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Abstract
Reinforcement Learning from Human Feedback
(RLHF) has emerged as a dominant approach for
aligning LLM outputs with human preferences.
Inspired by the success of RLHF, we study the per-
formance of multiple algorithms that learn from
feedback (Expert Iteration, Proximal Policy Op-
timization (PPO), Return-Conditioned RL) on
improving LLM reasoning capabilities. We in-
vestigate both sparse and dense rewards provided
to the LLM both heuristically and via a learned
reward model. We additionally start from mul-
tiple initializations with and without supervised
fine-tuning (SFT) data. Overall, we find models
fine-tuned with Expert Iteration to consistently
achieve the highest task accuracy with PPO and
RCRL close behind. Surprisingly, the sample
complexity of Expert Iteration is similar to that
of PPO, requiring at most on the order of 106

samples to converge from a pretrained checkpoint.
We investigate why this is the case, concluding
that during RL training models fail to explore sig-
nificantly beyond solutions already produced by
SFT models. Additionally, we discuss a trade
off between maj@1 and pass@96 metric perfor-
mance during SFT training and how conversely
RL training improves both simultaneously. We
then conclude by discussing the implications of
our findings for RLHF and the future role of RL
in LLM fine-tuning.

1. Introduction
The reasoning abilities of large language models (LLMs)
are rapidly improving as measured by their performance on
numerous math, science and code benchmarks (Cobbe et al.,
2021; Hendrycks et al., 2021b; Sawada et al., 2023; Liang
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et al., 2022; Srivastava et al., 2022; Rein et al., 2023; Mialon
et al., 2023; Chollet, 2019; Mishra et al., 2022; Hendrycks
et al., 2021a; Austin et al., 2021; Patel et al., 2021; Gao et al.,
2021). Simultaneously, Reinforcement Learning from Hu-
man Feedback (RLHF) (Bai et al., 2022; Ziegler et al., 2019;
Ouyang et al., 2022) and instruction fine-tuning (Wei et al.,
2021; Mishra et al., 2021) have made significant progress in
aligning LLMs with human preferences. Improvements in
model instructability have further increased apparent model
capability by making complex behaviors more accessible
via instruction prompting. This has led to a number of in-
creasingly sophisticated prompting strategies augmenting
LLM reasoning capabilities such as Chain-of-Thought (Wei
et al., 2022) or Tree-of-Thoughts (Yao et al., 2023).

Previous work in reinforcement learning (RL) such as Al-
phaGo (Silver et al., 2017), AlphaStar (Vinyals et al., 2019),
and OpenAI Dota 2 (Berner et al., 2019) demonstrate that
RL techniques can be used to train neural networks capable
of sophisticated planning and reasoning in game environ-
ments. Cicero (Bakhtin et al., 2022) in particular succeeds
in combining an RL trained planning agent with a dialogue
fine-tuned LLM to achieve nearly super-human performance
in the board game Diplomacy. Given these previous suc-
cesses and the inherent interactive nature of problem solving,
applying RL to LLM reasoning seems a natural next step.
In this paper, we study how ideas from RL can be used to
improve the reasoning capabilities of LLMs across a variety
of reward schemes and model initializations.

We begin by comparing the performance of different RL
algorithms on reasoning tasks τ defined as a distribution
of question answer tuples (Q,A). The task τ can be ex-
tended to define a Markov Decision Process (MDP) 4-tuple
(S,A, Pa, Ra) where tokens serve as both actions and ac-
cumulated state with deterministic dynamics. By default
we use a sparse reward of +1 if the final answer is correct
but also experiment with dense rewards matching interme-
diate steps in a reference solution and rewards synthetically
generated using a reward model. We evaluate models with
7B and 13B parameters both starting from supervised fine-
tuned (SFT) checkpoints and pre-trained checkpoints. We
report four metrics assessing model performance on a task
specific test set: 1) maj@1 score computed by greedily
sampling once per question, 2) maj@96 score computed by
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sampling K = 96 times per question and uniformly voting
on the final answer, 3) rerank@96 score computed by sam-
pling K = 96 times and choosing the final answer using an
Outcome-Based Reward Model (ORM), and 4) pass@96
score computed by sampling the model K = 96 times and
taking the best result according to the ground truth answer.

We find that overall the simplest method, Expert Iteration
(EI) (Anthony et al., 2017), performs best across all metrics
for most reward setups and model initializations. Even more
surprisingly, EI is nearly as sample efficient as more sophisti-
cated algorithms like Proximal Policy Optimization (PPO),
both requiring only a few thousand samples to converge.
We also observe the gap between pretrained model perfor-
mance and SFT model performance shrinks (< 10% gap on
GSM8K) after RL fine-tuning, with larger models having a
smaller gap. Additionally, previous work identified a trade-
off between test time maj@1 performance and pass@96
performance during supervised fine-tuning (Cobbe et al.,
2021), with continued training increasing maj@1 score at
the expense of pass@96 score. We identify the limited diver-
sity of the dataset as a core reason for this. We show that RL
fine-tuning can improve both metrics simultaneously due
to the fact that RL generates its own data during training,
resulting in a more diverse set of examples to learn from.

We then discuss why EI and return conditioned RL are com-
petitive with PPO, suggesting two principal factors. Firstly,
the reasoning tasks we consider have entirely deterministic
dynamics: a setting in which direct behavior cloning and
return conditioned RL is known to do well (Brandfonbrener
et al., 2022). In contrast, PPO often succeeds in environ-
ments with a high degree of stochasticity (Bhargava et al.,
2023). Second, we identify a lack of sophisticated explo-
ration carried out by models during RL fine-tuning. This
limitation significantly impacts any performance or sample
complexity advantages PPO may have when fine-tuning the
pretrained model. We come to this conclusion from a num-
ber of observations, noting in particular quickly saturating
pass@96 scores early in RL training. We conclude with a
discussion of the impacts of our observations on RLHF and
the future of LLM fine-tuning via RL.

In summary we make the following contributions:

• A comprehensive study of PPO fine-tuning of LLMs
on reasoning tasks using different types of rewards,
model sizes and initializations.

• A comparison to expert iteration and return-
conditioned RL from which we find expert iteration
reliably attains the best performance and competitive
sample complexity across the board.

• A discussion of the implications of our findings for
RLHF and the future of RL fine-tuning for LLMs, iden-

tifying exploration as a major limiting factor.

2. Related Work
LLM Reasoning: Recent work combines base LLM rea-
soning capabilities with planning and search algorithms to
further boost performance on a wide range of tasks (Yao
et al., 2023; Besta et al., 2023; Ye et al., 2022; Yao et al.,
2022; Dohan et al., 2022). Tree of thought (Yao et al., 2023)
for example combines LLMs with a breadth first search
algorithm, relying on the LLM to both propose actions
and evaluate state. Other works combine LLMs with tools
(Schick et al., 2023; Qin et al., 2023; Zhou et al., 2023a) fur-
ther boosting reasoning capability. Combining GPT-4 with
a python code interpreter for generation and self-verification
achieves an impressive 84% on the hard MATH benchmark
(Hendrycks et al., 2021a; Zhou et al., 2023a).

Other works focus on LLMs for mathematical reasoning
in natural language (Cobbe et al., 2021; Lewkowycz et al.,
2022; Azerbayev et al., 2023; Lightman et al., 2023; Pa-
tel et al., 2021; Zhu et al., 2023; Rafailov et al., 2023).
Particularly relevant to our study is Cobbe et al. (2021)
which fine-tunes GPT-3 on supervised math word problem
(MWP) reasoning traces. In addition they train solution
verifiers called Outcome Based Reward Models (ORMs)
which predict the probability of correctly solving a question
Q giving a prefix of intermediate steps Pi = (S1, ..., Si) i.e.
p(is correct(A)|Q,Pi) where A is a solution with prefix
Pi. Process based reward models (PRMs) (Uesato et al.,
2022; Lightman et al., 2023) can also be trained to instead
look at the step-level accuracy of solutions. More recent
work (Luo et al., 2023) utlizies a PRM distilled from GPT-4
feedback as a reward signal during PPO.

RL for LLM fine-tuning: Reinforcement Learning from
Human Feedback (RLHF) is perhaps the most well-known
application of RL techniques for fine-tuning LLMs. RLHF
(Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al.,
2020; Ouyang et al., 2022; Bai et al., 2022; Glaese et al.,
2022; Peng et al., 2021; Ramamurthy et al., 2022) most
often works by training a reward model to capture human
preferences over a task τ . The reward model is then used
to score LLM responses to prompts from the task after
which policy improvement is performed. PPO is most often
used (Ouyang et al., 2022; Bai et al., 2022) but several re-
cent works including ReST (Gulcehre et al., 2023), Reward-
Ranked Fine-tuning (Dong et al., 2023), and AlpacaFarm
(Dubois et al., 2023) all demonstrate simply fine-tuning on
high return responses with the standard cross-entropy loss
can attain comparable performance. We broadly refer to this
class of algorithms as Expert Iteration.

A large body of work studying RL for LLM fine-tuning also
exists outside of the RLHF sphere. Work on text games
(Yao et al., 2020; Ammanabrolu & Riedl, 2019) and other
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interactive textual environments (Zhou et al., 2023b; Carta
et al., 2023) seek to ground LLMs via interaction and RL.
RL has also been applied to improving model performance
on controllable generation and question answering tasks
(Lu et al., 2022; Liu et al., 2022). Various forms of expert
iteration have also been applied to improve LLM reasoning
capabilities (Huang et al., 2022; Yuan et al., 2023; Zelikman
et al., 2022; Uesato et al., 2022). For example “Scaling
Relationship on Learning Mathematical Reasoning with
Large Language Models” (Yuan et al., 2023) applies a single
round of expert iteration across multiple model sizes on
GSM8K. They observe sizeable gains in all metrics for
smaller models, with gains diminishing for larger models.
A related body of work studies RL for code generation
(Le et al., 2022; Shen et al., 2023; Rozière et al., 2023).
Shen et al. (2023) in particular reports a huge increase in
StarCoder’s (Li et al., 2023) maj@1 performance after a
single round of expert iteration, jumping from ∼30% to
∼60%.

Despite all the above work, it remains unclear exactly what
factors account for the biggest impact during RL fine-tuning
due to wide variance in tasks, pre-training data, supervised
fine-tuning data, RL algorithm used, and the reward source.
Our work conducts a thorough analysis of all these factors
to understand exactly how different algorithms compare
when applied to improving LLM reasoning capability. As a
result we are able to identify key bottlenecks to further LLM
improvement via RL and provide a discussion on promising
future directions.

3. Methods
Reasoning as an RL problem We study the performance
and sample complexity requirements for various RL algo-
rithms when fine-tuning LLMs on reasoning tasks. We
consider Expert Iteration (EI) (Anthony et al., 2017), Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017),
and Return-Conditioned RL (RCRL) (Brandfonbrener et al.,
2022) as representative algorithms from the RL literature.
In general, the goal of all RL algorithms is to maximize the
expected future return EA∼π(Q),(Q,·)∈τR(A) of a student
policy π on task τ . We call the highest return policy the op-
timal policy π∗. Each of our chosen algorithms goes about
finding π∗ in a different way.

PPO is an example of an online RL algorithm. Online
algorithms engage in both an exploration phase and a policy
improvement phase which updates πθ using data generated
during the exploration phase. PPO is also an on-policy
algorithm which samples model rollouts during exploration
from the student policy πθ being trained. During policy
improvement, the student πθ updates its parameters via
gradient descent by directly maximizing for reward with the
objective

J(θ) = Et

[
min(

π(at|st)
πold(at|st)

Ât, clip(1− ϵ, 1 + ϵ,
π(at|st)
πold(at|st)

)Ât)

]
where Ât estimates the advantage i.e. difference between
Q(s, a) (the expected return after taking action a at state s)
and value V (s) (the expected return at state s).

In practice, for PPO we sample 1024 rollouts at a time
with a temperature of 0.7 and N = 4 rollouts per question.
Training is then run on these samples for K = 4 PPO
epochs with a batch size of 32. Additionally, we train using
LoRA (Hu et al., 2021) with r = 128. Training is run for
4000 gradient steps. The best checkpoint is then selected
via performance on a validation set.

Expert iteration is also online but more off-policy than
PPO. An initial expert policy approximation π̂∗

0 is sampled
on the entire train set K times per question before any
policy improvement. The π̂∗

0 is often constructed using
repeated sampling from an initial policy π0. For example,
AlphaZero (Silver et al., 2017) and subsequent work (Schick
et al., 2023) combine π0 with Monte Carlo Tree Search.
Sampling π̂∗

0 constructs an initial set of rollouts D1 which
are then distilled back into a policy π1 via a standard cross-
entropy loss:

∑
τ∈D

∑H
t=1 −log(πθ(at|st)). This process

can be repeated to construct policy πi fine-tuned on dataset
Di = Ri ∪Di−1 where Ri corresponds to exploration done
by πi−1.

In our setting we construct an approximation to the optimal
policy π̂∗ by rejection sampling our student policy πθ. Af-
ter generating K samples S1, ..., SK on a question Q we
construct D1 by filtering all (Q,Si) pairs with return below
a threshold T . De-duplication is then performed on the
remaining samples.

In practice, during the expert iteration exploration phase we
sample each question in the train set K = 96 times with
temperature T = 1.0. To construct the training set we filter
out incorrect solutions and duplicates. Importantly, fine-
tuning is then done from the pretrained base model with
the same hyperparameters as SFT. This is repeated until
performance on a validation set saturates.

Return Conditioned RL Return conditioned RL algorithms
seek to train policies conditioned on both the current state
s and desired return R when sampling an action. This is
motivated by a desire to learn return conditionable policies
which can change depending on the desired return. Best
performance can then be sampled by conditioning on the
highest possible return.

We consider an offline version of this class of algorithms
similar to a decision transformer (Chen et al., 2021). A
training dataset D is constructed by generating state, ac-
tion, return τ = ((st, at, gt))

H
t=1 trajectories. Training
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is done by predicting the action given state and return:∑
τ∈D

∑H
t=1 −log(πθ(at|st, gt)). In practice we construct

D by sampling solutions S = (S1, ..., SL), where each Si

is an intermediate step, from our best EI trained policy πEI
given a question Q. We generate return labels for each step
Si by sampling πEI K many times from Pi = (S1, ..., Si).
This results in binary labels l1, .., lK evaluating the correct-
ness of the generated final answers. Si is then labeled as
“[GOOD]” if the average return 1

K

∑K
k=1 lk ≥ T and other-

wise is labeled as “[BAD]”. Typically we set T = 0.5. We
then filter the dataset to ensure a balanced number of correct
and incorrect solutions. See Section F in the appendix for
more details about the step-label generating process.

Outcome Based Reward Modeling Multiple works (Cobbe
et al., 2021; Uesato et al., 2022) train Outcome Based Re-
ward models ORMs as verifiers of candidate solutions to
word problems. The ORM can then be used to rerank multi-
ple candidate solutions generated by a student model, signif-
icantly boosting performance. Training data for the ORM
is generated using a student policy π by sampling K so-
lutions per question Q in the task dataset. The ORM is
trained as a classifier by predicting the probability of reach-
ing the correct final answer p(is correct(A)|Q,Pi)
from an intermediate sequence of steps Pi = (S1, ..., Si),
Pi ⊆ A = (S1, ..., SL).

4. Experiments
We conduct our evaluations on GSM8K and SVAMP (Patel
et al., 2021): two math word problem benchmarks. In
addition on GSM8K we consider two data regimes: first
with SFT data and then without SFT data. We evaluate
all models using greedy sampling (maj@1) accuracy as
well majority vote at 96 samples (maj@96), ORM based
reranking at 96 samples (rerank@96), and best of 96 sample
(pass@96) accuracy. Unless otherwise specified, test-time
sampling is done greedily for maj@1 and with a temperature
of 0.7 otherwise. We sample the RCRL models one step/line
at a time, conditioning on the “[GOOD]” token. We note
while the notion of a “step” is not clearly defined in general,
in our case we can simply regard each step as ending with
a sentence or newline. All experiments are done using
instruction-tuned Llama 2-chat 7B and Llama 2-chat 13B
models.

4.1. Results with SFT Initialization

When given access to SFT data, we first supervise fine-tune
Llama 2-chat models for 4 epochs with a global batch size
of 128 and an initial lr of 2e-5 decayed to 2e-7 with a cosine
warmup schedule. We call the resulting models SFT. When
fine-tuning with PPO we initialize using this checkpoint. In
contrast, for both EI and RCRL we generate data with the
SFT checkpoint but reset training to start from the pretrained

Figure 1. Sample complexities of SFT initialized models on
GSM8K. EI achieves better performance than PPO with the same
order of magnitude of samples.

base model. Similarly to Zelikman et al. (2022), we find this
model resetting is crucial for achieving best performance.
Results for both 7B and 13B models are reported in Table 1.

Expert iteration achieves the best performance with
competitive sample complexity Surprisingly, we find EI
achieves the best performance with a maj@1 accuracy of
0.485 and 0.53 on 7B and 13B models respectively. For
both model sizes the best greedy accuracy is achieved after
n = 2 expert iterations, after which performance plateaus.
In total, EI gives a sizable improvement of around 7% over
the SFT baseline. Similar gains can be seen in maj@96,
rerank@96, and pass@96 scores with.

PPO models underperform EI, with ORM guided PPO giv-
ing the biggest improvement of around 5% over the SFT
baseline. Again, maj@96, rerank@96, and pass@96 accu-
racies show similar improvements. Interestingly, despite
further training on top of the SFT initialization, PPO models
retain competitive rerank@96 and pass@96 scores when
compared to regression we see after further supervised fine-
tuning. We believe this is due to the relatively more diverse
nature of the exploration dataset used to update the model.

Finally, RCRL models under-perform EI models despite
training on EI generated data with an even balance between
‘[GOOD]’ and ‘[BAD]’ step labels. This matches similar
results from (Du et al., 2023) which use only sparse labels
for the entire rollout. Further, when sampling the RCRL
model unconditionally the model often generates the per-
fectly valid steps following a ‘[BAD]’ label resulting in
a correct final answer. These results suggest RCRL mod-
els are not correctly learning what constitutes a ‘[GOOD]’
versus ‘[BAD]’. This suggests RCRL models are unable
to usefully incorporate information from partially correct
solutions at train time. An ablation (See sec. A of the ap-
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maj@1 maj@96 rerank@96† pass@96

7B 13B 7B 13B 7B 13B 7B 13B

SFT 0.41 0.48 0.47 0.53 0.54 0.68 0.72 0.84
EIn 0.48 0.53 0.55 0.59 0.64 0.71 0.8 0.88
ORM EIn 0.48 0.53 0.54 0.58 0.65 0.71 0.81 0.87
ORM RCRL 0.45 0.51 0.5 0.56 0.54 0.69 0.73 0.83
Sparse PPO 0.44 0.51 0.49 0.55 0.58 0.67 0.77 0.85
Dense PPO 0.43 0.50 0.47 0.54 0.53 0.65 0.71 0.81
Sparse ORM PPO 0.46 0.51 0.51 0.55 0.59 0.67 0.79 0.83
Dense ORM PPO 0.46 0.51 0.52 0.55 0.59 0.67 0.76 0.83
Llema∗ 0.40 0.62 0.54 0.69 N/A N/A
RFT 0.47 0.54 0.58 0.65 N/A N/A
WizardMath 0.55 0.64 N/A N/A N/A
GPT-3∗∗ 0.2 0.31 N/A 0.39 0.55 0.71 NA
GPT-4∗∗∗ 0.91 N/A N/A N/A

Table 1. Results when initializing from SFT. EIn denotes n rounds of expert iteration until convergence with n = 2 for 7B and n = 2 for
13B. †Note all reranking is done using an ORM trained with samples from EIn. Results from other works are included on the bottom
for reference. N/A stands for not available. ∗Llema results reported for 7B/34B sizes without fine-tuning. ∗∗GPT-3 results reported for
7B/175B sizes. ∗∗∗GPT-4 size unknown.

pendix) on the ratio of positive to negative labels finds a
balanced ratio yields the worst performance, with increasing
the amount of positive data leading to better results.

In Figure 1 we plot the number of model rollouts against
model performance in log-scale. PPO models achieve their
best accuracies after around 60,000 rollouts while EI models
train with an order of magnitude more. However, the result-
ing train time in both cases is about a day. This is largely
due to memory requirements from PPO, resulting in lower
rollout throughput and smaller mini-batch sizes at train time.
Additionally, in the SFT case we did not experiment with
reducing the number of samples from K = 96 per question
for EI. However, we expect this number can be significantly
reduced without impacting performance. For a more thor-
ough investigation of sample complexity requirements, see
Figure 4.

Extra guidance from ORMs or dense rewards provides
little benefit Overall, the ORM slightly improves PPO
performance and negligibly impacts EI performance. For
both algorithms it provides an improvement in terms of
sample complexity. However, this does not change final
performance. See Figures 2 and 3 which plot the perfor-
mance against number of model rollouts for differnt reward
regimes.

Giving dense rewards at best provides no extra benefit to
performance when given either heuristically or via the ORM.
Giving a heuristic dense reward even slightly harms model
performance relative to the sparse setting. Recall we give
intermediate reward by comparing intermediate model gen-
erated steps to the reference solution. This likely encourages
more overfit to exact solutions in the train set, limiting solu-
tion diversity.

RL improves maj@1 accuracy without impacting
pass@96 performance Looking at the pass@96 accura-
cies more closely, we see most similarly sized models are
within 3% of the best result. This demonstrates with enough
sampling, most models are able to solve a very similar range
of problems. Further, while the pass@96 accuracy of our
best EI model initially seems much higher than the SFT
checkpoint, this is only because the SFT checkpoint has un-
dergone much more training on a less diverse dataset. Sim-
ply supervised fine-tuning for half as many steps results in
a checkpoint with maj@1 = 0.36 but pass@96 = 0.76. This
further suggests RL training mostly impacts maj@1 accu-
racy without significantly improving on a pass@n accuracy
which can be achieved with a light amount of supervised
fine-tuning.

The proximity of pass@96 accuracies among most models
is in sharp contrast to the rerank@96 performance. Here
we find EI models enjoy around a 5% lead over other mod-
els. At first glance this seems contradictory with relatively
similar pass@96 performance. However, we believe a non-
trivial percentage of this gap is due to overfit of the ORM
to the EI model which was used to generate its training
data.

4.2. Results with no SFT Initialization

We now consider the case when no SFT data is available
for training. For questions in both SVAMP and GSM8K we
give pretrained models access to a two-shot prompt with
samples drawn from the GSM8K validation set. For EI
models, we remove these prompts after the first round of
exploration, instead relying on the generated SFT data. As
in the case with SFT data, we run both algorithms until
performance saturates. For PPO this happens after 250 steps
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Figure 2. maj@1 scores of EI and ORM aided EI models over the
course of training. The ORM improves sample efficiency but not
performance.

Figure 3. maj@1 scores of PPO and ORM guided PPO models
over the course of training. As with EI models, the ORM improves
sample efficiency but not performance.

on SVAMP and 1000 steps on GSM8K. For EI, this happens
after n = 5 rounds of exploration and distillation. Results
on both datasets are reported in Tables 2 and 3.

EI achieves the best performance overall Even without
SFT data, EI achieves the best performance on SVAMP,
improving 7B/13B pretrained greedy model accuracies over
50% from 0.06/0.05 to 0.58/0.69%, respectively. PPO per-
forms slightly better than EI on GSM8K, improving from
0.05/0.03 to 0.31/0.4. Both algorithms achieve comparable
pass@96 scores across modes sizes, further supporting our
observations from the SFT regime that EI mostly improves
maj@1 scores relative to PPO. The prompted 13B model
on GSM8K even attains 0.83 pass@96 accuracy which is
close to the 0.84 pass@96 score achieved by the SFT model,
despite having no access to SFT data itself.

maj@1 maj@n rerank@n† pass@n

7B 13B 7B 13B 7B 13B 7B 13B

Prompted 0.05 0.03 0.14 0.18 0.17 0.24 0.22 0.27
EIn 0.31 0.4 0.35 0.47 0.39 0.63 0.45 0.83
ORM EI 0.28 0.37 0.33 0.43 0.37 0.59 0.42 0.76
Sparse PPO 0.32 0.41 0.37 0.48 0.41 0.65 0.5 0.83
Sparse ORM PPO 0.29 0.38 0.34 0.44 0.4 0.62 0.49 0.81
Dense ORM PPO 0.29 0.39 0.35 0.45 0.41 0.64 0.5 0.82

Table 2. Results for 7B/13B models when not using SFT initial-
ization on GSM8K. Sparse PPO performs slightly better than EIin
this setting. ∗Note all reranking is done using an ORM trained
with samples from EIn model.

maj@1 maj@n rerank@n† pass@n

7B 13B 7B 13B 7B 13B 7B 13B

Prompted 0.06 0.05 0.2 0.25 0.24 0.29 0.3 0.36
EIn 0.58 0.69 0.6 0.75 0.62 0.78 0.70 0.93
Sparse PPO 0.44 0.51 0.55 0.66 0.58 0.73 0.72 0.89
Sparse ORM PPO 0.43 0.51 0.52 0.64 0.54 0.71 0.65 0.85
Dense ORM PPO 0.44 0.52 0.51 0.63 0.55 0.73 0.67 0.85

Table 3. Results for 7B/13B models when not using SFT initializa-
tion on SVAMP. EIn denotes the best EI model after n iterations.
EI outperforms PPO.

EI has the same sample complexity as PPO As before
we plot the reward versus number of model rollouts for
PPO and EI in Figures 4 and 5. On GSM8K PPO models
attain their best maj@1 accuracies after only 30,000 rollouts
and on SVAMP even less. Surprisingly, EI models have the
same sample complexity as PPO on SVAMP, requiring more
samples to converge but also converging to a much higher
accuracy. EI still appears to have higher sample complexity
on GSM8K, however as noted before this may be due to
oversampling each prompt during the exploration phase. To
test this, we reduce the number of samples per prompt each
round of EI from K = 96 to K = 4. The resulting EI
models require more iterations to converge but require far
less total samples, also converging in accuracy only a few
percentage points lower than K = 96 samples per prompt.
With K = 4 rollouts per prompt EI has the same sample
complexity as PPO on GSM8K.

This is a particularly surprising finding when compared
to the performance of EI and PPO on more classical RL
problems training a neural network from scratch. Often
PPO enjoys far better sample complexity in these settings.
One major difference here is the initialization of our student
from a pretrained model which imparts a very strong bias on
the kind of behaviors and exploration encountered during
RL training. Both the extremely small sample complexity
and the comparability of EI and PPO in this setting provide
more evidence that models are not truly engaging in complex
exploration, but instead primarily drawing on what they
already know from the pre-training phase.
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Figure 4. Sample complexities on GSM8K from pretrained initial-
ization.

Figure 5. Sample complexities on SVAMP. Surprisingly, EI ap-
pears nearly as sample efficient as PPO.

4.3. Implementation Details

It is well known RL training can be quite sensitive to archi-
tectural and hyperparameter choices. This is even more so
the case for LLM fine-tuning. In this section we ablate and
discuss the factors we found most important in our tasks.

PPO model architecture and training parameters To
save memory we use a joint architecture for the PPO policy
and value heads. We found it important to use a relatively
large value branch (L=4 transformer layers) and detach
the gradients coming from the value branch to the policy
trunk. Without detachment we found value gradients inter-
fere with policy gradients, as similarly observed in Stiennon
et al. (2020), causing instability with a big update to ei-
ther branch. See Figure 17 which compares maj@1 score
of a student with a large value branch and detached value
gradients versus the default.

Low rank adaptation (LoRA) (Hu et al., 2021) with rank
r = 128 helped significantly to further stabilize a full layer
fine-tuning while still maintaining performance (Sun et al.,
2023). A large enough batch size (BS = 256) and a small
lr = 1e-6 also helped with stabilization. We additionally
experimented with a partial fine-tune of only the top M lay-
ers. This saved memory but at the cost of a few percentage
points of performance.

We also found a non-trivial KL penalty of 0.05 to be critical
for preventing model collapse after more than a hundred
gradient updates. This is in contrast to Bai et al. (2022)
who do not see a significant need for the KL constraint.
We attribute its importance here to the somewhat unnatural
distribution of text found in the the reasoning tasks which
consist of broken natural language and computations en-
closed in <<x+y=z>> tags. For tasks with distributions
closer to pure natural language dialogue, such as those con-
sidered in Bai et al. (2022), the KL constraint seems less
necessary.

Sampling parameters affect exploration We found the
best temperature to use for good exploration during PPO
training heavily depends on the initialization. When starting
from an SFT checkpoint we choose T = 0.7. However,
sampling on a high temperature when starting from the
pretrained prompted model often results in collapse. In these
cases we choose a low temperature (T = 0.2). Potentially
better results for PPO could likely be achieved by annealing
the exploration temperature over the course of training. We
similarly experimented with the sampling temperature used
during exploration in EI, ultimately deciding on T = 1.0
to maximize solution diversity without sampling too many
degenerate solutions.

We also experimented with best K of N (KoN) sampling
during PPO training to promote more solution diversity.
In this setup the K highest reward samples of N rollouts
from a single prompt are kept for training and the rest are
discarded. Choosing parameters K ≪ N prioritize high
reward samples and discard low reward ones, resulting in a
training distribution more similar to the curated EI dataset.

However, one important consideration is the impact of the
K/N ratio on training time and sample complexity, with
smaller ratios taking proportionally longer. For example,
K=1,N=8 takes 8 times as long as the default K=1,N=1.
Further, we ultimately found little benefit to small K/N ratios
with most configurations yielding decreased performance
over K=1,N=1. In practice we found setting K=4, N=4
worked best. See Figure 6 which compares the performance
of various choices of K and N.

Model size and initialization affect exploration We found
both the quality of the student initialization and the size
of the student significantly affected the type of exploration
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Figure 6. Best K of N sampling parameters versus maj@1 score
during training. K=4, N=4 yields a fast runtime and best perfor-
mance.

maj@1 maj@96 Rerank@96 pass@96

SFT2 0.36 0.45 0.53 0.76
SFT4 0.41 0.47 0.54 0.72
PPO2 0.43 0.48 0.59 0.8
PPO4 0.44 0.49 0.58 0.77

Table 4. Results for full supervised fine-tune (SFT4), half super-
vised fine-tune (SFT2) and their PPO fine-tunes. Fine-tuning for
only two epochs gets pass@96 = 0.76. This decreases to 0.72 with
two additional epochs of fine-tuning.

engaged in during training. In particular larger models
engaged in more diverse exploration while models with
worse generalization engaged in less diverse exploration
(See Appendix Section B). This in turn directly impacts
model performance when trained on exploration data, with
models engaging in more diverse exploration improving
more from RL training.

To further examine the observations about overfitting, we
supervise fine-tune a Llama 2-chat 7B model for half as
many steps than the SFT model reported in Table 1. We
call the former model SFT4 and the latter SFT2. Despite
half the training, SFT2 has similar Rerank@96 and superior
pass@96 scores to SFT4 with the main difference being
the maj@1 accuracies. When sampled K = 96 times on
each train prompt, SFT2 produces on average 3.7 unique
correct solutions compared to SFT4 which produces 2.9
unique correct solutions. We also find SFT2 benefits sig-
nificantly more from RL fine-tuning than SFT4, jumping
from maj@1=0.36 to maj@1=0.43. It’s important to note
some of this improvement also happens with continued SFT
training, however at the cost to model output diversity and
pass@96 performance.

We believe RL fine-tuning is less prone to overfitting

when compared to static SFT fine-tuning precisely because
of the exploration process which generates its own training
data. This results in in more diverse solution paths than
the SFT training set, ameliorating overfit. This is also in
line with recent work that found RLHF to result in better
(out-of-distribution) generalization than SFT on summariza-
tion and instruction following tasks (Kirk et al., 2023). This
benefit can be found in both PPO and EI which have al-
most 10% pass@96 improvement over continued SFT (yet a
much smaller pass@96 improvement over a light SFT). To
support this hypothesis we plot the solution accuracies and
diversities of EI models over each iteration in Figures 8 and
9, respectively. Figure 9 also shows larger models generate
more diverse solutions.

5. Discussion and Broader Impact
As a result of our careful experimentation we uncovered sev-
eral interesting findings involving the relative performance
of different RL algorithms with SFT, their impact on var-
ious metrics, and the utility of dense/synthetically given
rewards. These observations, taken together with the fast
convergence of both online algorithms and the low-impact
of ORM guidance and dense rewards, suggests models are
not engaging in a significant amount of exploration beyond
pre-training data. Crucial in our setting is the usage of a
pretrained model imparting a strong exploration prior. With-
out such a prior, exploration in a high-dimensional textual
action space would be very difficult. However, this prior
also constrains the exploration engaged in at the beginning
of training. Our results suggest this strong pre-training
bias continues to significantly limit exploration throughout
RL training, resulting in fast performance saturation. We
view the discovery of new techniques encouraging complex,
rich exploration of reasoning problems as fundamental to
progress in LLM reasoning capability. More sophisticted
prompting strategies such as Tree of Thought (Yao et al.,
2023) and combining LLM generative abilities with evolu-
tionary algorithms (Lehman et al., 2022) have already begun
to make progress in this direction.

We also note prior work in RLHF finds PPO outperforms
EI type approaches in human preference satisfaction and
instruction following (Gulcehre et al., 2023; Dubois et al.,
2023; Kirk et al., 2023). Importantly, in our setting we al-
ways have a reliable ground truth reward to optimize. How-
ever, in RLHF, models must optimize against an unreliable
reward model, often resulting in over-optimization (Gao
et al., 2022). The relatively superior performance of PPO
over EI on RLHF tasks versus reasoning tasks suggests PPO
better mitigates such over-optimization. This is perhaps not
too surprising since PPO training penalizes student mod-
els diverging from the initial policy via both its clipped
objective and additional KL-constraint.
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Broader Impact: This paper presents work whose goal
is to advance the field of large language modeling. As is
the case with all works involving large language modeling,
there are dangers involving the spread of misinformatioin
and propagation of societal biases.
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A. RCRL Label Balance
We also experiment with different proportions of ‘[GOOD]’
and ‘[BAD]’ labels in RCRL training data. This is motivated
by a desire to make better use of abundant negative data,
which is much easier to generate than its positive counterpart.
Better teaching the student what not to do with this data
would ideally increase the number of valid solutions. Recall
by default we balance the number of positive and negative
samples.

We conduct experiments on LLama 2-chat 7B GSM8K with-
out any SFT data. We apply only one round of Expert It-
eration (K = 1 per question), producing a student model
we refer to as EI-minimal. Note, in this setting we only
provide ‘[GOOD]’ and ‘[BAD]’ labels for entire solutions,
rather than providing labels at the step level. Results are
reported in 5.

positive:negative ratio GSM8K (maj@1)
EI-minimal - 0.17

100:1 0.18
RCRL 10:1 0.18

1:1 0.15

Table 5. RCRL without SFT, using different proportions of pos-
itive and negative samples. As we increase the proportion of
negative samples, performance generally decreases. At best, we
only see very marginal gains using RCRL. Note: EI-minimal
refers to running EI for one iteration, with K = 1 per question.

We find we achieve best performance when the amount of
positive training data greatly outweighs the amount of nega-
tive data. In these cases, our RCRL models’ maj@1 score
slightly exceeds the maj@1 score of the data generating
EI-minimal model. Yet, when we balance the amount of
positive and negative training data, we find performance is
degraded. This suggests our 7B student doesn’t effectively
learn from the provided negative demonstrations. We sus-
pect either a larger model or an easier task would give better
results.
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Figure 7. Accuracy of EI models on GSM8K test vs. number of
iterations. EI scratch models have use no SFT initialization.

Figure 8. Accuracy of EI models on GSM8K test vs. number of
iterations. K = 4 samples per prompt are used to construct a
fine-tuning dataset for the next round.

B. EI Improvement across Iterations
Figures 7 and 8 plot the maj@1 score of models on versus
rounds of expert iteration. On both datasets the score is
monotonically increasing until convergence after at most
four rounds. Models initialized from an SFT checkpoint
converge faster than their pretrained counterparts. Each
round of expert iteration samples K ∗ num train rollouts,
with the longest running training loop generate at most
5 ∗ 4 ∗ 7000 ≈ 106 samples.

Figure 9 reports the diversity of solutions across rounds of
expert iteration as measured by two separate metrics for
solution uniqueness. exact diversity checks for equality be-
tween two solutions using exact string match. trace diversity
checks for equality between two solutions by first extract-
ing the trace of a solution as the sequence of intermediate
calculations used to get to the final answer. An exact match
is then performed on this trace representation.

Solution diversity increases then decreases over train-
ing Overall both measures of solution diversity increase for
both model sizes over the first two rounds of expert iteration.
After the first two rounds both trace diversity appears to
plateau and in some cases slightly decrease. Exact diversity
continues to increase for 13B, but not at the same rate as
during the first two rounds. The largest increases in solu-
tion diversity over the first two rounds also match when
the largest gains in maj@1 performance occur. This lends
evidence to the intuition that a high-performing student will
be able to generate many correct but unique solutionst to
the same problem. Further, we see during later rounds of
expert iteration that while maj@1 score improves slightly,
diversity suffers. This provides further evidence that train-
ing is begining to overfit to maj@1 score, in the process

reducing both pass@n and solution diversity. We see the
same behavior

Larger models generate more diverse solutions The above
figures also demonstrate the 13B model produces signif-
cantly more diverse outputs than the 7B model. This is
true during every round of fine-tuning, with the gap get-
ting larger as more training is done. Interestingly, the 13B
model appears to produce an exactly unique solution with
every sampling after 4 rounds of expert iteration. However,
its trace diversity peaks after two rounds, indicating 13B
tends to introduce semantic diversity without changing the
underlying computational structure of a solution.

C. Sample Complexities
In this section we plot all sample complexities on bench-
marks accompanying the results in Section 4. Figures 11 and
12 report results on GSM8K without supervised fine-tuning.
Figures 13 and 14 report results on SVAMP.

As in the SFT case, using an ORM to guide EI and PPO
on prompted GSM8K models does somewhat reduce sam-
ple complexity but does not improve best performance (if
anything the ORM reward slightly hurts converged maj@1
score). We see the same story when providing a dense ORM
reward, further decreasing sample comlexity but at the cost
of final converged performance. Our best results still come
from using only the ground truth score. We suspect the
performance degredation introduced by the ORM reward
could be alleviated with a larger reward model. However,
we do not believe using a larger model would improve over
just the ground truth reward. Similar results are seen for
SVAMP.
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Figure 9. Left: Diversity of GSM8K model output over rounds of EI. (No SFT). Right: Diversity of SVAMP model output over rounds of
EI. K = 96 samples are used per prompt. positive diversity measures diversity in the subset of solutions with a correct final answer.

Figure 10. gsm8k sft diversity

D. Curriculum Learning for RL
In addition to vanilla PPO we experiment with backtrack-
ing (Salimans & Chen, 2018) and Prioritized Level Replay
(PLR) (Jiang et al., 2020) as algorithms from the curriculum
learning literature. Such algorithms aim to construct a “cur-
riculum” of subproblems, with the model ideally learning to
generalize from easier subproblems to harder subproblems.

Backtracking in particular is a natural choice as it relies on
using high-quality supervised trajectories to improve explo-
ration of the solution space. This is done by sampling the
student policy π on the partially complete solution (Q,Pi)
where Pi is a sequence of intermediate ground truth steps
(S1, ..., Si). The algorithm proceeds by setting an initial
threshold τ0 ∈ (0, 1) which represents how far back from
the final answer to initialize partial solutions. By default
we use τ0 = 0.9. Then, for each problem Q which can be
solved from Pi, we remove the last step Si and condition
on Pi−1 the next time Q is sampled.

PLR does not rely on access to SFT data, instead heuris-
tically prioritizing problems with high “learning potential”

estimated by the average absolute advantage. Prioritizing
problems with this potential allows the model to focus on
problems that are neither too easy nor too hard, making effi-
cient use of its exploration budget. We initialize the student
using a supervised fine-tuned LLama 2-chat 7B on GSM8K.
Results are reported in Figure 15.

Overall we find neither method exceeds the performance
of default PPO. We hypothesize this is due to the limited
exploration the model engages in from the start, due to both
pre-training and supervised fine-tuning. We speculate better
results might be achieved on a harder dataset with more
intermediate steps, particularly when using backtracking.

E. Data augmentation
We additionally experimented with generating synthetic
(Q,A) training pairs via an approach inspired by backtrans-
lation (Sennrich et al., 2015). We assume access to a su-
pervised fine-tuning dataset D of (Q,A) pairs and train a
Q → A model MQ→A as our usual student model. We
call this model the verifier. We can also utilize D to train
models of the form MA→Q and MA→A which map answers
to questions and answers to answers respectively. We train
MA→Q simply by fine-tuning the pretrained model M to
predict p(A|Q) where (Q,A) ∼ D. We call the combina-
tion of MA→A and MA→Q the generator. We construct a
train set for MA→A as follows: For each A in (Q,A) ∈ D
we randomly sample three other answers A1, A2, A3 from
D which act as a conditional prompt. We then train MA→A

by minimizing p(A|A1, A2, A3).

We sample MA→A on each ground truth answer A ∈ D
K = 8 times, constructing a synthetic dataset of answers
A. We then use our backwards model MA→Q to produce
questions for each of the synthetic answers A ∈ A. This
forms a synthetic (Q,A) dataset Dsynth. Finally, for each
synthetic (Q,A) pair, we sample our student model MQ→A
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Figure 11. Sample complexity of default versus ORM guided
EI students on GSM8K (no SFT). The ORM improves sample
complexity initially but ultimately underperforms using only the
ground truth.

Figure 12. Sample complexity of default versus ORM guided PPO
students on GSM8K (no SFT). Similarly to as in EI, the ORM
improves maj@1 score over using only ground truth rewards but
eventually underperforms.

Figure 13. Sample complexity of default versus ORM guided EI
students on SVAMP.

Figure 14. Sample complexity of default versus ORM guided PPO
students on SVAMP.

K = 20 times for each question and check whether the
student model’s final answer agrees with the “intended” final
answer. We refer to the percentage of student generated
solutions recovering the intended final answer as the score
for a synthetic (Q,A) pair. We plot the distribution of scores
in Figure 16.

We see that the majority of synthetic pairs, over 50,000,
never have their solutions recovered by the student MQ→A.
This is either because a) the student is too weak to solve the
question or b) the question is impossible to solve. Either
way, we likely do not want to include these new training
data for the student. Similarly, we likely do not want to
include questions which are always solved by the student,
i.e. those with score = 1, as they are too easy. Additionally,

we should be wary of questions which have a small score
in the range (0, ϵ). We expect many questions will have
been solved incorrectly but still arriving at the correct final
answer. We should exclude such problems from our training
dataset.

We expect the highest quality data (Q,A) to have a score in
the neighborhood ( 12 − τ, 1

2 + τ). These questions should
be not too hard but not too easy for our student. Figure 6
shows the performance of student models fine-tuned on a
combination of ground truth data and synthetically gener-
ated data with scores in the range ( 12 −τ, 1

2 +τ). All models
are trained for five epochs with an initial lr = 2e-5 cosine
decayed to 2e-7. Llama 2-chat 7B is used as the pretrained
base model.
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Figure 15. maj@1 scores on GSM8K for Prioritized Level Replay
(PLR) and Backtracking techniques compared to default PPO and
SFT.

maj@1

τ = 0.1 0.38
τ = 0.2 0.36
τ = 0.3 0.34

SFT 0.41

Table 6. Performance of models training with various amounts of
synthetic data vs. the SFT baseline. Note: τ represents the size of
the neighborhood of scores around 1

2
that are not filtered out.

Unfortunately, it seems introducing any amount of syntheti-
cally generated data degrades performance. When manually
inspecting the synthetically generated (Q,A) pairs it be-
comes clear why. There is an extremely high number of
false positives. Consider the following example of a syn-
thetic pair shown in Table E:

This is an example of a low-quality sample we do not want
in our training data. Ideally, such a sample would have a
score of 0 since the technically correct answer is 100, not
120. However, the SFT MQ→A student we use to construct
a score for each (Q,A) sample computes the final answer
as 120 a staggering 47% of the time. The verifier makes the
exactly the same mistakes the MA→A model made when
constructing the question, likely because they were trained
on similar distributions.

We suspect using a larger model more capable of detecting
these sort of trivial non-solutions would do substantially
better at generating backwards synthetic data. Similarly,
employing separate models as the generator and verifier may
reduce the probability of both making the same mistakes,
improving the reliability of the score for each pair. We leave
this as future work.

Figure 16. Scores of synthetically backwards generated (Q,A)
pairs. Note: the score refers to the percentage of times the forward
student model MQ→A recovers the intended final answer.

Question ”A school of 100 musicians goes on a skiing
trip. 40% are beginners, 30% are interme-
diate, and 50% are advanced. How many
people went on the skiing trip?”

Answer ”There are 100 * 0.4 = 40 beginner skiiers.
There are 100 * 0.3 = 30 intermediate ski-
iers. There are 100 * 0.5 = 50 advanced
skiiers. Therefore there are 40 + 30 + 50 =
120 skiiers total.”

F. RCRL Step-label Generating Process
Another natural candidate which could be used to iden-
tify mistakes at each step is a Process Based Reward
Model (PRM) (Lightman et al., 2023). A PRM es-
timates the probability of correctness of a step Si,
p(Si correct|Q,S1, S2, ..., Si) independently of its im-
pact on the final answer. However, this would be expen-
sive, requiring collecting human annotated samples. Instead,
we propose to approximate the optimal value function V ∗

of the reasoning task. V ∗ corresponds to the value func-
tion of the optimal policy which is able to successfully
solve the reasoning task from any logically valid interme-
diate state Sj . Such an optimal value function would have
V ∗(Q,S1, ..., Si) = 1 for a solution prefix with no mis-
takes, and V ∗(Q,S1, ..., Si) = 0 if the prefix already con-
tains a mistake which will result in an incorrect final an-
swer. Note however, V ∗ does not exactly correspond to
a PRM. This is because a partial solution S1, ..., Si with
a mistake at step j ̸= i and valid terminal step Si will
have V ∗(Q,S1, ..., Si) = 0 and PRM(Q,S1, ..., Si) = 1.
To make this distinction clear, we call models we train to
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Figure 17. Comparison of reward curves for PPO architecture abla-
tions. Using both gradient stopping and a larger value head works
best.

directly approximate V ∗ stepwise ORMs or SORMs.

G. PPO Architecture Ablations

H. CommonsenseQA Benchmark
In addition to the mathematical reasoning tested in GSM8K
and SVAMP, we also conduct evaluations on the Common-
senseQA (CSQA) (Talmor et al., 2018) benchmark. CSQA
is a dataset of 12,247 commonsense reasoning questions,
testing reasoning that requires leveraging some amount of
prior world knowledge. Each question has 5 possible multi-
ple choice options, with a single correct answer. We use a
sparse reward based on whether or not the model generation
for a particular question results in the correct choice.

maj@1

Few-shot prompting 0.63
SFT 0.70
EIn 0.76

RCRL 0.72
PPO 0.77

Table 7. Performance on the CSQA evaluation set with the Llama2
7B model. Few-shot prompting uses the same 7 examples as in
(Zelikman et al., 2022) with no model finetuning. For EIn, RCRL,
and PPO we initialize with SFT and report the eval accuracy at
convergence.

Similarly to the math-based reasoning benchmarks in Sec-
tion 4, we also find that EIn and PPO perform on par for
CSQA, while RCRL underperforms both methods. This
suggests that our findings could extend beyond math-based
reasoning—where EI and PPO are similarly effective, while
RCRL models seem unable to learn from self-generated
negative examples.
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