.

[19] N. Subramani, S. R. Bowman, and K. Cho, “Can unconditional language
models recover arbitrary sentences?” arXiv preprint arXiv:1907.04944,
2019.

[20] B. Krause, A. D. Gotmare, B. McCann, N. S. Keskar, S. Joty, R. Socher,
and N. F. Rajani, “Gedi: Generative discriminator guided sequence
generation,” arXiv preprint arXiv:2009.06367, 2020.

[21] T. Shen, T. Lei, R. Barzilay, and T. Jaakkola, “Style transfer from
non-parallel text by cross-alignment,” arXiv preprint arXiv:1705.09655,
2017.

[22] J. Li, R. Jia, H. He, and P. Liang, “Delete, retrieve, generate: A simple ap-
proach to sentiment and style transfer,” arXiv preprint arXiv:1804.06437,
2018.

[23] G. Lample, S. Subramanian, E. Smith, L. Denoyer, M. Ranzato, and Y.-L.
Boureau, “Multiple-attribute text rewriting,” in International Conference
on Learning Representations, 2018.

[24] M. Gardner, Y. Artzi, V. Basmov, J. Berant, B. Bogin, S. Chen,
P. Dasigi, D. Dua, Y. Elazar, A. Gottumukkala, N. Gupta, H. Hajishirzi,
G. Ilharco, D. Khashabi, K. Lin, J. Liu, N. F. Liu, P. Mulcaire,
Q. Ning, S. Singh, N. A. Smith, S. Subramanian, R. Tsarfaty,
E. Wallace, A. Zhang, and B. Zhou, “Evaluating models’ local decision
boundaries via contrast sets,” in Findings of the Association for
Computational Linguistics: EMNLP 2020. Online: Association for
Computational Linguistics, 2020, pp. 1307–1323. [Online]. Available:
https://www.aclweb.org/anthology/2020.findings-emnlp.117

[25] D. Teney, E. Abbasnedjad, and A. van den Hengel, “Learning what makes
a difference from counterfactual examples and gradient supervision,” in
Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and
J.-M. Frahm, Eds. Cham: Springer International Publishing, 2020, pp.
580–599.

[26] D. Kaushik, A. Setlur, E. Hovy, and Z. C. Lipton, “Explaining the efficacy
of counterfactually-augmented data,” arXiv preprint arXiv:2010.02114,
2020.

[27] J. Andreas, “Good-enough compositional data augmentation,” in
Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational
Linguistics, 2020, pp. 7556–7566. [Online]. Available: https://www.
aclweb.org/anthology/2020.acl-main.676

[28] T. Wu, M. T. Ribeiro, J. Heer, and D. Weld, “Errudite: Scalable,
reproducible, and testable error analysis,” in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, 2019, pp. 747–
763. [Online]. Available: https://www.aclweb.org/anthology/P19-1073

[29] C. Li, L. Shengshuo, Z. Liu, X. Wu, X. Zhou, and S. Steinert-
Threlkeld, “Linguistically-informed transformations (LIT): A method
for automatically generating contrast sets,” in Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks
for NLP. Online: Association for Computational Linguistics, 2020, pp.
126–135. [Online]. Available: https://www.aclweb.org/anthology/2020.
blackboxnlp-1.12

[30] A. Ross, T. Wu, H. Peng, M. E. Peters, and M. Gardner, “Tailor:
Generating and perturbing text with semantic controls,” arXiv preprint
arXiv:2107.07150, 2021.

[31] N. Madaan, I. Padhi, N. Panwar, and D. Saha, “Generate your coun-
terfactuals: Towards controlled counterfactual generation for text,” in
Proceedings of the AAAI Conference on Artificial Intelligence, no. 15,
2021, pp. 13 516–13 524.

[32] M. Reid and V. Zhong, “Lewis: Levenshtein editing for unsupervised
text style transfer,” arXiv preprint arXiv:2105.08206, 2021.

[33] T. Wang, X. Wang, Y. Qin, B. Packer, K. Li, J. Chen, A. Beutel, and
E. Chi, “Cat-gen: Improving robustness in nlp models via controlled
adversarial text generation,” arXiv preprint arXiv:2010.02338, 2020.

[34] A. Ross, A. Marasović, and M. E. Peters, “Explaining nlp models via
minimal contrastive editing (mice),” arXiv preprint arXiv:2012.13985,
2020.

[35] M. Iyyer, J. Wieting, K. Gimpel, and L. Zettlemoyer, “Adversarial
example generation with syntactically controlled paraphrase networks,”
in Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, 2018, pp. 1875–1885.
[Online]. Available: https://www.aclweb.org/anthology/N18-1170

[36] M. T. Ribeiro, S. Singh, and C. Guestrin, “Semantically equivalent
adversarial rules for debugging NLP models,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Melbourne, Australia: Association for
Computational Linguistics, 2018, pp. 856–865. [Online]. Available:
https://www.aclweb.org/anthology/P18-1079

[37] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, “BERT-ATTACK:
Adversarial attack against BERT using BERT,” in Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Online: Association for Computational Linguistics, 2020,
pp. 6193–6202. [Online]. Available: https://www.aclweb.org/anthology/
2020.emnlp-main.500

[38] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[39] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip: White-box adver-
sarial examples for text classification,” arXiv preprint arXiv:1712.06751,
2017.

[40] Z. Zhao, D. Dua, and S. Singh, “Generating natural adversarial examples,”
arXiv preprint arXiv:1710.11342, 2017.

[41] J. Li, W. Monroe, and D. Jurafsky, “Understanding neural networks
through representation erasure,” arXiv preprint arXiv:1612.08220, 2016.

[42] R. Jia and P. Liang, “Adversarial examples for evaluating reading
comprehension systems,” arXiv preprint arXiv:1707.07328, 2017.

[43] A. Madaan, A. Setlur, T. Parekh, B. Poczos, G. Neubig, Y. Yang,
R. Salakhutdinov, A. W. Black, and S. Prabhumoye, “Politeness transfer:
A tag and generate approach,” in Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, 2020, pp. 1869–1881. [Online]. Available:
https://www.aclweb.org/anthology/2020.acl-main.169

[44] E. Malmi, A. Severyn, and S. Rothe, “Unsupervised text style transfer
with padded masked language models,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP). Online: Association for Computational Linguistics, 2020,
pp. 8671–8680. [Online]. Available: https://www.aclweb.org/anthology/
2020.emnlp-main.699

[45] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning
classifiers through diverse counterfactual explanations,” in Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency,
2020, pp. 607–617.

[46] S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed fairness
testing,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, 2018, pp. 98–108.

[47] P. G. John, D. Vijaykeerthy, and D. Saha, “Verifying individual fairness
in machine learning models,” in Conference on Uncertainty in Artificial
Intelligence. PMLR, 2020, pp. 749–758.

[48] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: testing software
for discrimination,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 498–510.

[49] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” in Advances in neural information processing
systems, 2015, pp. 649–657.

[50] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon, USA: Association
for Computational Linguistics, 2011, pp. 142–150. [Online]. Available:
https://www.aclweb.org/anthology/P11-1015

[51] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[52] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[53] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” arXiv, 2019.

[54] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available: http:
//arxiv.org/abs/1908.10084

