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ABSTRACT

Finding corresponding pixels within a pair of images is a fundamental computer
vision task with various applications. Due to the specific requirements of differ-
ent tasks like optical flow estimation and local feature matching, previous works
are primarily categorized into dense matching and sparse feature matching fo-
cusing on specialized architectures along with task-specific datasets, which may
somewhat hinder the generalization performance of specialized models. In this
paper, we propose RSDM, a robust network for sparse and dense matching. A
cascaded GRU module is elaborately designed for refinement to explore the ge-
ometric similarity iteratively at multiple scales following an independent uncer-
tainty estimation module for sparsification. To narrow the gap between synthetic
samples and real-world scenarios, we organize a new dataset with sparse corre-
spondence ground truth by generating optical flow supervision with greater in-
tervals. In due course, we are able to mix up various dense and sparse matching
datasets significantly improving the training diversity. The generalization capacity
of our proposed RSDM is greatly enhanced by learning the matching and uncer-
tainty estimation in a two-stage manner on the mixed data. Superior performance
is achieved for zero-shot matching as well as downstream geometry estimation
across multiple datasets, outperforming the previous methods by a large margin.

1 INTRODUCTION

Correspondence matching is a fundamental task in computer vision with various applications like
Simultaneous Localization and Mapping (SLAM), geometry estimation, and image editing. Due
to the specific requirements of different applications, the recent learning-based matching works are
commonly categorized into two branches: sparse and dense matching. The primary difference is
that dense matching, like optical flow estimation, stereo matching, and multi-view stereo matching,
is required to provide the matching estimation for each pixel even in occluded regions, while sparse
matching is only responsible for finding the corresponding key points given a pair of images. Be-
sides, in the context of dense matching, the image pairs to be matched typically have limited changes
of viewpoint with a relatively small temporal interval while the image pairs for sparse matching nor-
mally have more significant changes in viewpoint with various image properties.

Oriented by different applications and requirements, the research of dense and sparse matching has
followed separate paths for a long time. Benefiting from the accumulating customized datasets, the
learning-based approaches witness remarkable improvement for particular tasks like optical flow
estimation(Teed & Deng, 2020; Huang et al., 2022; Sun et al., 2017; Xu et al., 2022b), stereo match-
ing (Zhang et al., 2021; Xu & Zhang, 2020; Chang & Chen, 2018; Xu et al., 2022a), and geometry
estimation(Sun et al., 2021; Chen et al., 2022; Junjie Ni, 2023; Edstedt et al., 2023). However, as dis-
cussed in (Truong et al., 2020), the generalization capacity of specialized matching models may be
limited when new scenarios especially those with large displacements are applied. Some pioneering
works (Truong et al., 2020; 2021; Shen et al., 2020; Xu et al., 2023; Li et al., 2020; Melekhov et al.,
2019) have already made attempts to improve the robustness of matching problems by proposing a
universal matching framework capable of both sparse and dense matching.

Despite the delightful improvement in the generalization performance, the proposed universal
matching networks still struggle in the performance of specific tasks compared with the special-
ized models. Besides, how to exploit the advantages of multiple task-specific datasets to boost the
robustness of matching is still under exploration. It has been revealed that increasing the diversity
of training data brings a tremendous improvement in generalization capacity for monocular depth
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Figure 1: An illustration of the general capacity of our RSDM. RSDM is a robust matching model
capable of indoor and outdoor sparse matching even in cases of great displacement or blurred input
images. The matched features are indicated by the same color. Moreover, we can also handle the
all-paired dense matching like optical flow estimation and the two-view reconstruction by warping
the corresponding pixels to the target view.

estimation(Bhat et al., 2023; Yin et al., 2020; Wei Yin, 2023; Ranftl et al., 2022; Truong et al.,
2021). However, the datasets used for dense and sparse correspondence matching have obvious
domain gaps. Constrained by the difficulty in obtaining the fine-grained annotations per pixel for
dense correspondence matching, most specialized models follow the training pipeline of first pre-
training on a large-scale synthesized dataset while fine-tuning on a small-scale real-world dataset.
Sparse feature matching tasks for geometry estimation, on the contrary, have an extensive amount of
real-world training data (Li & Snavely, 2018; Dai et al., 2017) but with relatively coarse pixel-wise
annotations. Directly training on a mixture of multiple task-specific datasets varying in the domain
may hamper the matching performance and impede the downstream geometry estimation.

To tackle the above-mentioned challenges, we propose a robust sparse and dense matching network
termed RSDM. To be specific, we construct a dense matching framework with a cascaded GRU re-
finement to fully exploit the geometry similarly with fine-grained features across multiple scales. An
independent uncertainty estimation module is also constructed for sparsification. We mix up multi-
ple optical flow and sparse matching datasets for numerous data to train our model in a decoupled
manner so that the perturbation introduced by diverse domains can be alleviated. We additionally
organize a dataset with sparse correspondence ground truth based on the TartanAir (Wang et al.,
2020) dataset to obtain a closer distribution of displacement to the real world. It is worth mention-
ing that we build the cascaded GRU refinement to take advantage of the fine-grained features at a
higher resolution. We believe the state-of-the-art methods for optical flow estimation (Teed & Deng,
2020; Huang et al., 2022; Shi et al., 2023; Xu et al., 2022b) could fit in our framework as well. The
contributions can be summarized as follows:

• We propose a robust sparse and dense matching network termed RSDM which can gen-
eralize well to unseen scenarios with our proposed cascaded GRU refinement for dense
correspondence estimation and an uncertainty estimation module for sparsification.

• We explore the effectiveness of scaling up the training data by mixing up multiple datasets.
A comprehensive analysis is conducted to explore a more reasonable training strategy for
enhanced robustness.

• Our RSDM achieves state-of-the-art generalization performance in zero-shot evaluations
for both matching and geometry estimation across multiple datasets, outperforming previ-
ous generalist and specialized models by an obvious margin.
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2 RELATED WORKS

2.1 SPARSE FEATURE MATCHING

For a long time, the geometry estimation problem has been dominated by sparse correspondence
matching methods. The classic methods(Rublee et al., 2011; Liu et al., 2010) propose robust
hand-crafted local features for matching and have been adopted in many 3D reconstruction related
tasks. Following the manner of detection and match, the leaning-based methods efficiently improve
the matching accuracy, among which SuperGlue (Sarlin et al., 2020) is a representative network.
Given two sets of interest points as well as the corresponding descriptors, SuperGlue utilizes a
transformer-based graph neural network for feature enhancement and to obtain great improvement.
LightGlue (Lindenberger et al., 2023) further modifies the SuperGlue by proposing an adaptive strat-
egy due to the matching difficulty which effectively accelerates the inference. Since the proposal
of LoFTR (Sun et al., 2021), the detector-free local feature matching method which discards the
feature detector stage appeals to great attention(Wang et al., 2022; Chen et al., 2022; Tang et al.,
2022). LoFTR (Sun et al., 2021) takes a coarse-to-fine strategy by fist establishing a dense match-
ing correspondence and removing the unreliable matches at the refinement stage. Self-attention and
cross-attention with the transformer are introduced to enlarge the receptive field. Several works are
improved upon LoFTR like ASpanFormer(Chen et al., 2022) which adopts a novel self-adaptive
attention mechanism guided by the estimated flow while QuadTree (Tang et al., 2022) primarily fo-
cuses on the optimization of attention mechanism by selecting the sparse patches with the highest top
K attention scores for attention computation at the next level so that the computation cost can be ef-
ficiently reduced. Sparse correspondence matching plays an important role in geometry estimation
like pose estimation, 3D reconstruction, but the sparsification of matching estimation impedes its
applications when all-paired matches are required. Recently, some sparse matching works(Edstedt
et al., 2023; Junjie Ni, 2023; Li et al., 2020; Truong et al., 2021; 2023) are constructed on the base of
dense matching where the all-paired matching results are preserved along with a selecting module
for sparsification. This is a great step towards the generalist matching model.

2.2 DENSE MATCHING

In the context of dense correspondence matching, it is normally categorized into multiple specific
tasks containing stereo matching (Zhang et al., 2021; Chang & Chen, 2018; Xu & Zhang, 2020; Li
et al., 2022; Xu et al., 2022a; Lipson et al., 2021), multi-view stereo matching(Ma et al., 2022b), and
optical flow(Dosovitskiy et al., 2015; Ilg et al., 2017; Sun et al., 2017; Teed & Deng, 2020; Xu et al.,
2022b; Huang et al., 2022; Shi et al., 2023; Sui et al., 2022), etc. Dense correspondence matching is
required to provide the matching prediction per pixel even in occluded regions which are discarded
in the sparse matching problem. Among all the dense matching, the optical flow estimation is
relatively more comprehensive due to the disordered motions. The pioneering work RAFT(Teed &
Deng, 2020) proposes a GRU-based iterative mechanism for refining the estimated optical flow by
looking up the correlation pyramid repeatedly. The proposal of RAFT has been modified to various
dense matching tasks besides the optical flow estimation(Huang et al., 2022; Shi et al., 2023; Jiang
et al., 2021; Dong et al., 2023) including mvs(Ma et al., 2022a), stereo matching(Li et al., 2022;
Lipson et al., 2021), which validates its capacity as a universal architecture for dense matching. The
limitation for dense matching lies in that only limited real-world datasets with constrained variation
in perspectives are available which may hamper the generalization performance to some extent.

2.3 GENERALIST CORRESPONDENCE MATCHING

To mitigate the limitation of specialized matching models and unify the matching problems, some
attempts have been proposed. MatchFlow(Dong et al., 2023) manages to improve the robustness
of optical flow estimation by utilizing a model pretrained on real-world datasets. UniMatch (Xu
et al., 2023) proposes to unify the estimation for optical flow, stereo matching, and depth estimation.
However, they still can’t handle sparse feature matching tasks or significant changes of viewpoint
in the real world. DKM (Edstedt et al., 2023) and PATS (Junjie Ni, 2023) are competent for unified
matching but they utilize solely the sparse matching datasets. PDCNet and PDCNet+ (Truong et al.,
2021; 2023) propose a universal matching framework with training on both sparse matching datasets
and their synthesized optical flow datasets. The limitation of PDCNet+ lies in that the synthesized
optical flow couldn’t simulate the real changes in perspective and motions in real-world scenarios.
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Figure 2: An overview of our proposed RSDM which consists of a pure dense matching network
with our elaborate cascaded GRU refinement(the upper-right part in shallow green) along with an
independent uncertainty estimation module for sparsification. Some detailed operations like the skip
connection are omitted here for visual clarity.

Moreover, the influence of joint learning of both matching and uncertainty on the mixed datasets of
diverse domains remains unexplored.

3 METHOD

3.1 MATCHING NETWORK

As discussed above, the target distribution of displacement magnitude differs in various matching
tasks. To unify both dense matching and sparse feature matching, it’s crucial to exploit global and
local geometry correspondence which requires elaborate design. We formulate the universal match-
ing as a dense matching problem following an uncertainty estimation module for sparsification. The
dense matching f is defined in the definition of optical flow.

The milestone work of RAFT (Teed & Deng, 2020) provides an appealing approach as the multiscale
correlation pyramid effectively enlarges the receptive field and the iterative looking-up operation
associated with contextual information helps with the local correlation exploration. The vanilla
RAFT as well as the following modifications (Huang et al., 2022; Shi et al., 2023), however, suffer
from the utilization of a coarse feature at 1/8 resolution which leads to an inevitable loss of fine-
grained features. To alleviate this, we first construct a feature pyramid network to obtain a set of
reference and target features {F s

r , F
s
t } at the corresponding scales s of {1/8, 1/4, 1/2} as illustrated

in the upper-right block of Fig3. We adopt self-attention and cross-attention based on the swin-
transformer for feature enhancement as GMFlow (Xu et al., 2022b) at the first two scales.

To adapt to higher resolutions, a cascaded GRU refinement module is proposed. Instead of build-
ing all-paired correlations across every scale (Li et al., 2022; Jahedi et al., 2022), the all-paired
correlation volume Cfull is only introduced at the coarsest resolution of 1/8 while the subsequent
correlation volume is formulated locally. The all-paired correlation volume Cfull is formulated via
the dot-product operation as follows:

Cfull =
Fr · FT

t√
D

∈ R
H
8 ×W

8 ×H
8 ×W

8 , (1)

where (H,W ) is the spatial resolution of the original image and D denotes the feature dimension. A
correlation pyramid is then constructed with additional average pooling operation as RAFT. Given
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the current flow estimation f(x) at grid x, the local correlation with the radius r is built as:

Clocal(x) =
Fr(x) · FT

t (N(x+ f(x))r)√
D

, (2)

where N(x)r is the set of local grids centered at x within radius r defined as:

N(x)r = {x+ dx|dx ∈ Z2, ||dx||1 ≤ r} (3)

Rather than initializing the hidden status at each scale (Jahedi et al., 2022; Li et al., 2022), we
upsample hidden features with bilinear interpolation and pass it to the next refinement stage. Given
the correlation as well as the contextual information, we compute motion features as the vanilla
RAFT and feed it to cascaded GRU refinement for flow residual estimation which is then used for
updating the matching flow in an iterative manner. We utilize L1 loss for supervision across multiple
scales between the matching prediction and ground truth:

Lm =

S∑
s=1

γs

{
||fs − fgt||1 if dense matching
||fs − fgt||1 ⊙ p if sparse matching

, (4)

where p indicates the valid mask where sparse correspondence ground truth is available and λs is
a scalar for adjusting the loss weight at scale s. We supervise all predicted matches on the optical
flow datasets and valid estimated matches sparse feature matching datasets.

3.2 DECOUPLED UNCERTAINTY ESTIMATION

The indispensable component that unifies the matching problem is the uncertainty estimation mod-
ule(Truong et al., 2021; Edstedt et al., 2023; Truong et al., 2023; Li et al., 2020). Conventional
methods which estimate the valid mask simultaneously with correspondence yield unsatisfactory
performance when trained on multiple dataset jointly. We argue that the joint learning strategy may
introduce inevitable noise as the valid mask is closely associated with the matching prediction be-
ing inaccurate and ambiguous, especially at the early stage of training. It is an ill-posed problem
to determine valid areas given predicted matches of low quality. Moreover, the domain of invalid
matches that are filtered out for downstream pose estimation may differ from the occluded regions
in optical flow estimation. As we will discuss in the later section4.2, the joint learning of matching
and uncertainty could impede the performance of one or both tasks, especially when training on a
mixture of datasets.

To alleviate this problem, we decouple our universal matching model into a pure dense correspon-
dence network defined in the subsection3.1 accompanied by an independent uncertainty estimation
network. As shown in Fig3, after obtaining the dense correspondence results, the matching network
is frozen. We compute the difference by warping the feature map and RGB image of the target view
to the reference view according to the estimated flow. The uncertainty prediction p̂ is then computed
by feeding the warping difference to a shallow convolution network and supervised by valid mask
ground truth p with binary cross-entropy loss following previous works:

Lu =
∑
x,y

p log(p̂) + (1− p)log(1− p̂) (5)

The uncertainty module is only applied at the sparsification stage for the downstream geometry
estimation task. We follow the balanced sampling strategy proposed in DKM (Edstedt et al., 2023)
to sample valid points within the uncertainty threshold for essential metric calculation.

3.3 SYNTHESIZED OPTICAL FLOW WITH LARGE INTERVALS

To further exploit the advantages of fine-annotated synthesized datasets but with significant displace-
ment, we randomly sample frames with great intervals from 15 to 30 on the TartanAir dataset. Given
the provided intrinsic metrics as well as the depth, we first project the reference frame from 2D pix-
els to 3D point clouds and then reproject to 2D pixels of the target view according to the extrinsic
metric. The matching ground truth fr→t is computed as the difference between the projected and
original pixel coordinates. To access the valid mask p for sparse supervision, the same procedure
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is repeated from the target view to the reference view and obtain the inverse matching ground truth
ft→r so that the forward-backward consistency check (Meister et al., 2018; Xu et al., 2022b) can
be applied:

p =|fr→t(x) + ft→r(x+ fr→t(x))|2

< α1(|fr→t(x)|2 + |ft→r(x+ fr→t(x))|2) + α2, (6)

where α1 is 0.05 and α2 is 0.5. We synthesize around 700K training data pairs over 369 scenar-
ios to construct a new dataset named TartanAir Sampled(TS). Note that the synthesized dataset is
only utilized at the stage of matching with sparse ground truth. More details can be found in the
appendixA.1.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Our proposed RSDM is trained in a two-stage manner. At the stage of correspondence learning, we
first utilize the Megadepth(M) (Li & Snavely, 2018) dataset with sparse correspondence ground truth
for 200K iterations on a sub-split of 1.4 million pairs of data. Then we collect additional training data
containing the ScanNet(Sc) (Dai et al., 2017), FlyingThings3D(T) (Mayer et al., 2016), and original
TartanAir(TA) (Wang et al., 2020) datasets as well as our generated TartanAir Sampled dataset (TS)
along with the Megadepth, reaching a total amount of around 4 million pairs of training data. The
network is trained for 240K iterations on the mixture dataset. We follow GMFlow (Xu et al., 2022b)
with the setting of the AdamW (Loshchilov & Hutter, 2017) optimizer and the cosine learning rate
schedule as well as the data augmentation for optical flow related datasets(T,TA,TS). For both the
Megadepth and ScanNet datasets, the input training images are directly resized to 384× 512 while
the rest training data are cropped to the same resolution. The training batch size is set to 16 with a
learning rate of 2e-4 for the above two rounds of training. We further finetune the matching network
for another 200K iterations at the resolution of 512 × 704 with a batch size of 8 and the initial
learning rate is decreased to 1e-5. At the stage of uncertainty learning, the parameters of the dense
matching network are frozen. We train the uncertainty estimation module on the mixture of both
Megadepth and ScanNet datasets for 2 epochs with a batch size of 4 and the learning rate is 1e-4. The
training of our RSDM is conducted on the NVIDIA-RTX-4090 GPUs. The related GRU iterations
are {7, 4, 2} as we gradually recover the resolution for training and ablation experiments with a
corresponding searching radius of {4, 4, 2}. When comparing with other approaches, the iterations
increase to {12, 12, 2} which is a closer amount of refinement to RAFT-based methods(Huang et al.,
2022; Teed & Deng, 2020; Li et al., 2022; Sui et al., 2022).

Evaluation metrics: We report the average end-point-epe (AEPE, lower the better) and percentage
of correct key points (PCK-T, higher the better) within a specific pixel threshold T. F1 metric(lower
the better) is reported for the KITTI (Menze & Geiger, 2015) dataset which depicts the percentage
of outliers averaged over all valid pixel of the dataset. For pose estimation, we follow previous
works (Truong et al., 2021; Sun et al., 2021; Edstedt et al., 2023; Junjie Ni, 2023) by solving the
essential matrix given the corresponding pixels. The accuracy is measured by AUC (higher the
better) across different thresholds (5

◦
, 10

◦
, 20

◦
).

Evaluation datasets: To validate the generalization performance of our RSDM, we perform zero-
shot evaluations on multiple benchmark datasets containing the ETH3D (Schöps et al., 2017),
HPatches (Balntas et al., 2017), KITTI (Menze & Geiger, 2015), and TUM (Sturm et al., 2012)
datasets for correspondence estimation. The downstream pose estimation is conducted on the
TUM (Sturm et al., 2012) and YFCC (Thomee et al., 2016) datasets. The geometry estimation
results are also reported on the ScanNet (Dai et al., 2017) and Megadepth (Li & Snavely, 2018)
datasets. We further adopt the Sintel (Butler et al., 2012) dataset to compare the performance of
optical flow estimation under a standard training setting as can be found in the appendixA.3.

4.2 ABLATION STUDY

Network architecture and training strategy: As presented in Tab4.2, we analyze the effectiveness
of the feature enhancement and the training strategy. The baseline is set as the joint learning of
both matching and uncertainty with feature enhancement on the Megadepth dataset (Li & Snavely,
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Table 1: Ablation experiments on the training components and strategies. W indicates the
feature enhancement is utilized while WO represents removing it. It is clear that the independent
learning strategy improves generalization performance in matching and pose estimation with the
help of feature enhancement.

Method Dataset
Pose Estimation Correspondence Matching

Megadepth YFCC Megadepth HPatches ETH3D
AUC@5

◦
AUC@5

◦
PCK-1 AEPE AEPE

Joint-Learning
WO M 54.3 48.0 60.8 74.5 2.3
W M 55.3 48.2 78.3 31.1 4.2
W M + TS 51.9 47.8 77.4 19.2 2.2

Decoupled-Learning
W M 55.7 48.5 78.2 24.9 2.3
W M + TS 54.0 48.2 77.3 16.6 2.0

Table 2: Ablation study on the effectiveness of scaling up training data. We perform zero-shot
matching evaluations as we gradually scale up the training data for diversity increment. Obviously,
the employment of numerous training data brings significant generalization improvement.

Dataset
HPatches KITTI ETH3D

AEPE PCK-1 AEPE F1 AEPE PCK-1
C+T 55.3 38.3 5.4 13.9 3.9 55.0
M 24.9 44.8 12.6 18.4 2.2 50.6

M+Sc 15.3 42.8 10.8 17.7 2.0 54.1
M+Sc+T+TA 13.1 44.3 4.1 10.8 2.0 55.9

M+Sc+T+TA+TS 13.3 46.3 3.5 9.6 2.0 56.3

2018). Obviously, after removing the self-attention and cross-attention, the network suffers a signif-
icant degeneration in matching performance which validates its importance. Directly training on the
mixed datasets may improve the matching generalization, but the pose estimation suffers an obvious
drop on both the Megadepth and YFCC (Thomee et al., 2016) datasets although the matching accu-
racy remains almost unchanged on the Megadepth, which we attribute to the domain gap between
the synthesized images and real-world data for uncertainty estimation. To validate our assumption,
we decouple the learning process by learning an independent uncertainty module detached from
the learning of similarity. The matching network is trained separately on the Megadeth and mixed
datasets, respectively. The uncertainty estimation is next trained solely on the Megadepth dataset.
The advantage of the decoupled training strategy is obvious as the matching performance achieves
further promotion reaching the lowest AEPE metric(16.6) on the HPatches dataset (Balntas et al.,
2017). Compared with the joint learning on the mixed datasets, the decoupled training strategy im-
proves the AUC5

◦
metric from 51.9 and 47.8 to 54.0 and 48.2 on the Megadepth and YFCC datasets,

respectively.
Scaling up training data. It is clear from Tab4.2 that as we scale up the diversity of training
data, the generalization performance of correspondence matching improves significantly. Due to the
synthesized training data (Dosovitskiy et al., 2015; Mayer et al., 2016) and limited changes of view-
point, the poor generalization performance from the optical flow estimation is within expectation.
The accuracy improves obviously as the training datasets switch to the real-world Megadepth (Li &
Snavely, 2018). We then finetune the model on the mixture of different datasets for 1 epoch sepa-
rately. The introduction of the real-world indoor ScanNet (Dai et al., 2017) dataset brings overall
improvements on the HPatches (Balntas et al., 2017) and ETH3D (Schöps et al., 2017) datasets in-
dicated by the decreasing average end-point error. When the optical flow datasets are further mixed
up, the average end-point-error and percentage of outliers accordingly drop from 10.8 to 4.1 and
17.7% to 10.8% on the KITTI dataset (Menze & Geiger, 2015), and the PCK-1 metric climbs to
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Figure 3: Visualized comparisons. Our RSDM shows superior performance by obtaining more
matches given a pair of indoor or outdoor images. Moreover, our method shows the potential for
robust semantic correspondence as well. The same color indicates the matched features.

55.9% on the ETH3D datasets. The performance on the HPatches dataset obtains further boost as
the AEPE metric reaches the lowest result. This improvement of generalization over every testing
dataset emphasizes the importance of collecting fine-annotated optical flow datasets to scale up the
diversity. After the employment of our synthesized dataset, the PCK-1 metric reaches 46.3% on
the HPatches and the percentage of outliers decreases to 9.6% on the KITTI dataset, surpassing the
baseline by 47.8%. Our synthesized TartanAir Sampled dataset also helps to obtain the best match-
ing performance on the ETH3D dataset whose PCK-1 metric rises from 50.6% to 56.3% compared
with training solely on the Megadepth dataset.

4.3 COMPARISONS WITH OTHER SOTAS

We divide the competing matching methods into two categories: specialized models and generalist
models depending primarily on their targeted tasks and the training data. Only sparse ground truth
in valid regions is available on the HPatches (Balntas et al., 2017) and ETH3D (Schöps et al., 2017)
datasets while the occluded regions are also taken into consideration on the KITTI (Menze & Geiger,
2015) dataset.
Zero-shot Correspondence Matching. We conduct experiments to compare the generalization ca-
pacity for zero-shot evaluation. The specialized models for optical flow estimation achieve relatively
better performance on the KITTI dataset due to the all-paired supervision strategy and the densely
annotated datasets but suffer a significant degeneration when switching to real-world scenarios as
reflected by the great average end-point error and the poor percentage of correct matches. The ac-
curacy on the HPatches dataset gets promoted when the geometry estimation methods trained on
the Megadepth dataset are adopted whose AEPE drops from 60.8% to 27.1% for DKM compared
with RAFT and increases the PCK-1 by 7%. However, the limitation of geometry estimation works
lies in their performance on the KITTI dataset due to the incapacity of occluded regions and the
relatively coarse annotations. Taking advantage of training data with greater diversity, the generalist
models show a balanced performance. Among all the competing methods, our proposed RSDM
reaches the best generalization performance over all three datasets. Compared with the second best
method PDCNet+ (Truong et al., 2023), our RSDM improves the PCK-1 from 44.9% to 47.9% and
53.3% to 56.4% on the HPatches and ETH3D dataset, respectively. Our universal matching work
still obtains the best performance on the KITTI dataset.
Geometry Estimation. We perform pose estimation on the TUM (Sturm et al., 2012) and
YFCC (Thomee et al., 2016) datasets for zero-shot evaluation. The performance on the ScanNet (Dai
et al., 2017) dataset is also reported in Tab4.3. The evaluation of the TUM dataset is only conducted

8



Under review as a conference paper at ICLR 2024

Table 3: Comparison with other methods for zero-shot matching evaluations. Specialized mod-
els for optical flow estimation and dense-based geometry estimation methods as well as the universal
matching models are compared on multiple datasets. Our proposed RSDM achieves the best perfor-
mance among all the competing approaches. Only the underlined results are obtained with optical
flow models trained on the FlyingChairs and FlyingThings3D datasets while others are tested with
additional training for Sintel submission. ∗ indicates we utilize the officially released model and
code for evaluations at the original resolution except that we fix the max resolution to 920 × 1360
for FlowFormer (Huang et al., 2022) and 860×1260 for FlowFormer++ (Shi et al., 2023) due to the
computation memory cost. Syn represents the customized synthetic datasets.

Method Task
HPatches TUM ETH3D KITTI

AEPE PCK-1 AEPE PCK-1 AEPE PCK-1 F1
specialized models

RAFT∗ (Teed & Deng, 2020) OF 60.8 36.0 8.5 11.6 6.7 48.7 17.4
FlowFormer∗ (Huang et al., 2022) OF 81.8 31.7 7.4 11.5 4.9 47.8 14.7
FlowFormer++∗ (Shi et al., 2023) OF 81.4 28.5 6.8 11.4 3.5 48.1 14.1

UniMatch∗ (Xu et al., 2023) OF 40.5 37.6 6.5 11.6 3.5 50.1 17.6
DKM∗ (Edstedt et al., 2023) GE 19.0 34.7 6.1 10.3 2.2 50.1 21.0

generalist models
GLUNet∗ (Truong et al., 2020) - 25.1 39.6 6.7 10.4 4.4 31.6 37.5

PDCNet+(D)∗ (Truong et al., 2023) - 17.5 44.9 4.9 11.5 2.3 53.3 12.6
Ours - 8.8 47.9 4.1 12.3 2.0 56.4 10.9

Table 4: Downstream pose estimation. We conduct geometry estimation on the YFCC and TUM
datasets for zero-shot evaluations. Results on the ScanNet validation set are also reported. Our
method achieves the best performance for generalization comparisons.

Method
ScanNet(AUC) YFCC(AUC) TUM(AUC)

@5
◦

@10
◦

@20
◦

@5
◦

@10
◦

@20
◦

@5
◦

@10
◦

@20
◦

LoFTR (Sun et al., 2021) 22.0 40.8 57.6 42.4 62.5 77.3 - - -
DRCNet (Li et al., 2020) 7.7 17.9 30.5 29.5 50.1 66.8 - - -

MatchFormer (Wang et al., 2022) 24.3 43.9 61.4 53.3 69.7 81.8 - - -
ASpanFormer (Chen et al., 2022) 25.6 46.0 63.3 44.5 63.8 78.4 - - -

PATS (Junjie Ni, 2023) 26.0 46.9 64.3 47.0 65.3 79.2 - - -
DKM (Edstedt et al., 2023) 29.4 50.7 68.3 46.5 65.7 80.0 15.5 29.9 46.1

PDCNet+(H) (Truong et al., 2023) 20.3 39.4 57.1 37.5 58.1 74.5 11.0 23.9 40.7
Ours 26.0 46.4 63.9 48.0 66.7 80.5 16.3 31.4 48.4

for DKM and PDCNet+ considering the overall generalization performance and access to the official
implementation. Our approach demonstrates the best generalization performance when applying to
unseen scenarios, whether indoor (TUM) or outdoor (YFCC) as assessed by the AUC metric at
multiple thresholds.

5 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we propose a robust sparse and dense matching network termed RSDM incorporating
our proposed cascaded GRU refinement module along with an uncertainty estimation module for
sparsification. The decoupled training mechanism as well as the increasing diversity of the numerous
training data contributes to our superior generalization performance in zero-shot evaluations for
both matching and pose estimation. We will further scale up the training data and optimize the
performance of downstream geometry estimation.
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Thomas Schöps, Johannes L. Schönberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc
Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and
multi-camera videos. In CVPR, pp. 2538–2547, 2017. doi: 10.1109/CVPR.2017.272.

Xi Shen, François Darmon, Alexei A Efros, and Mathieu Aubry. Ransac-flow: generic two-stage
image alignment. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part IV 16, pp. 618–637. Springer, 2020.

Xiaoyu Shi, Zhaoyang Huang, Dasong Li, Manyuan Zhang, Ka Chun Cheung, Simon See, Hong-
wei Qin, Jifeng Dai, and Hongsheng Li. Flowformer++: Masked cost volume autoencoding for
pretraining optical flow estimation. In CVPR, pp. 1599–1610, 2023.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of
rgb-d slam systems. In IROS, Oct. 2012.

Xiuchao Sui, Shaohua Li, Xue Geng, Yan Wu, Xinxing Xu, Yong Liu, Rick Goh, and Hongyuan
Zhu. Craft: Cross-attentional flow transformer for robust optical flow. In Proceedings of the
IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 17602–17611, 2022.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In CVPR, pp. 8934–8943, 2017.

11



Under review as a conference paper at ICLR 2024

Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr: Detector-free local
feature matching with transformers. In CVPR, pp. 8918–8927, 2021.

Shitao Tang, Jiahui Zhang, Siyu Zhu, and Ping Tan. Quadtree attention for vision transformers.
ICLR, 2022.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV,
pp. 402–419, 2020. ISBN 978-3-030-58536-5.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Prune Truong, Martin Danelljan, and Radu Timofte. GLU-Net: Global-local universal network for
dense flow and correspondences. In CVPR, 2020.

Prune Truong, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning accurate dense corre-
spondences and when to trust them. In CVPR, pp. 5710–5720, 2021. doi: 10.1109/CVPR46437.
2021.00566.

Prune Truong, Martin Danelljan, Radu Timofte, and Luc Van Gool. Pdc-net+: Enhanced prob-
abilistic dense correspondence network. In PAMI, volume 45, pp. 10247–10266, 2023. doi:
10.1109/TPAMI.2023.3249225.

Qing Wang, Jiaming Zhang, Kailun Yang, Kunyu Peng, and Rainer Stiefelhagen. MatchFormer:
Interleaving attention in transformers for feature matching. In Asian Conference on Computer
Vision, 2022.

Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu,
Ashish Kapoor, and Sebastian Scherer. TartanAir: A dataset to push the limits of visual SLAM.
2020.

Hao Chen Zhipeng Cai Gang Yu Kaixuan Wang Xiaozhi Chen Chunhua Shen Wei Yin, Chi Zhang.
Metric3d: Towards zero-shot metric 3d prediction from a single image. 2023.

Gangwei Xu, Junda Cheng, Peng Guo, and Xin Yang. Attention concatenation volume for accurate
and efficient stereo matching. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 12971–12980, 2022a. doi: 10.1109/CVPR52688.2022.01264.

Haofei Xu and Juyong Zhang. Aanet: Adaptive aggregation network for efficient stereo matching.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1956–
1965, 2020. doi: 10.1109/CVPR42600.2020.00203.

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and Dacheng Tao. Gmflow: Learning
optical flow via global matching. In CVPR, pp. 8121–8130, June 2022b.

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Fisher Yu, Dacheng Tao, and Andreas
Geiger. Unifying flow, stereo and depth estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

Wei Yin, Xinlong Wang, Chunhua Shen, Yifan Liu, Zhi Tian, Songcen Xu, Changming Sun, and
Dou Renyin. Diversedepth: Affine-invariant depth prediction using diverse data. arXiv preprint
arXiv:2002.00569, 2020.

Songyan Zhang, Zhicheng Wang, Qiang Wang, Jinshuo Zhang, Gang Wei, and Xiaowen Chu. Ednet:
Efficient disparity estimation with cost volume combination and attention-based spatial residual.
In CVPR, pp. 5429–5438, 2021. doi: 10.1109/CVPR46437.2021.00539.

12



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 SYNTHESIZED TARTANAIR SAMPLED DATASET

Ref Image Target Image Projected Point Cloud Optical Flow

Figure 4: An overview of our generated optical flow sampled from the TartanAir dataset with large
intervals to imitate the large viewpoint changes in the real world. The associated changes in bright-
ness as well as the scale of objects can be well preserved.

We organize a set of training data pairs with sparse correspondence annotations based on the Tar-
tanAir dataset. The selected reference and target image samples are visualized in FigA.1. The sam-
pling interval is intended to be large for the purpose of significant changes in perspective. We can
obtain scale-consistent depth map Dref , intrinsic camera parameter K , camera-to-world camera
pose Pref of the reference image and camera-to-world camera pose Ptar of the target image from
original TartanAir dataset. Subsequently, we engage in the projection of pixel coordinates (u, v)
from the reference image into 3D point clouds. These points are then further projected onto their
corresponding pixels, contingent upon the camera-to-world camera pose Ptar of the target image.
The process is depicted as follows.

(u′, v′, 1)T = KPT
tarPrefK

−1Dref (u, v, 1)
T (7)

where (u′, v′) is the coordinates of the reference image projected onto the target perspective. After
a fundamental coordinate transformation, we can obtain the corresponding grid pairs so that the
optical flow in valid regions can be calculated. We subtract the original coordinates (u, v) from the
projected coordinates (u′, v′) to obtain the optical flow F.

F = (u′ − u, v′ − v) (8)

Compared with the synthesized optical flow utilized in previous works (Truong et al., 2020; 2021),
our synthesized data with large displacement can preserve the change of brightness and scale intro-
duced by different perspectives.

A.2 DATA ANALYSIS

As shown in TabA.2, we count the distribution of the Euclidean distance of correspondence on
our training and evaluation datasets. The distribution is divided into three intervals [s010, s1040,
s40+] indicating the displacement’s magnitude falling to 0-10, 10-40, and more than 40 pixels. The
real-world datasets like HPatches (Balntas et al., 2017), Megadepth (Li & Snavely, 2018), and Scan-
Net (Dai et al., 2017) normally contain a dominant ratio of displacement over 40 pixels compared
with the synthesized datasets (Butler et al., 2012; Mayer et al., 2016). It is clear that our synthesized
dataset obtains a closer distribution to the real-world datasets which contributes importantly to the
robustness of our work.
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Table 5: The distribution of correspondence magnitude. We count the Euclidean distance on
real-world(R) datasets including KITTI, HPatches, Megadepth-1500, and synthesized(S) datasets
including FlyingThings3D, TartanAir, and our synthesized dataset. Our generated dataset obtains a
greater ratio of large displacement. R is short for real-world while S is short for synthesized.

Datasets Type
Distance Distribution

s0-10 s10-40 s40+
K (Menze & Geiger, 2015) R 30.3 36.5 33.2
HP (Balntas et al., 2017) R 0.9 4.5 94.6

T (Mayer et al., 2016) S 25.2 45.7 29.1
TA (Wang et al., 2020) S 46.2 47.2 6.6
Si (Butler et al., 2012) S 69.0 21.3 9.7
Sc (Dai et al., 2017) R 0.0 0.6 99.4

M (Li & Snavely, 2018) R 1.1 10.9 88.0
TS(Ours) S 0.9 9.2 89.9

A.3 OPTICAL FLOW ESTIMATION

We conduct experiments for optical flow estimation to explore the performance of dense-based ge-
ometry estimation networks and compare our proposed RSDM with other state-of-the-art optical
flow methods under the same training pipeline. As represented in TabA.3, generalization results
on the Sintel and KITTI datasets are reported with training on the FlyingChairs first following the
finetune on the FlyingThings3D datasets. It is clear that DKM struggles in disordered motion es-
timation and obtains close performance to PWCNet(Sun et al., 2017) as they share a close design
of network architecture. The proposed iterative GRU refinement in RAFT(Teed & Deng, 2020)
empowers the localization of fast-moving objects which is required in optical flow estimation. Our
RSDM achieves competitive results on the Sintel dataset and reaches the lowest outlier percentage
on the KITTI dataset. As can be seen in Fig5, the detailed optical flow prediction can be obtained
with the help of the employment of fine-grained features.
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Figure 5: Qualitative comparison on the KITTI and Sintel datasets. Our RSDM is capable of
estimating more consistent and detailed optical flow compared with others.
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Table 6: Generalization comparison for optical flow estimation. Following a standard pipeline,
we train our RSDM and DKM on FlyingChairs and FlyingThings datasets while testing on Sintel
and KITTI datasets. Our RSDM achieves the lowest percentage of matching outliers.

Method
Sintel-EPE KITTI

Clean Final EPE F1
PWCNet (Sun et al., 2017) 2.6 3.9 10.4 33.7
DKM (Edstedt et al., 2023) 2.6 4.4 13.1 37.7

MS-RAFT (Jahedi et al., 2022) 1.4 2.7 - -
FlowFormer (Huang et al., 2022) 1.0 2.4 4.1 14.7

GMFlow (Xu et al., 2022b) 1.1 2.5 7.8 23.4
RAFT (Teed & Deng, 2020) 1.4 2.7 5.0 17.4

Ours 1.0 2.4 4.6 13.2
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A.4 ETH3D EVALUATION

Table 7: Zero-shot evaluation on the ETH3D dataset. Both average end-point-error and percent-
age of correct matches within the 1-pixel threshold are reported at various intervals.

Method
5 7 9 11 13 15

AEPE
RANSAC-Flow (Shen et al., 2020) 1.9 2.1 2.3 2.4 2.6 2.8
PDCNet+(H) (Truong et al., 2023) 1.7 2.0 2.2 2.5 2.7 3.2
FlowFormer (Huang et al., 2022) 2.0 2.3 2.8 3.3 8.0 13.9
FlowFormer++ (Shi et al., 2023) 2.0 2.2 2.6 3.1 4.0 8.7

RAFT (Teed & Deng, 2020) 1.8 2.1 2.8 5.8 11.7 21.2
DKM (Edstedt et al., 2023) 1.8 1.9 2.1 2.2 2.4 2.6

Ours 1.7 1.8 2.0 2.1 2.3 2.4
PCK-1

RANSAC-Flow (Shen et al., 2020) 54.7 51.6 48.6 46.1 44.0 41.8
PDCNet+(H) (Truong et al., 2023) 59.9 56.8 54.1 51.6 49.6 47.3
FlowFormer (Huang et al., 2022) 55.1 50.9 47.3 44.0 40.6 37.2
FlowFormer++ (Shi et al., 2023) 55.2 51.1 47.5 44.1 41.2 37.7

RAFT (Teed & Deng, 2020) 56.2 52.0 48.4 44.8 41.3 37.6
DKM (Edstedt et al., 2023) 58.9 56.0 53.4 51.1 49.2 47.1

Ours 60.8 58.2 55.9 53.8 52.0 50.3
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A.5 VISUALIZATION

We provide more visualizations here.
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Figure 6: More visualized comparisons between our RSDM and other methods.
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