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Abstract001

The period from 2022 to the present has rep-002
resented one of the biggest paradigm shifts in003
information retrieval (IR) and natural language004
processing (NLP). This work surveys the evo-005
lution of model architectures in IR, focusing006
on two key aspects: backbone models for fea-007
ture extraction and end-to-end system archi-008
tectures for relevance estimation. The review009
intentionally separates architectural considera-010
tions from training methodologies to provide a011
focused analysis of structural innovations in IR012
systems. We trace the development from tradi-013
tional term-based methods to modern neural ap-014
proaches, particularly highlighting the impact015
of transformer-based models and subsequent016
large language models (LLMs). We conclude017
with a forward-looking discussion of emerging018
challenges and future directions, including ar-019
chitectural optimizations for performance and020
scalability, handling of multimodal, multilin-021
gual data, and adaptation to novel application022
domains such as autonomous search agents that023
is beyond traditional search paradigms.024

1 Introduction025

Information Retrieval (IR) aims to retrieve relevant026

information sources to satisfy users’ information027

needs. In the past decades, IR has become indis-028

pensable for efficiently and effectively accessing029

vast amounts of information across various applica-030

tions. Beyond its traditional role, IR now also plays031

a critical role in assisting large language models032

(LLMs) to generate grounded and factual responses.033

Research in IR primarily centers on two key as-034

pects: (1) extracting better query and document035

feature representations, and (2) developing more036

accurate relevance estimators. The approaches037

for extracting query and document features have038

evolved from traditional term-based methods, such039

as boolean logic and vector space models, to mod-040

ern solutions such as dense retrieval based on pre-041

trained language models (Lin et al., 2022).042

Relevance estimators have evolved alongside 043

advances in feature representations. Early ap- 044

proaches, including probabilistic and statistical lan- 045

guage models, computed relevance with simple 046

similarity functions based on term-based features. 047

Learning-to-rank (LTR) techniques later emerged, 048

incorporating machine learning models and multi- 049

layer neural networks for relevance estimation (Li, 050

2011). The success of LTR methods can be largely 051

attributed to their extensive use of manually engi- 052

neered features, derived from both statistical prop- 053

erties of text terms and user behavior data collected 054

from web browsing traffic (Qin and Liu, 2013). In 055

2010s, a vast literature explored neural rerankers in 056

different architectures to capture the semantic sim- 057

ilarity between queries and documents. Then pre- 058

trained transformers, represented by BERT (De- 059

vlin et al., 2019), quickly revolutionized the model 060

design, leading to an era where retrieval and rank- 061

ing models adopt simpler architectures for rele- 062

vance estimation, such as dot product operations 063

and MLP layer prediction heads, which operate on 064

learned neural representations (Karpukhin et al., 065

2020; Nogueira et al., 2020; Lin et al., 2022). 066

Recent advancements of LLMs have revolution- 067

ized applied machine learning (ML) communities, 068

including IR. One intriguing property of LLMs is 069

that they can be used for feature extraction and rel- 070

evance estimation, achieving strong performance 071

without extensive training (Ni et al., 2022a; Nee- 072

lakantan et al., 2022; BehnamGhader et al., 2024; 073

Sun et al., 2023; Qin et al., 2024a, inter alia). The 074

rise of LLMs in IR builds upon a rich foundation 075

of transformer-based pre-trained language models 076

that have evolved from earlier neural architectures. 077

These include Transformers (Vaswani et al., 2017), 078

Recurrent Neural Networks (RNN, Elman, 1990), 079

Attention (Bahdanau, 2014) and pre-trained static 080

neural representations such as Word2Vec (Mikolov, 081

2013) and GloVe (Pennington et al., 2014). 082

This work reviews the evolution of model ar- 083
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Figure 1: An overview of this survey. We focus on representative lines of works and defer details to the Appendix.

chitectures in IR (with an overview in Fig. 1).084

Here, the meaning of model architecture is twofold:085

it describes (1) backbone models for extracting086

query and document feature representations, and087

(2) end-to-end system architectures that process088

raw inputs, perform feature extraction, and esti-089

mate relevance. Different from prior works and090

surveys (Lin et al., 2022; Zhu et al., 2023), we091

intentionally separate our discussion of model ar-092

chitectures from training methodologies and de-093

ployment best practices to provide a focused archi-094

tectural analysis. The shift towards neural archi-095

tectures, particularly Transformer-based models,096

has fundamentally transformed IR by enabling rich,097

contextualized representations and improved han- 098

dling of complex queries. While this evolution 099

has enhanced retrieval precision, it also presents 100

new challenges, especially with the emergence of 101

LLMs. These challenges include the need for archi- 102

tectural innovations to optimize performance and 103

scalability, handling multimodal and multilingual 104

data, incorporating domain-specific knowledge and 105

understanding complex instructions. Moreover, as 106

IR systems are increasingly integrated into diverse 107

applications — from robotics (Xie et al., 2024), pro- 108

tein structure discovery (Jumper et al., 2021) to 109

autonomous agents (Wu et al., 2023; Chen et al., 110

2025) that are capable of reasoning and search — 111
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the field must evolve beyond traditional search112

paradigms. We conclude this survey by examining113

these challenges and discuss their implications for114

the future of IR model architectures research.115

2 Background and Terminology116

We focus on the classical ad hoc retrieval task.117

Task Definition and Evaluation Given a query118

Q, the task is to find a ranked list of k documents,119

denoted as {D1,D2, . . . ,Dk}, that exhibit the high-120

est relevance to Q. This is achieved either by re-121

trieving top-k documents from a large collection122

C (|C| ≫ |k| ), which typically comprises millions123

or billions of documents, or by reranking the top-k124

candidates returned by a retriever. System perfor-125

mance is measured using standard IR metrics such126

as Mean Reciprocal Rank, Recall, and normalized127

Discounted Cumulative Gain (nDCG).128

Query and Document A query expresses an in-129

formation need and serves as input to the ad hoc re-130

trieval system. We denote document as the atomic131

unit for retrieval and ranking. Our discussions are132

primarily based on text-based documents, but it can133

also refer to a webpage or an email, depending on134

the actual IR application of interest.135

Disentangling Model Architecture with Training136

Strategies Similar to other applied ML domains,137

the design of IR model architectures is paired with138

training strategies and deployment best practices.139

In this paper, we seek to disentangle the two and140

focus solely on architectures. We refer to prior sur-141

veys for a more focused review of training strate-142

gies and related topics (Schütze et al., 2008; Lin143

et al., 2022; Song et al., 2023).144

3 Traditional IR Models145

In this section, we briefly review traditional IR146

models prior to neural methods, with a focus on147

boolean model and vector space model which serve148

as the foundation of later development of IR models149

(§§ 4 to 7).1 These models are built upon the basic150

unit “term” used in the representation (Nie, 2010).151

Boolean Model In Boolean Models, a document152

D is represented by a set of terms it contains, i.e.,153

D = {t1, t2, . . . , tn}. A query Q is represented as154

a similar boolean expression of terms. A document155

is considered relevant to a query only if a logical156

1We defer the discussion of probabilistic model and statis-
tical language model to Appx. A.

implication D → Q holds, i.e., the document rep- 157

resentation logically implies the query expression. 158

Vector Space Model In Vector Space Mod- 159

els (Salton et al., 1975), the queries and docu- 160

ments are represented by vectors, e.g., Q =< 161

q1, q2, . . . , qn > and D =< d1, d2, . . . , dn >. The 162

vector space V =< t1, t2, . . . , tn > is formed by 163

all the terms the system recognizes in the docu- 164

ments and each element (qi or di, 1 ≤ i ≤ n) in 165

the vectors represents the weight of the correspond- 166

ing term in the query or the document. The weights 167

qi or di could be binary, representing presence or 168

absence. Given the vector representations, the rel- 169

evance score is estimated by a similarity function 170

between the query Q and the document D. 171

4 Learning-to-Rank Model Architectures 172

Different from traditional IR models discussed in 173

§ 3, Learning-to-Rank (LTR) leverages the idea 174

of supervised ML on extensively crafted numer- 175

ical features (Burges et al., 2005; Burges, 2010; 176

Qin and Liu, 2013). For each (Qi,Di) pair, a k- 177

dimensional feature vector xi ∈ Rk and a rele- 178

vance label yi is provided to the ranking model 179

f parameterized by θ. Denote the loss function 180

as l(·), the ranking is trained to minimize the 181

empirical loss on labeled training set Ψ: L = 182

1/|Ψ|
∑

(xi,yi)∈Ψ l(fθ(xi),yi). 183

Explorations in LTR models can be grouped 184

into two directions: ML-based models and neu- 185

ral LTR models. Under the scope of ML models, 186

RANKSVM (Joachims, 2006) is a pairwise LTR 187

model based on SVM. Burges et al. (2005) stud- 188

ied decision trees and Wu et al. (2010) proposed 189

LAMBDAMART based on Gradient Boosted De- 190

cision Trees (GBDT, Friedman, 2001; Ke et al., 191

2017). Unsurprisingly, early works also explored 192

neural LTR models. RANKNET (Burges et al., 193

2005) and LAMBDARANK (Burges et al., 2006) 194

parameterize the LTR model with neural networks. 195

Recent works such as GSF (Ai et al., 2019) and 196

APPROXNDCG (Bruch et al., 2019) use multiple 197

fully connected layers. DLCM (Ai et al., 2018a) 198

and SETRANK (Pang et al., 2020) adopt RNN and 199

self-attention for reranking documents. Qin et al. 200

(2021) conducted rigorous study of benchmarking 201

neural ranking models against GBDT-based mod- 202

els. See Table 1 for a list of LTR models and prior 203

surveys on LTR techniques (Liu, 2009; Li, 2011). 204

LTR techniques use human-crafted numerical 205

features and metadata like PageRank score (Brin 206
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and Page, 1998) and click count as features and are207

still widely used in modern search systems (Google,208

2019). However, it lacks the flexibility of being209

directly used on raw text data, and also cannot210

overcome the lexical mismatch problem — xthe211

main focus of neural ranking methods (§ 5).212

5 Neural Ranking Models213

Different from feature engineering of LTR (§ 4),214

neural ranking models utilize deep neural networks215

to learn feature representations directly from raw216

text and again use neural networks for relevance217

estimation.2 Depending on how queries interact218

with documents during network processing, neu-219

ral ranking models can be roughly divided into220

representation-based models and interaction-based221

models (Guo et al., 2016a).222

Representation-based models can be regarded223

as extensions of vector space models (§ 3), which224

independently encode queries and documents into225

a latent vector space, as illustrated in Fig. 2a. The226

Deep Structured Semantic Model (DSSM) (Huang227

et al., 2013) is an early example. It utilizes word228

hashing and multilayer perceptrons (MLPs) to in-229

dependently encode term vectors of queries and230

documents, enabling the computation of ranking231

scores based on the cosine similarity of their em-232

beddings. Later works modify DSSM’s encoder233

network to better capture richer semantic and con-234

textual information. Convolutional DSSM (Shen235

et al., 2014) leverages a CNN architecture to project236

vectors within a context window to a local con-237

textual feature vector. A variation of DSSM re-238

places MLPs with a Long Short-Term Memory239

(LSTM) network (Hochreiter and Schmidhuber,240

1997; Palangi et al., 2016; Wan et al., 2016), uti-241

lizing its memory mechanism to capture local and242

global context information.243

Interaction-based models (Fig. 2b), on the244

other hand, process queries and documents jointly245

through neural networks. The model’s output is246

typically a scalar relevance score of the input query-247

document pair. Various network architectures have248

been proposed under this paradigm. MATCHPYRA-249

MID (Pang et al., 2016) employs CNN over the250

interaction matrix between query and document251

terms. The interaction matrix is treated as an im-252

age, allowing the CNN to capture local matching253

2We define neural information retrieval as retrieval models
based on neural networks prior to pre-trained transformers.
More models details are deferred to Appx. C and detailed
surveys (Onal et al., 2018; Mitra et al., 2018; Xu et al., 2018)

patterns through convolution and pooling opera- 254

tions (Hu et al., 2014). Building upon the concept 255

of interaction-focused models, Guo et al. (2016a) 256

highlight the importance of exact term matches in 257

neural ranking models and proposed the Deep Rele- 258

vance Matching Model (DRMM). The model con- 259

structs matching histograms for each query term to 260

capture the distribution of matching signals across 261

document terms. Kernel-Based Neural Ranking 262

Model (K-NRM, Xiong et al., 2017) further ad- 263

vances interaction-based approaches. It employs 264

radial basis function kernels to transform the query- 265

document interaction matrix informative ranking 266

features. CONV-KNRM (Dai et al., 2018) later 267

extends it to convolutional kernels. 268

In addition to the development of network archi- 269

tecture, pre-trained embeddings (Mikolov, 2013; 270

Pennington et al., 2014) provide semantic-based 271

term representations to enable neural ranking mod- 272

els to focus on learning relevance matching pat- 273

terns, improving training convergence and retrieval 274

performance on both representation-based and 275

interaction-based models (Levy et al., 2015). 276

6 IR with Pre-trained Transformers 277

BERT (Devlin et al., 2019) changed the research 278

paradigm in both NLP and IR. Its success can be 279

attributed to two factors: (1) the multi-head at- 280

tention architecture (Vaswani et al., 2017) admits 281

fine-grained, contextualized representations; (2) 282

large-scale pre-training allows BERT to encode 283

both semantics and world knowledge. The expres- 284

siveness of BERT has been extensively studied by 285

prior works, e.g., Rogers et al. (2020); Tenney et al. 286

(2019); Clark (2019). This sectino discusses IR ar- 287

chitectures based on pre-trained transformers, with 288

a focus on BERT-type encoder models. 289

Text Reranking Nogueira et al. (2019) first em- 290

ployed BERT model for reranking candidate pas- 291

sages from a first-stage retriever. Their model 292

MONOBERT takes as input the sequence of con- 293

catenated (Q,D) as input, and outputs a rele- 294

vance score s with a linear layer on top of the 295

BERT model (Fig. 2c). The schema has later 296

been proved to be effective on other pre-trained 297

encoders (Zhang et al., 2021) and encoder-decoder 298

architectures (Nogueira et al., 2020). However, this 299

schema faces two challenges: (1) BERT family 300

models has a limited 512 tokens context length, 301

making reranking long documents challenging; (2) 302

CLS token’s single 768-dimensional representation 303
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Figure 2: Illustration on neural ranking models, retriever, and reranker architectures. Brown boxes indicate
uncontextualized word embeddings (e.g., Word2vec). Yellow boxes indicate pretrained Transformers (e.g., BERT).

potentially limits the expressiveness of the rerank-304

ing model. Two directions have been investigated305

to tackle these two challenges.306

In the first direction, one strategy is to segment307

the long document into shorter passages, score each308

passage individually, then aggregate the scores to309

get a document-level relevance score (Yilmaz et al.,310

2019; Dai and Callan, 2019b). In this case, the un-311

derlying model architecture remains unchanged. A312

different line of work seeks to perform feature-level313

aggregation. PARADE (Li et al., 2020) uses an314

additional neural network to aggregate contextual-315

ized representations from CLS tokens of passages316

to get the final document relevance score.317

In the second direction, MacAvaney et al. (2019)318

discovered via CEDR that the effectiveness of319

reranker could be enhanced when aggregating the320

contextualized representations with neural rank-321

ing models such as K-NRM and DRMM. Zhang322

et al. (2024a) later observed that integrating token323

representations with late interactions could also ef-324

fectively improve the reranking robustness on out-325

of-domain scenarios, especially for long queries.326

Learned Dense Retrieval Here we use the term327

"bi-encoder" (Humeau et al., 2020) to refer to328

the model architecture commonly used for dense329

retrieval.3 Bi-encoder uses a backbone network330

to encode query Q and document D separately,331

then uses the encoded dense vector representa-332

tions to compute the relevance score with similarity333

3The term “bi-encoder” is known by many other names,
such as two-tower architecture, embedding models. We refer
to it as “bi-encoder” in contrast to “cross-encoder”, reranker
architectures that take concatenated (Q,D) as input.

functions such as dot product or cosine similar- 334

ity (Xiong et al., 2020; Karpukhin et al., 2020; Gao 335

et al., 2021c). After training, the model encodes the 336

collection into a dense vector index, and retrieval is 337

performed with fast nearest neighbor search tech- 338

niques (Johnson et al., 2019; Malkov and Yashunin, 339

2016). Different from representation-based neu- 340

ral ranking models where distinct architectures are 341

proposed (§ 5), existing dense retrieval methods 342

are mostly based on pre-trained transformer lan- 343

guage models, with variance on pooling strategy 344

and training methodologies (detailed in Appx. D). 345

Learned Sparse Retrieval Similar to learned 346

dense retrieval, learned sparse retrieval (LSR) also 347

uses bi-encoder architecture with language models 348

as the backbone, to transform documents into a 349

static index for later retrieval (Zamani et al., 2018). 350

To use a traditional inverted index for faster re- 351

trieval (Bruch et al., 2024), the query Q and docu- 352

ment D are represented as sparse vectors whose di- 353

mensionality typically matches the vocabulary size 354

of the backbone pre-trained transformer model (Yu 355

et al., 2024a). Here sparsity is enforced through 356

regularization (Formal et al., 2021b; Paria et al., 357

2020) and usually serves as a trade-off between 358

effectiveness and efficiency. At a higher level, LSR 359

can be viewed as a way to learn token importance or 360

“impact” scores from data (Dai and Callan, 2019b; 361

Bai et al., 2020; Mallia et al., 2021), in contrast to 362

static formulas like BM25. 363

Multi-Vector Representations Learned dense 364

retrieval’s bi-encoder architecture encodes queries 365

and documents into single feature vectors sepa- 366
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rately, and estimate relevance via a similarity func-367

tion. This enables efficient training, indexing, and368

inference, but the lack of interactions between369

query and document terms potentially limits per-370

formance. In contrast, the "all-to-all" interaction of371

cross-encoder models are computationally expen-372

sive. Research has explored representing queries373

and documents using multiple vectors and devel-374

oping corresponding relevance estimators. POLY-375

ENCODER (Humeau et al., 2020) computes a fixed376

number of vectors per query, and aggregate with377

softmax attention against document vectors. Due to378

the use of softmax operator, fast nearest neighbor379

search technique cannot be trivially applied. ME-380

BERT (Luan et al., 2021) proposes to represent381

documents with m vectors, and uses the maximum382

similarity between query vectors and document383

vectors to estimate relevance. COLBERT (Khattab384

and Zaharia, 2020) takes the multi-vector repre-385

sentation idea further and represents each token386

in query and document as a contextualized vec-387

tor. Each query vector interacts with each docu-388

ment vector via a MaxSim operator, and the rele-389

vance score is computed by summing scalar outputs390

of these operators over query terms. COLBERT391

is trained end-to-end and achieves strong perfor-392

mance on public retrieval benchmarks. Numerous393

other studies further investigate token selection and394

aggregation operations, see Appx. D for details.395

7 Large Language Models for IR396

LLMs have exhibited proficiency in language un-397

derstanding and generation, are trained to align398

with human preferences (OpenAI, 2023; Gemini399

et al., 2023; Bai et al., 2022) and able to perform400

complex tasks such as reasoning (Wei et al., 2022;401

Hurst et al., 2024; Guo et al., 2025) and plan-402

ning (Song et al., 2023).4 In this section, we briefly403

discuss some works that utilize LLMs for IR tasks.404

LLM as Retriever Adopting an LLM as the405

backbone for bi-encoder retrieval model has406

achieved performance improvement compared to407

smaller-sized models like BERT. Neelakantan et al.408

(2022) fine-tuned a series of off-the-shelf GPT409

models towards text and code representation. They410

empirically verified that the bi-encoder retriever’s411

performance can benefit from increased back-412

bone language model capacity. Common text re-413

4In this work, we use term LLM to denote language mod-
els which are trained for text generation, including encoder-
decoder models and decoder-only models.

trieval benchmarks like BEIR (Thakur et al., 2021) 414

are currently dominated by LLM-based retriev- 415

ers. A parallel line of research has explored adapt- 416

ing unidirectional LLM architectures into bidi- 417

rectional ones to enhance representational power. 418

LLM2VEC (BehnamGhader et al., 2024) enables 419

bidirection and further trains LLAMA-2 (Touvron 420

et al., 2023) with specific adaptive tasks. NV- 421

EMBED (Lee et al., 2025) introduces a new la- 422

tent attention layer and leads to improve on MTEB 423

benchmark (Muennighoff et al., 2023). 424

LLM as Reranker Works discussed in § 6 have 425

explored fine-tuning BERT-type encoder models 426

as cross-encoder reranker. Later works further ex- 427

pand this paradigm to encoder-decoder models 428

like T5 (Raffel et al., 2020) and decoder mod- 429

els like LLAMA (Touvron et al., 2023). Nogueira 430

et al. (2020) fine-tuned T5 models with classifi- 431

cation loss for passage reranking. Zhuang et al. 432

(2023a) proposed to fine-tune T5 to produce a nu- 433

merical relevance score, and optimize the model 434

with ranking losses like RANKNET (Burges, 2010). 435

LISTT5 (Yoon et al., 2024) adopts the Fusion-in- 436

Decoder architecture (Izacard and Grave, 2021) 437

to learn a listwise reranker. RANKLLAMA (Ma 438

et al., 2024b) fine-tunes decoder model for point- 439

wise reranking and achieves better performance 440

compared to T5-based rerankers. Leveraging the 441

long-context ability of LLMs, a reranking paradigm 442

is introduced, where LLM-based rerankers directly 443

rerank a list of documents rather than scoring each 444

document individually (Ma et al., 2023; Zhang 445

et al., 2023b; Pradeep et al., 2023b,c). Instead 446

of using raw passages, Liu et al. (2024b) used pas- 447

sage embeddings as input to LLMs and trained 448

corresponding rerankers to achieve improved ef- 449

ficiency. Aforementioned studies still rely on la- 450

beled data and gradient updates to backbone LLMs. 451

With the rise of instruction-following LLMs, re- 452

searchers have explored using LLMs as unsuper- 453

vised rerankers through prompting techniques. As 454

this line of research does not introduce architectural 455

changes to existing LLMs, we refer to a recent sur- 456

vey (Zhu et al., 2023) for further details. 457

Generative Retrieval Traditional IR systems fol- 458

low the "index-retrieval-rank" paradigm (Schütze 459

et al., 2008). Although effective, jointly optimizing 460

the separate index, retrieval, and reranking modules 461

can be challenging. A recent line of research aims 462

to bypass the indexing step by using autoregressive 463

language models to directly generate document 464
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identifiers (DocIDs). DSI (Tay et al., 2022) first465

constructs semantically structured DocIDs, then466

fine-tunes T5 models with labeled data. In the de-467

coding phase, DSI uses all DocIDs to construct a468

trie and performs constrained decoding. Followup469

works (Wang et al., 2022b; Bevilacqua et al., 2022)470

further improve upon this paradigm with strategies471

to construct semantic DocIDs and enable robust472

training. A significant challenge for generative473

retrieval is scalability to larger corpus (Pradeep474

et al., 2023a). Zeng et al. (2024) utilized the resid-475

ual quantization technique to construct hierarchical476

DocIDs and achieved comparable performance to477

dense retrievers on MS MARCO dataset. Gener-478

ative retrieval is an active research area; see (Li479

et al., 2025c) for a more comprehensive review.480

Remarks We note that the adoption of LLMs481

in IR model architectures primarily follows two482

main themes: (1) feature extraction, and (2) rele-483

vance estimation, as discussed in § 1. For example,484

LLMs’ semantic knowledge enables their strong485

performance in being the backbone of a retriever;486

and instruction-following LLMs can be directly487

prompted for relevance estimation. Generative re-488

trieval and cross-encoder LLM reranking models489

are trained end-to-end for both feature extraction490

and relevance estimation. While LLMs have shown491

promise, several challenges and open questions re-492

main, which leaves room for discussion (§ 8).493

8 Emerging Directions and Challenges494

IR systems have become crucial across diverse do-495

mains, from retrieval-augmented language mod-496

eling (Khandelwal et al., 2020a; Borgeaud et al.,497

2022) to applications in agents (Wu et al., 2023;498

Wang et al., 2024a), code generation (Wang et al.,499

2024c; Zhang et al., 2023a), robotics (Anwar et al.,500

2024), medicine (Jeong et al., 2024), and protein501

research (Jumper et al., 2021), inter alia. These de-502

velopments present new challenges for IR research.503

Drawing from the evolution of IR architectures504

(§§ 3 to 7), we examine emerging trends, open505

problems, and potential research directions.5506

8.1 Better Models for Feature Extraction507

Scaling has been a winning recipe for modern neu-508

ral networks (Kaplan et al., 2020; Hoffmann et al.,509

2022; Dehghani et al., 2023; Fang et al., 2024;510

Shao et al., 2024, inter alia). As IR moves toward511

5See Appx. F for an extended discussion w.r.t. deployment
challenges, robustness, autonomous search agents etc.

compute-intensive practices, we identify key areas 512

for model improvement: 513

• Data & training efficiency Current transformer- 514

based IR models demand extensive training 515

data (Fang et al., 2024), making them imprac- 516

tical for many real-world applications. Develop- 517

ing architectures that can learn effectively from 518

limited data remains crucial. Additionally, mod- 519

els should support parallel processing and low 520

precision training to reduce costs and accelerate 521

convergence (Nvidia, 2021; Fishman et al., 2024; 522

Liu et al., 2024a). 523

• Inference optimization Real-time applications 524

like conversational search (Mo et al., 2024b) and 525

agent-based systems (Yao et al., 2023) require ef- 526

ficient handling of variable-length queries, neces- 527

sitating advanced compression and optimization 528

techniques for both retriever backbones and in- 529

dex structures (Dettmers and Zettlemoyer, 2023; 530

Kumar et al., 2024; Warner et al., 2024; Bruch 531

et al., 2024; Xu et al., 2025a, inter alia). 532

• Multimodality & multilinguality Future IR sys- 533

tems must handle diverse content types including 534

images (Ma et al., 2024a), audio (Pusateri et al., 535

2024), structured data (Tan et al., 2024; Edge 536

et al., 2024) as well as multilinguality beyond 537

English (Zhang et al., 2023c; Enevoldsen et al., 538

2025). Recent advances in multimodal, multilin- 539

gual retrieval (Ma et al., 2024a; Wei et al., 2025; 540

Yu et al., 2024b; Huang et al., 2024, inter alia) 541

and structured data processing (Li et al., 2023d, 542

2024) have demonstrated promises. 543

• Transformer alternatives While transform- 544

ers have dominated recent IR research, their 545

quadratic complexity in attention computation 546

remains a significant bottleneck. Recent ad- 547

vances in linear RNNs (Peng et al., 2023, 2024; 548

Qin et al., 2024b), state space models (Gu and 549

Dao, 2024; Dao and Gu, 2024), and linear at- 550

tention (Katharopoulos et al., 2020; Yang et al., 551

2024) offer alternatives with theoretical linear 552

complexity. Although preliminary studies (Xu 553

et al., 2025b) show limited gains compared to 554

optimized transformers, developing efficient al- 555

ternatives architectures for transformers could 556

revolutionize large-scale information retrieval. 557

Strong foundation models have proven crucial for 558

IR performance (Neelakantan et al., 2022; Ma et al., 559

2024b). As IR applications expand, developing 560

foundation models that balance computational ef- 561

ficiency with robust performance across tasks and 562
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modalities emerges as a key research priority.563

8.2 Flexible Relevance Estimators564

As discussed in § 6, cross-encoders provide com-565

plex non-linear relevance estimation but are com-566

putationally expensive. In contrast, bi-encoder ar-567

chitectures used in dense and sparse retrieval rely568

on linear similarity functions (e.g., inner product)569

to enable fast retrieval through nearest neighbor570

search and inverted indexing. Balancing complex571

relevance matching and scalable retrieval remains572

challenging. COLBERT (Khattab and Zaharia,573

2020) addresses this by using document represen-574

tation matrices with MaxSim operations, while re-575

cent work (Killingback et al., 2025) explores Hy-576

pernetworks (Ha et al., 2022) to generate query-577

specific neural networks for relevance estimation.578

The design of flexible yet scalable relevance esti-579

mators remains an active research direction.580

8.3 Open Questions581

The integration of IR systems into other research582

domains presents new challenges. We discuss key583

implications for future IR modeling research.584

End “User” of Retrieval While traditional IR585

systems focus on providing search results to hu-586

mans, retrieval is increasingly used to support ML587

models, particularly LLMs, in tasks such as genera-588

tion (Gao et al., 2023), reasoning (Yao et al., 2024;589

Islam et al., 2024), and planning (Song et al., 2023).590

This shifting paradigm raises questions about task591

formulation, evaluation, and system optimization:592

• Current IR research is grounded in human593

information-seeking behavior (Wilson, 2000).594

When the end user becomes another ML model,595

we must reconsider how to define and assess rele-596

vance. This question suggests a need for flexible,597

data-efficient models that are adaptable to various598

downstream tasks.599

• Traditional IR metrics, which are designed600

for human-centric evaluation, may not align601

with downstream task performance in retrieval-602

augmented systems. Future IR models should603

support end-to-end system optimization rather604

than focusing solely on ranking metrics.605

Autonomous Search Agent Complex tasks re-606

quire retrieving long-tail knowledge using lengthy,607

complex queries (Soudani et al., 2024; Su et al.,608

2024), demanding retrieval models capable of in-609

struction following (Weller et al., 2024a; Ravfo-610

gel et al., 2024) and reasoning (Su et al., 2024).611

Existing attempts can be divided into two direc- 612

tions. One line of works focuses on training re- 613

trievers and rerankers that are capable of reasoning. 614

They propose data pipelines to synthesize training 615

data (Oh et al., 2024; Weller et al., 2024b; Shao 616

et al., 2025, inter alia) and leverage strong back- 617

bone language models such as LLAMA (Dubey 618

et al., 2024) and QWEN (Yang et al., 2025). An- 619

other line of works treats search/retrieval as an 620

integral component of LLM reasoning chain. They 621

consider search/retrieval system as a static tool that 622

can be called via large reasoning model (LRM), 623

and instead focus on improving LRM’s capability 624

to use search tool and synthesize search results. 625

The LRM can decide where, when and how to con- 626

duct search, and the search results subsequently 627

influence LRM’s further reasoning and decision 628

making (Nakano et al., 2021; Tang et al., 2025; He 629

et al., 2025; Chen et al., 2025; Li et al., 2025a). 630

Despite the exciting progress, key limitations 631

remain in building instruction following and 632

reasoning-capable retrieval systems. For example, 633

to enable retrievers’ reasoning capability requires 634

strong backbone models (e.g., 7B scale), which 635

are often infeasible for production systems. Even 636

larger models (e.g., 32B scale) augmented with 637

retrieval and trained via expensive reinforcement 638

learning (Jin et al., 2025; Chen et al., 2025) still un- 639

derperform simpler baselines with query decompo- 640

sition and chain-of-thought prompting (Khot et al., 641

2023; Trivedi et al., 2023). A key open question 642

is how to endow retrievers with strong reasoning 643

capabilities using lightweight, scalable models. An- 644

other open challenge lies in the joint optimization 645

of retrievers and language models within a unified, 646

reasoning-aware framework. Lastly, the human fac- 647

tors of applying such autonomous search agents 648

remains to be studied. 649

9 Conclusions and Closing Thoughts 650

Information retrieval modeling has evolved from 651

simple term matching to complex neural networks 652

and LLM-driven approaches, significantly improv- 653

ing search capabilities. Key challenges ahead in- 654

clude balancing computational efficiency with per- 655

formance, handling diverse data types, maintain- 656

ing faithfulness and trustworthiness, and integrat- 657

ing with emerging technologies like autonomous 658

agents. These challenges drive opportunities for 659

developing more adaptive, efficient, scalable and 660

intelligent retrieval systems. 661
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Limitations662

This survey examines the evolution of IR mod-663

els, with particular emphasis on challenges arising664

from LLMs and their implications for future archi-665

tectures. Due to space constraints, we focus on666

representative works rather than providing an ex-667

haustive review, with supplementary discussions668

of interdisciplinary research included in the Ap-669

pendix.670

Ethical Considerations671

As this paper solely reviews existing IR develop-672

ments and future research directions, we believe it673

presents no direct ethical concerns.674
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A Supplement Materials on Traditional IR Models 2368

Boolean Models The most basic Boolean model can be extended by incorporating term weighting, 2369

allowing both queries and documents to be represented as sets of weighted terms. Then, the logical 2370

implication D → Q is also weighted. The commonly used weighted approaches for the logical 2371

implication D → Q include using a fuzzy set extension of the Boolean logic (Radecki, 1979; Kraft and 2372

Buell, 1983) and p-norm (Salton et al., 1983). 2373

2374

Vector Space Model The weights qi or di can be represented by other sophisticated schema, such as
TF-IDF (Sparck Jones, 1972) and BM25 (Robertson et al., 1995). The extracted abundant features can
improve the capacity and accuracy of the vector space models. Besides, given the vector representations
of query Q and document D, the most commonly used is cosine similarity, defined as

sim(Q,D) =
Q · D

|Q| × |D|
,

where Q · D is the dot product and |Q|, |D| denotes the length of the vector. 2375

2376

Probabilistic Model In Probabilistic Model, the relevance score of a document D to a query Q 2377

depends on a set of events {xi}n1 representing the occurrence of term ti in this document. The simplest 2378

probabilistic model is the binary independence retrieval model (Robertson and Jones, 1976), which 2379

assumes terms are independent so only xi = 1 and xi = 0 exist in the representation. Given a set of 2380

sample documents whose relevance is judged, the estimation of the relevance score can be derived as 2381

Score(Q,D) ∝
∑

(xi=1)∈D log ri(T−ni−R+ri)
(R−ri)(ni−ri)

, where T and R are the total number of sampled judged 2382

documents and relevant samples, and ni and ri denote the number of samples and relevant samples 2383

containing ti, respectively. The smooth mechanisms (Baeza-Yates et al., 1999) are necessary to deal with 2384

zero occurrences of the ti. 2385

Except for the binary independence retrieval model, more sophisticated probabilistic models are 2386

proposed in the literature (Wong and Yao, 1989; Fuhr, 1992), such as the inter-dependency between 2387

terms (Van Rijsbergen, 1979). 2388

2389

Statistical Language Model The general idea of a statistical language model is to estimate the relevance 2390

score of a document D to a query Q via P(D|Q) (Ponte and Croft, 1998). Based on Bayes Rule, P(D|Q) 2391

can be derived as directly proportional to P(Q|D)P(D). For simplification, most studies assume a 2392

uniform distribution for P(D). The main focus is on modeling P(Q|D) as a ranking function by treating 2393

the query as a set of independent terms as Q = {ti}ni=1, thus P(Q|D) =
∏

ti∈Q P(ti|D). The probability 2394

P(ti|D) is determined using a statistical language model θD that represents the document, then the 2395

relevance is estimated by log-likelihood as Score(Q,D) = logP(Q|θD) =
∑

ti∈Q logP(ti|θD), where 2396

the estimation of the language model θD is usually achieved by maximum likelihood. 2397

The statistic language models for IR (Miller et al., 1999; Berger and Lafferty, 1999; Song and Croft, 2398

1999) also encounter the problem of the zero occurrences of the query term ti, i.e., the probability 2399

P(Q|θD) becomes zero, if a query term ti does not appear in the document. This is too restrictive for 2400

IR, as a document can still be relevant even if it contains only some of the query terms. To address 2401

this zero-probability issue, smoothing techniques are applied, assigning small probabilities to terms 2402

that do not appear in the document. The principle behind smoothing is that any text used to model a 2403

language captures only a limited subset of its linguistic patterns (or terms, in this case). The commonly 2404

used smoothing methods (Zhai and Lafferty, 2004; Zhai et al., 2008) include Jalinek-Mercer smoothing, 2405

Dirichlet smoothing, etc. 2406

B Supplement Materials on Learning-to-Rank Architecture and Training Strategy 2407

We present a list of learning-to-rank works and their backbone architectures in Table 1. A significant 2408

portion of the literature focuses on loss functions and feature transformers (Qin et al., 2021; Bruch et al., 2409

25



Name Model Backbone Architecture Loss Function

MART (Friedman, 2001) ML Boosting Pointwise
RANKBOOST (Freund et al., 2003) ML Boosting Pairwise
RANKNET (Burges et al., 2005) Neural Nets DNN Pairwise
RANKSVM (Joachims, 2006) ML SVM Pairwise
LAMBDARANK (Burges et al., 2006) Neural Nets DNN Pairwise
LISTNET (Cao et al., 2007) Neural Nets DNN Listwise
SOFTRANK (Taylor et al., 2008) Neural Nets DNN Listwise
LISTMLE (Xia et al., 2008) ML Linear Listwise
LAMBDAMART (Burges, 2010) ML GBDT Listwise
APPROXNDCG (Qin et al., 2010) ML Linear Listwise
DLCM (Ai et al., 2018a) Neural Nets DNN Listwise
GSF (Ai et al., 2019) Neural Nets DNN Listwise
APPROXNDCG (Bruch et al., 2019) Neural Nets DNN Listwise
SETRANK (Pang et al., 2020) Neural Nets Self Attention Blocks Listwise

Table 1: A list of learning-to-rank works and their model architectures.

2019; Burges, 2010). Additionally, some studies focus on unbiased relevance estimation using biased2410

feedback (Wang et al., 2016; Joachims et al., 2017b,a; Ai et al., 2018c,b; Wang et al., 2018; Hu et al.,2411

2019; Ren et al., 2022) while other focus on jointly optimizing effectiveness and fairness of the ranking2412

systems (Singh and Joachims, 2018; Biega et al., 2018; Morik et al., 2020; Patro et al., 2020; Oosterhuis,2413

2021; Yang et al., 2023a,c,b). We omit detailed discussions here and refer readers to the original papers.2414

C Supplement Materials on Neural Ranking Models2415

Representation-based Models Representation-based neural ranking models can be regarded as extensions2416

of vector space models (§ 3), which independently encode queries and documents into a latent vector2417

space. The relevance ranking of a document is determined by computing the similarity (e.g., cosine2418

similarity) between the query and document embeddings.2419

The Deep Structured Semantic Model (DSSM) (Huang et al., 2013) is an early example of a2420

representation-based neural ranking model. It utilizes word hashing and multilayer perceptrons (MLPs) to2421

independently encode term vectors of queries and documents into a shared semantic space, enabling the2422

computation of ranking scores based on the cosine similarity of their embeddings. Research has focused2423

on enhancing DSSM by modifying its encoder network to improve the model’s ability to capture richer2424

semantic and contextual information. For instance, Convolutional DSSM (Shen et al., 2014) leverages a2425

CNN architecture to project vectors within a context window to a local contextual feature vector. These2426

local features are then aggregated using a max-pooling layer to produce a representation of the entire2427

query or document. Another variation of DSSM replaces MLPs with a Long Short-Term Memory2428

(LSTM) network (Palangi et al., 2016; Wan et al., 2016) . By leveraging LSTM’s memory mechanism,2429

such models can capture both local and global context information without the pooling layer, thus better2430

suited for handling longer documents.2431

2432

Interaction-based Models Interaction-based models process queries and documents jointly through2433

neural networks. The model’s output is typically a score that measures the relevance of the input2434

query-document pair. Various network architectures have been proposed to jointly encode queries and2435

documents. For instance, MATCHPYRAMID (Pang et al., 2016) employs CNN over the interaction2436

matrix between query and document terms. This approach treats the interaction matrix as an image,2437

allowing the CNN to capture local matching patterns. The model then aggregates these patterns through2438

convolution and pooling operations to produce a relevance score, effectively modeling the hierarchical2439

matching structures between queries and documents (Hu et al., 2014). Building upon the concept2440

of interaction-focused models, Guo et al. (2016a) highlighted the importance of exact term matches2441

in neural ranking models and proposed the Deep Relevance Matching Model (DRMM). The model2442

constructs matching histograms for each query term to capture the distribution of matching signals across2443

26



Name Architecture Backbone Embeddings

DSSM (Huang et al., 2013) Representation-based MLP Word Hashing
CDSSM (Shen et al., 2014) Representation-based CNN Word Hashing
ARC-I (Hu et al., 2014) Representation-based CNN Word2Vec
ARC-II (Hu et al., 2014) Interaction-based CNN Word2Vec
MATCHPYRAMID (Pang et al., 2016) Interaction-based CNN Randomly Initialized
LSTM-RNN (Palangi et al., 2016) Representation-based LSTM Randomly Initialized
MV-LSTM (Wan et al., 2016) Representation-based Bi-LSTM Word2Vec
DRMM (Guo et al., 2016a) Interaction-based MLP Word2Vec
DESM (Nalisnick et al., 2016) Interaction-based MLP Word2Vec
K-NRM (Xiong et al., 2017) Interaction-based MLP + RBF kernels Word2Vec
CONV-KNRM (Dai et al., 2018) Interaction-based CNN Word2Vec
TK (Hofstätter et al., 2020c) Interaction-based Transformer + Kernel GloVe
TKL (Hofstätter et al., 2020a) Interaction-based Transformer + Kernel GloVe
NDRM (Mitra et al., 2021) Interaction-based Conformer + Kernel BERT

Table 2: A list of neural ranking models and their model architectures.

document terms. These histograms are then processed through a feed-forward neural network to learn 2444

hierarchical matching patterns. Xiong et al. (2017) introduced the Kernel-Based Neural Ranking Model 2445

(K-NRM), which further advanced interaction-based approaches. K-NRM employs a translation matrix 2446

to compute interactions between query and document terms based on their embeddings. It then applies 2447

Radial Basis Function (RBF) kernels to transform these word-level interactions into informative ranking 2448

features. Later, they extended the RBF kernel approach to a convolutional neural network (Dai et al., 2018). 2449

2450

Word Embeddings In addition to advancements in network architecture, pre-trained textual representa- 2451

tions have also contributed to neural ranking models’ performance (Guo et al., 2016b). GloVe (Pennington 2452

et al., 2014) and Word2Vec (Mikolov, 2013) learn dense vector representations for each vocabulary term 2453

from large-scale text corpora. Pre-trained embeddings provide semantic-based term representations to 2454

enable neural ranking models to focus on learning relevance matching patterns. Both representation-based 2455

and interaction-based models adopt pre-trained word embeddings as input representations to their net- 2456

works, facilitating training convergence and improved performance (Levy et al., 2015). Interaction-based 2457

models with cross-lingual word embeddings (Joulin et al., 2018) for cross-lingual reranking have also 2458

been explored (Yu and Allan, 2020). 2459

2460

Table 2 shows a list of neural ranking models and backbone architectures. Researchers have explored 2461

different backbone neural network architectures in this era, including Convolutional Neural Network (CNN, 2462

LeCun et al., 1989, 1998), Long Short Term Memory (LSTM, Hochreiter and Schmidhuber, 1997) and 2463

kernel methods (Vert et al., 2004; Chang et al., 2010; Xiong et al., 2017). 2464

Notably, a line of research explores integrating kernel methods with the TRANSFORMER architec- 2465

ture (Vaswani et al., 2017). The main distinction between this line of research and the models discussed 2466

in § 6 is that the transformer modules here are not pre-trained on large-scale corpora like Wikipedia and 2467

C4 (Devlin et al., 2019; Raffel et al., 2020). We consider this line of research as an intersection between 2468

neural ranking models (§ 5) and retrieval with pre-trained transformers (§ 6). TK (Hofstätter et al., 2469

2020c) uses a shallow transformer neural network (up to 3 layers) to encode the query Q and document D 2470

separately. After encoding, the contextualized representations are input to one single interaction match 2471

matrix, similar to model architecture shown in Fig. 2b. The entire model is trained end-to-end and is able 2472

to achieve better performance-efficiency trade-off compared to BERT-based reranker (Nogueira et al., 2473

2019). The main bottleneck of applying transformer architectures to long document reranking is O(n2) 2474

time complexity, where n denotes the document length. TKL (Hofstätter et al., 2020b) further improves 2475

upon TK with a local attention mechanism and leads to performance improvement on long document 2476

ranking. 2477
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D Supplement Materials on Pre-trained Language Models for Information Retrieval2478

We show a list of models and their corresponding architectures in Table 3, including reranking models,2479

learned dense retrieval, multi-vector representations and learned sparse retrieval. A majority of the2480

models use BERT (Devlin et al., 2019) as the backbone language models, with a few exceptions using2481

DISTILBERT (Sanh, 2019), ROBERTA (Liu, 2019) and encoder part of T5 family models (Raffel et al.,2482

2020; Sanh et al., 2022; Mo et al., 2023; Chung et al., 2024).2483

One line of work aims to combine the benefits of learned dense retrieval and sparse retrieval. (Gao2484

et al., 2021b,a; Ma et al., 2021; Lin and Ma, 2021; Cormack et al., 2009). Ranklist fusion techniques (e.g.,2485

Reciprocal Rank Fusion, Cormack et al., 2009) directs fuses ranklists from different retrievers and has2486

been shown to improve retrieval performance. COIL (Gao et al., 2021a) proposes to enhance traditional2487

bag-of-words retrieval method with semantic embeddings from BERT encoder. UNICOIL (Lin and Ma,2488

2021) further simplifies reduces the dimension of semantic embeddings to 1 — equivalent to learned term2489

weight in learned sparse retrieval models like SPLADE (Formal et al., 2021b,a).2490

A few works fall into the intersection of learned sparse retrieval and multi-vector representations.2491

For example, SLIM (Li et al., 2023c) first maps each contextualized token vector to a sparse, high-2492

dimensional lexical space before performing late interaction between these sparse token embeddings.2493

SPLATE (Formal et al., 2024) take an alternative approach to first encodes contextualized token vectors,2494

then maps these token vectors to a sparse vocabulary space with a partially learned SPLADE module.2495

Both models achieve performance improvement compared to learned sparse retrieval baselines such as2496

SPLADE (Formal et al., 2021b,a).2497

Instead of improving retrieval performance from the modeling perspective, a separate line of works2498

aim to enhance the backbone language models via domain adaptation or continued pre-training, which2499

has been proven successful by prior works in NLP (Howard and Ruder, 2018; Gururangan et al., 2020).2500

Lee et al. (2019) propose to pre-train BERT model with Inverse-Cloze Task (Taylor, 1953) for better text2501

representations. CONDENSER (Gao and Callan, 2021) propose to “condense” text representations into2502

[CLS] token via a dedicated pre-training architecture and corresponding training objective. COCO-DR2503

further extends upon CONDENSER via a technique named implicit Distributionally Robust Optimization2504

to mitigate distribution shift problem in dense retrieval. We refer readers to original papers for details.2505

As we noted in § 9, one desiderata of future IR models is interpretability and truthfulness. A few works2506

have attempted to interpret transformer-based neural retrieval models’ representations, i.e., mechanistic2507

interpretability (Elhage et al., 2021; Saphra and Wiegreffe, 2024). For example, MacAvaney et al. (2022)2508

showed that neural retrieval models rely less on exact match signals and instead encodes rich semantic2509

information. Ram et al. (2023) project dense retrievers’ intermediate representations to vocabulary space2510

and show the connection of dense retrieval and traditional bag-of-words sparse retrieval methods. Instead2511

of providing model-intrinsic explanations, a few works design IR systems to provide model-agnostic2512

explanations (Rahimi et al., 2021; Yu et al., 2022; Xu et al., 2024b) in order to meet certain desiderata2513

such as faithfulness (Jacovi and Goldberg, 2020; Xu et al., 2023). As IR systems become an integral part2514

of other applied ML domains, we believe it is important to study and design interpretable, truthful and2515

trustworthiness IR models.2516

E Supplement Materials on LLM for IR2517

We summarize a list of works that study LLM for retrieval (Table 4) and reranking (Table 5). For generative2518

retrieval, we point to a dedicated survey (Li et al., 2025c). Another comprehensive survey (Mo et al.,2519

2024b) could be referred to for conversational information retrieval. Modern IR systems require extensive2520

labeled data to achieve good performance. One line of work studies the proposal of using LLMs for2521

synthesizing training data (Bonifacio et al., 2022; Boytsov et al., 2024; Dai et al., 2023; Lee et al., 2024;2522

Mo et al., 2024a,c). From the evaluation perspective, LLMs’ superior natural language understanding2523

capability also raise the question of whether they can be used for relevance judgments. A separate line of2524

work tackle the relevance judgments problem (Faggioli et al., 2023, 2024; Clarke and Dietz, 2024). As2525

our focus of this survey is on model architectures, we skip the discussion and point to original papers for2526

further details.2527
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Name Model Architecture Backbone LM Training strategy

MONOBERT (Nogueira et al., 2019) Reranking Cross-encoder BERT Classification
CEDR (MacAvaney et al., 2019) Reranking Cross-encoder BERT Contrastive Learning
BERT-MAXP (Dai and Callan, 2019b) Reranking Cross-encoder BERT Pairwise Loss
Gao et al. (2020) Reranking Cross-encoder BERT Distillation
TART-FULL (Asai et al., 2023) Reranking Cross-encoder FLAN-T5-ENC Instruction Tuning
DPR (Karpukhin et al., 2020) LDR Bi-encoder BERT Contrastive Learning
ANCE (Xiong et al., 2020) LDR Bi-encoder ROBERTA Contrastive Learning
REPBERT (Zhan et al., 2020) LDR Bi-encoder BERT In-batch negatives
MARGIN-MSE (Hofstätter et al., 2020a) LDR Bi-encoder DISTILBERT Distillation
TAS-B (Hofstätter et al., 2021) LDR Bi-encoder BERT Distillation
ROCKETQA (Qu et al., 2020) LDR Bi-encoder ERNIE Contrastive Learning
ROCKETQA-V2 (Ren et al., 2021) LDR Bi-encoder ERNIE Distillation
GTR (Ni et al., 2022b) LDR Bi-encoder ENCT5 Contrastive Learning
TART-DUAL (Asai et al., 2023) LDR Bi-encoder CONTRIEVER Instruction Tuning
E5 (Wang et al., 2022a) LDR Bi-encoder BERT Contrastive Learning
GTE (Li et al., 2023e) LDR Bi-encoder BERT Contrastive Learning
POLY-ENCODER (Humeau et al., 2020) Multi-vector Misc BERT In-batch Negatives
ME-BERT (Luan et al., 2021) Multi-vector Bi-encoder BERT Contrastive Learning
COLBERT (Khattab and Zaharia, 2020) Multi-vector Bi-encoder BERT Pairwise Loss
COIL (Gao et al., 2021a) Multi-vector Bi-encoder BERT Contrastive Learning
COLBERT-V2 (Santhanam et al., 2022) Multi-vector Bi-encoder BERT Distillation
COLBERTER (Hofstätter et al., 2022) Multi-vector Bi-encoder BERT Distillation
DEEPCT (Dai and Callan, 2019a) LSR Bi-encoder BERT Unsupervised
SPARTERM (Bai et al., 2020) LSR Bi-encoder BERT Contrastive Learning
SPLADE (Formal et al., 2021b) LSR Bi-encoder BERT Contrastive Learning
SPLADE-V2 (Formal et al., 2021a) LSR Bi-encoder BERT Distillation
DEEPIMPACT (Mallia et al., 2021) LSR Bi-encoder BERT Contrastive Learning
SPARSEEMBED (Kong et al., 2023) LSR Bi-encoder BERT Contrastive Learning
SLIM (Li et al., 2023c) LSR + Multi-vector Bi-encoder BERT Contrastive Learning
SLIM++ (Li et al., 2023c) LSR + Multi-vector Bi-encoder BERT Distillation
SPLATE (Formal et al., 2024) LSR + Multi-vector Bi-encoder BERT Distillation

Table 3: Summary of IR model architecture for passage retrieval and passage ranking based on pre-trained
transformers. LDR and LSR denote learned dense retrieval and learned sparse retrieval, respectively. DEEPCT (Dai
and Callan, 2019a) is trained without labeled training set. The "late interaction" mechanism introduced in (Khattab
and Zaharia, 2020; Santhanam et al., 2022) can be considered a special case of multi-vector architecture. Contrastive
Learning and in-batch negatives means listwise loss function is used.

Name Architecture Backbone LM Training strategy

CPT-TEXT (Neelakantan et al., 2022) LLM Encoder GPT-3 Listwise Loss
SGPT-BE (Muennighoff, 2022) LLM Encoder GPT-J & GPT-NEOX Listwise Loss
GTR (Ni et al., 2022b) LLM Encoder T5 Listwise Loss
REPLLAMA (Ma et al., 2024b) LLM Encoder LLAMA Listwise Loss
E5-MISTRAL (Wang et al., 2023) LLM Encoder MISTRAL Synthetic Data + Listwise Loss
LLARA (Li et al., 2023a) LLM Encoder LLAMA Adaptation + Contrastive Training
MAMBARETRIEVER (Zhang et al., 2024b) LLM Encoder MAMBA Listwise Loss
LLM2VEC (BehnamGhader et al., 2024) LLM Encoder LLAMA & MISTRAL Adaptation + Contrastive Pre-training
GRIT-LM (Muennighoff et al., 2025) LLM MISTRAL & MIXTRAL 8X7B Generative/Embedding Joint Training
NVEMBED (Lee et al., 2025) LLM Encoder MISTRAL Adaptation + Synthetic Data + Listwise Loss
GTE-QWEN2-INSTRUCT (Li et al., 2023e) LLM Encoder QWEN Adaptation + Synthetic Data + Listwise Loss

Table 4: Summary of IR model architecture utilizing large language models as retrieval backbone.

F Extended Discussions on Challenges and New Directions 2528

F.1 Autonomous Search Agents 2529

We discuss recent progress on developing autonomous agents for search and information seeking purposes. 2530

While these works do not focus on improving IR models per se, we believe it is important for IR 2531

researchers to adapt to these new use cases of search/retrieval. 2532

Prior works have studied methods to augment language models with search/retrieval to improve 2533

generation quality, which we term as retrieval-augmented generation. Early practices include KNN- 2534
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Name Architecture Backbone LM Training / Prompting Strategy

Fine-tune LLM for Reranking
MONOT5 (Nogueira et al., 2020) LM T5 Classification
Nogueira dos Santos et al. (2020) LM BART Unlikelihood
QLM-T5 (Zhuang et al., 2021) LM T5 Language Modeling
DUOT5 (Pradeep et al., 2021) LM T5 Pairwise Loss
RANKT5 (Zhuang et al., 2023a) LLM Encoder + Prediction Layer T5 Listwise Loss
LISTT5 (Yoon et al., 2024) Fusion-in-decoder T5 Listwise Loss
SGPT-CE (Muennighoff, 2022) LM GPT-J & GPT-NEO Listwise Loss
RANKLLAMA (Ma et al., 2024b) LLM Encoder + Prediction Layer LLAMA Listwise Loss
RANKMAMBA (Xu, 2024) LLM Encoder + Prediction Layer MAMBA Listwise Loss
RANKVICUNA (Pradeep et al., 2023b) LM VICUNA Listwise
RANKZEPHYR (Pradeep et al., 2023c) LM ZEPHYR Listwise
Zhang et al. (2023b) LM CODE-LLAMA-INSTRUCT Listwise
Liu et al. (2024b) Embedding + LM MISTRAL Listwise
Prompt LLM for Reranking
Zhuang et al. (2023b) LM Multiple Pointwise Prompting
Zhuang et al. (2024a) LM FLAN-PALM-S Pointwise Prompting
UPR (Sachan et al., 2022) LM T5 & GPT-NEO Pointwise Prompting
PRP (Qin et al., 2024a) LM FLAN-UL2 Pairwise Prompting
Yan et al. (2024) LM FLAN-UL2 Pairwise Prompting
Zhuang et al. (2024b) LM FLAN-T5 Pairwise & Setwise Prompting
LRL (Ma et al., 2023) LM GPT-3 Listwise Prompting
RANKGPT-3.5 (Sun et al., 2023) LM GPT-3.5 Listwise Prompting
RANKGPT-4 (Sun et al., 2023) LM GPT-4 Listwise Prompting

Table 5: Summary of IR model architecture utilizing large language models for reranking. Nogueira dos Santos
et al. (2020) and Zhuang et al. (2021) revisit the statistic language model problem with modern transformer-based
models, including BART (Lewis et al., 2020a) T5 (Raffel et al., 2020) and GPT-2 (Radford et al., 2019).

LM (Khandelwal et al., 2020b), REALM (Guu et al., 2020), RAG (Lewis et al., 2020b), inter alia. With2535

more powerful models such as ChatGPT (OpenAI, 2022), researchers begin to design systems to handle2536

daily tasks autonomously with LLM backbones. We refer to such systems as LLM-based agents (Wang2537

et al., 2024b; Guo et al., 2024). WEBGPT (Nakano et al., 2021) leverages reinforcement learning to train2538

GPT-3-based language models for web browsing, which is one of the earliest works along this direction.2539

Due to the instrumental role of retrieval in tasks solving, popular agent frameworks (Wu et al., 2023; Li2540

et al., 2023b) have supported built-in retrieval functionality (commonly referred to as agentic memory in2541

agent literature). Most of existing general purpose agent frameworks treat retrieval as one of the available2542

tools, and use LLMs to plan and orchestrate workflows accordingly for task completion, with techniques2543

such as self-refine (Madaan et al., 2023), reflexion (Shinn et al., 2023) and critique (Gou et al., 2023).2544

Earlier works by the IR and NLP community – such as FLARE (Jiang et al., 2023) and SELF-2545

RAG (Asai et al., 2024a) – have proposed methods to build autonomous search systems, i.e., to enable the2546

system to know when, where and how to search. FLARE (Jiang et al., 2023) explored using prompting2547

method while SELF-RAG (Asai et al., 2024a) focuses on data synthesis and supervised fine-tuning.2548

Popularized by large reasoning models such as GPT-4O (Hurst et al., 2024) and DEEPSEEK-R1 (Guo2549

et al., 2025), there is a surge of recent works aiming to incorporate retrieval to augment LLM reasoning,2550

or to train large reasoning models to use search tool for better performance with reinforcement learning2551

techniques (Li et al., 2025a; Jin et al., 2025; Li et al., 2025b; Chen et al., 2025; Zheng et al., 2025; Guan2552

et al., 2025; Song et al., 2025; Wu et al., 2025; Hu et al., 2025; Wang et al., 2025; Gao et al., 2025). As2553

these works mainly focus on optimizing the generator component of RAG systems, we refer the readers to2554

these individual works for further details.2555

Existing agentic RAG methods, including single agent RAG systems or multi-agent systems (Nachi-2556

movsky et al., 2025; Chang et al., 2024; Weaviate, 2024) treat retriever as a static component of the2557

system, and focus on improving the generator via prompting or model optimization. While these methods2558

do not directly propose new IR modeling or training strategies, we believe it is critical for IR researchers2559

to contextualize common agentic use cases and propose new IR model architectures better suited for these2560

application scenarios.2561
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F.2 Deployment of Modern IR Systems 2562

Efficiency and Effectiveness Tradeoff Traditional retrieval systems face significant challenges when 2563

scaling to web-scale document corpus, and to deploy such systems requires a blend of science and 2564

engineering expertises (Dean et al., 2009; Huang et al., 2020; Li et al., 2021). In recent years, retrieval- 2565

augmented generation, conversational search and agentic systems with memory have been widely adopted 2566

for information access (Guu et al., 2020; Lewis et al., 2020b; Google, 2019; OpenAI, 2024; Google, 2024, 2567

inter alia). These applications often require multiple rounds of retrieval and dynamic corpus, urging for 2568

efficient and effective retrieval. Mainstream inference optimization frameworks such as vLLM (Kwon 2569

et al., 2023) and SGLang (Zheng et al., 2024) have provided support for embedding models. From the 2570

modeling perspective, an open question is to design and pre-train models for retrieval purposes (Warner 2571

et al., 2024; Nussbaum et al., 2025; Günther et al., 2023). 2572

Robustness in Noisy Environment We discuss a few challenges in IR models’ deployment in noisy 2573

environment, especially when used in retrieval-augmented generation systems. We should note that while 2574

these challenges have been studied by prior works, it remains an open question on how to mitigate these 2575

challenges from the perspective of IR modeling and architectures. 2576

• Robustness to AI generated content. With the advent of LLMs, the amount of AI-generated content 2577

is also increasing. Dai et al. (2024) show that neural retrievers are biased towards AI-generated 2578

documents. Xu et al. (2024a) show that similar problems persist in text-image retrieval models. 2579

Future IR modeling research should also consider the robustness of models to AI-generated content. 2580

• Robustness to adversarial attacks. Recent works on RAG LLM safety have discussed the threat 2581

of corpus poisoning where injected harmful documents lead to unsafe outputs (Zhong et al., 2023; 2582

Xiang et al., 2024a; Deng et al., 2024, inter alia). This topic is also relevant to the safety of LLM 2583

agents using tools (Deng et al., 2025; Tian et al., 2023; Xiang et al., 2024b), noting the importance 2584

of IR models being robust to adversarial attacks for downstream applications. 2585

• Robustness to bias and toxicity. As noted by a recent work (An et al., 2025), documents that contains 2586

biases and toxic materials can potentially jailbreak aligned LLMs. This observation highlights the 2587

importance for IR models to be robust to bias and toxic contents. 2588

• Robustness to imperfect retrieval results. Different works have pointed out that existing RAG 2589

systems show performance degradation when the retrieval results contain irrelevant documents (Yoran 2590

et al., 2024; Chang et al., 2024; Yu et al., 2024c, inter alia). Therefore, the RAG paradigm demands 2591

more precise results from the retrieval models. 2592

• Robustness to out-of-distribution input. Given the fact that modern neural retrieval models are 2593

trained with data-driven approaches, perhaps it is not surprising to find their performance may vary 2594

with different linguistic properties of the queries and documents, i.e., out-of-distribution input from 2595

the training data. Cao et al. (2025) conduct a rigorous benchmarking, and find formality, readability, 2596

politeness and grammatical correctness – fundamental aspects of real-world user-LLM queries – can 2597

lead to significant performance variances of retrievers and RAG systems. This observation highlights 2598

the importance of retrieval models’ robustness to OOD input (Gupta et al., 2024). 2599

We refer readers for more detailed discussions on IR models’ robustness to dedicated surveys (Asai et al., 2600

2024b; Liu et al., 2025; Zhou et al., 2024). 2601
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