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GraphCLIP: Enhancing Transferability in Graph Foundation
Models for Text-Attributed Graphs

Anonymous Author(s)
Abstract
Recently, research on Text-Attributed Graphs (TAGs) has gained
significant attention due to the prevalence of free-text node features
in real-world applications and the advancements in Large Language
Models (LLMs) that bolster TAG methodologies. However, current
TAG approaches face two primary challenges: (i) Heavy reliance
on label information and (ii) Limited cross-domain zero/few-shot
transferability. These issues constrain the scaling of both data and
model size, owing to high labor costs and scaling laws, compli-
cating the development of graph foundation models with strong
transferability. In this work, we propose the GraphCLIP framework
to address these challenges by learning graph foundation models
with strong cross-domain zero/few-shot transferability through a
self-supervised contrastive graph-summary pretraining method.
Specifically, we generate and curate large-scale graph-summary
pair data with the assistance of LLMs, and introduce a novel graph-
summary pretraining method, combined with invariant learning,
to enhance graph foundation models with strong cross-domain
zero-shot transferability. For few-shot learning, we propose a novel
graph prompt tuning technique aligned with our pretraining objec-
tive to mitigate catastrophic forgetting and minimize learning costs.
Extensive experiments show the superiority of GraphCLIP in both
zero-shot and few-shot settings, while evaluations across various
downstream tasks confirm the versatility of GraphCLIP. Our code
is available at: https://anonymous.4open.science/r/GraphCLIP

1 Introduction
Text-Attributed Graphs (TAGs) have gained significant attention
recently [5, 9, 14, 30, 43, 63, 68, 79] due to the free-text node feature
space prevalent in various domains such as social, e-commerce, and
citation networks [6, 26, 58]. TAGs offer two natural advantages
for graph learning research: (i) all node features can be aligned
into within the same text space, enabling the model to transfer
effectively across different graphs, and (ii) powerful off-the-shelf
tools can be readily leveraged to address challenges within TAGs,
e.g., Large Language Models (LLMs) can be used for enriching the
textual representations of TAGs.
Existing TAG methods with LLMs. Significant efforts are un-
derway to combine TAGs with LLMs, aiming to develop Graph
Foundation Models (GFMs) [4, 21, 30, 31, 33, 53], a promising ap-
proach that enables the transfer of knowledge from source data to
tackle various downstream tasks on target data through a unified
backbone. Existing methods can be categorized into three main
types [21, 30]: LLM as Enhancer, LLM as Predictor, and LLM as
Aligner, as illustrated in Figure 1.

LLM as Enhancer involves leveraging language models to aug-
ment raw text, yielding refined, high-quality outputs, or to encode
node features, surpassing previous shallow embedding methods
like Bag of Words (BoW). For instance, OFA [33] and ZeroG [31]

(a) LLM as Enhancer

LLM

GNN Graph 

Language
“Text”

or

Prediction

GNN LLM

GNN

LLM

Prediction

Prediction Prediction

(c) LLM as Predictor(b) LLM as Aligner

Figure 1: Three main categories of TAG methods.

utilize language models as node feature extractors, employing la-
beled source data to pretrain a graph model, which is then applied
to target data using complicated graph prompt techniques. These
methods depend heavily on high-quality labeled data, potentially
limiting the full potential of graph foundation models due to scaling
laws [15, 22]. The challenge arises from the difficulty of scaling up
the pretraining corpus, primarily due to the associated high labor
costs. In the paradigm of LLM as Predictor, the most essential task
is to map graph data to a format that LLMs can comprehend. For
example, GraphGPT [53] and LLaGA [4] utilize GNNs to encode
graph data into graph tokens, training an additional projector to
map these tokens into the text space through instruction tuning.
However, these methods also require high-quality labels for target
data, and recent studies [5, 32] have shown they exhibit poor cross-
domain zero-shot performance. LLM as Aligner involves mapping
graph and text modalities into a shared embedding space. For ex-
ample, ConGrat [3] and G2P2 [64] apply self-supervised graph-text
contrastive pretraining and focus on transferring pretrained models
within the same graph, neglecting the cross-domain or cross-graph
transferability of these models.
Challenges for current TAG methods. As summarized, current
methodologies encounter two primary challenges:

(i) Heavy reliance on label information: Most current approaches
such as ZeroG [31], OFA [33], LLaGA [4], and others [14, 53, 63, 79]
require label information from source data as training signals, lead-
ing to significant labor costs. This constraint prevents GFMs from
leveraging extensive unlabeled training corpora, thereby restricting
the scaling of both data and model sizes in accordance with scaling
laws [15].

(ii) Limited cross-domain zero/few-shot transferability: A well-
pretrained GFM should be applicable directly to target data, achiev-
ing satisfactory performance without any parameter adjustments,
i.e., strong cross-domain/dataset zero-shot capability, like CLIP [44]
in multi-modal domain and LLMs in NLP domain. However, most
existing methods struggle with direct deployment in zero-shot set-
tings on target data. They either cannot perform zero-shot learning
because they require the training of a classification head using
labeled target data to generate predictions [14, 72, 79], or they

1
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demonstrate inadequate zero-shot performance due to insufficient
transferable knowledge acquired during pretraining [4, 33]. Ad-
ditionally, in low-resource scenarios like few-shot learning, effec-
tively leveraging limited training samples from target data while
circumventing catastrophic forgetting poses a significant challenge.
Our proposed GraphCLIP framework. We develop GraphCLIP
to address the challenges above, which learns graph foundation
models with robust cross-domain zero-shot transferability from a
novel self-supervised contrastive graph-summary pretraining tech-
nique. Specifically, we leverage the open LLM, QWen2-72B [69],
to generate graph-related summary texts of subgraphs, capitaliz-
ing on their powerful summarization abilities. Utilizing generated
large-scale graph-summary pairs, we train a cross-domain graph
foundation model through designed self-supervised contrastive
graph-summary pretraining (addressing Challenge (i)). Considering
the necessity of out-of-domain generalization across graphs, we
introduce invariant learning during pretraining to capture invariant
features, thereby enhancing out-of-domain generalization. After
pretraining, GraphCLIP can be applied directly to target data with-
out fine-tuning, demonstrating strong zero-shot capability on both
in-domain and cross-domain graph data. For few-shot scenarios,
we propose a novel graph prompt tuning approach aligned with our
pretraining objective, reducing catastrophic forgetting [49] andmin-
imizing learning costs [36, 50], ensuring excellent performance in
few-shot settings (addressing Challenge (ii)). Extensive experiments
show that GraphCLIP exhibits strong zero-shot performance across
various in-domain and cross-domain target datasets. In few-shot
settings, GraphCLIP with our designed prompt tuning outperforms
previous state-of-the-art methods. Additionally, the universality
of our method is demonstrated through evaluation across various
downstream tasks.

Our contributions can be concluded as:

• We generate and curate a large-scale graph-summary pair
dataset which contains over 0.2B tokens with the assistance
of LLMs, establishing a valuable training corpus for the
TAGs domain and advancing the field’s development.

• We propose GraphCLIP, a novel graph-summary pretrain-
ing method combined with invariant learning that empow-
ers cross-domain graph foundation models with strong
zero-shot capability.

• We introduce a novel graph prompt tuning technique
aligned with our pretraining objectives for few-shot set-
tings, mitigating catastrophic forgetting and minimizing
learning costs.

• Through extensive experiments, GraphCLIP demonstrates
impressive performance in both zero-shot and few-shot
scenarios. Furthermore, various downstream tasks are eval-
uated to validate the universality of GraphCLIP.

2 Preliminaries
2.1 Notations
In this work, we focus on Text-Attributed Graphs, which incor-
porate raw text information for each node. Formally, given a text-
attributed graph 𝐺 = {V, {𝑇𝑛}𝑁𝑛=1, 𝐴}, whereV denotes the node
set with |V| = 𝑁 instances, 𝑇𝑛 ∈ T𝐿𝑛 represents the raw text

for node 𝑛 ∈ [1, 2 . . . , 𝑁 ], T is the token dictionary, and 𝐿𝑛 is the
sequence length, 𝐴 ∈ R𝑁×𝑁 denotes the adjacency matrix. To
enhance scalability, a sampling function Γ(·) is applied to a large
graph to derive a set of small ego-graphs I = {𝐺𝑛}𝑁𝑛=1, where 𝐺𝑛

represents the subgraph centered on node 𝑛 ∈ [1, 2 . . . , 𝑁 ].

2.2 Problem Definition
To develop a graph foundation model, extensive source graph data
Gs can be utilized to train a general graph model endowed with
transferable knowledge:

𝑓𝜃★ = argmin E
𝐺 s
𝑖
∈Is

Lpretext
(
𝑓𝜃 ;𝐺s

𝑖

)
, (1)

where Is represents the set of sampled subgraphs derived from
the source data, 𝑓𝜃 means graph neural networks like GCN [27],
GAT [56] and Graph Transformer [45, 70], Lpretext denotes pre-
text task like instance discrimination [12]. The optimal pretrained
model 𝑓𝜃★ can then be applied to low-resource target graph data
Gt to perform downstream tasks such as node classification, link
prediction, and graph classification.

In this work, we focus on low-resource settings, including zero-
shot and few-shot scenarios, which are critical capabilities for GFMs.
For the zero-shot setting, the pretrained GFM can be directly de-
ployed on target data without any adjustment:

𝑝𝑛 = argmax
𝑛

𝑃𝜃★ (𝑦𝑛 | 𝐺 t
𝑛), ∀𝐺 t

𝑛 ∈ It (2)

where 𝑃𝜃★ is the pretrained GFM, the prediction for the 𝑛-th in-
stance is the class with the highest probability. It represents the
set of sampled subgraphs derived from the target data.

For the few-shot setting, a limited number of training samples
for each class are used for fine-tuning:

𝑓𝜃 ′ ∈ argmax
𝜃

E𝐺 t
𝑛∈It | tr𝑃𝜃 (𝑦𝑛 = 𝑦𝑛 | 𝐺 t

𝑛), (3)

where 𝑦𝑛 is the ground truth of n-th training sample, It| tr repre-
sents the training set of sampled subgraphs derived from the target
data, 𝑓𝜃 ′ is the finetuned model which will be evaluated on test
samples of target data.

Most existing TAG methods heavily rely on label information
from source data in Equation 6, and struggle with low-resource tar-
get data, particularly in zero-shot setting. We will present solutions
to address these challenges in Section 3.

3 Method
In this section, we present our approach to addressing the aforemen-
tioned challenges. First, we introduce the technique for generating
and curating source data in Section 3.1. Based on this pretraining
corpus, we then design a novel contrastive language-graph pretrain-
ing method to develop a graph foundation model in Section 3.2.
Lastly, we outline the implementation of zero-shot learning on
target data and propose a novel graph prompt tuning method for
few-shot settings to fully leverage our model’s potential in Sec-
tion 3.3.2. A detailed complexity analysis of GraphCLIP is provided
in Appendix F.

2
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Figure 2: Our proposed GraphCLIP Framework: (a) represents the self-supervised pretraining method we designed, (b) denotes
zero-shot learning of GraphCLIP, and (c) refers to our graph prompt tuning method on target data.

3.1 Graph-Summary Pair Generation
In the TAG domain, there is abundant text describing each node,
most current TAG methods leverage this textual information along-
side structural data to pretrain graph models; however, these ap-
proaches heavily depend on label information [14, 31, 33, 63, 72, 79],
restricting scalability due to high labeling costs. Alternatively, some
approaches [3, 64] design self-supervised training signals using
original text information. Nevertheless, a substantial gap persists
between raw textual data and graph-level information, leading to
suboptimal performance and limited model transferability. These
constraints hinder the development of graph foundation models
comparable to CLIP [44] and BLIP [29] in the multimodal domain,
which successfully leverage robust self-supervised signals.

To resolve this challenge, we exploit the remarkable summa-
rization capabilities of LLMs to generate pertinent summaries for
graphs to construct graph-summary pair data. Specifically, we em-
ploy a graph XML-like markup language, such as GraphML [2],
and meticulously design prompt templates to enhance the LLMs’
comprehension of input graphs, leveraging their adeptness with
markup languages [67]. The proposed prompt template for tran-
scribing citation network into markup language is in Template 3.1.
In this template, we design two attributes for node content, title
and abstract. Additionally, we establish one attribute for describing
edge type, e.g., cited, co-purchased or liked. The blue text denotes
placeholders that will be replaced with actual data. Using this tem-
plate, we can seamlessly transform TAG into a format that LLMs
can easily comprehend [67].

Considering scalability, we employ a sampling function, random
walk with restart sampler, to sample subgraphs {𝐺𝑛}𝑁𝑛=1 from a
large graph. These subgraphs will be incorporated into our prompt
template and designed instructions to enable LLMs to generate

the corresponding graph summaries {𝑆𝑛}𝑁𝑛=1. In this study, we uti-
lize open LLM, QWen2-72B [69], as the graph summary generator.
Combining realistic unlabelled graph data, we generate and curate
large-scale graph-summary pair data1 which contains over 0.2B
tokens across academic [14, 58, 71], e-commerce [18], and social do-
mains [19]. For detailed instructions for graph summary generation,
please refer to the Appendix C.

Graph Prompt Template (Template 3.1)

<?xml version="1.0" encoding="UTF-8"?>

<graphml>

<key id="d0" for="node" attr.name="title" attr.type="string"/>

<key id="d1" for="node" attr.name="abstract" attr.type="string"/>

<key id="d2" for="edge" attr.name="type" attr.type="string"/>

<graph id="G" edgedefault="undirected">

<node id="n0">

<data key="d0">{title_0}</data>

<data key="d1">{abstract_0}</data>

</node>

...

<node id="nj">

<data key="d0">{title_j}</data>

<data key="d1">{abstract_j}</data>

</node>

<edge id="e0" source="n0" target="n2">

<data key="d2" >{relation_0}</data>

</edge>

...

<edge id="ek" source="ni" target="nj">

<data key="d2" >{relation_k}</data>

</edge>

</graph>

</graphml>

1https://anonymous.4open.science/r/GraphCLIP/summary/
3
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3.2 Self-Supervised Graph-Summary
Contrastive Pretraining

For graph-summary pair data, we employ different encoders to
process their information according to their respective modalities.
Then, a novel contrastive loss combined with invariant learning is
deployed to align these modalities into the same subsapce.

3.2.1 Graph Encoding. Considering that model scale is crucial for
the emergence and homogenization [34] of graph foundation mod-
els, we utilize Graph Transformers (GTs) [45, 66] instead of small
GNN models like GCN [27] and GAT [56] to encode graph infor-
mation. Given a subgraph 𝐺𝑖 = (𝑃𝑖 , 𝑋𝑖 , 𝐴𝑖 ), we encode the graph
information as follows:

ℎ𝑖 = P(𝑔𝜃 (𝑃𝑖 , 𝑋𝑖 , 𝐴𝑖 )), (4)

where 𝑔𝜃 denotes the Graph Transformer, such as GraphGPS [45],
𝑃𝑖 represents the positional embeddings for the subgraph, e.g.,
RWPE [7], and P is the mean pooling function that yields the
graph-level encoding ℎ𝑖 ∈ R1×𝑑 for the subgraph.

3.2.2 Summary Encoding. To encode sentence or document-level
information into a compact and semantically rich vector, we utilize
sentence-level text encoders like SBERT [46]:

𝑢𝑖 = P(𝑓𝜙 (𝑆𝑖 )) = P(LM( [CLS], 𝑠1, 𝑠2, . . . , 𝑠𝐿)) (5)

where 𝑆𝑖 is the summary text for subgraph𝐺𝑖 , and 𝑠1, 𝑠2, . . . , 𝑠𝐿 are
the tokens of the summary text. where 𝑆𝑖 = [CLS, 𝑠1, 𝑠2, . . . , 𝑠𝐿] is
the summary text of subgraph𝐺𝑖 , which is pre-generated by LLMs
as described in Section 3.1. We use a mean pooling function P to
average token representations as the summary encoding 𝑢𝑖 , which
captures high-level document-level information. In subsequent sec-
tions, P will be omitted for clarity.

3.2.3 Contrastive Graph-Summary Pretraining. After obtaining the
graph and summary encodings 𝐻,𝑈 ∈ R𝑁×𝑑 , we employ con-
trastive loss [41] to align the two modalities. Unlike previous multi-
modal pretraining methods such as CLIP, different graphs can vary
significantly across domains, making it essential to capture trans-
ferable or causal features in the graph domain. To achieve this goal,
we introduce invariant learning [1, 75] efficiently to extract causal
features rather than spurious ones. Below we first revisit the con-
cepts of contrastive loss [41] and invariant learning [1]. Then we
formulate how they can be combined to solve the challenges of
graph foundation models.

Definition 1 (Contrastive Loss [41]). The contrastive loss
function is applied to representations, pulling together the positive
pairs while pushing apart negative pairs:

LCL

(
𝑔𝜃 , 𝑓𝜙 ;P,Q𝐺 ,Q𝑆 , 𝜋

)
=

E
𝐺,𝑆∼P

E𝜏𝛼 ,𝜏𝛽∼𝜋2




𝑔𝜃 (𝜏𝛼 (𝐺)) − 𝑓𝜙

(
𝜏𝛽 (𝑆)

)


2
− E

𝑆∼Q𝑆

log E
𝐺 ′∼Q𝐺

E𝜏 ′∼𝜋
[
𝑒 ∥ 𝑓𝜙 (𝜏𝛽 (𝑆 ))−𝑔𝜃 (𝜏

′ (𝐺 ′ ) )∥2
]
,

(6)

where 𝐺, 𝑆 ∼ P represent positive pairs sampled from the joint dis-
tribution of graphs and summaries, while Q𝐺 and Q𝑆 denote the
marginal distributions of graphs and summaries, respectively. 𝜏 refers

to the set of data transformations (augmentations) used to gener-
ate augmented views. The second line in Equation 6 is termed the
alignment loss, and the third line is termed the uniformity loss [60].

However, this loss is not robust to distribution shifts [74, 78]
because the expectation operator over different data transformation
in the alignment loss can not guarantee the invariant features,
resulting poor transferability. Refer to Appendix A for detailed
derivation. In order to solve this dilemma, wewill combine invariant
learning into our method.

Definition 2 (Invariant learning [1]). If a classifier 𝑐𝜔∗ is
considered simultaneously optimal for all domains in H , then a data
representation 𝑔𝜃 can elicit an invariant predictor 𝑐𝜔∗ ◦ 𝑔𝜃 across the
domain set H :

𝑐𝜔∗ ∈ argmin
𝑐𝜔

R(𝑐𝜔 ◦ 𝑔𝜃 ;G) for all G ∈ H , (7)

where R denotes the risk associated with the predictor 𝑐𝜔 ◦ 𝑔𝜃 evalu-
ated on the domain G.

However, this method heavily relies on environment and down-
stream labels [1], which is not compatible with our self-supervised
contrastive loss. To address this issue, we combine the merits of in-
variant learning and vanilla contrastive loss to obtain a shift-robust
contrastive loss, thereby enhancing transferability and generaliza-
tion across diverse graphs. The core component of our shift-robust
contrastive loss is the invariant alignment loss:

Definition 3 (Invariant Alignment Loss [78]). The invari-
ant alignment loss LIAL of the encoders 𝑔𝜃 and 𝑓𝜙 over the joint
distribution P of graphs and summaries is defined as follows:

LIAL (𝑔𝜃 ;G) := E
𝐺,𝑆∈P

sup
𝜏,𝜏 ′∼𝜋



𝑔𝜃 (𝜏 (𝐺)) − 𝑓𝜙
(
𝜏 ′ (𝑆)

)

2 . (8)

The supreme operator quantifies the disparity between two repre-
sentations under the most “challenging” augmentations, as opposed
to the trivial expectation delineated in Equation 6. This method-
ology enables the invariant alignment loss to generate consistent
linear optimal predictors across disparate domains, thus facilitating
enhanced out-of-distribution (OOD) generalization and transferabil-
ity that are deficient in the original alignment loss. Further analysis
and theoretical justifications are provided in the Appendix B.

A significant concern regarding the substitution of alignment
loss LAL with LIAL lies in the impracticality of estimating
sup𝜏,𝜏 ′∼𝜏 ∥𝑔(𝜏 (𝐺)) − 𝑓 (𝜏 ′ (𝑆))∥2, as this requires iterating through
all augmentation spaces. To efficiently identify the worst-case
scenario in the continuous space, we employ adversarial train-
ing [25, 28, 48, 52, 77, 78] to approximate the supremum operator:

min
𝜃

E(𝐺,𝑆 )∼P

[
max

∥𝛿 ∥𝑝≤𝜖
LCL

(
𝑔𝜃 (𝑋 + 𝛿,𝐴, 𝑃), 𝑓𝜙 (𝑆)

)]
. (9)

where the inner loop optimizes the loss to approximate the most
challenging perturbation 𝛿 , whose magnitude ∥𝛿 ∥ ≤ 𝜖 is meticu-
lously regulated to ensure that it does not alter the semantic labels
of the original view, e.g., 𝜖 = 1 × 10−2. Here, we only add pertur-
bation on graph encoding, because we freeze the text encoder to
mitigate catastrophic forgetting and avoid overfitting [40, 49, 80].
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3.3 Model Adaptation on Target Data
In this section, we introduce the techniques employed to adapt
models to target datasets. First, we illustrate the adaptation of
GraphCLIP on target data for zero-shot learning. Then, we propose
a novel graph prompt tuning method for few-shot learning.

3.3.1 Zero-shot Learning. Upon pretraining with Equation 9, our
model can be directly deployed on target datasets without any
additional training, i.e., enabling zero-shot inference as depicted in
Figure 2b. We meticulously craft the prompt to incorporate target
label information. For example, in the context of a citation network,
the sentence associated with label information is formulated as
“This paper belongs to {class}”. The specific templates are detailed
in the Appendix C. Formally, the formulation of zero-shot learning
is as follows:

𝑦𝑖 = argmax
𝑘

E𝑢𝑘 sim(ℎ𝑖 , 𝑢𝑘 ), (10)

where sim denotes the cosine similarity function, we identify the
most similar label sentence as the predicted label for node 𝑖 .

3.3.2 Graph Prompt Tuning under Few-shot Setting. In low-
resource scenarios, where only a few samples exist for each class
of target data, effectively utilizing this data while preventing over-
fitting and catastrophic forgetting [40, 49, 80] becomes crucial. In
this work, we introduce a novel graph prompt tuning approach to
address this challenge.

Specifically, during the graph prompt tuning process, both the
text and graph models remain frozen, allowing only a limited set
of parameters to be learnable. To align with our pretraining ob-
jective, we incorporate a learnable prompt feature that resemble
perturbations used during pretraining, and we employ supervised
contrastive loss [24]. The total loss of our designed graph prompt
tuning is as follows:

min
𝜎

E(𝐺,𝑍 )∼Ptar
[
LSCL

(
𝑔𝜃 ∗ (𝑋 + 𝜎,𝐴, 𝑃), 𝑓𝜙∗ (𝑍 )

)]
, (11)

where 𝑔𝜃 ∗ and 𝑓𝜙∗ denote the frozen graph and text models, respec-
tively, 𝑍 represents the label-related sentence, and Ptar signifies
the distribution of labeled target data. LSCL is the supervised con-
trastive loss [65], which considers pairs with the same labels as
positive and those with different labels as negative. After the graph
prompt tuning, the evaluation on the target testing data proceeds
in the same manner as outlined in Equation 10.

4 Experiments
In this section, we first introduce the datasets used in Section 4.1
and the baselines in Section 4.2. We then aim to address the fol-
lowing research questions through our experiments: RQ1: How
good is the GraphCLIP’s in-domain and cross-domain zero-shot
transferability? RQ2: How effective is our proposed graph tuning
in few-shot scenarios?RQ3: What impact does the source data have
on cross-domain transferability? RQ4: What is the effect of hyper-
parameters on performance? RQ5: How do the main components
of our model influence performance?

4.1 Datasets
In this work, we utilize 12 open text-attributed graphs across four
diverse domains, comprising 5 large-scale TAGs for source data
during pretraining and 7 small-scale TAGs for target data evaluation.
The statistics of these datasets are detailed in Table 1. To balance
the ratio of different source data, we employ the training set of
ogbn-Products as pretraining corpus, which consists of around 200K
products. More details of these datasets can be found in Appendix D.

#Nodes #Edges Domain #C Usage
ogbn-ArXiv [58] 169,343 1,166,243 Academic 40 Gsource
ArXiv_2023 [14] 46,198 78,543 Academic 40 Gsource
PubMed [71] 19,717 44,338 Academic 3 Gsource

ogbn-Products [18] 2,449,029 61,859,140 E-commerce 47 Gsource
Reddit [19] 33,434 198,448 Social 2 Gsource

Cora [47] 2,708 5,429 Academic 7 Gtarget
CiteSeer [10] 3,186 4,277 Academic 6 Gtarget
Ele-Photo [68] 48,362 500,928 E-commerce 12 Gtarget

Ele-Computers [68] 87,229 721,081 E-commerce 10 Gtarget
Books-History [68] 41,551 358,574 E-commerce 12 Gtarget

WikiCS [38] 11,701 215,863 Wikipedia 10 Gtarget
Instagram [19] 11,339 144,010 Social 2 Gtarget

Table 1: Statistics of Text-Attributed Graph datasets. Gsource
denotes source datasets, and Gtarget indicates target datasets.

4.2 Baselines
To evaluate the effectiveness of GraphCLIP, we compare it
against 17 baselines, which include: (i) eight LLM-only meth-
ods (without modeling structural information of the graphs),
i.e., BERT [23], SBERT [46], DeBERTa [13], E5 [59], Qwen2-7B-
Insturct [69], Qwen2-72B-Insturct [69], LLaMA3.1-8B-Instruct [55],
and LLaMA3.1-Insturct-70B [55], (ii) 4 state-of-the-art TAG meth-
ods, i.e., GraphGPT [53], LLaGA [4], OFA [33], and ZeroG [31],
and (iii) 5 self-supervised graph algorithms applied to TAGs, i.e.,
DGI [57], GRACE [81], BGRL [54], GraphMAE [16] and G2P2 [64].
Specifically, to assess the zero-shot performance of discriminative
LLMs and self-supervised graph algorithms on target data, we will
use the cosine similarity between node embeddings and label em-
beddings for predictions. For generative LLM methods, we leverage
their generative capabilities to estimate their zero-shot performance.
Details of these baselines can be found in the Appendix E.

4.3 Zero-Shot Inference on Target Data (RQ1)
In order to evaluate the zero-shot transferability of our pretrained
model, we conduct experiments of node-level and link-level tasks.

4.3.1 Node Classification. In this subsection, we will perform zero-
shot node classification by directly applying pretrained models to
target datasets.

Experimental Setup. For the LLM baselines, we directly apply
them to the source data, as they have already been pretrained on
extensive corpora, and we find that continuing to pretrain them
on our source data deteriorates performance on the target data.
For GraphGPT, we utilize their released checkpoint2 and conduct
experiments under our settings. For other methods, we use their
2https://github.com/HKUDS/GraphGPT

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Gsource Methods Params Cora CiteSeer WikiCS Instagram Ele-Photo Ele-Computers Books-History
− BERT [23] 110M 19.56±0.98 33.26±2.35 29.37±0.00 57.02±0.57 21.80±0.14 13.88±0.29 9.95±0.42
− SBERT [46] 66M 54.35±1.26 50.47±0.90 48.16±0.00 48.34±1.23 35.96±0.44 41.82±0.22 30.45±0.19
− DeBERTa [13] 184M 16.42±1.26 16.42±1.26 15.29±0.00 39.81±0.58 12.38±0.26 10.62±0.15 8.70±0.26
− E5 [59] 110M 44.65±0.82 42.57±0.54 31.49±0.00 61.28±0.97 35.14±0.28 16.54±0.14 12.92±0.48
− Qwen2 [69] 7B 61.44±1.29 53.57±0.86 30.96±0.05 39.13±0.78 45.55±0.12 59.18±0.20 23.79±0.34
− Qwen2 [69] 72B 62.18±0.98 60.97±0.87 37.67±0.10 47.70±0.31 52.41±0.39 60.88±0.30 53.56±0.64
− LLaMA3.1 [55] 8B 57.75±1.21 53.54±1.71 20.39±0.26 39.37±1.14 34.38±0.25 46.98±0.21 22.28±0.18
− LLaMA3.1 [55] 70B 65.72±1.24 62.79±1.24 37.78±0.18 43.68±0.52 51.26±0.53 61.62±0.42 53.33±0.55

𝑋,𝐴,𝑌 GraphGPT [53] 7B 23.25±1.45 18.04±1.45 6.30±0.26 45.12±1.16 7.62±0.22 29.71±0.83 15.92±0.14
𝑋,𝐴,𝑌 LLaGA [4] 7B 21.44±0.65 16.07±1.15 2.65±0.72 41.12±0.94 6.50±0.53 23.10±0.33 11.17±0.58
𝑋,𝐴,𝑌 OFA [33] 30M 37.25±1.38 29.64±0.19 45.52±1.06 32.71±0.16 33.03±0.64 22.09±0.39 16.87±0.93
𝑋,𝐴,𝑌 ZeroG [31] 66M 62.32±1.91 52.55±1.23 54.93±0.06 48.97±0.78 45.12±0.65 56.20±0.35 40.74±0.65
𝑋,𝐴 DGI [57] 128M 24.03±1.40 18.71±1.22 18.86±0.25 61.42±1.12 13.96±0.17 27.12±0.03 15.77±0.02
𝑋,𝐴 GRACE [81] 128M 13.69±1.27 22.88±1.49 16.07±0.32 62.23±0.93 10.16±0.13 10.94±0.12 32.39±0.11
𝑋,𝐴 BGRL [54] 128M 20.80±1.06 26.50±1.22 18.35±0.22 61.45±0.82 5.21±0.22 24.12±0.22 16.28±0.35
𝑋,𝐴 GraphMAE [16] 128M 23.25±1.07 20.75±0.88 12.14±0.20 62.39±0.84 12.53±0.08 8.36±0.06 21.76±0.17
𝑋,𝐴 G2P2 [64] 63M 41.51±0.78 51.02±0.62 31.92±0.15 52.87±0.78 22.21±0.12 32.52±0.13 26.18±0.25
𝑋,𝐴, 𝑆 GraphCLIP 150M 67.31±1.76 63.13±1.13 70.19±0.10 64.05±0.34 53.40±0.64 62.04±0.21 53.88±0.35

Table 2: Zero-shot inference results for node classification across various target datasets. Boldface indicates the best performance.

official codes and pretrainmodels using the source datasets specified
in Table 1 before applying them to the target datasets. For data
splitting, we use the public split for the WikiCS dataset, while for
other datasets, we randomly select 20% as testing samples. We
report the mean accuracy along with the standard deviation after
five runs with different random seeds.

Analysis. From Table 2, we can draw several conclusions. First,
generative LLMs demonstrate decent zero-shot performance, partic-
ularly LLaMA3.1-70B and Qwen2-72B, attributed to their extensive
parameters and training on vast source data. However, these models
struggle to leverage structural information, resulting in subpar
performance on certain target datasets; for instance, LLaMA3.1-70B
only achieves 37.67% and 43.68% on the WikiCS and Instagram
datasets, respectively.

Second, LLaGA and GraphGPT employ graph instruction tun-
ing to bridge this gap, but they tend to overfit to the source data,
leading to poor generalization. This is evident as GraphGPT and
LLaGA achieve only 6.3% and 2.65% accuracy on theWikiCS dataset,
significantly trailing behind other methods.

Third, OFA and ZeroG require label information for pretraining
on source data, which results in suboptimal cross-domain transfer-
ability due tomismatched label spaces and a failure to capture
causal features. For example, ZeroG only achieves 54.93% accuracy
on the WikiCS dataset.

On the contrary, our approach utilizes a self-supervised train-
ing task combined with invariant learning to enhance both cross-
domain and in-domain transferability. Notably, on the cross-domain
dataset WikiCS, our method achieves 70.19% zero-shot accuracy,
surpassing ZeroG by over 15% absolute improvement. Similarly, on
in-domain datasets like Books-History, GraphCLIP outperforms the
previous SoTA method, ZeroG, by over 10% absolute improvement.

Lastly, we observe that four self-supervised graph methods, i.e.,
DGI, GRACE, BGRL, and GraphMAE, consistently underperform

across most target datasets due to their lack of effective alignment
between graph and text modalities, thereby failing to leverage
powerful off-the-shelf text encoders. Furthermore, G2P2 em-
ploys a text encoder as an aligner; however, it relies on raw text as
input for the text modality, which lacks comprehensive graph-
level descriptions and fails to capture invariant features, thereby
limiting its transferability.

Methods Cora WikiCS History
SBERT [46] 77.76±0.54 81.55±0.09 87.02±0.07
E5 [59] 69.57±0.60 80.69±0.06 69.93±0.07

GRACE [81] 67.19±0.56 69.33±0.06 76.90±0.05
GraphMAE [16] 70.17±0.77 73.39±0.04 83.26±0.07

OFA [33] 75.36±0.89 89.03±0.09 86.47±0.10
ZeroG [31] 81.20±0.82 88.82±0.07 92.85±0.12
GraphCLIP 83.15±0.76 92.67±0.10 96.04±0.05

Table 3: Zero-shot inference for link prediction of different
methods across target datasets.

4.3.2 Link Prediction. In this subsection, we perform zero-shot
link prediction by directly applying the pretrained models to the
target datasets.

Experimental Setup. For link prediction, we report the mean AUC
score along with the standard deviation after five runs with dif-
ferent random seeds. Since generative LLM methods produce text
outputs, which complicates the extraction of logits or probabili-
ties, we exclude them from this evaluation. For the data splitting,
we randomly select 50% as testing samples and employ the same
pretrained models as discussed in the previous section.
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Figure 3: Node classification of different graph prompt tuning
techniques under few-shot setting.

Analysis. From Table 2, we observe that SBERT achieves decent
performance. ZeroG, which relies on SBERT and integrates struc-
tural information to finetune SBERT through LoRA [17], achieves
subpar performance. Notably, our approach demonstrates the best
zero-shot performance on link prediction across the evaluated tar-
get datasets, highlighting the effectiveness of our designed self-
supervised pretraining task and the versatility of our framework.

4.4 Graph Prompt Tuning (RQ2)
In low-resource scenarios, where target datasets contain only a
few training samples, effectively utilizing these samples while pre-
venting overfitting and catastrophic forgetting is crucial. In this
section, we evaluate our graph prompt tuning approach to address
this challenge.

Experimental Setup. We compare our method with several clas-
sical graph prompt tuning methods for node classification, i.e.,
GPPT [50], GraphPrompt [36], GPF [8], and All-in-One [51]. Each
of these methods is applied to our pretrained model, and we evalu-
ate their performance using 1, 3, 5, and 10 shots per class, reporting
the mean accuracy.

Analysis. From Figure 3, we observe that GPPT and Graph-
Prompt fall behind significantly in the 1-shot and 3-shot settings.
This underperformance can be attributed to the need for initializing
an additional linear head for prediction, preventing direct use of
the aligned text model for predictions. However, as the number of
shots per class increases, these methods close the performance gap,
becoming comparable with others. In contrast, GPF and All-in-One
operate directly within the input graph space and can leverage the
aligned text model. However, discrepancies between their training
objectives and our pretraining objective sometimes result in nega-
tive transfer. For instance, in the 1-shot setting, GPF and All-in-One
attain accuracy scores of 69.82% and 69.42%, respectively, which
are lower than 0-shot performance, i.e., 70.19%.

Our proposed prompt tuning method outperforms the other ap-
proaches due to its unified training objectives, effectively mitigating
catastrophic forgetting while minimizing the learning cost, leading
to superior results.

4.5 Explorations on Source Datasets (RQ3)
In this section, we explore the selection of source data for both cross-
domain and in-domain transferability. We mask different source

Figure 4: Analyzing the impact of source data on the perfor-
mance of target datasets.

domains and evaluate performance on the CiteSeer (Academic),
WikiCS (Wikipedia), History (E-commerce), and Instagram (Social)
datasets, as illustrated in Figure 4. The term ‘Full’ denotes utilizing
all source data as described in Table 1. ‘w/o Academia’ means
excluding academic source datasets, i.e., ogbn-ArXiv, ArXiv_2023,
and PubMed. ‘w/o E-commerce’ indicates the exclusion of the e-
commerce source dataset, while ‘w/o Social’ means omitting the
Reddit dataset.

From Figure 4, we draw several conclusions. First, a greater
amount of source data enhances cross-domain transferability; for
instance, ‘Full’ achieves the best performance on theWikiCS dataset.
Second, in-domain source data is critical for in-domain transferabil-
ity, as demonstrated by ‘w/o Academia’, which significantly lags
behind ‘Full’ on the CiteSeer dataset, and ‘w/o E-commerce’, which
is inferior to ‘Full’ on the History dataset. Third, while combining
all domains may slightly hurt in-domain transferability, it generally
improves overall performance. For example, the performance of
‘Full’ on the History dataset is slightly lower than ‘w/o Academia’
but substantially better on the CiteSeer dataset. For simplicity, we
use all source data throughout this paper. More complex combina-
tions will be addressed in future work, as balancing the ratio of
different source domains remains essential yet challenging.

Scale #L #H Params WikiCS Photo Computer
Small 4 512 33M 67.85 50.68 57.39

Medium 8 768 71M 69.42 51.16 58.06
Base 12 1024 150M 70.19 53.40 62.04
Large 16 1024 192M 70.14 54.50 60.24

Table 4: Performance of various model scales on target
datasets. #L denotes the number of layers, while #H signifies
the hidden size.

4.6 Analysis on Model Scale (RQ4)
We explore the impact of model scale in this section. Since the text
model remains frozen, our focus is primarily on the scale of the
graph model, specifically the graph transformer [45]. We construct
four different model scales: Small, Medium, Base and Large. The
Small model comprises 4 layers with the hidden size of 512, the
Medium model consists of 8 layers with the hidden size of 768, and
the Base model, which is used as our primary model throughout
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Gsource Methods Cora CiteSeer WikiCS Instagram Ele-Photo Ele-Computers Books-History
𝑋,𝐴, 𝑆 GraphCLIP 67.31±1.76 63.13±1.13 70.19±0.10 64.05±0.34 53.40±0.64 62.04±0.21 53.88±0.35
𝑋,𝐴 w/o Summary 58.89±1.77 60.67±1.31 59.96±0.12 59.46±0.62 41.65±0.62 46.26±0.50 44.87±0.35
𝑋,𝐴, 𝑆 w/o Freeze 61.29±1.37 61.66±1.01 58.92±0.10 60.15±0.75 45.90±0.65 53.24±0.26 29.40±0.31
𝑋,𝐴, 𝑆 w/o IL 65.02±1.94 60.09±1.09 68.64±0.09 61.16±0.76 51.51±0.60 63.21±0.38 45.68±0.12

Table 5: Ablation study of masking different components in GraphCLIP.

this paper, consists of 12 layers with the hidden size of 1024. The
Large model has 16 layers with the hidden size of 1024.

From Table 4, we observe that the Base model consistently out-
performs the smaller models, likely due to the increased number of
parameters [15]. However, while increasing the number of layers
to 16 marginally improves performance, it introduces significant
computational overhead and, in some cases, even hinders perfor-
mance on certain target datasets. As a result, we adopt the Base
model as our primary model throughout this work.

4.7 Ablation Study (RQ5)
In this section, we investigate the impact of different components in
GraphCLIP by masking them individually. The term ‘w/o Summary’
signifies the use of the original text for each node instead of the
generated summaries introduced in Section 3.1 as the text modality
input. ‘w/o Freeze’ denotes the non-freezing of the text model,
and ‘w/o IL’ indicates the removal of invariant learning from our
pretraining loss.

From Table 5, it is evident that the generated summaries are
crucial for achieving zero-shot transferability. The original text,
which contains only individual node content, lacks structural infor-
mation, resulting in a gap between the text and graph modalities.
Additionally, original text may include noisy information, leading
to suboptimal performance. For example, ‘w/o Summary’ achieves
41.65% and 46.26% on the Photo and Computers datasets, respec-
tively, falling over 10 absolute percentage points behind GraphCLIP.
The ‘w/o Freeze’ condition shows the poorest performance on the
WikiCS and History datasets, with scores of 58.92% and 29.40%.
This suggests that fully tuning the text model may lead to overfit-
ting on the source data, impairing transferability. Lastly, ‘w/o IL’
performs worse than GraphCLIP on most datasets, indicating that
incorporating invariant learning into the pretraining loss signifi-
cantly enhances both cross-domain and in-domain transferability.

5 Related Work
5.1 Text-Attributed Graph Methods with LLMs
Research on TAGs has gained great attention with rapid develop-
ment of LLMs, classified into three categories [30]: LLM as Enhancer,
LLM as Predictor, and LLM as Aligner, as depicted in Figure 1.

LLM as Enhancer [14, 33, 62, 79] involves augmenting raw text
or encoding node features, surpassing traditional methods like
Bag of Words (BoW). For example, TAPE [14] uses ChatGPT to
enhance node attributes, while OFA [33] and ZeroG [31] utilize lan-
guagemodels to unify node features and introduce innovative graph
prompting techniques to standardize various tasks. LLM as Predic-
tor [4, 53, 73] uses LLMs to predict graph data by converting it into
a comprehensible format. GraphText [73] employs a G-Syntax Tree
to transform graph data into text sequences, while GraphGPT and

LLaGA utilize GNNs to encode graph data into tokens, requiring
labeled data for training projector but showing limited transfer-
ability [5, 32]. LLM as Aligner [3, 42, 64, 72] maps graph and text
modalities into a shared embedding space. GLEM [72] optimizes
GNNs and LLMs through iterative training, while ConGrat [3] and
G2P2 [64] focus on node-text contrastive pretraining, lacking of
graph summary text information.

While TAG methods have achieved significant success, they face
two primary challenges: (1) heavy reliance on label information,
and (2) poor zero/few-shot transferability. In this work, we propose
GraphCLIP framework to address these challenges.

5.2 Graph Prompt Tuning
In low-resource scenarios, the “pretraining, prompt tuning” para-
digm [35] has become a standard approach to address overfitting
and catastrophic forgetting. In the graph domain, graph prompt
tuning has seen notable success. GPPT [50] introduces task tokens
and structure tokens to unify pretraining and downstream tasks
such as link prediction. Similarly, GraphPrompt [36] unifies tasks
as link prediction, enhancing performance through learnable read-
out prompt functions. SGL-PT [76] focuses on unifying tasks as
masked node prediction, while GPF [8] introduces a learnable uni-
versal prompt feature into the input feature for downstream task
adaptation. Additionally, All-In-One [51] reformulates all tasks at
the graph level by introducing a learnable universal graph prompt,
which is inserted into the original graph.

Different to previous studies, our proposed prompt tuning
method aims to further align graph and text modalities by lever-
aging downstream (target) labeled data. Meanwhile, our prompt
tuning is unifiedwith the pretraining task, effectivelymitigating cat-
astrophic forgetting [40, 49] and minimizing learning costs [50, 76]
for superior performance.

6 Conclusion
In this work, we propose GraphCLIP, a framework for enhancing
the transferability of Graph Foundation Models (GFMs) in low-
resource scenarios. Our approach addresses this challenge on two
levels. On the data level, we generate and curate a novel, large-
scale dataset of graph-summary pairs. On the algorithmic level, we
introduce an innovative contrastive graph-summary pretraining
method integrated with invariant learning to boost model transfer-
ability. Moreover, we develop a novel graph prompt tuning method
that aligns with our pretraining task to mitigate catastrophic for-
getting. GraphCLIP consistently outperforms existing approaches
in both zero-shot and few-shot learning contexts. These results
demonstrate the potential for a highly generalizable GFM that can
be efficiently and effectively adapted to real-world scenarios.
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A The Dilemma of Vanilla Contrastive Loss
The representation learned through vanilla contrastive loss lacks do-
main invariance, which is crucial for enabling a model to effectively
generalize across diverse target datasets [74, 78]. In this section, we
present a specific scenario that highlights the limitations of vanilla
contrastive loss. This example, adapted from ArCL [74], demon-
strates how encoders trained via vanilla contrastive learning can
exhibit markedly different behaviors across varying graph domains,
denoted as G𝜏 .

Proposition A.1. Consider a binary classification scenario with
data (𝑋1, 𝑋2) ∼ N (0, 𝐼2). When 𝑋1 ≥ 0, the label is set to 𝑌 = 1, and
the data augmentation process involves multiplying 𝑋2 by standard
normal noise:

𝜏𝜃 (𝑋 ) = (𝑋1, 𝜃 · 𝑋2)
𝜃 ∼ N(0, 1) (12)

The resulting transformation-induced domain set is defined as B =

{G𝑚 : G𝑚 = (𝑋1,𝑚 · 𝑋2) for𝑚 ∈ R}. By considering the 0-1 loss, for
every 𝜁 ≥ 0, there exists a representation 𝑔 and two domains G𝑚 and
G𝑚′ such that

LAL (𝑔;G, 𝜋) < 𝜁 (13)
yet 𝑔 performs very differently across the domains G𝑚 and G𝑚′ :

|R (𝑔;G𝑚) − R (𝑔;G𝑚′ ) | ≥ 1
4 (14)

where LAL denotes alignment loss in the vanilla contrastive loss [60],
R denotes supervised risk of binary classification. This example3

underscores that a representation with a small contrastive loss can
still demonstrate significant performance variability across different
augmentation-induced domains. The core concept illustrated here is
that a low LAL is achieved by averaging alignments across differ-
ent augmentation-induced domains, rather than ensuring uniform
alignment. As a result, the representation may experience substantial
alignment losses in certain less frequently selected domains.

Proof. For 𝜁 ≥ 0, let 𝑡 =
√︁
𝜁 /2 and 𝑔(𝑥1, 𝑥2) = 𝑥1 + 𝑡𝑥2 . Then, the

alignment loss of 𝑔 satisfies:

LAL (𝑔;G, 𝜋) = 𝑡2E𝑋 2
2 E
(𝜃1,𝜃2 )∼N(0,1)2

(𝜃1 − 𝜃2)2 = 2𝑡2 < 𝜁 . (15)

Set 𝑐 as 0 and 𝑐′ as 1/𝑡 , it is obviously that:

R (𝑔;G𝑐 ) = 0 (16)

but
R (𝑔;G𝑐′ ) =

𝑃 (𝑋1 < 0, 𝑋1 + 𝑋2 ≥ 0) + 𝑃 (𝑋1 ≥ 0, 𝑋1 + 𝑋2 ≤ 0) = 1
4

(17)

B Theoretical Analysis of Invariant Alignment
Loss

In this section, we will give the theoretical justification of why using
the supremum operator in invariant alignment loss can addresses
the dilemma of original alignment loss. Because it can lower the
upper bound of variations across different domains. Formal illus-
trations are as follow:

3For simplicity, we assume the adjacency matrix is an identity matrix in this case.

Theorem B.1 (Upper Bound on Variation Across Different
Domains [74]). Given two augmentation functions 𝜏 and 𝜏 ′, along
with a linear predictor 𝑐𝜔 and representation 𝑔, the variation across
distinct domains is constrained by the following expression:

sup
𝜏,𝜏 ′∈T

|R (𝑐 ◦ 𝑔;G𝜏 ) − R (𝑐 ◦ 𝑔;G𝜏 ′ ) | ≤ 𝑚 · ∥𝑐 ∥LIAL (𝑔,G). (18)

Additionally, fixing 𝑔 and defining 𝑐𝜏 ∈ argmin𝑐 R (𝑐 ◦ 𝑔,G𝜏 ), we
find that:

|R (𝑐𝜏 ◦ 𝑔;G𝜏 ′ ) − R (𝑐𝜏 ′ ◦ 𝑔;G𝜏 ′ ) | ≤
2𝑚 · (∥𝑐𝜏 ∥ + ∥𝑐𝜏 ′ ∥) LIAL (𝑔,G).

(19)

When LIAL is minimized to a small value, it signifies that
R (𝑐 ◦ 𝑔;G𝜏) remains consistent across various augmentation func-
tions 𝜏 , suggesting that the optimal representation for G𝜏 closely
resembles that of G𝜏 ′. In other words, representations with smaller
LIAL aremore likely to yield similar linear optimal predictors across
different domains, a characteristic that the original alignment loss
lacks.

C Prompt Design
In this section, we present the prompt templates utilized in this
study. Initially, we outline the prompt used for generating graph
summaries on source data. Then, we provide the prompt template
applied for zero-shot learning of baseline models on target data.

C.1 Prompts for Graph Summary Generation
We present the prompts used for generating graph-summary pair
data in Table 6. The violet font represents placeholders, with “seed”
to be replaced by the index of the target node within the subgraph.
“GraphML” refers to the graph markup language utilized for describ-
ing the subgraph, as detailed in Table 3.1. This prompt instructs
LLMs to produce both a paper summary and a contextual analysis
that encapsulates the essence of the subgraph. We have provided
prompts for three source datasets here, as ArXiv_2023 and PubMed
are analogous to obgn-ArXiv.

C.2 Prompts for Baselines
Regarding the prompts for generative LLMs and TAG methods that
are based on generative LLMs, we utilize the prompt templates
specified in their respective original papers [4, 53]. For illustration,
we present the Cora dataset as an example in Table 7. The violet font
denotes placeholders, with “raw_text” to be substituted with the
original text of the paper. Additionally, “<graph>” signifies graph
tokens processed by GNNs.

D Datasets
In this section, we present a comprehensive overview of the datasets
utilized in this paper. The specifics of five source datasets are
outlined below:

ArXiv-2023 dataset, featured in TAPE [14], is a directed graph
illustrating the citation network of computer science arXiv papers
published in 2023 or later. Similar to OGBN-ArXiv, it consists of
nodes representing arXiv papers and directed edges that indicate
citations. The objective is to classify each paper into one of 40
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Datasets Prompts for generating graph summary on source data

ogbn-ArXiv

I am providing you with a GraphML file depicting a citation network in computer science. Each node in the network
represents a scholarly article, and each edge signifies a citation relationship between articles. Please analyze the article
represented by node ‘n{seed}’ using the provided GraphML data in the following two ways:

1. Paper Summary and Context Analysis:
- Extract and summarize the key findings or contributions of the paper denoted by ‘n{seed}’. Consider the details
embedded within node ‘n{seed}’, including its title, abstract, and keywords (if available).
- Provide an overall summary of prevalent themes or concepts shared by the papers that cite or are cited by ‘n{seed}’ (its
direct neighbors in the network). Identify common threads or research topics among these neighbors.

2. Research Area Classification:
- Based on the information summarized from ‘n{seed}’ and its neighboring nodes, determine the specific research area to
which ‘n{seed}’ primarily contributes.
- Justify the classification by explaining which aspects of ‘n{seed}’ align with recognized themes, issues, or methodologies
in the identified research area(s).

Please ensure your analyses are grounded in the data provided by the GraphML file within 500 tokens, focusing on node
‘n{seed}’ and its immediate citation neighborhood. The detailed GraphML citation network data is as follows:
{GraphML}

ogbn-Products

I have a GraphML file representing an Amazon product co-purchasing network. In this network, nodes represent products
sold on Amazon, edges indicate that two products are frequently purchased together. I would like you to analyze the
product represented by the node ‘n{seed}’ using the GraphML data in the following two ways:

1. Product Summary and Context Analysis
- Extract and summarize the details of the product denoted by ‘n{seed}’, including its title and description (if available).
- Provide an overall summary of the prevalent themes or trends among the products that co-purchased with ‘n{seed}’.
Identify common threads or topics shared by these neighboring products.

2. Category Classification
- Using the information gathered from ‘n{seed}’ and its neighboring nodes, classify ‘n{seed}’ into one of product categories.
- Justify the classification by explaining which aspects of ‘n{seed}’ align with recognized prevalent themes, trends or
threads in the identified product category.

Your analysis should be directly based on the data provided in the GraphML file and should be limited to 500 tokens.
Focus exclusively on node ‘n{seed}’ and its immediate co-purchased neighborhood. The detailed GraphML co-purchased
network data is as follows:
{GraphML}

Reddit

I have a GraphML file representing a social network where each node denotes a user, the node features are the content
of users’ historically published subreddits, and edges denote whether two users have replied to each other. I would like
you to analyze the user represented by the node ‘n{seed}’ using the GraphML data in the following two ways:

1. Content Summary and Context Analysis
- Extract and summarize the details of the the user’s historical post content denoted by ‘n{seed}’. Identify and analyze
the user’s interests based on their historical posts.
- Provide an overall summary of the prevalent themes or trends among the users that reply with ‘n{seed}’. Identify
common topics or interests shared by these users.

2. Category Classification
- Using the information gathered from ‘n{seed}’ and its neighboring nodes, classify whether the user denoted as ‘n{seed}’
is in the top 50% popular (average score of all subreddits).
- Justify the classification by explaining which aspects of ‘n{seed}’ align with recognized common topics or interests
in the identified user category.

Your analysis should be directly based on the data provided in the GraphML file and should be limited to 500 tokens.
Focus exclusively on node ‘n{seed}’ and its immediate neighborhoods which have replied to each other. The detailed
GraphML social network data is as follows:
{GraphML}

Table 6: Prompts for generating graph-summary pair data.
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Methods Prompts of baselines for zero-shot learning on target data

LLMs

Paper: {raw_text}
Task: Please classify this paper into one of following categories: Case_Based, Genetic_Algorithms, Neural_Networks,
Probabilistic_Methods, Reinforcement_Learning, Rule_Learning, Theory. Output the answer without any explanations.
Answer:

LLaGA
Given a node-centered graph: <graph>, each node represents a paper, we need to classify the center node into 7 classes:
Case_Based, Genetic_Algorithms, Neural_Networks, Probabilistic_Methods, Reinforcement_Learning, Rule_Learning,
Theory, please tell me which class the center node belongs to?

GraphGPT

Given a citation graph: <graph> where the 0th node is the target paper, and other nodes are its one-hop or multi-hop
neighbors, with the following information:
Title: {raw_text}
Abstract: {raw_text}
Question: Classify the target node into one of the following categories: Case_Based, Genetic_Algorithms,
Neural_Networks, Probabilistic_Methods, Reinforcement_Learning, Rule_Learning, Theory.
Give the most likely one category of this paper directly.

Table 7: Prompts of baselines for zero-shot learning on target datasets.

subject areas, including cs.AI, cs.LG, and cs.OS, with classifications
provided by the authors and arXiv moderators.

OGBN-ArXiv dataset represents a directed graph showcasing
the citation network among computer science arXiv papers indexed
by MAG [58]. Each node signifies an arXiv paper, with directed
edges denoting citations. The goal is to categorize papers into one of
40 subject areas such as cs.AI, cs.LG, and cs.OS, with labels manually
assigned by authors and arXiv moderators.

PubMed [71] dataset comprises three categories: Experimental
studies on diabetes mechanisms and therapies, Type 1 Diabetes re-
search focused on autoimmune processes and treatments, and Type
2 Diabetes studies that emphasize insulin resistance and manage-
ment strategies. Each category addresses distinct facets of diabetes
research, contributing to the understanding and treatment of this
multifaceted disease.

OGBN-Products [18] dataset includes 2 million nodes and 61
million edges, where each node represents an Amazon product,
and edges reflect co-purchase relationships. The classification task
involves categorizing products into one of 47 top-level categories.

Reddit [19] dataset represents a social network where each node
corresponds to a user, with node features comprising the content
of users’ historically published subreddits, and edges indicating
whether two users have responded to each other.

We use the full set of OGBN-ArXiv, ArXiv_2023, PubMed, Reddit
datasets and training set of OGBN-Products as pretraining data.

The details of seven target datasets are as follows:
Cora [47] dataset consists of 2,708 scientific publications classi-

fied into seven categories: case-based, genetic algorithms, neural
networks, probabilistic methods, reinforcement learning, rule learn-
ing, and theory. Each paper in the citation network cites or is cited
by at least one other paper, resulting in a total of 5,429 edges.

CiteSeer [10] dataset encompasses 3,186 scientific publications
categorized into six domains: Agents, Machine Learning, Informa-
tion Retrieval, Database, Human-Computer Interaction, and Artifi-
cial Intelligence, with the objective of classifying each paper based
on its title and abstract.

WikiCS [38] dataset is a Wikipedia-based dataset designed for
benchmarking Graph Neural Networks, comprising 10 computer
science branches as classes characterized by high connectivity. Node
features are extracted from the corresponding article texts4.

Instagram [19] dataset reflects a social network where edges
represent following relationships, nodes signify users, and the pre-
diction task involves classifying users as either commercial or reg-
ular.

Ele-Photo [68] dataset, derived from the Amazon Electronics
dataset [39], consists of nodes representing electronic products,
with edges denoting frequent co-purchases or co-views. Each node
is labeled according to a three-level classification of electronics
products. The text attribute for each node comprises the user review
with the highest votes, or a randomly selected review if no highly-
voted reviews are available. The task is to classify these products
into 12 categories.

Ele-Computer [68] dataset, also extracted from the Amazon
Electronics dataset [39], consists of nodes representing electronic
products, with edges indicating frequent co-purchases or co-views.
Each node is similarly labeled according to a three-level classifi-
cation of electronics products. The text attribute for each node is
the user review with the most votes, or a randomly selected review
if no highly-voted reviews exist. The classification task involves
categorizing these products into 10 categories.

Books-History [68] dataset is derived from the Amazon-Books
dataset, focusing on items labeled as "History." Nodes represent
books, while edges indicate frequent co-purchases or co-views
between two books. Each node is labeled according to a three-level
classification of the book. The title and description of the book itself
serve as the text attributes for the nodes. The task is to classify
these books into 12 categories.

E Baselines
The details of the baselines are outlined below:

4We obtain the raw texts of each node from https://github.com/pmernyei/wiki-cs-
dataset.
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GraphGPT [53] aligns the graph encoder with natural language
semantics through text-graph grounding, integrating the trained
encoder with a LLM via a projector. This two-stage instruction
tuning enhances the model’s ability to perform graph tasks using
natural language, facilitating zero-shot transferability.

LLaGA [4] employs node-level templates to convert graph data
into structured sequences mapped into the token embedding space,
enhancing LLM versatility, generalizability, and interpretability
when processing graph-structured data.

OFA [33] represents all nodes and edges with human-readable
texts, encoding them across various domains into a unified space
via LLMs. This framework adapts to diverse tasks by incorporating
task-specific prompting substructures into the input graph.

ZeroG [31] uses a language model to encode node attributes and
class descriptions, addressing cross-dataset zero-shot transferabil-
ity challenges in graph learning through prompt-based subgraph
sampling and lightweight fine-tuning strategies.

DGI [57] employs a node-graph contrastive method, contrasting
node representations with graph representations, where corrupted
embeddings and the readout graph representation are treated as
negative pairs, while original node representations are considered
positive pairs.

GRACE [81] focuses on node-node graph contrastive learning,
treating representations from the same original node as positive
pairs and others as negative pairs.

BGRL [54] follows a similar approach to GRACE but omits
negative samples, drawing inspiration from BYOL [11].

GraphMAE [16] is a masked autoencoder that masks portions
of input node attributes before the encoder compresses the masked
graph into latent space, with the decoder aiming to reconstruct the
masked attributes.

G2P2 [64] proposes graph-grounded pre-training and prompting
to boost low-resource text classification.

F Complexity Analysis
In this section, we present the time and space complexity analysis
of GraphCLIP. Considering that GraphCLIP is a self-supervised
learning framework, we will compare its complexity with other
self-supervised graph learning methods.

F.1 Time Complexity
The primary time overhead arises from three components: the text
model, the graph model, optimizing perturbations, and computing
the pretraining loss. For simplicity, we assume the layer count
and hidden size of the text model are the same as those of the
graph model. The time complexity of the graph model is O(𝐿𝑁 2𝐷 +
𝐿𝑁𝐷2), and similarly, the time complexity of the text model is
O(𝐿𝑁 2𝐷 + 𝐿𝑁𝐷2). The pretraining loss has a time complexity of
O(𝑁 2𝐷). For optimizing perturbations, we run the inner loop M
times (set to 3 to approximate the max operation in Equation 9)
and accumulate gradients for other parameters in the outer loop.
Thus, the total time complexity of GraphCLIP is O(𝐿𝑁 2𝐷 +𝐿𝑁𝐷2),
ignoring smaller terms, which is of the same order as the classical
graph self-supervised method GRACE [81], O(𝐿𝑁 2𝐷).

F.2 Space Complexity
Each layer of the Graph Transformer has a space complexity
of O(𝑁𝐷 + 𝐷2) for computing queries, keys, and values. The
attention score calculation then incurs a space complexity of
O(𝑁 2 + 𝑁𝐷), while obtaining the hidden states results in a per-
layer space complexity of O(𝑁 2 + 𝑁𝐷 + 𝐷2). Performing these
operations across all layers leads to a cumulative space complexity
of O(𝐿𝑁 2 +𝐿𝑁𝐷 +𝐿𝐷2). Similarly, the text model has a space com-
plexity of O(𝐿𝑁 2 + 𝐿𝑁𝐷 + 𝐿𝐷2). Finally, the contrastive loss adds
an additional space complexity of O(𝑁 2). Consequently, the overall
space complexity of GraphCLIP amounts to O(𝐿𝑁 2 + 𝐿𝑁𝐷 + 𝐿𝐷2),
which is of the same order as the classical graph self-supervised
method GRACE, O(𝐿𝑁 2 + 𝐿𝑁𝐷 + 𝐿𝐷2).

G Implementation Details of GraphCLIP
In this section, we detail the implementation of GraphCLIP. First, we
describe the experimental setup for GraphCLIP during pretraining.
Next, we present the prompts utilized in zero-shot learning. Finally,
we explain the experimental configurations for prompt tuning.

G.1 Pretraining Phase
For GraphCLIP, only a few hyperparameters need to be adjusted.
In our main experiments, we utilize the AdamW [37] optimizer
with both learning rate and weight decay set to 1e-5. The graph
model employed is GraphGPS [45], consisting of 12 layers with a
hidden size of 1024. For the text model, we use a fine-tuned version
of MiniLM 5 [61], featuring 6 layers with a hidden size of 384. To
align both models in a unified subspace, a projector is applied to
transform the graph model’s 1024 dimensions to match the 384
dimensions of the text model. During pretraining, we optimize only
the parameters of the graph model and projector, keeping the text
model frozen to reduce training costs and mitigate catastrophic
forgetting. Pretraining is conducted over 30 epochs with a batch
size of 800 per GPU, utilizing eight A100-40G GPUs for pretraining
within 7 hours. We will release our pretrained checkpoint 6 after
the anonymous phase.

G.2 Zero-shot Learning
In zero-shot learning, we incorporate label information into label-
specific sentences to align with the pretraining format. Table 8
presents various prompts designed for different datasets. Placehold-
ers are marked in violet font: “{class}” represents the label text for
the target node, and “{class_desc}” is a descriptive sentence gener-
ated by LLMs to elaborate on the label. For detailed cases, please
refer to our anonymous repository 7.

G.3 Graph Prompt Tuning
During prompt tuning, we utilize the AdamW [37] optimizer, with
a learning rate of 1 × 10−4 and a weight decay of 1 × 10−5. The
training is conducted over 100 epochs.

5https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
6https://anonymous.4open.science/r/GraphCLIP/checkpoints/
7https://anonymous.4open.science/r/GraphCLIP/data/load.py
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Datasets Prompts for zero-shot learning of GraphCLIP
Cora “this paper has a topic on {class} {class_desc}”

CiteSeer “good paper of {class} {class_desc}”
WikiCS “it belongs to {class} research area {class_desc}”
Instagram “{class} {class_desc}”
Ele-Photo “this product belongs to {class} {class_desc}”
Computers “is {class} category {class_desc}”
History “this book belongs to {class} {class_desc}”

Table 8: Prompts for zero-shot learning of GraphCLIP

H Limitations
In this work, we do not incorporate complex edge attributes, which
can be critical for certain graph tasks [18, 20], such as molecule
property prediction [18], where each edge may possess distinct
properties. Addressing this complexity requires encoding various
edge attributes within a unified space and extending Graph Trans-
formers to process these attributes. In future work, we will expand
our framework to integrate complex edge information.
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