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Abstract

Preferential Bayesian optimization (PBO) is a framework for optimizing a decision-maker’s
latent preferences over available design choices. While real-world problems often involve
multiple conflicting objectives, existing PBO methods assume that preferences can be encoded
by a single objective function. For instance, in the customization of robotic assistive devices,
technicians aim to maximize user comfort while minimizing energy consumption to extend
battery life. Likewise, in autonomous driving policy design, stakeholders must evaluate
safety and performance trade-offs before committing to a policy. To bridge this gap, we
introduce the first framework for PBO with multiple objectives. Within this framework,
we propose dueling scalarized Thompson sampling (DSTS), a multi-objective generalization
of the popular dueling Thompson sampling algorithm, which may also be of independent
interest beyond our setting. We evaluate DSTS across four synthetic test functions and two
simulated tasks—exoskeleton personalization and driving policy design—demonstrating that
it outperforms several benchmarks. Finally, we prove that DSTS is asymptotically consistent.
Along the way, we provide, to our knowledge, the first convergence guarantee for dueling
Thompson sampling in single-objective PBO.

1 Introduction

Bayesian optimization (BO) is a framework for optimizing objective functions with expensive or time-
consuming evaluations. It has been successful in real-world applications such as hyperparameter tuning of
machine learning algorithms (Snoek et al., [2012)), e-commerce platform design (Letham & Bakshy} 2019), and
materials design (Zhang et al.,2020). Preferential Bayesian optimization (PBO), a subframework within BO,
focuses on settings where the objective function is latent, i.e., where the objective values cannot be observed
and instead, only ordinal preference feedback from a decision-maker (DM) is observed.

While prior work in PBO has demonstrated success in various applications (Brochu et al., |2010; |Nielsen
et al., [2015; [Tucker et al.| 2020b]), existing methods operate under the assumption that preferences can be
encoded by a single objective function. In practice, however, problems are often characterized by multiple
conflicting objectives. This occurs, for instance, when multiple users with conflicting preferences collaborate
in a joint design task, as illustrated in Figure [1} or when a user wishes to explore the trade-offs between
multiple conflicting attributes before committing to a design.

To motivate the need for multi-objective PBO, we examine two illustrative applications. The first application
involves an exoskeleton customization task that aims to enhance user comfort. In this situation, a user
assisted by an exoskeleton experiences different gait designs and indicates the most comfortable option (Tucker
et al., |2020ab). In this and other robotic assistive personalization applications, users and clinical technicians
often collaborate on a design task to maximize user comfort (the user’s objective) while optimizing energy
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Figure 1: In this work, we extend preferential Bayesian optimization to the multi-objective setting. In
contrast with existing approaches, our approach allows the decision-makers involved in the joint design task
to efficiently explore optimal trade-offs between the conflicting objectives.

consumption and other metrics related to the exoskeleton’s long-term functionality (the technician’s objective)
(Kerdraon et al., 2021)).

The second application is autonomous driving policy design, where a user is presented with multiple simulations
of an autonomous vehicle under different driving policies, and the user indicates the one with better safety
and performance attributes (Biyik et al., 2019)). In such settings, policy-makers often seek to understand the
trade-offs between multiple latent objectives, such as lane keeping and speed tracking, before committing to a
specific policy (Bhatia et al., 2020)).

Motivated by the applications described above, we propose a framework for PBO with multiple objectives.
Our contributions are as follows:

e To the best of our knowledge, our work proposes the first framework for preferential Bayesian
optimization with multiple objectives.

o We present dueling scalarized Thompson sampling (DSTS), the first extension of dueling Thompson
sampling (DTS) algorithms (Sui et al., 2017; Novoseller et al., |2020} [Siivola et all, [2021)) to the
multi-objective setting.

o We prove that DSTS is asymptotically consistent. Furthermore, we also provide the first convergence
guarantee for DTS in single-objective PBO.

o We demonstrate our framework across six test problems, including simulated exoskeleton personaliza-
tion and autonomous driving policy design tasks. Our results show that DSTS can efficiently explore
the objectives’ Pareto front using preference feedback.

2 Related work

2.1 Preference-based optimization

Preference-based optimization has been actively studied across various frameworks, including multi-armed
bandits (Yue et all, 2012} Bengs et al.l [2021)), reinforcement learning (Wirth et al. [2017)), and BO
let al, [2010; |Gonzalez et all [2017; |Astudillo et al., [2023)). It has been successful in a broad range of applications,
such as personalized medicine (Nielsen et al.,|2015; Sui et al.l 2017; Tucker et al., |2020a)), robot control
let al., 2019; Tucker et al.| |2021; Maccarini et al., 2022; Csomay-Shanklin et al., 2022) and, more recently, the
alignment of large language models (Rafailov et al [2023).

Most work in this area focuses on the single-objective setting. Two notable exceptions are the works of (Bhatia,
2020)) and (Zhou et al.| 2023)). Bhatia et al] (2020) considers one-shot preference-based optimization
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across multiple criteria over a finite design space. This study adopts a game-theoretic viewpoint and introduces
the concept of a Blackwell winner, which implicitly requires the user to specify an acceptable trade-off between
criteria, in contrast with our work. (Zhou et al.| |2023)) considers multi-objective preference alignment of
large language models. Like our work, these two works are motivated by the idea that preference-based
optimization across multiple objectives is crucial for capturing richer human feedback.

Our work extends the dueling Thompson sampling algorithm for dueling bandits introduced by (Sui et al.|
2017) (termed self-sparring), which has been adapted to preference-based reinforcement learning (termed
dueling posterior sampling) (Novoseller et al., 2020) and PBO (termed batch Thompson sampling) (Siivola
et al.l |2021)). To our knowledge, we provide the first multi-objective generalization of this algorithm.

2.2 Multi-objective optimization

The field of multi-objective optimization has been extensively studied, encompassing both theoretical
advancements and applications across various engineering problems (Miettinen, [1999; Marler & Aroral 2004;
Deb), |2013)). Literature within the BO framework is most closely related to our work (Khan et al., [2002;
Knowles, [2006; [Belakaria et al., |2019; [Paria et al., [2020; [Daulton et al., 2020)).

Our algorithm draws inspiration from ParEGO (Knowles| |2006)), a multi-objective BO algorithm that employs
augmented Chebyshev scalarizations to convert a multi-objective optimization problem into multiple single-
objective problems. Unlike [Knowles| (2006), our objectives are not observable, preventing direct modeling
of scalarized values. Instead, we model each objective separately and scalarize samples drawn from these
models, similar to Daulton et al.| (2020)’s version of ParEGO.

Additionally, our work is related to research that incorporates user preferences into multi-objective optimiza-
tion—a topic that has been actively studied both within and beyond the BO framework (Branke & Deb, 2005}
Wang et al.| [2017; [Hakanen & Knowles| [2017; |Lin et al., [2022). In most of this prior work, all objectives are
assumed to be directly observable, and user preferences are captured through a latent utility function that
combines these objectives into a single score to guide optimization. In contrast, we do not assume access to
the objective values. Instead, we receive binary preference feedback for each objective individually, without
ever observing their actual values or requiring a predefined utility function to aggregate them.

2.3 Additional related work

Emerging from the operations research community, the field of multi-criteria decision analysis (MCDA) focuses
on decision-making under multiple conflicting criteria (Keeney & Raiffal, [1993; Pomerol & Barba-Romerol
2000). Although our work is related to this field, it diverges from the traditional MCDA approaches, which
often involve aggregating preferences across criteria into a single performance measure (Young}, [1974} Dyer
& Sarin, [1979; [Baskin & Krishnamurthil 2009; Bhatia et al., [2020). Such aggregation requires additional
assumptions about the DM’s desired trade-off. Additionally, methods in this field have been explored outside
the PBO framework, making them not directly applicable in our setting.

3 Problem setting

Preferences Let X denote the space of designs. We assume there is a DM (which may represent one or
multiple users collaborating on a design task) aiming to maximize their preferences over designs. We assume
the DM’s preferences can be encoded via m objective functions fi,..., fin : X — R so that, for any given
pair of designs z, 2" € X, the DM prefers  over 2’ with respect to objective j if and only if f;(z) > f;(z').
For simplicity, we assume all m objectives are latent, but our approach can be easily adapted to settings
where some objectives are observable, as discussed in Section [

Goal Let f=|[f1,...,fm]: X = R™ denote the concatenation of the m objective functions. The DM seeks
to find designs that maximize each objective. This concept is formalized through the notion Pareto-dominance.
For a pair of designs z, 2’ € X, z Pareto-dominates 2’, denoted by x > o', if f;(z) > f;(z/) for j=1,...,m
with strict inequality for at least one index j. The DM seeks to find the Pareto-optimal set of f, defined by
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X5 = {w: # 2’ such that 2’ = x}. The set Y% = {f(z) : ¥ € X}} is termed the Pareto front of f. Figure
depicts the Pareto front for one of our test problems; the light grey region is the set of feasible objective
vectors, i.e., {f(z) : x € X} and the dark grey curve indicates the Pareto front of f.

Feedback To assist the DM’s goal, our algorithm collects preference feedback interactively (Algorithm .
At each iteration, denoted by n = 1,..., N, the algorithm selects a query constituted of ¢ designs X, =
(Tn1s---,%n,q) € X%, The DM then indicates their most preferred design among these ¢ designs for each
objective. Let 7, € {1,...,¢} denote the DM’s preferred design with respect to objective j. The collection
of these responses is denoted by 7, = [F1.n;- -+, Tm.n)-

0.0
Feasible region
Algorithm 1 Dueling Scalarized Thompson Sampling - Paretofront
Input Initial dataset: Dy, and prior on f: pg. -05
forn=1,...,N do &
Compute py, the posterior on f given D,
Sample 6,, uniformly at random over © 10
Draw samples f, 1, ... fn,qu Pn
Find z,; € argmax,cx s(fn,i(2);0n), i =1,...,q -15
Set X,, = (n1,...,%nq), and observe r, -15 -1.0 Vi 05 0.0
Update dataset D, = D,,—1 U{(X,,7m0)}
end for Figure 2: Feasible region and Pareto

front of the DTLZ2 test function.

4 Dueling scalarized Thompson sampling

We introduce a novel algorithm termed dueling scalarized Thompson sampling (DSTS), summarized in
Algorithm DSTS is obtained by adeptly combining ideas from preference-based and multi-objective
optimization to derive a sound algorithm with strong performance and convergence guarantees. As is common
in BO, our algorithm is comprised of a probabilistic model of the objective functions for predictions and
uncertainty reasoning, along with a sampling policy that, informed by the probabilistic model, iteratively
selects new queries, balancing exploration and exploitation.

4.1 Probabilistic model

The probabilistic model is encoded by a prior distribution over f, denoted by pg. We assume pgy consists
of a set of independent Gaussian processes, each corresponding to an objective. However, our framework
does not rely on this choice and can easily accommodate other priors as long as samples from the posterior
distribution can be drawn.

As is standard in the PBO literature (Gonzalez et al., |2017; Nguyen et al., |2021; |Astudillo et al., 2023)), we
account for noise in the DM’s responses by using a Logistic likelihood for each objective j = 1,...,m of the
following form:

Y _exp(fi(@na)/A)) .
P(ijn =1 | fJ(X’ﬂ)) - ;]/:1 exp(fj(xn,i/)/)\j), 1= 1v"'7qa (1)

where A; > 0 is the noise-level parameter. We estimate A; along with the other hyperparameters via maximum
likelihood. We assume noise is independent across objectives and interactions.

Let Dy denote the initial dataset and D,,—1 = Do U {(Xk, rx) 2;11 denote the data available right before
the n-th interaction with the DM. Let p,, denote he posterior over f given D,,_1. The posterior cannot be
computed in closed form but can be approximated using, e.g., a variational inducing point approach (Nguyen
et al., |2021)). For observable objectives, the above model can be replaced by a standard Gaussian process

model with a Gaussian likelihood (see Appendix [B.1).
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4.2 Sampling policy

Our primary algorithmic contribution is our sampling policy, which extends the dueling Thompson sampling
(DTS) algorithmic family to the multi-objective setting. This is achieved by leveraging augmented Chebyshev
scalarizations, a technique from multi-objective optimization used to decompose a multi-objective optimization
problem into multiple single-objective problems. We next explain augmented Chebyshev scalarizations and
describe how we integrate them with DTS.

Augmented Chebyshev scalarizations Augmented Chebyshev scalarizations are widely used for multi-
objective optimization (Miettinen, [1999). In BO, in particular, they were employed by [Knowles| (2006]) and
Paria et al.| (2020]). We also leverage them to derive a sound sampling policy in our setting.

For a given vector of scalarization parameters, § € © := {# € R™ : Z;ﬂ:l gj=1and 0; >0, j=1,...,m},
the augmented Chebyshev scalarization function is defined by
m
s(y:0) = min{6;y;} + p; 0,13, (2)
j:

where p is a small positive constant. It can be shown that any solution of max,ex s (f(z);0) lies in the
Pareto-optimal set of f. Conversely, if p is small enough, every point in the Pareto-optimal set of f is a
solution of max,ex s (f(x);0) for some 6 € © (Theorem 3.4.6, Miettinen), [1999).

Dueling scalarized Thompson sampling At each iteration, n, we draw a sample from the scalarization
parameters uniformly at random over ©, denoted by 6,. We also draw ¢ independent samples, denoted
by fn,h ey fn,q, from the posterior distribution on f given D, _1. The next query is then given by X,, =
(Tn,1s- -+, %n,q), Where ) )
T € arg&axs (fri(x);6,), i=1,...,q. (3)
xr

Intuitively, our sampling policy operates by first determining a subset of the Pareto-optimal set of f using 0,,
denoted as X}; §. = ArgMax,cy s(f(z);60,). Then, each x, ; is sampled according to the probability (induced

by the posterior on f) that z, ; € X* analogous to single-objective dueling posterior sampling (Sui et al.

fi6n°
2017). The DM’s responses provide information of the highest value point among @, 1, ..., 7, for each
objective, which in turn allows us to learn about X* - . Since 6,, is drawn independently at each iteration,

f?e’ﬂ
we explore a diverse collection of subsets X; g within X%.

We note that our sampling policy is agnostic to the choice of the probabilistic model, provided that samples
from the posterior can be drawn. In addition, our sampling policy is suitable for problems with mixed latent
and observable objectives thanks to its dual interpretation as a policy for preference-based optimization (Sui
et al.l 2017) and traditional optimization with observable objectives (Paria et all 2020). Specifically, when
all objectives are observable, our sampling policy can be interpreted as a batch generalization (Kandasamy
et al.l |2018]) of the scalarized Thompson sampling algorithm proposed by [Paria et al.| (2020).

4.3 Theoretical analysis

We now study the convergence properties of DSTS. We begin by analyzing the single-objective setting and
establish the asymptotic consistency of DTS. To our knowledge, this is the first such result for DTS in PBO.
The result is stated in Theorem [T} with a proof—based on a martingale argument—provided in Appendix[A2]

Theorem 1. Suppose that X is finite, m = 1, and the sequence of queries {X,,}52 is chosen according to the
DTS policy. Then, for each x € X, lim,,_, P, (z € argmax,, cx f(2')) = 1{z € argmax,,.x f(2')} almost
surely for f drawn from the prior.

Extending this result to the multi-objective setting requires a minor modification to the DSTS algorithm.
Specifically, our proof introduces a small probability of comparing against a fixed reference design in each
iteration. This modification is required by our proof due to the non-linear nature of Chebyshev scalarizations
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Figure 3: Our framework was demonstrated on six test problems: DTLZ1 (a), DTLZ2 (b), Vehicle Safety (c),
Car Side Impact (d), Autonomous Driving (e), and Exoskeleton (f). Overall, our proposed method (DSTS)
delivers the best performance. gMES and qParEGO exhibit a mixed performance, achieving good results in
some test problems and poor results in others. The remaining methods, Random, PBO-DTS-IF, and qEHVI,
consistently underperform DSTS.

and is not required in the single-objective case. The resulting convergence guarantee is stated in Theorem
The proof—which can be found in Appendix [AZ3]-again relies on a martingale argument and the fact that
varying 6 allows Chebyshev scalarizations to recover all Pareto-optimal points.

Before stating the result, we describe the modified DSTS policy under consideration. Assume ¢ = 2, and fix
any reference point z,er € X and ¢ € (0,1). At each iteration, the first design z,, 1 is selected as in Equation
while the second design x,, 2 is set to x.¢ with probability d, or otherwise selected via Equation

Theorem 2. Suppose that X is finite, ¢ = 2, and the sequence of queries {X,}52 is chosen according to
the modified DSTS policy described above. Then, for each x € X, limy, oo P (z € X}) = H{z € X}} almost
surely for f drawn from the prior.

We now place our results in context with prior theoretical work on DTS. showed that DTS
achieves asymptotic consistency and sublinear regret in the dueling bandits setting, assuming independent
pairs of arms. However, their analysis does not extend to our setting, where arms may be correlated. Notably,
the analysis of relies on showing that all arms are chosen infinitely often, which may not be
true in our context. Similarly, Novoseller et al.|(2020)) showed analogous convergence results in a reinforcement
learning setting under a Bayesian linear reward model. In contrast, our result holds for non-linear objectives.
Moreover, the result of [Novoseller et al.| (2020) also relies on showing that each arm is selected infinitely
often. Finally, note that the results of [Sui et al.|(2017) and Novoseller et al| (2020) are only applicable in the
single-objective setting; as discussed above, the multi-objective setting presents additional challenges.
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Unlike prior work, we do not establish regret bounds for DSTS. Indeed, such bounds remain an open question
even for DTS in single-objective PBO. While we see this as a valuable research direction, such analysis is
beyond the scope of our work which primarily aims to introduce multi-objective PBO. Finally, it is important
to recognize that the asymptotic consistency of data-driven algorithms like DSTS cannot be taken for granted.
For instance, |Astudillo et al.|(2023) showed that the adaptation of qEI proposed by [Siivola et al.|(2021)
is not asymptotically consistent and can perform poorly in single-objective PBO, despite being one of the
most widely used algorithms. In Theorem |3} we show that qEHVI (Daulton et al.| [2020]), a multi-objective
generalization of qEI, suffers from the same limitation in our setting. A proof is provided in Appendix [A-4]
Our empirical results support this finding, showing that gEHVI can perform very poorly.

Theorem 3. There exists a problem instance with finite X and ¢ = 2 such that if X, €
argmax y cxs QEHVL, (X) for all n, then lim, o Py(z € X3) = t almost surely for some fized v € X
and t € (0,1).

5 Numerical experiments

We evaluate our algorithm across six test problems and compare it with five other sampling policies. All
algorithms are implemented using BoTorch (Balandat et all [2020). Details on the performance metric, the
benchmark sampling policies, and the test problems are provided below. The code for reproducing our
experiments can be found at https://github.com/RaulAstudillo06/PMBO.

5.1 Performance metric

We quantify performance using the hypervolume indicator, which has been shown to result in good coverage
of Pareto fronts when maximized (Zitzler et al., 2003). Let Y* = {y,}}_, be a finite approximation of the

Pareto front of f. Its hypervolume is given by HV(YA(*,T) =pu (UeLzl [r, yd), where r € R™ is a reference

vector, p denotes the Lebesgue measure over R™, and [r, y,] denotes the hyper-rectangle bounded by the

vertices r and y,. We report performance by setting Y* equal to the set of Pareto optimal points across
designs shown to the DM.

5.2 Benchmarks

We compare our algorithm (DSTS) against uniform random sampling (Random), three adapted algorithms
from standard multi-objective BO (qParEgo, qEHVI, gMES), and a standard PBO algorithm with inconsistent
overall preference feedback (PBO-DTS-IF). Our experiments in this section use the regular version of DSTS.
In Appendix [B:3] we show that the modified version of DSTS used in Theorem [2] achieves virtually the
same performance for small values of §. All algorithms use the same priors, and the resulting posteriors are
approximated via the variational inducing point approach proposed by [Nguyen et al.| (2021)). Approximate
samples from the posterior distribution used by DSTS and PBO-DTS-IF are obtained via 1000 random
Fourier features (Rahimi & Recht, [2007]).

Adapted standard multi-objective BO methods A common approach in the PBO literature is to use a
batch acquisition function designed for parallel BO with observable objectives, ignoring the fact that preference
feedback is observed rather than objective values (Siivola et al., 2021} [Takeno et al, |2023)). Despite lacking the
principled interpretations they enjoy in their original setting, they often deliver strong empirical performance.
Following this principle, we adopt three batch acquisition functions from standard multi-objective BO as
benchmarks: qParEGO (Knowles|, [2006} [Daulton et al.l 2020), qEHVI (Daulton et al [2020]), and ¢MES
(Belakaria et al., [2019). Since these algorithms were not originally designed for latent objectives, they require
minor adaptations that we describe in Appendix [B:5] These algorithms use the same probabilistic model as
DSTS. Thus, any difference in performance is solely due to the use of different sampling policies.

Single-objective PBO with inconsistent aggregated preference feedback Single-objective PBO
methods are often applied to problems characterized by multiple conflicting objectives. In such cases, DMs
are expected to aggregate their preferences across objectives, which can be challenging for DMs and often
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(a) Autonomous Driving (b) Exoskeleton Walking

Figure 4: Simulation environments used in our test problems.

results in inconsistent feedback. For example, in the context of exoskeleton personalization, this would require
forcing the exoskeleton user and clinical technician to reach a unified response at every iteration, which can
be challenging if the user’s objective is to maximize comfort while the technician’s objective is to ensure
the exoskeleton’s long-term energy efficiency. To understand the effect of using this approach, we include a
standard single-objective PBO approach using inconsistent feedback. Additional details on this benchmark
are provided in Appendix [B:5]
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Figure 5: Illustration of sampled designs for the DTLZ2 test function. These figures show that our proposed
method (DSTS) provides a better exploration of the Pareto front than its competitors.

5.3 Test problems

We report performance across four synthetic test problems (DTLZ1, DTLZ2, Vehicle Safety, and Car
Side Impact), a simulated autonomous driving policy design task (Autonomous Driving), and a simulated
exoskeleton gait design task (Exoskeleton) using queries with ¢ = 2 and ¢ = 4 designs. Details of these test
problems are provided below. In all problems, an initial dataset is obtained using 2(d 4+ 1) queries chosen
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uniformly at random over X?, where d is the input dimension of the problem. After this initial stage, each
algorithm was used to select 100 additional queries sequentially. Results for ¢ = 2 are shown in Figure
Each plot shows the mean of the hypervolume of the designs included in queries thus far, plus and minus
1.96 times the standard error. Each experiment was replicated 30 times using different initial datasets. In
all problems, the DM’s responses are corrupted by moderate levels of Gumbel noise, which is consistent
with the use of a Logistic likelihood (see Appendix for the details). Results for ¢ = 4 can be found in

Appendix [B:4]

DTLZ1 and DTLZ2 The DTLZ1 and DTLZ2 functions are standard test problems from the multi-
objective optimization literature (Deb et al., |2005). In our experiments, we configure DTLZ1 with d = 6
design variables and m = 2 objectives, and DTLZ2 with d = 3 design variables and m = 2 objectives.
Results for these problems are shown in Figures and respectively. Our approach achieves the best
performance in both problems, tied with qParEGO on DTLZ2.

Surprisingly, on the DTLZ2 problem, PBO-DTS-IF, EHVI, and gMES underperform significantly, even being
surpassed by Random. To understand this, we plot a representative set of objective vectors corresponding
to the queried designs in Figure 5] As illustrated, Random offers a reasonable exploration of the Pareto
front (likely due to the low dimensionality of DTLZ2). However, it exposes the user to many low-quality
designs, which can potentially frustrate DMs. PBO-DTS-IF and ¢MES tend to favor designs where one of the
objectives achieves its maximum possible value, which may be problematic for DMs seeking more balanced
solutions. qEHVT fails to explore the Pareto front, concentrating its queries on a limited sub-optimal region
instead. Finally, DSTS and qParEGO provide a more comprehensive exploration of the Pareto front.

Vehicle Safety and Car Side Impact The Vehicle Safety and Car Side Impact test functions are designed
to emulate various metrics of interest in the context of crashworthiness vehicle design. Overall, these test
problems emulate an expert’s assessment based on expensive experiments where cars are intentionally crashed,
and safety metrics are evaluated. Vehicle Safety has d = 5 design variables and m = 3 objectives. Car Side
Impact has d = 7 design variables and m = 4 objectives. For further details, we refer the reader to Tanabe &
Ishibuchi| (2020). Results for the Vehicle Safety and Car Side Impact experiments can be found in Figures
and respectively. For the Vehicle Safety problem, qMES is the best-performing algorithm, followed by
DSTS. For the Car Side Impact, DSTS performs the best, followed closely by qMES.

Autonomous Driving Policy Design To supplement the synthetic test functions, we further evaluate
our algorithm on a simulated autonomous driving policy design task. For this problem, we use a modification
of the Driver environment presented in |Biyik et al.[(2019). A similar environment was also used by Bhatia
et al.| (2020), providing empirical evidence that user preferences in this context are inherently governed by
multiple latent objectives. In our modified environment, illustrated in Figure an autonomous control
policy is created to drive a trailing (red) vehicle forward to a goal location while maintaining some minimum
distance with a leading (white) vehicle. The control policy switches between two modes, collision avoidance
and goal-following, based on a minimum distance threshold. The behavior of the leading car is fixed by
setting a pre-specified set of actions.

Using this simulation environment, we consider four objectives representing approximations of subjective
notions of safety and performance: lane keeping, speed tracking, heading angle, and collision avoidance. The
design space is parameterized by four control variables: two parameters that account for how fast the vehicle
approaches the goal or the other vehicle, respectively, one position gain that accounts for the adjustment on
the desired heading, and the minimum distance threshold used to switch between the two modes. The results
of this experiment are shown in Figure As illustrated, our approach again delivers better performance
than its competitors.

Exoskeleton Gait Customization Lastly, we evaluate our algorithm on an exoskeleton gait personalization
task using a high-fidelity simulator of the lower-body exoskeleton Atalante (Kerdraon et al., 2021)), illustrated
in Figure This problem emulates the scenario discussed in the introduction, in which there are two
conflicting objectives: subjective user comfort and energy efficiency. For simulation purposes, we approximate
comfort as a linear combination of three attributes: average walking speed (faster speed is preferred),
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maximum pelvis acceleration (lower peak acceleration is preferred), and the center of mass tracking error
(lower error is preferred). We approximate total energy consumption as the [>-norm of joint-level torques,
averaged over the simulation duration. We note that this is an observable objective. Thus, our approach is
modified as discussed in Section [4] and further elaborated on Appendix [B-1] to leverage direct observations of
this objective.

The design space is parameterized by five gait features: step length, minimum center of mass position with
respect to stance foot in sagittal and coronal plane, minimum foot clearance, and the percentage of the gait
cycle at which minimum foot clearance is enforced. Each unique set of features corresponds to a unique
gait. These gaits are synthesized using the FROST toolbox (Hereid & Ames| [2017)) and are simulated in
Mujoco to obtain the corresponding objectives. Since simulations are time-consuming, we build surrogate
objectives by fitting a (regular) Gaussian process to the objectives obtained from 1000 simulations, with each
set of gait features drawn uniformly over the design space. As shown in Figure DSTS achieves the best
performance, followed closely by qParEGO and ¢MES.

5.4 Discussion

Across the broad range of problems considered, DSTS delivers the best overall performance. Specifically, DSTS
yields the highest hypervolume in nearly all problems (except for the Vehicle Safety problem, where it is second
to gMES). Two of the standard multi-objective benchmarks, qParEGO and ¢MES, exhibit mixed results,
highlighting the importance of developing algorithms designed to handle preference feedback as opposed to
naively adapting algorithms intended for observable objectives. Notably, qEHVTI is the worst-performing
algorithm, even surpassed by Random. This is consistent with Theorem [3} which shows that qEHVI is not
consistent in general, thus highlighting the value of our asymptotic consistency result for DSTS (Theorem .
Lastly, PBO-DTS-IF consistently underperforms DSTS, confirming that a single-objective PBO approach is
insufficient to explore the optimal trade-offs in problems with multiple conflicting objectives. The runtimes of
all methods are discussed in Appendix

6 Conclusion

In this work, we proposed a framework for PBO with multiple latent objectives, where the goal is to help
DMs efficiently explore the objectives’ Pareto front guided by preference feedback. Within this framework,
we introduced dueling scalarized Thompson sampling (DSTS), which, to our knowledge, is the first approach
for PBO with multiple objectives. Our experiments demonstrate that DSTS provides significantly better
exploration of the Pareto front than several benchmarks across six test problems, including simulated
autonomous driving policy design and exoskeleton gait customization tasks. Moreover, we showed that DSTS
is asymptotically consistent, providing the first convergence result for dueling Thompson sampling in PBO.

While our work provides a sound approach to tackling important applications not covered by existing methods,
there are also a few limitations that suggest avenues for future exploration. Future work could include a
deeper theoretical analysis of DSTS, such as investigating convergence rates and regret bounds, as well as
the development of alternative sampling policies. For example, |/Astudillo et al.| (2023) provided an efficient
approach to approximate a one-step lookahead Bayes optimal policy in single-objective PBO, demonstrating
superior performance against various established benchmarks. Although their approach cannot be easily
adapted to our context, exploring alternative mechanisms for computing non-myopic sampling policies in
our setting would be valuable. Finally, it would be interesting to explore DSTS in other settings, such as
preference-based reinforcement learning.
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A Proofs of theoretical results

A.1 Notation and auxiliary results

We first introduce the following notation. Let F,, denote the o-algebra generated by D,,_1 and F, denote
the minimal o-algebra generated by {F,}52,. We denote the conditional probability measures induced by
Frn and F by P, and P, respectively. Unless otherwise stated, throughout this analysis, we assume that
f is a random function drawn from the prior.

We will now prove two lemmas. Lemma [I] guarantees that for any Pareto optimal point, there is a set of
scalarizations with positive measure for which this point is optimal. Lemma[2] on the other hand, ensures
that promising points are compared against the reference point sufficiently many times.

Lemma 1. Let f be any fized function. If x € X%, then there exists ¥ C © such that x is the only element
of argmax, cx s(f(2');%) for all Y € ¥ and P(§ € ¥) > 0, where 8 is a uniform random variable over ©.

Proof. From Theorem 3.4.6 in |Miettinen| (1999), we know that x € X3} (i.e. x is properly Pareto optimal) if
and only if there exists § € © such that « is the only element of argmax,,x s(f(z);6). As a result, since
x € X%, there exists at least one 6 € © such that z is the unique maximizer of s(f(z');#). Since X is finite,
the function s(f(2’);0) is continuous with respect to 6 and z is the unique maximizer at 6, by continuity,
there exists a neighborhood around 6 where x remains the unique maximizer. Let ¥ be this neighborhood
around 6. Since 6 is uniformly distributed over ©, the set ¥, being non-empty, has positive measure. Hence
P eT)>0. O

Lemma 2. Suppose that the assumptions of Theorem hold and let x € X be any point with P (x € X;) > 0.
Then, fi(z) — f(zrer) is Foo-measurable for j =1,...,m.

Proof. Making a slight abuse of notation, we write z = argmax,,cx s(f(z’);6) if « is the only element of
argmax,, cx s(f(z');0).

Let 6 denote a uniform random variable over © independent of F,,. The existence of such a 6 is guaranteed
by Kolmogorov’s extension theorem.

From Lemma there exists a ¥ C © (depending on f) such that Po, (2 = argmax,, .x s(f(z');¢) V¢ € ¥) >0
and P (6 € ¥) > 0.

A standard Martingale argument shows that

lim P, (z = argmax s(f(z');¢) V ¢ € ¥) = P (x = argmax s(f(z');¢) Vo € ¥) >0
n z'eX z'eX

almost surely.

This convergence to a positive limit implies that for sufficiently large n, the conditional probability is bounded
below by some €; > 0 such that P,,(x = argmax_, cx s(f(2');¢) ¥ ¢ € ¥) > €;. Similarly, we can find €5 such
that P, (6 € ¥) > e, for all n large enough.

Under the modified DSTS policy where the z,, o defaults to e with probability J, we have

P, (X, = (2, 2rr)) > P, (z = argmax s(f(z');9) V¢ € )P, (0 € ¥)5 > €1620
z'eX

for all n large enough.
It follows that the event X,, = (z, zyf) occurs for infinitely many n. Let ny,na, ... denote the sequence of
indices such that X,,, = (x, Zyef). Since ¢ = 2,

E[Tj,nk -1} f]] = P(Tj,nk =2)

_ exp(fj(Tref) /A))
exp(fj(x)/A;) + exp(fj(zret)/Aj)
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Thus, by the law of large numbers we have

K
. 1 eXp(f] ($ref)/Aj)
lim — Ting — 1) =
e 2 i =1 = G )+ exn (e )
_ 1
L+ exp((fj () = fi(2ret))/ A5)
almost surely. We deduce from this that f;(z) — f;j(@ref) is Foo-measurable for j =1,...,m. O

A.2 Proof of Theorem 1

Theorem 1. Suppose that X is finite, m = 1, and the sequence of queries {X,}52 is chosen according to the
DTS policy. Then, for each x € X, limy, o Pp(x € argmax . cx f(2')) = 1{z € argmax,.cx f(2')} almost
surely for f drawn from the prior.

Proof. Observe that X} = argmax, ¢y f (') in the single-objective setting. We will show that the event
0 <Pz e X;) < 1 occurs with probability zero by showing that a contradiction arises almost surely.

Since Poo(r € X}) < 1, there must exist a fixed 2’ € X such that P (f(2') > f(x)) > 0. Moreover, we
can choose 2’ such that Poo (2" € X}) > 0. Similar to the proof of Lemma |2} this implies that we can find
€z, €, > 0 such that Pp(z € X}) > ¢, and Py (2" € X}) > €, for all n large enough.

Now observe that under the DTS policy,

P, (X, = (z,2,...,2')) = Pu(z € X})P,(¢/ € X})T > ezel, !

for all n large enough (note that we have used that x,, 1,..., %, , are chosen independently). This implies
that the event X,, = (z,2’,...,2’) occurs infinitely often almost surely. Similar to the proof of Lemma [2}
this implies that
exp(f(x)/A)
exp(f(z)/A) + (¢ — 1) exp(f(a’)/A;)
and
exp(f(z')/A)

exp(f(x)/A) + (¢ — 1) exp(f (') /A;)

are both F.-measurable. By taking the ratio between these two quantities, we see that exp((f(z) — f(z'))/A)
is Foo-measurable, which in turn implies that f(z) — f(2') is also Foo-measurable. From this, it follows that

Poo(f(2') > f(2)) = H{f(") > f(2)}.
Now recall that P (f(2') > f(2)) > 0. Thus, it must be the case that Po(f(2") > f(z)) = 1. However, this
implies that Poo (2 € X}) = 0, which is a contradiction.

From the above, it follows that P (z € X;) is 0 or 1 almost surely. Similar to the proof of Theorem |2 we
conclude that P (2 € X}) = 1{z € X}} by virtue of Doob’s Bayesian consistency theorem (Doob, |[1949). [

A.3 Proof of Theorem 2

Theorem 2. Suppose that X is finite, ¢ = 2, and the sequence of queries {X,}52, is chosen according to the
modified DSTS policy. Then, for each v € X, limy, o0 Py (2 € X}) = 1{z € X}} almost surely for f drawn
from the prior.

Proof. A standard martingale argument shows that lim,,_,o Py (2 € X}) = Poo(z € X7}) almost surely. Thus,
it remains to show that Poo (2 € X}) = 1{x € X}} almost surely.

To prove this, we will show that the event 0 < Py (z € X}) < 1 occurs with probability zero. For the
sake of contradiction, assume this event holds with positive probability. As we will see next, this yields a
contradiction that holds almost surely.
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Since Poo(z € X}) < 1, there must exist 2’ € X such that Poo (2" = ) > 0. Moreover, we can choose z’
such that Poc (2" € X3) > 0.

Given Poo(z € X37) > 0, fj(z) — fj(2ret) is Foo-measurable for each j = 1,...,m by Lemma 2. Similarly,
since Poo (2" € X3) > 0, f;(2') — fj(ret) is Foo-measurable. Thus,

(f3(@") = fi(zret)) = (fi(2) = fi(@rer)) = f5(2") — fj(2)
is Foo-measurable for each j =1,...,m.

Next, observe that 2’ >y « if and only if minj—y __,, f;(2’) — f;(z) > 0. Hence, 1{z’ >; x} is Foo-measurable
and P (2’ =5 x) = 1{a’ >; x} almost surely.

Recall that P (2’ >f x) > 0. Thus, it must be the case that Py (2’ >; x) = 1. This implies that
P (z € X}) = 0, which contradicts our initial assumption that 0 < Poo(z € X}) < 1.

Finally, since P (z € X;‘c) is 0 or 1 almost surely, from Doob’s Bayesian consistency theorem (Doob) [1949)
we conclude that P (z € X}) = 1{z € X}}. O

A.4 Proof of Theorem 3

Theorem 3. There exists a problem instance with finite X and ¢ = 2 such that if X, €
argmax y cxs QEHVI, (X)) for all n, then lim, ... Py(z € X}) = t almost surely for some fired v € X
and t € (0,1).

Proof. For simplicity, we focus on the single-objective case. Our example can be easily extended to the
multi-objective case, e.g., by augmenting the problem with dummy constant objectives. In this case,
X% = argmax, cx f(2') and the qEHVI acquisition function reduces to the qEI acquisition function (Siivola
et al., |2021)), defined by

qEL, (z) = Eu[{f(z) — 1.}, (4)
where p) is the maximum posterior mean value over designs previously shown.

We build on the example provided by [Astudillo et al.| (2023)). Specifically, we let X = {1,2,3,4} and consider
the functions f( - ;k) : X = R, for k =1,2,3,4, given by f(1;k) = —1 and f(2;k) =0 for all k, and

f(:v;l)Z{l’ zii f(x;2)={%’ ﬁii

N[

f(x;3)={:%’ . f(fc;4)={_1’ -

1 R
’ x 2 r=4

Let s be a number with 0 < s < 1/3 and set ¢ = 1 — s. We consider a prior distribution on f with support
{f(-;i)}%, such that

s/2, k=1,2,

Po,k—P(f_f(‘Ek))_{t/Q E—3.4.

We assume a logistic likelihood given by

exp(f (n.) /) 1o
(o) /N +exp(f (o)A 07

P(r, =il f(Xn)=

From the proof of |Astudillo et al.| (2023), we know that X,, = (3,4) for all n and the posterior distribution
evolves according to the equations

Pn,kWn, k= 1737
1k X
b Lk pn,k(]- - wn)a k = 2747
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where w, = al{r, =1} 4+ (1 — a)1{r, = 2} and a = exp(1/2}).

We will use the above to show that p,, 3 + pn.4 =t for all n. To this end, observe that the above equations
imply that p,1/pn3 = Po1/po,s = s/t for all n. Similarly, p,2/pna = Po,2/Poa = s/t for all n. Thus,
Pn,1 = (8/t)pn,3 and p, 2 = (s/t)pn,4 for all n. Moreover,

1= Pn,1 + Pn,2 + Pn,3 + Pn,4
= (S/t)pn,i’) + (S/t)pn,4 +Pn3+Pna
= (pn,3 +pn74>(1 + S/t)

Therefore,

DPn,3 +Pna= 1/(1+s/t)
=t.

Finally, let « = 2 and observe that « € argmax,, x f(z) if and only if f = f( - ;3) or f = f( - ;4). Hence,

P, ( € argmaXf(:v’)> =P (f=f(33)or f=f(+4)

x’'eX
= Pn,3 +Dna
=1.

B Additional experimental details and results

B.1 Additional details on our probabilistic model under observable objectives

Suppose for concreteness that objective j is observable. Then, at each iteration n, we observe (potentially
noisy) measurements of f;(zn1),..., fj(@n,q). Let Yn1,...,Yn,q denote these measurements, and let D, =
{(®k,i, Yk,i) th=1,... n,i=1,....q denote all the measurements available right before the n-th interaction with the
DM. As is standard in the BO literature, we can assume Gaussian noise such tat y, ; = f;(@n,;) + €n,; where
the terms €, ; ~ N(0,02) are independent across n and i. If we assume a Gaussian prior over fj, then the
posterior distribution of f; given D,,_; is again a Gaussian process, whose mean and covariance functions can
be computed using the standard Gaussian process regression equations (equations 2.23 and 2.24 of Rasmussen
& Williams, 2006)).

B.2 Noise in the DM'’s responses

In our experiments, we simulate noise in the DM’s responses using additive Gumbel noise. Specifically, if X,
is the query presented at iteration n, then the response observed is r,, = [F1n,...,7m ), Where

Tjn = argmax f; (Tni) + €nyijs
1=1,..., q

and €, ; ; ~ Gumbel(0, )\;-rue) fori=1,...,qand j =1,...,m are independent. Under this choice, we have

X j\ln,i )\prue
P (Tj,n =1 I fj (Xn)) = q/iligggfcj (x)ji/j)/)\)t»rue)7

fort=1,...,q, i.e., this recovers a Logistic likelihood.

Following |Astudillo et al.| (2023)), in each problem, for every objective, )\;me is chosen such that, on average,
the DM makes a mistake 20% of the time when comparing pairs of designs among those with the top 1%
objective values within X. We estimate this percentage by uniformly sampling a large number of design
points over X.
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Noise in the DM’s responses observed by PBO-DTS-IF is generated by scalarizing the corrupted objective
values defined above using a Chebyshev scalarization. Concretely, if 7, denotes the response observed by
PBO-DTS-IF when presented with query X,,, then

T;L = ajrgmaxs(f(xn,i) + €n.i; Gn),

i=1,...,q
where €,; = [€n,i,15- -5 €nim]s €n,i,j 1S defined as before, and 0,, is drawn uniformly from ©.
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Figure 6: Performance of DSTS and modified DSTS (DSTS-M) using queries with ¢ = 2 alternatives across
three test problems. Their performance is almost identical in the three problems considered.

B.3 Results for modified DSTS

We evaluate the performance of the modified version of DSTS used in the proof of Theorem 1 on three of our
test problems. We set x,ef by drawing a point uniformly at random over X. This point is different for each
replication. In addition, we set § = 0.05 such that x,.¢ is selected five times on average across 100 iterations.
The results are shown in Figure [6]

B.4 Results for ¢ =4

We carry out experiments analogous to those presented in the main paper, using queries with ¢ = 4 alternatives
each. We focus on DSTS and the two strongest benchmarks, qParEGO and qMES. The results are shown in
Figure[7] For a clearer comparison, we also include results for ¢ = 2. As depicted, increasing the number of
alternatives improves the performance of the three algorithms. DSTS delivers the best overall performance
under queries with ¢ = 2 and ¢ = 4 alternatives.

B.5 Additional details on our benchmarks
B.5.1 Adapted standard multi-objective BO algorithms

qParEGO In standard multi-objective BO with observable objectives, the qParEGO acquisition function is
defined by o, (z) = E,[{s(f(2);0,) — maxgcx, s(f(x');0,)}T], where X, is the set of all designs in queries
presented to the DM up to time n and 6,, is drawn uniformly at random over ©. Following [Siivola et al.
(2021)), we replace f(z') by the posterior mean of f at 2’ to avoid taking the expectation with respect to the
random variable max,/cx, s(f(z');0n).

qEHVI In the standard multi-objective BO setting with observable objectives, the qEHVI acquisition
function is defined by ay,(z) = E,[HV(Y, U{f(z)},7) — HV(V,, )], where ), is the set of objective vectors
corresponding to designs presented to the DM up to time n. As with qParEGO, we replace these objective
vectors with posterior mean vectors to avoid taking the expectation with respect to these unknown values.
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Figure 7: Performance of qParEGO, gMES and DSTS using queries with ¢ = 2 and ¢ = 4 alternatives across
our six test problems. Using a larger number of alternatives improves the performance of the three algorithms.
DSTS delivers the best overall performance under queries with ¢ = 2 and ¢ = 4 alternatives.

Note that qEHVT also requires specifying reference point 7, which is challenging if the objectives are latent.
In our experiments, we set r equal to the coordinate-wise minimum posterior mean value across designs
presented to the DM up to time n.

qMES Unlike qParEGO and qEHVI, qMES does not require any modification to be applied in our setting.
However, it is worth noting that the lookahead step in the definition of gMES assumes that the objective
values will be observed at the selected points. However, this is not the case in our setting. We believe this
can be problematic as it may cause qMES to over-value queries constituted by designs with very distinct
objective values, even though preference feedback from such queries can often be uninformative.

B.5.2 PBO with inconsistent preference feedback

The feedback used by PBO-DTS-IF is produced as follows. At each iteration n, a set of scalarization
parameters 9~n, is drawn uniformly at random over ©. Given a query X,, = (p1,...,%nq) , We assume
the DM then provides a noisy response to argmax,_; . s(f(%n,); én) Inconsistency arises from sampling
different scalarization parameters at every iteration, which, in general, implies that preferences cannot be
encoded by a single objective function. We argue this mimics the DM’s desire to explore the trade-off between
objectives before committing to a solution. At the same time, we note that these responses respect intuitive
user behavior, such as preference for queries for which each objective is as large as possible.

The responses provided by the DM are used to fit a (single-output) Gaussian process with a Logistic likelihood
for which posterior inference is carried out using the same approach we use for the other algorithms. New
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queries are generated using the (single-objective) dueling Thompson sampling strategy under this probabilistic
model. The performance of this method is expected to be poor when the Pareto-optimal set is large, i.e.,
when the trade-offs between objectives are significant.

Problem/Algorithm ‘PBO—DTS—IF qParEGO qEHVI gMES DSTS

DTLZ1 5.7 24.3 25.6 58.5 19.2
DTLZ2 6.8 16.4 10.6 16.5 13.3
Vehicle Safety 8.4 15.4 36.7 43.8 17.8
Car Side Impact 5.9 38.1 352.8 324.4 36.3
Autonomous Driving 5.5 34.1 102.7 72.2 32.1
Exoskeleton 6.3 16.5 23.7 59.3 14.6

Table 1: Average runtimes in seconds for all the algorithms compared (except for Random) accross all test
problems.

B.6 Runtimes

The average runtimes for all algorithms across all test problems are presented in Table[I} DSTS is comparable
with qParEGO and faster than qEHVI and ¢qMES. PBO-DTS-IF is the faster algorithm since, in contrast
with the other algorithms, it requires a single Gaussian process model instead of m. However, it is worth
noting that the runtimes of these algorithms could be reduced by parallelizing the training step of its m
models. Moreover, the runtimes of DSTS could be further reduced by parallelizing the generation of the ¢
alternatives in each query during the optimization step.
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