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ABSTRACT

Preference alignment in Large Language Models (LLMs) has significantly im-
proved their ability to adhere to human instructions and intentions. However,
existing direct alignment algorithms primarily focus on relative preferences and
often overlook the qualitative aspects of responses, despite having access to pref-
erence data that includes reward scores from judge models during AI feedback.
Striving to maximize the implicit reward gap between the chosen and the slightly
inferior rejected responses can cause overfitting and unnecessary unlearning of
the high-quality rejected responses. The unawareness of the reward scores also
drives the LLM to indiscriminately favor the low-quality chosen responses and
fail to generalize to responses with the highest rewards, which are sparse in data.
To overcome these shortcomings, our study introduces reward-conditioned LLM
policies that discern and learn from the entire spectrum of response quality within
the dataset, helping extrapolate to more optimal regions. We propose an effective
yet simple data relabeling method that conditions the preference pairs on qual-
ity scores to construct a reward-augmented dataset. This dataset is easily inte-
grated with existing direct alignment algorithms and is applicable to any prefer-
ence dataset. The experimental results across instruction-following benchmarks
including AlpacaEval 2.0, MT-Bench, and Arena-Hard-Auto demonstrate that our
approach consistently boosts the performance of DPO by a considerable mar-
gin across diverse models such as Zephyr, Mistral, Qwen2, Llama3.1, Gemma2,
and SPPO. Additionally, on six academic benchmarks including GSM8K, GPQA,
MUSR, TruthfulQA, BBH, and ARC, our method improves their average accu-
racy. When applying our method to on-policy data, the resulting DPO model
outperforms various baselines and achieves state-of-the-art results on AlpacaEval
2.0. Through comprehensive ablation studies, we demonstrate that our method
not only maximizes the utility of preference data but also mitigates the issue of
unlearning, demonstrating its broad effectiveness beyond mere dataset expansion.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has recently seen remarkable success in
aligning Large Language Models (LLMs) to follow instructions with human intentions. In this
approach, AI-generated feedback serves as a stand-in for human preferences, assessing and ranking
responses to prompts to construct a preference dataset. This dataset is then utilized in preference
optimization algorithms to fine-tune LLMs. Among them, direct preference alignment (Rafailov
et al., 2024b; Azar et al., 2023; Zhao et al., 2023; Ethayarajh et al., 2024) that bypasses the need
for an explicit reward model has garnered interest for their simplicity and cost efficiency. However,
these algorithms mainly concern relative preferences and often overlook the quality of responses
and their gaps, leading to limitations in their effectiveness.

Specifically, direct alignment algorithms such as DPO (Rafailov et al., 2024b) focus on maximizing
the implicit reward difference between accepted and rejected responses. This approach can lead to
overfitting, as high-quality but rejected responses are unnecessarily unlearned (Adler et al., 2024).
Even worse, since the dataset provides only a sample estimate of true preferences, the rejected re-
sponses can actually be more aligned with human preferences than the accepted ones in expectation.
Similarly, due to the unawareness of the responses’ qualities, direct alignment will also result in
the indiscriminate learning of the chosen responses, even when they are of low quality. As a result,
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the directly aligned LLMs often struggle to differentiate between responses of varying quality and
fail to generalize effectively to more optimal or the highest-reward responses that are sparse in the
preference data, which is another limitation.

To address these issues, we propose learning reward-conditioned policies as a straightforward fix
to the above issues. By optimizing the LLM to generate responses conditioning on their quali-
ties, the model is allowed to discern and leverage patterns within responses of varied quality. As
a result, learning from both chosen and rejected responses alleviates the issue of unnecessarily un-
learning high-quality rejected responses; distinguishing between varying-quality chosen responses
alleviates the issue of indiscriminately accepting low-quality ones. By identifying common patterns
in responses of similar quality and distinguishing them from those of differing quality, the LLM
becomes more adept at generalizing to more optimal responses that are sparse in data.

With this motivation, we introduce an effective yet simple data relabeling method to construct
reward-augmented datasets. We define a goal-conditioned reward using an indicator function that
compares the goal reward with the actual quality score, such as the reward value given by the judge
model during AI feedback. This allows us to relabel each preference pair, generating two new pairs
conditioned on the reward goals of both the chosen and rejected responses. The resulting augmented
dataset, which contains these newly conditioned pairs, can enhance the performance of existing di-
rect alignment algorithms. Our method can be applied to any preference dataset and followed by
off-the-shelf direct alignment algorithms to boost their performance.

In experiments, we first apply our method on UltraFeedback (Cui et al., 2023) and perform DPO
(Rafailov et al., 2024b) on this reward-augmented preference dataset by fine-tuning on various mod-
els, including Zephyr-7B-β (Tunstall et al., 2023b), Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a),
Qwen2-7B-Instruct (Yang et al., 2024), Llama-3.1-8B-Instruct (Dubey et al., 2024), Gemma-2-9B-
It (Team et al., 2024), and SPPO (Wu et al., 2024). The results show that our method consis-
tently boosts the performance of these models as well as their DPO models by a large margin on
instruction-following benchmarks such as AlpacaEval 2.0 (Dubois et al., 2024), MT-Bench (Zheng
et al., 2024), and Arena-Hard-Auto (Li et al., 2024b). Our method also improves the average accu-
racy on a variety of academic benchmarks (GSM8K, GPQA, MUSR, TruthfulQA, BBH, and ARC).
Moreover, our findings also demonstrate an improved utility of the preference data: a subsequent
round of DPO using the reward-augmented data can still significantly enhance the model fine-tuned
with DPO; relabeling the binarized preference dataset with the DPO implicit reward leads to further
performance gains. Additional ablation studies also suggest that our method addresses the problem
of unlearning and is superior not just due to the increased dataset size. When applied to on-policy
data, our method enhances the DPO model, enabling it to surpass various baselines and achieve
state-of-the-art performance on AlpacaEval 2.0.

2 BACKGROUND

Consider a language model π ∈ ∆X
Y that takes the prompt x ∈ X as input and outputs the response

y ∈ Y , where X and Y are spaces of prompts and responses, respectively. Given the prompt x ∈ X ,
a discrete probability distribution π(· | x) ∈ ∆Y is generated, where ∆Y is the set of discrete
distributions over Y . We define the true human preference distribution as

p∗(y1 ≻ y2 | x) := Eh

[
1(h prefers y1 over y2 given x)

]
,

where h denotes the human rater and the expectation is over h to account for the randomness of
the human raters’ choices. After pretraining and Supervised Fine-Tuning (SFT), Reinforcement
Learning from Human or AI Feedback (Ouyang et al., 2022; Bai et al., 2022b) is typically employed
to enhance the ability of the language model to follow instructions with human preferences.

RL from AI Feedback (RLAIF). The RLAIF framework involves two major steps: preference
dataset construction with AI feedback and preference optimization. As a surrogate for human pref-
erence, AI feedback, including LLM-as-Judge (Zheng et al., 2024; Cui et al., 2023) and Reward-
Model-as-Judge (Adler et al., 2024; Dong et al., 2024), can be used to rank responses and generate
preference pairs. Specifically, consider the judge model r(x, y) : X × Y → R that outputs a scalar
reward value representing the quality of y under x. For each prompt x ∈ X , two responses, y1
and y2, are independently sampled—either from the same reference model (Xiong et al., 2024; Wu
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et al., 2024) or several different models (Zhu et al., 2023a; Zhang et al., 2024). Then r(x, y1) and
r(x, y2) are evaluated to determine the preferred response yw = argmaxy∈{y1,y2} r(x, y) and dis-
preferred response yl = argminy∈{y1,y2} r(x, y). By sampling responses and ranking them for a
set of N prompts, we get a preference dataset: DN = {(xi, yiw, y

i
l)}Ni=1. For the simplicity of our

discussions, we assume that the reward function r is bounded in [0, rmax].

Direct Alignment from Preference. The objective for the LLM π ∈ ∆X
Y is to maximize the KL-

regularized expected reward. Recent works (Azar et al., 2023; Zhao et al., 2023; Tunstall et al.,
2023b; Ethayarajh et al., 2024) proposed to align the LLM directly with the preference data by
deriving the preference loss as a function of the LLM by the change of variables. Among them, the
Direct Preference Optimization (DPO) (Rafailov et al., 2024b) loss has the following form:

LDPO(π;DN ) = −E(x,yw,yl)∼DN

[
log σ

(
β log

π(yw | x)
πref(yw | x)

− β log
π(yl | x)
πref(yl | x)

)]
,

where β is a hyperparameter corresponding to the KL divergence regularization, σ(·) is the logistic
function, and πref is some reference LLM policy, such as the SFT model.

3 REWARD-CONDITIONING ADDRESSES LIMITATIONS OF DIRECT
PREFERENCE ALIGNMENT

3.1 LIMITATIONS OF DIRECT ALIGNMENT FROM PREFERENCE

We will first demonstrate the limitations of vanilla direct alignment over the preference data.

High-Quality Rejected Responses are Unnecessarily Suppressed. The dataset DN often con-
tains preference pairs where the rejected response yl is only marginally worse than the chosen one
yw. Direct alignment algorithms, however, primarily focus on relative preferences and are unaware
of the responses’ quality values and gaps. Striving to maximize the reparameterized reward gap
between the chosen and rejected responses will risk overfitting and unnecessary “unlearning”, i.e.,
probability decrease, of high-quality responses, potentially diminishing the model’s performance
by discarding valuable alternatives. Furthermore, in such a finite data regime where only a sample
estimate of the true preference is accessible, it can be very possible that p∗(yl ≻ yw | x) > 0.5, i.e.,
yl is in fact more preferred than yw in expectation. This issue becomes even more pronounced when
the preference data generated with the imperfect judge model is noisy.

We illustrate this limitation with the example in Table 1, where we define the maximum reward rmax
as 10. For DN=1 that contains a single preference pair1 with reward r(x, y1) = 9 and r(x, y2) = 8,
the optimal policy learned from DN=1 is π∗(y1 | x) = 1. This causes the model to avoid generating
y2, a response of nearly equivalent quality.

Low-Quality Chosen Responses are Indiscriminately Learned. For a similar reason, direct
alignment algorithms also indiscriminately reinforce the chosen responses. As illustrated in Table 2,
when DN=2 contains two preference pairs, where one of the chosen responses, y2, is of low quality,
π∗ still indiscriminately generates y2 with an arbitrary probability 0 ≤ a ≤ 1, i.e., π∗(y2 | x) = a.

Reward Sparsity. Preference data often contains responses that, despite being preferred in pair-
wise comparisons, exhibit substantial variation in quality. As a result, the optimal responses—those
associated with the highest reward value rmax—are sparse in the dataset. Since direct alignment al-
gorithms do not account for these reward values, the trained model struggles to differentiate between
responses of varying quality and fails to generalize effectively to the sparse optimal responses.

3.2 REWARD-CONDITIONED POLICIES LEARN FROM THE FULL SPECTRUM OF RESPONSE QUALITY

A straightforward way to address the limitations of direct alignment algorithms—specifically, their
inability to account for the quality of responses—is to optimize a reward-conditioned policy. In this

1For simplicity, we write (x, yw, yl) ∈ DN as yw ≻ yl.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

response y1 y2

r(x, y) 9 8
DN=1 {y1 > y2}
π∗(y | x) 1 0

π∗(y | x, g = 9) 1 0
π∗(y | x, g = 8) 0 1

Table 1: High-quality rejected responses such
as y2 can be unnecessarily unlearned: π∗(· |
x) deterministically generates y1. Reward-
conditioned policies learn both responses and
are easier to generalize to g = 10 with the ex-
tracted features from g = 8 and g = 9.

response y1 y2 y3

r(x, y) 9 1 0
DN=2 {y1 > y3 , y2 > y3}
π∗(y | x) 1− a a 0

π∗(y | x, g = 9) 1 0 0
π∗(y | x, g = 1) 0 1 0
π∗(y | x, g = 0) 0 0 1

Table 2: Low-quality chosen responses such as
y2 can be learned: π∗ indiscriminately gener-
ates y1 and y2. Reward-conditioned policies
distinguish the differences and learn the behav-
iors corresponding to different reward scores.

approach, the LLM policy is trained to generate responses corresponding to different reward values,
enabling it to become aware of and adapt to these reward distinctions. By doing so, the LLM not only
learns the patterns associated with the preferred responses but also retains the valuable information
from the rejected ones, preventing the unlearning of high-quality rejected responses. For example,
in Table 1, reward-conditioned policies learn to generate both y1 and y2, instead of unlearning y2.
This reward-based conditioning also enhances the model’s ability to differentiate between responses
of varying quality, even if both are preferred over a rejected alternative, as illustrated in Table 2.
Besides, by extracting common patterns across responses with different quality levels, the LLM
becomes more generalizable and is capable of generating the highest-quality responses with reward
rmax (e.g., rmax = 10), which are often sparse in the training preference data.

4 METHOD

With the above motivation, we propose a data relabeling method that constructs a reward-augmented
dataset by conditioning the preference pairs on the reward values given by the judge model r. Specif-
ically, we define the goal-conditioned reward function R(x, y, g) = −(g−r(x, y))2 as a function of
the reward function r. The objective of the reward-conditioned policy π(y | x, g) is thus to minimize
the square difference between the goal reward g and the response reward r(x, y), which is equivalent
to maximizing the goal-conditioned reward R(x, y, g), i.e.,

min
π

Eg,x∼DN ,y∼π(·|x,g)
[
(g − r(x, y))2

]
= max

π
Eg,x∼D,y∼π(·|x,g)

[
R(x, y, g)

]
. (4.1)

To optimize the RHS of Equation (4.1), we first observe that under the new goal-conditioned reward
metric r, for each preference pair xi, yiw, r

i
w, y

i
l , r

i
l in DN , we have

R(x, yiw, g = riw) = 0 > R(x, yil , g = riw) = −(riw − ril)
2,

R(x, yil , g = ril) = 0 > R(x, yiw, g = ril) = −(riw − ril)
2.

Thus, each pair can be relabeled to create two new preference pairs based on two distinct goals:
when g = riw, yiw ≻ yil ; when g = ril , y

i
l ≻ yiw. Then any direct alignment algorithm can be

applied to this new goal-conditioned preference dataset. Compared to fine-tuning on the original
dataset DN , the model learns to capture not only desirable behaviors but also undesirable ones from
the reward-augmented dataset. This approach helps identify patterns across high- and low-quality
responses, enabling the LLMs to discern and learn from the entire spectrum of response quality and
extrapolate to more optimal responses at inference time, by conditioning on higher reward goals.

We illustrate our method in Figure 1. For each preference pair with index i in DN , two goals are
defined, corresponding to the reward values of the chosen response yiw and the rejected response
yil . Specifically, under the first goal g = riw, the relabeled rewards are R(x, yiw, g) = 0 and
R(x, yil , g) = −(riw − ril)

2. The original ranking of responses remains the same, except that the
LLM is preference optimized conditioned on g = riw. Similarly, under the second goal g = ril , the
relabeled rewards are R(x, yil , g) = 0 and R(x, yiw, g) = −(riw−ril)2. Thus, the chosen and rejected
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𝐷! = 𝑥" , y#" , 𝑟#" , 𝑦$" , 𝑟$" "%&
!

System prompt 𝑠#" : “Generate responses
of score 𝑟#" .”

Chosen response: 𝑦#"

Rejected response: 𝑦$"

System prompt 𝑠$": “Generate responses
of score 𝑟$" .”

Chosen response: 𝑦$"

Rejected response: 𝑦#"

𝐷!# = s#" + 𝑥" , y#" , 𝑦$" "%&
!

𝐷!$ = s$" + 𝑥" , 𝑦$" , y#" "%&
!

𝐷'! = 𝐷!#⋃ 𝐷!$

Preference data Reward-augmented data

For 𝑖 ∈ {1, … , 𝑁}

DPO

Figure 1: Construction of the reward-augmented preference dataset.

responses are reversed as yil and yiw, respectively. By generating preference pairs conditioned on the
goal reward for both the chosen and rejected responses, we obtain a reward-augmented dataset of
size 2N . Finally, this new dataset can be used with any direct alignment algorithm, such as DPO.

In this work, we implement the reward-conditioned policy π(y | x, g) as the LLM with a system
prompt (or a prefix before the user prompt x if system prompts are not supported by the LLM) such
as “generate responses of score g”. At inference time, the LLM is conditioned on the optimal goal
g⋆ = rmax that is the highest possible reward value, e.g., g⋆ = rmax = 10, to generate the responses.

We provide the following theoretical guarantees for our method (see A.4 for a formal description).

Theorem 4.1 (Informal). Let J(π) = Ex∼d0,y∼π(·|x,g⋆)

[
R(x, y, g⋆)

]
be the performance measure,

where R denotes the ground-truth goal-conditioned reward function and g⋆ denotes the optimal
goal. Under mild assumptions, the policy π̂ optimized from the reward-augmented DPO with a SFT
regularizer satisfies that with probability at least 1− δ,

J(π∗)− J(π̂)≤
√

1

N
·
{√

6

4

(
1 + exp(B)

)2((
CµD̄ (R;π

⋆, πsft)
)2

+ 1
)
ι

+ Ex∼d0

[
KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)]}
, (4.2)

where π∗ = argmaxπ J(π) and ι =
√
log (Nε(R, ∥ · ∥∞)/δ) with ε = (6 · (1 + eB) ·N)−1. Here,

N denotes the number of preference pairs in D, B denotes the upper bound of the reward models,
and the partial coverage coefficient CµD̄ (R;π

⋆, πsft) is defined in Assumption A.3.

The detailed proof is provided in A.5. The above theorem shows that our method attains global
convergence to the optimal policy and the suboptimality decays at the order of N−1/2 (N denotes
the size of the reward-augmented preference dataset), which provides a theoretical justification for
the strong empirical performance of the introduced reward-augmented DPO. Unlike prior works on
goal-conditioned RL with supervised learning (Yang et al., 2022; Ghosh et al., 2019), which typi-
cally establish weaker results such as local performance improvements or the optimization of a lower
bound on J(π), our analysis guarantees global convergence to the optimal policy. This distinction
underscores the significance of integrating DPO-like methods with goal-conditioned approaches.

5 RELATED WORK

Preference Dataset Construction. In order for the LLMs to follow instructions and better align
with human intents, it is common practice to build a preference dataset containing a set of prompts
and a pair of responses for each prompt, whose qualities are ranked by humans (Ouyang et al.,
2022) or judge models (Bai et al., 2022b). A popular pipeline (Cui et al., 2023; Tunstall et al.,
2023b; Wang et al., 2024c; Ivison et al., 2023; Zhu et al., 2023a) for constructing offline (i.e., fixed)
datasets involves sampling off-policy responses from various LLMs for each prompt in the hope
to increase the response diversity. The preference data can also be generated online (Guo et al.,
2024) or iteratively (Bai et al., 2022a; Xu et al., 2023; Gulcehre et al., 2023; Hoang Tran, 2024;
Xiong et al., 2023; Dong et al., 2024; Calandriello et al., 2024; Rosset et al., 2024) by sampling and
ranking on-policy responses from the training LLM. Recent works (Zhang et al., 2024; Cen et al.,
2024; Xie et al., 2024) have also proposed systematically exploring the responses online and actively
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eliciting the preference. The proposed method in this paper is orthogonal to the construction ways
of the preference data and can be applied to any dataset created either off-policy or on-policy.

Preference Optimization. Preference optimization methods generally follow two approaches.
The first involves learning a point-wise reward model, such as the Bradley-Terry model, and using
RL algorithms like PPO (Schulman et al., 2017; Zheng et al., 2023; Xu et al., 2024b) or REIN-
FORCE (Williams, 1992; Li et al., 2023; Ahmadian et al., 2024), to maximize the KL-regularized
expected reward. The second approach is direct alignment (Rafailov et al., 2024b; Azar et al., 2023;
Zhao et al., 2023; Ethayarajh et al., 2024; Liu et al., 2024), which gets rid of a separate reward model
that is computationally costly to train. In this work, we mainly focus on the limitations of direct
alignment algorithms, particularly their unawareness of the quality aspects of responses. For PPO-
style alignment algorithms that fit and maximize an explicit reward, preference data is only used to
learn the reward model, and policy training is performed in an online manner, where responses are
sampled from the LLM and their reward values directly play a role during the RL optimization. This
avoids drawbacks inherent to direct alignment methods, as detailed in Section 3.1.

Conditional LLM Fine-Tuning. Conditioning LLMs during training has proven effective for
aligning responses with specific human objectives. SteerLM (Dong et al., 2023b; Wang et al., 2023b)
extends SFT by conditioning the LLM on the multi-dimensional annotated attributes in data, such
as humor and toxicity, in order to steer model responses with user customizability. Directional Pref-
erence Alignment (DPA) (Wang et al., 2024a) proposed a variant of rejection sampling fine-tuning
(Yuan et al., 2023; Dong et al., 2023a) that conditions on the direction of the multi-objective re-
ward, i.e., a user-dependent linear combination of the reward attributes (helpfulness and verbosity
in their experiments), that represents diverse preference objectives. These methods aim to train a
single LLM that can flexibly adjust to various user preference profiles. On the contrary, our method
targets the limitations of direct alignment algorithms by introducing reward-augmented relabeling.
This also differs from Conditioned-RLFT (Wang et al., 2023a), which leverages the data source in-
formation by learning a class-conditioned policy with RL-free supervised learning. Reward-aware
Preference Optimization (RPO), introduced in Nemotron-4 (Adler et al., 2024), attempts to approx-
imate the reward gap using the implicit reward and is motivated to resolve the unlearning issues of
DPO, which our work also addresses. However, we show that more limitations beyond unlearn-
ing can be simply fixed with reward-conditioned LLMs and propose an easy-to-implement data
relabeling method that integrates seamlessly with any direct alignment algorithm. Notably, Noise
Contrastive Alignment (Chen et al., 2024) and Unified Language Model Alignment (Cai et al., 2023)
introduce unified frameworks for alignment with binarized or reward datasets by leveraging (infor-
mation) noise contrastive estimation and a hybrid of SFT with point-wise DPO, respectively. In
contrast, our work focuses on addressing the limitations of direct alignment algorithms with data
relabeling (on implicit-reward augmented binarized or reward datasets), and do not make algorithm
changes. We compare with all the aforementioned methods in our experiments.

6 EXPERIMENTS

6.1 REWARD-AUGMENTED DATA BOOSTS DPO PERFORMANCE

We begin by conducting experiments to demonstrate that applying the proposed method to fixed
offline preference datasets leads to consistent performance improvements in DPO.

Setup. We adopt the UltraFeedback (Cui et al., 2023) preference dataset containing reward values
scored by GPT-4 (LLM-as-Judge) that is ranged between 1 and 10 for each of the preference pairs.
Our method constructs reward-augmented data by conditioning on these judge values. We fine-
tune on various open-weight LLMs, including Mistral-7B-Instruct-v0.3, Qwen2-7B-Instruct, Llama-
3.1-8B-Instruct, Gemma-2-9B-It, and SPPO (fine-tuned from Gemma2-9B-It). We use the DPO
implementation in the Huggingface Alignment Handbook (Tunstall et al.). The hyperparameters
and prompts that we use are listed in Appendix B.1.

Results. We first report the performance of the trained models on instruction-following bench-
marks that use LLM as a judge, including AlpacaEval 2.0 (Dubois et al., 2024), MT-Bench (Zheng
et al., 2024), and Arena-Hard-Auto (Li et al., 2024b). The results are shown in Figure 2.
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Across all instruction-following benchmarks, we observe that LLMs fine-tuned with DPO on the
proposed reward-augmented data consistently outperform both their base models and those fine-
tuned using DPO on the original UltraFeedback dataset by a considerable margin. Notably, direct
alignment with the original preference data can sometimes degrade the performance of base models
on specific benchmarks, such as Arena-Hard-Auto, which involves more complex reasoning tasks.
In contrast, alignment using the reward-augmented data consistently yields superior results not only
due to the improved style format gained from performing DPO on UltraFeedback.
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(a) AlpacaEval 2.0 results. Left: Length-Controlled (LC) win rates. Right: Win rates.
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(b) MT-Bench average score.
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(c) Arena-Hard-Auto score.

Figure 2: Performance of the base models, the models trained with DPO on UltraFeedback, and the
models trained with DPO on reward-augmented ultrafeedback on AlpacaEval 2.0, MT-Bench, and
Arena-Hard-Auto benchmarks. The complete table is deferred to Appendix B.2.

Besides, we also evaluate the models on academic multi-choice QA benchmarks, including GSM8K
(Cobbe et al., 2021), GPQA (Rein et al., 2023), MUSR (Sprague et al., 2023), TruthfulQA (Lin
et al., 2021), BBH (Suzgun et al., 2022), and ARC Challenge (Clark et al., 2018). To better reflect
the capabilities of LLMs, we adopt various settings for these benchmarks, including zero-shot, few-
shot, and few-shot Chain-of-Thought (CoT). The results are shown in Table 3.

It can be observed that performing DPO on the reward-augmented preference data leads to better
average academic scores for most families of models compared to models fine-tuned on the orig-
inal UltraFeedback dataset and the base models. Besides, we didn’t observe severe alignment tax
phenomenons (Askell et al., 2021; Noukhovitch et al., 2024; Li et al., 2024a) after DPO, and our
method is able to improve the base models on most of the benchmarks.

6.2 ABLATION STUDIES

Our Method Improves the Utility of Preference Data. We provide two pieces of evidence that

LC WR WR MT Arena
SPPO 55.60 49.61 8.40 47.6
+DPO (UF) 52.75 40.58 8.41 40.4
+DPO (RA) 60.97 66.41 8.73 49.0

Table 4: SPPO can be improved with DPO by per-
forming reward augmentation on the same data.

our method can get more juice out of the
preference data compared to directly apply-
ing DPO. Firstly, we evaluate SPPO (Wu
et al., 2024) fine-tuned with DPO on Ul-
traFeedback (UF). The results are shown in
Table 4. Since the SPPO model is already
trained on UltraFeedback from Gemma-2-
9B-It, an additional round of DPO training
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Model GSM8K
(8-s CoT)

GPQA
(0-s)

MUSR
(0-s)

TruthfulQA
(0-s)

BBH
(3-s)

ARC
(25-s) Average

Mistral-7B-Instruct-v0.3 52.39 30.62 47.35 59.71 46.64 58.53 49.21
+DPO (UltraFeedback) 53.22 28.94 47.35 64.74 47.46 60.32 50.34
+DPO (Reward-Augmented) 51.86 28.02 46.56 65.90 46.36 61.60 50.05
Qwen2-7B-Instruct 78.24 32.80 44.58 57.31 55.20 53.75 53.65
+DPO (UltraFeedback) 78.17 32.80 44.31 58.91 54.49 53.75 53.74
+DPO (Reward-Augmented) 81.05 32.97 45.77 57.99 54.94 54.52 54.54
Llama-3.1-8B-Instruct 76.72 33.89 39.95 54.00 50.74 55.38 51.78
+DPO (UltraFeedback) 78.47 33.72 43.39 56.61 51.31 57.51 53.50
+DPO (Reward-Augmented) 78.77 32.55 43.52 63.32 51.57 56.48 54.37
Gemma-2-9B-It 81.35 36.33 46.03 60.15 59.42 64.85 58.02
+DPO (UltraFeedback) 83.32 34.14 46.56 65.12 59.78 66.41 59.22
+DPO (Reward-Augmented) 83.62 35.74 48.15 65.27 59.82 65.87 59.75
SPPO 79.83 35.91 44.97 62.56 59.61 63.74 57.77
+DPO (UltraFeedback) 81.73 33.64 45.50 65.72 59.16 66.89 58.77
+DPO (Reward-Augmented) 80.67 36.16 48.68 67.39 58.88 65.53 59.55

Table 3: Performance comparison between the LLMs after DPO on UltraFeedback, on reward-
augmented UltraFeedback, and their base models on academic multi-choice QA benchmarks in
standard zero-shot, few-shot, and CoT settings. Here, n-s refers to n-shot, the bold texts represent
the best results in each family of models.

with the same data significantly degrades its performance. In contrast, performing DPO on Reward-
Augmented (RA) UltraFeedback results in substantial performance gains for SPPO, indicating that
our method enhances the utility of the preference data.

The second evidence is that after DPO, the implicit reward can be used to relabel and augment the
same preference data. Specifically, after training Qwen2-7B-Instruct with DPO on UltraFeedback,
we leverage the resulting model πDPO to calculate the implicit reward for each prompt x and response
y, i.e., r̂ = β(log πDPO(y | x) − log πQwen(y | x)). Then we perform DPO on Qwen2-7B-Instruct

LC WR WR MT Arena
Qwen2-7B-It 20.93 18.22 7.90 24.3
+DPO (UF) 21.46 19.35 8.33 21.9
+DPO (RA) 31.17 27.58 8.47 30.1
+DPO (IRA) 32.61 29.15 8.49 28.3

Table 5: A second round of DPO on the reward-
augmented data, i.e., DPO (IRA), relabeled with the
implicit reward from the DPO model at the first
round, i.e., DPO (UF), significantly improves it. Our
method helps get more juice out of the binarized (i.e.,
without judge model rewards) preference data.

using the Implicit-Reward-Augmented
(IRA) UltraFeedback. The results are shown
in Table 5. We observe that augmenting the
data with the implicit reward from the DPO
(UF) model leads to superior performance
even compared to augmenting the data with
reward scores from the LLM judge, i.e.,
DPO (RA). This result highlights that DPO
does not fully exploit the potential of the
data. Moreover, this ablation demonstrates
that our method is compatible with binarized
preference datasets that only contain chosen
and rejected response pairs, bypassing the
need for reward scores from judge models.

Reward-Augmented Data is Superior Not Just Due to Its Increased Size. In this part, we

LC WR WR MT Arena
Qwen2-7B-It 20.93 18.22 7.90 24.3
+DPO (UF) 21.46 19.35 8.33 21.9
+DPO (RA) 31.17 27.58 8.47 30.1
+DPO (Half RA) 29.56 28.30 8.33 26.9
Gemma-2-9B-It 49.20 37.58 8.54 42.8
+DPO (UF) 50.70 35.02 8.54 35.8
+DPO (RA) 59.27 54.56 8.59 43.9
+DPO (Half RA) 53.12 43.74 8.66 41.3

Table 6: DPO trained on only half of the data with re-
ward augmentation outperforms the baseline.

show that the success of our method is
not merely due to the increased size of
the training dataset. To illustrate this, we
perform DPO on the dataset where re-
ward augmentation is applied to the first
half of the UltraFeedback data, which we
denote as DPO (Half RA). By doing so,
the reward-augmented data is of the same
size as the original dataset, but with only
half of the prompts and the correspond-
ing responses being utilized. It can be ob-
served from Table 6 that DPO (Half RA)
outperforms fine-tuning on the whole Ul-
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traFeedback (UF) by a large margin and achieves comparable performance to applying reward aug-
mentation across the entire UF dataset, which is denoted as DPO (RA).
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Figure 3: Our method helps miti-
gate the unlearning issue of DPO.

Reward-Augmented Data Mitigates the Unlearning Issue.
We first demonstrate that DPO suffers from the limitation of
unnecessarily unlearning high-quality rejected responses, as
discussed in Section 3.1. Specifically, on the test set of Ultra-
Feedback, we calculate the log probability of each rejected
response for the Qwen2-7B-Instruct model, its DPO (UF)
model, and our method DPO (RA). In Figure 3, we plot the
expected log probability for rejected responses with reward
scores ≥ 5. We find that DPO substantially decreases the
probability of these high-quality rejected responses, confirm-
ing that the unlearning issue arises in practice. In contrast, our
method alleviates this issue, although the probability is still
slightly lower than the base model, which is proven to be the
feature of DPO (Rafailov et al., 2024a; Zhang et al., 2024; Xu et al., 2024b).

Impact of the Accuracy of AI Feedback. We consider the 19.8k prompts from a 1/3 subset of
UltraFeedback following the setup from Snorkel (Hoang Tran, 2024). Five on-policy responses are
first generated from Llama-3-8B-Instruct. An external reward model is followed to rank these re-
sponses. We choose the best and worst responses as the chosen and rejected ones. DPO is then
performed on the resulting preference pairs and the reward-augmented pairs. To ablate how our
method will be impacted by the accuracy of AI feedback, we experiment with two reward mod-
els as the ranker: PairRM (Jiang et al., 2023b) and ArmoRM (Wang et al., 2024b). PairRM is a
small-sized (0.4B) pairwise reward model, while ArmoRM is a 8B model that is state-of-the-art
on RewardBench (Lambert et al., 2024) and much stronger than PairRM. We implement a variant
(denoted as RA+) of the proposed reward augmentation method that only conditions on the goal
rewards of the chosen responses, not those of the rejected ones, leading to same-sized datasets.

Llama-3- PairRM (0.4B) ArmoRM (8B)
8B-Instruct DPO (UF) DPO (RA+) DPO (RA) DPO (UF) DPO (RA+)

LC WR 22.92 41.76 44.72 48.20 42.32 48.73
WR 23.15 45.79 44.70 53.17 42.79 45.36

Table 7: Ablation on the impact of AI feedback quality on the AlpacaEval 2.0 benchmark.

The results in Table 7 demonstrate that training on augmented data conditioned on both chosen and
rejected rewards is necessary for PairRM feedback, while relabeling with only the chosen rewards
is sufficient to achieve strong performance for ArmoRM feedback. This aligns with our motivation
outlined in Section 3.1: in noisy preference data, rejected responses may actually be of high quality,
unlearning which can degrade performance. Similarly, low-quality chosen responses may also be
reinforced. This issue does not arise with strong reward models that provide accurate preferences.

SLiC-HF ORPO CPO RRHF KTO IPO RPO R-DPO SimPO Ours
LC WR 26.9 28.5 28.9 31.3 33.1 35.6 40.8 41.1 44.7 48.2
WR 27.5 27.4 32.2 28.4 31.8 35.6 41.7 37.8 40.5 53.2

Table 8: Comparison between our method, i.e., Llama-3-8B-Instruct+DPO (RA) and baselines fine-
tuned on the same model and on-policy data ranked by PairRM.

Moreover, in Table 8, we compare our method and various baselines under the same setting on the
AlpacaEval 2.0 benchmark, including SLiC-HF (Zhao et al., 2023), ORPO (Hong et al., 2024), CPO
(Xu et al., 2024a), RRHF (Yuan et al., 2024), KTO (Ethayarajh et al., 2024), IPO (Azar et al., 2023),
R-DPO (Park et al., 2024), and SimPO (Meng et al., 2024), where the results are from Meng et al.
(2024), as well as the RPO (Adler et al., 2024) baseline that we implement. Our method outperforms
the above algorithms by a considerable margin.

Conditioning on Multi-Attribute Rewards Enables SOTA Models. In previous parts, our

9
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LC Win Rate Win Rate Avg. Len.
Ours 56.57 52.19 1840
SimPO 53.70 47.50 1777
OpenChat 17.48 11.36 1362

Table 9: Our method trained with DPO achieves SOTA
when conditioning on 5-dim rewards.

method is implemented by conditioning
on the scalar reward values given by
the judge models, either LLMs or re-
ward models. We find that our approach
is generalizable to settings of multi-
dimensional rewards that correspond to
different attributes, such as helpfulness
and truthfulness. Specifically, we follow
the setting from last part to construct the preference dataset by applying the ArmoRM reward model
on the on-policy responses generated by Llama-3-8B-Instruct. Since ArmoRM is a multi-objective
model that not only gives a scalar reward value but also predicts human-interpretable fine-grained
attributes, we first select 5 attributes (namely complexity, instruction following, honesty, helpful-
ness, and intelligence depth) that have the highest average coefficients on the UltraFeedback data.
Then we relabel the data by conditioning on the 5-dim reward and follow the implementation of
using ArmoRM described in the last part. The resulting model achieves state-of-the-art within the
Llama-3-8B-Instruct model family, surpassing the strong baselines including SimPO (Meng et al.,
2024) that is trained also on on-policy data ranked by ArmoRM, and OpenChat (Wang et al., 2023a)
fine-tuned with Conditioned-RLFT from the same Llama-3-8B-Instruct model.

Comparison with Conditional Fine-Tuning Baselines. We further compared with additional
conditional post-training baselines on the offline UltraFeedback dataset (i.e., without on-policy
data), including DPA (Wang et al., 2024a), SteerLM (Dong et al., 2023b), and (Info)NCA (Chen
et al., 2024). Since both baselines aim to optimize a user-controllable attribute-conditioned LLM
that is optimal under diverse preference profiles with different coefficients of the reward’s attributes,
in Figure 4, we plot the win rate curves of these methods under varying preference profiles, such
as adjusting verbosity preferences as considered in Wang et al. (2024a). It can be observed that
fine-tuned from Zephyr-SFT, our method achieves the best AlpacaEval 2.0 win rate. In addition to
the comparison with the implemented RPO (Adler et al., 2024) in Table 8, we also report the perfor-
mance of RPO fine-tuned on additional models including Qwen2-7B-Instruct and Gemma2-9B-It.
As shown in Table 10, the implemented RPO is outperformed by our method across these models.
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Figure 4: Comparison with DPA,
SteerLM, and (Info)NCA.

LC Win Rate Win Rate Avg. Len.
Qwen+RPO 20.29 17.34 1704
Qwen+DPO (RA) 31.17 27.58 1789
Gemma+RPO 43.14 30.93 1413
Gemma+DPO (RA) 59.27 54.56 1872

Table 10: Comparison on AlpacaEval 2.0 between our
method and RPO fine-tuned from the Qwen2-7B-Instruct and
Gemma2-9B-It models. Our method consistently outperforms
RPO across these fine-tuned models.

7 CONCLUSION

In this paper, we first investigate the limitations of direct alignment algorithms, which arise from fo-
cusing solely on relative preferences while neglecting the qualities of the responses and their gaps.
Specifically, since many rejected responses are only slightly worse than the chosen ones, striving to
maximize the reparameterized reward gap will cause overfitting and unnecessarily suppressing the
high-quality rejected response. Moreover, the directly aligned LLMs often struggle to differentiate
between responses of varying quality, indiscriminately learning the low-quality chosen responses
and failing to generalize effectively to more optimal responses that are sparse in the preference
data. To resolve the above limitations, we introduce a straightforward solution—learning reward-
conditioned policies. By optimizing the LLM to generate responses conditioned on their qualities, it
can better differentiate between quality levels and learn from the entire spectrum. Motivated by this,
we propose a data relabeling method that constructs reward-augmented datasets by conditioning on
the quality of responses as the goal quality. In experiments, we fine-tune various LLMs by applying
DPO on our reward-augmented data. The results demonstrate that our approach consistently de-
livers significant performance improvements across various instruction-following benchmarks and
increases the average accuracy on academic benchmarks.
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A THEORY

In this section, we present the theoretical analysis for our proposed method.

A.1 CONCEPTS

We provide some useful concepts for the simplicity of later discussions.

• Hellinger distance DHellinger(p∥q) between two probability density functions p and q de-
fined on X is defined as

DHellinger(p∥q) =
1

2

∫
x∈X

(√
p(x)−

√
q(x)

)2

dx.

• Total variation (TV) distance DTV(p∥q) between two probability density functions p and
q defined on X is defined as

DTV(p∥q) =
1

2

∫
x∈X
|p(x)− q(x)|dx.

• Kullback–Leibler (KL) divergence KL(p∥q) between two probability density functions p
and q defined on X is defined as

KL(p∥q) =
∫
x∈X

log

(
p(x)

q(x)

)
p(x)dx.

• We denoteNϵ(F , ∥·∥∞) as the ϵ-covering number (Zhou, 2002) for function classF under
the infinity norm ∥·∥∞. Widely used in the theoretical analysis (Liu et al., 2024; Zhan et al.,
2023), the ϵ-covering number characterizes the complexity of the function class F .
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A.2 THEORETICAL FORMULATION

Goal-conditioned preference model. Consider a language model π ∈ ∆X
Y that takes the prompt

x ∈ X as input and outputs the response y ∈ Y , whereX andY are spaces of prompts and responses,
respectively.Given the prompt x ∈ X , a discrete probability distribution π(· | x) ∈ ∆Y is generated,
where ∆Y is the set of discrete distributions over Y . We define the goal-conditioned reward function
class as R ⊂ {R(x, y, g) : X × Y × G 7→ R}, where G is the goal space. The goal-conditioned
Bradley-Terry model (Bradley & Terry, 1952) for annotations is described as

PR(y1 ≻ y0|x, y1, y0, g) =
exp(R(x, y1, g))

exp(R(x, y1, g)) + exp(R(x, y0, g))
= σ

(
R(x, y1, g)−R(x, y0, g)

)
,

(A.1)

where σ(z) = 1/(1 + exp(−z)) is the sigmoid function. For notational simplicity, we also denote
that the reward is parameterized by θ ∈ Θ. We denote the corresponding negative log-likelihood
function for r for a reward-augmented preference dataset D̄ = {(xi, yiw, y

i
l , g

i)}Ni=1 as

L(R, D̄) = −E(x,yw,yl,g)∼D̄
[
log σ

(
R(x, yw, g)−R(x, yl, g)

)]
, (A.2)

where yiw is preferred to yil by the annotation given the prompt xi and goal gi for any i ∈ [N ]. For
notational simplicity, we denote the DPO loss by

LDPO(π, D̄) = −E(x,yw,yl,g)∼D̄

[
log σ

(
β log

π(yw | x, g)
πref(yw | x, g)

− β log
π(yl | x, g)
πref(yl | x, g)

)]
. (A.3)

Performance metric. For the notational simplicity in the theoretical analysis, we denote by R⋆ the
ground-truth goal-conditioned reward function. The alignment target is to maximize the expected
true reward R⋆ conditioned on the optimal goal g⋆ ∈ G. Thus, we define the value function of any
policy π as

J(π) = Ex∼d0,y∼π(·|x,g⋆)

[
R⋆(x, y, g⋆)

]
. (A.4)

Here we allow the prompt distribution d0(·) to be different from that of the offline dataset distribution
µD̄(·), but is assumed to be known. In the meanwhile, we consider the policies that share the same
support as the reference policy πref (Xiong et al., 2023), that is, we take a policy class Π as

Π =
{
π : X × G 7→ ∆(A)

∣∣∣Supp(π(·|x, g)) ⊆ Supp(πref(·|x, g)), ∀(x, g) ∈ X × G
}
. (A.5)

The performance gap of a learned policy π̂ ∈ Π w.r.t. any given optimal policy π⋆ is measured as

Gapπ
⋆

(π̂) = J(π∗)− J(π̂), given any optimal policy π⋆ ∈ Π, (A.6)

One popular choice to define the optimal policy is to maximize the KL-regularized reward, i.e.,

π⋆ = argmax
π∈Π

[
R⋆(x, y, g⋆)− β0KL

(
π(· | x, g⋆)∥πref(· | x, g⋆)

)]
(A.7)

for a fixed β0 > 0.

Theoretical version of the reward-augmented DPO. We formulate the theoretical version of the
reward-augmented DPO in Algorithm 8, where we add a SFT regularizer on the empirical objective
to handle the issue distribution shift and analyze the bound on the suboptimality (Liu et al., 2024;
Cen et al., 2024). One simple choice to define SFT policy πSFT is to utilize the chosen labels in the
original preference dataset D, that is,

πsft = argmax
π∈Π

E(x,yw)∼D[log π(yw | x, g⋆)]. (A.8)

In practice, the goal relabeling distribution g ∼ pG(· | x, y) is set to be a deterministic selection
of the annotated reward of the chosen response, i.e., g = rRM(x, y) for any i ∈ [N ] and a given
reward model rRM. We also remark that the size of the reward-augmented preference dataset D̄ is
N = 2N0, where N0 denotes the size of the original preference dataset D.
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Algorithm 1 Theoretical Version of the Reward-Augmented DPO

1: Input: Preference dataset D = {(xi, yiw, y
i
l)}

N0
i=1, parameters β, η > 0, reference policy πref ,

SFT policy πsft for the regularizer, and goal labeling distribution pG .
2: Initialize the reward-augmented preference dataset D̄ = ∅.
3: for i = 1, . . . , N0 do
4: Sample goal giw from pG(· | xi, yiw) and update the reward-augmented preference dataset as

D̄ ← D̄ ∪ {(xi, yiw, y
i
l , g

i
w)}.

5: Sample goal gil from pG(· | xi, yil) and update the reward-augmented preference dataset as
D̄ ← D̄ ∪ {(xi, yil , y

i
w, g

i
l)}.

6: end for
7: Solve policy πθ̂ by optimizing the following objective

min
θ∈Θ

{
Ex∼d0,y0∼πsft(·|x,g⋆)

[
− ηβ · log(πθ(y0|x, g⋆))

]
+ LDPO(πθ, D̄)

}
(A.9)

8: Output: Policy π̂ = πθ̂.

A.3 ASSUMPTIONS FOR THEORETICAL ANALYSIS

Similar to the theoretical analyses on offline RLHF (Liu et al., 2024; Cen et al., 2024), we provide
the following assumptions.

Assumption A.1 (True reward model). We assume that the true goal-conditioned reward model
R⋆ ∈ R for, and for any R ∈ R and (x, y, g) ∈ X ×A×G, it holds that R(x, y, g) ∈ [−B/2, B/2]
for a positive constant B > 0.

Assumption A.1 is standard in sample complexity analysis (Zhu et al., 2023b; Zhan et al., 2023; Ye
et al., 2024) in RLHF.

Assumption A.2 (Regularity). We assume that the reward model class R, prompt space X , and
goal space G are convex and compact.

Assumption A.2 plays a role in establishing the equivalence between maximin and minimax opti-
mizations. This assumption is naturally satisfied when considering a linear reward function (Zhu
et al., 2023b; Xiong et al., 2023; Cen et al., 2024) of the form Rθ(x, y, g) = φ(x, y, g)⊤θ, where φ
represents a known feature map. More broadly, the assumption is also met by the class of Lipschitz
continuous reward models.

Assumption A.3 (Partial coverage coefficient). Given the optimal policy π⋆ ∈ Π, the coverage
coefficient of the population distribution µD̄ of the reward-augmented preference dataset D̄ w.r.t.
reward model class R, optimal policy π⋆, and the SFT policy πsft, denoted by CµD̄ (R;π

⋆, πsft), is
defined as

sup
R∈R

Ex∼d0,y1∼π⋆(·|x,g⋆),y0∼πsft(·|x,g⋆)

[
(R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)− (R(x, y1, g

⋆)−R(x, y0, g
⋆))

]√
E(x,yw,yl,g)∼µD̄

[∣∣(R(x, yw, g)−R(x, yl, g))− (R(x, yw, g)−R(x, yl, g))
∣∣2] .

(A.10)

We assume that CµD̄ (R;π
⋆, πsft) < +∞ for the given optimal policy π⋆ ∈ Π.

Assumption A.3 characterizes how well the dataset D̄ covers the optimal policy π⋆ and the SFT
policy πsft given the optimal goal g⋆, instead of covering all the policies in the policy class. That
is the reason why we call this assumption “partial coverage”. Different variants of partial coverage
assumptions are posed in previous literature (Liu et al., 2024; Cen et al., 2024; Zhan et al., 2023;
Xie et al., 2021) that study offline RLHF and RL to characterize the distribution shift between the
optimal policy and the offline dataset distribution. We remark that the quantity CµD̄ (R;π

⋆, πsft) is
upper bounded by the density ratio ∥d0(·)⊗ π⋆(·|·, g⋆)⊗ πsft(·|·, g⋆)/µD̄(·, ·, ·, g⋆)∥∞.
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A.4 THEORETICAL RESULTS

Under assumptions introduced before, we are ready to give the theoretical result for Algorithm 1 in
the following theorem.

Theorem A.4 (Suboptimality of Algorithm 8). Taking the policy class Π as (A.5), supposing that
Assumptions A.1, A.2, and A.3 hold, and assuming that the reward model class R has a finite ε-
covering number under ∥ · ∥∞-norm Nε(R, ∥ · ∥∞) < +∞ with ε = (6 · (1 + eB) ·N)−1. Setting

η = (1 + exp(B))−2 ·
√
24 log (Nε(R, ∥ · ∥∞)/δ) /N, β = 1/

√
N

in Algorithm 1. Then the output policy π̂ of Algorithm 1 satisfies that with probability at least 1− δ,

Gapπ
⋆

(π̂)≤
√

1

N
·
{√

6

4

(
1 + exp(B)

)2((
CµD̄ (R;π

⋆, πsft)
)2

+ 1
)
ι

+ Ex∼d0

[
KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)]}
, (A.11)

where ι =
√

log (Nε(R, ∥ · ∥∞)/δ) with ε = (6 · (1 + eB) · N)−1. Here, N denotes the number
of preference pairs in D, R denotes the upper bound of the reward models, and the partial coverage
coefficient CµD̄ (R;π

⋆, πsft) is defined in Assumption A.3.

The detailed proof is provided in Appendix A.5. Theorem A.4 shows that our proposed reward-
augmented DPO (Algorithm 1) can attain global convergence to the optimal policy and the sub-
optimality decays at the order of N−1/2 (N denotes the size of the reward-augmented preference
dataset). Theorem A.4 provides a theoretical justification for the strong empirical performance of
the reward-augmented DPO introduced in this paper. Unlike prior works on goal-conditioned rein-
forcement learning with supervised learning (Yang et al., 2022; Ghosh et al., 2019), which typically
establish weaker results such as local performance improvements or the optimization of a lower
bound on J(π), our analysis guarantees global convergence to the optimal policy. This distinction
underscores the significance of integrating DPO-like methods with goal-conditioned approaches.

A.5 PROOF OF THEOREM A.4

Bridge Algorithm 1 to the maximin optimization. Motivated by Liu et al. (2024), we transform
the optimization objective in Algorithm 1 to a minimax optimization objective, and then to a maxi-
mum optimization objective, where the maximum optimization objective can be analyzed with tools
in RL analysis.

Define the objective function ϕ(π,R) as

ϕ(π,R) = η · Ex∼d0,y1∼π(·|x,g⋆)
y0∼πsft(·|x,g⋆)

[
R(x, y1, g

⋆)−R(x, y0, g
⋆)

− β ·DKL

(
π(·|x, g⋆)∥πref(·|x, g⋆)

)]
+ L(R, D̄). (A.12)

First, we prove that the derived policy π̂ from Algorithm 1 satisfies

π̂ ∈ argmax
π∈Π

ϕ(R̂, π), where R̂ ∈ argmin
R∈R

max
π∈Π

ϕ(π,R). (A.13)

By the definition of the optimization objective ϕ(π,R) in (A.12), we have

min
R∈R

max
π∈Π

ϕ(π,R) = min
R∈R

{
η ·max

π∈Π

{
Ex∼d0,y1∼π(·|x,g⋆)

[
R(x, y1, g

⋆)− β ·KL
(
π(·|x, g⋆)∥πref(·|x, g⋆)

)]}

− η · Ex∼d0,y0∼πsft(·|x,g⋆)

[
R(x, y0, g

⋆)
]
+ L(R, D̄)

}
. (A.14)

Then, we apply the following lemma to solve the inner maximization problem in (A.14).
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Lemma A.5 (Oracle optimal KL-regularized policy). Given any reward model R ∈ R, the optimal
policy πR to the maximization problem

max
π∈Π

{
Ex∼d0,y∼π(·|x,g⋆)

[
R(x, y, g⋆)− β ·KL

(
π(·|x, g⋆)∥πref(·|x, g⋆)

)]}
. (A.15)

is given by

πR(·|x, g) =
1

ZR(x, g)
· πref(·|x, g) · exp

(
β−1R(x, ·, g)

)
, (A.16)

ZR(x, g) =

∫
y∈Y

exp
(
β−1R(x, y, g)

)
dπref(y|x, g),

and correspondingly the optimal value of (A.15) is given by (A.15) = Ex∼d0
[β · log(ZR(x, g

⋆))].

Proof of Lemma A.5. See the proof in Lemma 4.2 of Liu et al. (2024).

By Lemma A.5 and (A.14), we have

min
R∈R

max
π∈Π

ϕ(π,R) = min
R∈R

{
βη · log(ZR(x, g

⋆))− η · Ex∼d0,y0∼πsft(·|x,g⋆)

[
R(x, y0, g

⋆)
]
+ L(R, D̄)

}
.

(A.17)

From Lemma A.5, we know that given any reward model R ∈ R, we can reparameterize it via its
corresponding optimal goal-conditioned KL-regularized policy πR (Rafailov et al., 2024b), that is,

R(x, ·, g) = β · log
(

πR(·|x, g)
πref(·|x, g)

)
+ β · log(ZR(x, g)). (A.18)

Plugging (A.18) into (A.19), we show that the optimization problem in Algorithm 1 relates to the
minimax optimization problem on ϕ(π,R):

min
R∈R

max
π∈Π

ϕ(π,R) = min
R∈R

{
ηβ · Ex∼d0,y0∼πsft(·|x,g⋆)

[
log

(
πR(y0 | x, g⋆)
πref(y0 | x, g⋆)

)]
+ LDPO(πR, D̄)

}
= min

R∈R

{
ηβ · Ex∼d0,y0∼πsft(·|x,g⋆)

[
log (πR(y0 | x, g⋆))

]
+ LDPO(πR, D̄)

}
.

(A.19)

where the first equality uses the definition of DPO loss LDPO in (A.3). Since we know that π̂ ∈
argmaxπ∈Π ϕ(R̂, π) and r̂ solves the minimization problem in (A.19), we know that π̂ = πR̂ by
Lemma A.5.

Next, we show that the minimization problem ϕ(π,R) can be equivalently transformed into a max-
imization problem. Specifically, we will prove that the output policy π̂ for the Algorithm 1 satisfies

π̂ ∈ argmax
π∈Π

min
R∈R

ϕ(π,R), (A.20)

which is implied by the following theorem.

Theorem A.6. For the policy class Π defined in (A.5) and the reward model class R satisfying
Assumption A.2, consider the following policy defined as

πR̂ ∈ argmax
π∈Π

ϕ(R̂, π), where R̂ ∈ argmin
R∈R

max
π∈Π

ϕ(π,R). (A.21)

Then the policy πR̂ also solves the following maximin optimization:

πR̂ ∈ argmax
π∈Π

min
R∈R

ϕ(π,R). (A.22)

Proof. Under Assumption A.1, we know that ϕ(π,R) is convex for R ∈ R and strongly concave
for π ∈ Π. Applying Theorem 5.6 in Liu et al. (2024), we prove Theorem A.6.
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Suboptimality Decomposition. By the definitions of the optimization objective ϕ(π,R) in (A.12)
and the suboptimality gap of π̂ w.r.t. π⋆ in (A.6), we decompose the gap as

Gapπ
⋆

(π̂)

= Ex∼d0,y∼π⋆(·|x,g⋆)

[
R⋆(x, y, g⋆)

]
− Ex∼d0,a∼π̂(·|x,g⋆)

[
R⋆(x, y, g⋆)

]
= Ex∼d0,y1∼π⋆(·|x,g⋆),y0∼πsft(·|x,g⋆)

[
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)− β ·KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)]
− η−1 · min

R∈R
ϕ(π̂, R) + η−1 · min

R∈R
ϕ(π̂, R)

− Ex∼d0,y1∼π̂(·|x,g⋆),y0∼πsft(·|x,g⋆)

[
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)− β ·KL

(
π̂(·|x, g⋆)∥πref(·|x, g⋆)

)]
+ β · Ex∼d0

[
KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)
−KL

(
π̂(·|x, g⋆)∥πref(·|x, g⋆)

)]
:= Term (A) + Term (B) + Term (C), (A.23)

where we abbreviate Term (A), Term (B), and Term (C) as follows

Term (A) = −η−1 · min
R∈R

ϕ(π̂, R)

= Ex∼d0,y1∼π⋆(·|x,g⋆),y0∼πsft(·|x,g⋆)

[
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)− β ·KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)]
,

(A.24)

Term (B) = η−1 · min
R∈R

ϕ(π̂, R)

− Ex∼d0,y1∼π̂(·|x,g⋆),y0∼πsft(·|x,g⋆)

[
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)− β ·KL

(
π̂(·|x, g⋆)∥πref(·|x, g⋆)

)]
,

(A.25)

and

Term (C) = β · Ex∼d0

[
KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)
−KL

(
π̂(·|x, g⋆)∥πref(·|x, g⋆)

)]
. (A.26)

In the following, we bound Term (A) and Term (B) respectively.

Analysis of Term (A) in (A.23). Note that

Term (A)

= Ex∼d0,y1∼π⋆(·|x,g⋆),y0∼πsft(·|x,g⋆)

[
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)− β ·KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)]
− η−1 · min

R∈R
ϕ(π̂, R)

≤ Ex∼d0,y1∼π⋆(·|x,g⋆),y0∼πsft(·|x,g⋆)

[
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)− β ·KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)]
− η−1 · min

R∈R
ϕ(π⋆, R)

= max
R∈R

{
Ex∼d0,y1∼π⋆(·|x,g⋆),y0∼πsft(·|x,g⋆)

[(
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)
)
−

(
R(x, y1, g

⋆)−R(x, y0, g
⋆)
)]

− η−1 · L(R, D̄)

}
, (A.27)

where the inequality follows the fact that π̂ solves the maxmin optimization problem in (A.20).
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Analysis of Term (B) in (A.23). Note that

Term (B)

= η−1 · min
R∈R

ϕ(π̂, R)

− Ex∼d0,y1∼π̂(·|x,g⋆),y0∼πsft(·|x,g⋆)

[
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)− β ·KL

(
π̂(·|x, g⋆)∥πref(·|x, g⋆)

)]
≤ Ex∼d0,y1∼π̂(·|x,g⋆),y0∼πsft(·|x,g⋆)

[
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)− β ·KL

(
π̂(·|x, g⋆)∥πref(·|x, g⋆)

)]
+ η−1 · L(R⋆, D̄)

− Ex∼d0,y1∼π̂(·|x,g⋆),y0∼πsft(·|x,g⋆)

[
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)− β ·KL

(
π̂(·|x, g⋆)∥πref(·|x, g⋆)

)]
= η−1 · L(R⋆, D̄), (A.28)

where the inequality uses the fact that R⋆ ∈ R by Assumption A.1 and the definition of the opti-
mization objective in (A.12).

Concluding the remaining proof. Combining (A.23), (A.27), and (A.28), we have

Gapπ
⋆

β (π̂) = Term (A) + Term (B) + Term (C)

≤ max
R∈R

{
Ex∼d0,y1∼π⋆(·|x,g⋆),

y0∼πsft(·|x,g⋆)

[(
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)
)
−
(
R(x, y1, g

⋆)−R(x, y0, g
⋆)
)]

+ η−1 ·
(
L(R⋆, D̄)− L(R, D̄)

)}
+ β · Ex∼d0

[
KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)
−KL

(
π̂(·|x, g⋆)∥πref(·|x, g⋆)

)]
. (A.29)

Next, we upper bound the right-hand side of (A.29) by relating the negative log-likelihood loss dif-
ference term to the reward difference term. Recall the definition of the goal-conditioned preference
model PR in (A.1). Applying Lemma A.7 to give an upper bound of the difference of the negative
log-likelihood loss and setting ε = (6 · (1 + eB) ·N)−1, it holds with probability at least 1− δ and
for any reward model R ∈ R that

L(R⋆, D̄)− L(R, D̄)

≤ −2 · E(x,y1,y0,g)∼µD̄

[
D2

Hellinger

(
PR⋆(·|x, y1, y0, g)∥PR(·|x, y1, y0, g)

)]
+

3

N
· log

(
Nε(R, ∥ · ∥∞)

δ

)
, (A.30)

whereNε(R, ∥ · ∥∞) denotes the ε-covering number (Zhou, 2002) of the reward model classR. By
the relationship between the Hellinger distance and TV distance, we have

D2
Hellinger

(
PR⋆(·|x, y1, y0, g)∥PR(·|x, y1, y0, g)

)
≥ D2

TV

(
PR⋆(·|x, y1, y0, g)∥PR(·|x, y1, y0, g)

)
,

By the definition of the goal-conditioned preference model PR in (A.1), we have

DTV

(
PR⋆(·|x, y1, y0, g)∥PR(·|x, y1, y0, g)

)
=

1

2
·
∣∣∣σ(R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)
)
− σ

(
R(x, y1, g

⋆)−R(x, y0, g
⋆)
)∣∣∣

+
1

2
·
∣∣∣σ(R⋆(x, y0, g

⋆)−R⋆(x, y1, g
⋆)
)
− σ

(
R(x, y0, g

⋆)−R(x, y1, g
⋆)
)∣∣∣

=
∣∣∣σ(R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)
)
− σ

(
R(x, y1, g

⋆)−R(x, y0, g
⋆)
)∣∣∣, (A.31)

where the second equality uses the fact that σ(−z) = 1 − σ(z). Applying Lemma A.8 and the
condition that R(x, y, g) ∈ [B/2, B/2] for any (x, y,R, g) ∈ X ×A×R× G in Assumption A.1,
we have∣∣∣σ(R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)
)
− σ

(
R(x, y1, g

⋆)−R(x, y0, g
⋆)
)∣∣∣
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≥ κ ·
∣∣∣(R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)
)
−

(
R(x, y1, g

⋆)−R(x, y0, g
⋆)
)∣∣∣, (A.32)

where κ = 1/(1 + exp(B))2. Therefore, we bound the left-hand side of (A.33) as

L(R⋆, D̄)− L(R, D̄)

≤ −2κ2 · E(x,y1,y0,g)∼µD̄

[∣∣∣(R⋆(x, y1, g)−R⋆(x, y0, g)
)
−
(
R(x, y1, g)−R(x, y0, g)

)∣∣∣2]
+

3

N
· log

(
Nε(R, ∥ · ∥∞)

δ

)
. (A.33)

Meanwhile, the reward difference term in (A.29), which is evaluated on responses sampled from π⋆

and πsft, can be related to the reward difference evaluated on the data distribution µD̄ via Assump-
tion A.3 as follows,

Ex∼d0,y1∼π⋆(·|x,g⋆),y0∼πsft(·|x,g⋆)

[(
R⋆(x, y1, g

⋆)−R⋆(x, y0, g
⋆)
)
−

(
R(x, y1, g

⋆)−R(x, y0, g
⋆)
)]

≤ CµD̄ (R;π
⋆, πsft)

√
E(x,y1,y0,g)∼µD̄

[∣∣∣(R⋆(x, y1, g)−R⋆(x, y0, g)
)
−

(
R(x, y1, g)−R(x, y0, g)

)∣∣∣2].
(A.34)

Combining (A.33), (A.34), and (A.29) and defining

∆R :=

√
E(x,y1,y0,g)∼µD̄

[∣∣∣(R⋆(x, y1, g)−R⋆(x, y0, g)
)
−

(
R(x, y1, g)−R(x, y0, g)

)∣∣∣2],
(A.35)

we obtain

Gapπ
⋆

(π̂) ≤ max
R∈R

{
CµD̄ (R;π

⋆, πsft) ·∆R − 2η−1κ2 ·∆2
R

}
+

3

ηN
· log

(
Nε(R, ∥ · ∥∞)

δ

)
+ β · Ex∼d0

[
KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)
−KL

(
π̂(·|x, g⋆)∥πref(·|x, g⋆)

)]
≤

(
CµD̄ (R;π

⋆, πsft)
)2
η

8κ2
+

3

ηN
· log

(
Nε(R, ∥ · ∥∞)

δ

)
+ β · Ex∼d0

[
KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)]
, (A.36)

where the second inequality uses the fact that az−bz2 ≤ a2/(4b) for any z ∈ R and KL-divergence
is non-negative. As a result, selecting ε = (6 · (1 + eB) ·N)−1 and

η = 2
√
6 ·

√
log (Nε(R, ∥ · ∥∞)/δ)

N
, β =

1√
N

, κ =
1

(1 + exp(B))2
, (A.37)

we prove that with probability at least 1− δ that

Gapπ
⋆

(π̂) ≤
√

1

N
·
{√

6

4

(
1 + exp(B)

)2((
CµD̄ (R;π

⋆, πsft)
)2

+ 1
)
ι

+ Ex∼d0

[
KL

(
π⋆(·|x, g⋆)∥πref(·|x, g⋆)

)]}
, (A.38)

where we denote ι =
√

log (Nε(R, ∥ · ∥∞)/δ). Combining Theorem A.6, (A.20), and (A.38), we
conclude the proof of Theorem A.4.

A.6 TECHNICAL LEMMAS

Lemma A.7 (Uniform concentration). Consider the negative log-likelihood loss in (A.2) and define
the approximation error as ε = (6·(1+eB)·N)−1, where we assume that R(x, y, g) ∈ [−B/2, B/2]
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for any (R, x, y, g) ∈ R×X ×Y×G. Suppose that the reward model classR has a finite ε-covering
number Nε(R, ∥ · ∥∞) <∞. Then for any δ < 1/e it holds with probability at least 1− δ that

L(R⋆, D̄)− L(R, D̄) (A.39)

≤ −2 · E(x,y1,y0,g)∼µD̄

[
D2

Hellinger

(
PR⋆(·|x, y1, y0, g)∥PR(·|x, y1, y0, g)

)]
+

3

N
· log

(
Nε(R, ∥ · ∥∞)

δ

)
. (A.40)

Proof. See the proof of Lemma D.1 in Liu et al. (2024), where we use the fact that (x, g) follows a
fixed distribution.

Lemma A.8 (Difference of Sigmoid functions). For any real numbers z1, z2 ∈ [−B/2, B/2], it
holds that

κ · |z1 − z2| ≤ |σ(z1)− σ(z2)| ≤ |z1 − z2|, (A.41)

where the constant κ = 1/(1 + exp(B))2.

Proof. See the proof of Lemma D.2 in Liu et al. (2024).

B EXPERIMENT DETAILS

B.1 SETUP

We use the following prompt during training. Here, the reward values are the quality scores given by
the judge models that exist in the preference dataset. The prompt is set as the system prompt when-
ever the LLM supports, such as Qwen2-7B-Instruct and Llama-3.1-8B-Instruct, and it is prefixed
before the original prompt when the LLM doesn’t support system prompting, such as Mistral-7B-
Instruct-v0.3 and Gemma-2-9B-It.

Training prompt

You are an assistant that generates responses for the instruction
while implicitly achieving the following target score (on a scale of
1-10, where 1 is lowest and 10 is highest):
Overall score: {reward_value}.

At inference time, we use almost the same prompt, except that the goal score is the highest one, i.e.,
the overall score is 10.

Inference prompt

You are an assistant that generates responses for the instruction
while implicitly achieving the following target score (on a scale of
1-10, where 1 is lowest and 10 is highest):
Overall score: 10.

In our experiments using UltraFeedback, we directly leverage the LLM-as-Judge scores provided
by GPT-4 in the dataset, which range from 1 to 10. For our method that is applied to on-policy data
ranked by external reward models, including PairRM and ArmoRM, we apply linear transformations
to normalize the resulting reward scores, ensuring they are scaled within the same 1 to 10 range.

For hyperparameters, we utilize a KL regularization coefficient of β = 0.01 in DPO, and we adopt
the AdamW optimizer (Loshchilov, 2017). The batch size is set to 128, with a learning rate of 5e−7
and a warmup ratio of 0.1. Furthermore, we observe that for models such as Qwen2-7B-Instruct and
Gemma-2-9B-It on UltraFeedback, as well as Llama-3-8B-Instruct on on-policy data, both DPO and
our proposed method yield improved performance when employing the conservative DPO (cDPO)
technique (Mitchell, 2023). Consequently, for these models, we set the label smoothing hyperpa-
rameter from the Alignment Handbook (Tunstall et al., 2023a) to 0.3, while keeping it at 0 for the
remaining models.
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B.2 FULL RESULTS

In Table 11, we present the full results on instruction-following benchmarks, which correspond to
the performance illustrated in Figure 2 in the main text.

AlpacaEval 2.0 MT-Bench Arena-Hard-Auto
LC WR WR Avg. Len. Avg. 1st 2nd Score Avg. Len.

Mistral-7B-Instruct-v0.3 19.65 15.40 1503 7.67 8.00 7.34 17.0 494
+DPO (UltraFeedback) 18.76 16.93 1643 7.66 7.92 7.40 17.6 504
+DPO (Reward-Augmented) 25.99 28.36 2270 7.69 8.02 7.36 18.3 883
Qwen2-7B-Instruct 20.93 18.22 1788 7.90 8.23 7.56 24.3 617
+DPO (UltraFeedback) 21.46 19.35 1797 8.33 8.72 7.93 21.9 553
+DPO (Reward-Augmented) 31.17 27.58 1789 8.47 8.93 7.97 30.1 644
Llama-3.1-8B-Instruct 24.79 27.38 2081 8.44 8.99 7.90 26.9 831
+DPO (UltraFeedback) 28.67 30.21 2053 8.47 9.01 7.93 33.0 1070
+DPO (Reward-Augmented) 31.20 35.93 2006 8.47 8.91 8.03 34.4 824
Gemma-2-9B-It 49.20 37.58 1572 8.54 8.81 8.28 42.8 541
+DPO (UltraFeedback) 50.70 35.02 1464 8.54 8.70 8.37 35.8 456
+DPO (Reward-Augmented) 59.27 54.56 1872 8.59 8.93 8.25 43.9 611
SPPO 55.60 49.61 1822 8.40 8.53 8.26 47.6 578
+DPO (UltraFeedback) 52.75 40.58 1544 8.41 8.78 8.04 40.4 457
+DPO (Reward-Augmented) 60.97 66.41 2543 8.73 9.06 8.41 49.0 761

Table 11: Results of the DPO models fine-tuned on UltraFeedback and on reward-augmented Ul-
traFeedback. We evaluate on the instruction-following benchmarks including AlpacaEval 2.0, MT-
Bench, and Arena-Hard-Auto.

We also provide the full comparison results with reward-augmented methods in Table 12.

Zephyr-SFT DPO DPA SteerLM NCA-P NCA-R INCA-P INCA-R Ours
LC Win Rate 6.21 11.60 11.13 - 11.50 12.87 13.68 14.83 16.66
Win Rate 3.94 8.58 10.58 8.21 8.43 9.56 11.00 11.34 13.37
Avg. Len. 893 1240 1671 1585 1287 1364 1449 1338 1812

Table 12: Full comparison results with reward-augmented methods.

B.3 MORE ABLATIONS

g = 10 g = 8 g = 6 UF (g = 10)
LC WR 31.17 28.66 25.56 24.44
WR 27.58 25.57 18.88 20.75

Table 13: Performance when conditioned on different
goal rewards in the inference prompt.

Controllable Generation with Prompt.
In Table 13, we ablate how generations
differ when changing the goal rewards in
the system prompt. We observe that the
AlpacaEval 2.0 scores of the Qwen2-7B-
It+DPO (RA) model change accordingly
as g varies. However, using the same
g = 10 prompt during inference for the
Qwen2-7B-It+DPO (UF) model fails to give competitive results, indicating that our method is supe-
rior not only because of the additional system prompt.

Benefits of Learning from High-Quality Rejected Responses. Using the UltraFeedback dataset,
we construct two reward-augmented preference datasets by filtering out augmented data based on
rejected responses with low and high reward values, respectively. Compared to our method, these
datasets isolate the impact of excluding low- and high-reward rejected responses as goals. The
evaluation results on AlpacaEval 2.0 are presented in Table 14. Learning from rejected high-reward
samples demonstrates superior performance compared to the approach that excludes these samples.

Qwen2-7B-It +DPO (UF) +DPO (RA) +DPO (RA
filter high)

+DPO (RA
filter low)

LC Win Rate 20.93 21.46 31.17 29.36 31.81
Win Rate 18.22 19.35 27.58 27.04 27.28

Table 14: Ablation on the benefits of learning from high-quality rejected responses.
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Impact of the Reward Scale. For the UltraFeedback dataset that contains response rewards in the
range of 1-10, we relabel them to be in the range of 1-5 and 1-100 with linear transformation. Our
method followed by DPO is then applied on these different scaled datasets. The results are shown
in Table 15. It can be observed that our method is robust to the reward scales. Since our main
experiments use the default 1-10 scale as in UltraFeedback, it is likely that the performance can be
further boosted, e.g., by adopting the 1-100 scale.

Qwen2-7B-It +DPO (UF) +DPO (RA, 5) +DPO (RA 10) +DPO (RA 100)
LC Win Rate 20.93 21.46 29.85 31.17 31.81
Win Rate 18.22 19.35 26.12 27.58 27.96
Table 15: Ablation on the impact of the reward scale demonstrates the robustness of our method.
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