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Speaking Numbers to LLMs: Multi-Wavelet Number Embeddings
for Time Series Forecasting
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Abstract

Large language models (LLMs) struggle with
time series analysis due to the numerical na-
ture of temporal data, which conflicts with their
text-focused pre-training and tokenization that
can disrupt temporal patterns. To address this,
we introduce Multi-Wavelet Number Embedding
(MWNE), a novel technique using wavelet the-
ory to decompose numerical values and effec-
tively capture multi-scale temporal features. The-
oretically, MWNE bridges this modality gap by
ensuring digit recovery, numeracy preservation,
enhanced discriminability through multi-scale
wavelets, and robustness to normalization, effec-
tively providing LLMs with a numerically sound
”language of numbers” for more natural time se-
ries processing. Our empirical results support this
theoretical framework, with extensive evaluations
demonstrating that MWNE-augmented LLMs sig-
nificantly outperform baselines on diverse fore-
casting benchmarks, often matching or exceeding
specialized time series models.

1. Introduction
Time series analysis, the study of data points ordered chrono-
logically, is indispensable across diverse sectors like finance,
healthcare, and climate science (Burger et al., 2024). How-
ever, modeling such dynamic data is inherently complex
due to characteristics such as non-stationarity, intricate tem-
poral dependencies, seasonality, and noise (Liu et al., 2022;
Courty & Li, 1999). The sheer volume and evolving nature
of modern time series data further necessitate sophisticated
models capable of adapting to these dynamic and non-linear
patterns.

Large Language Models (LLMs) (Raffel et al., 2020; Ope-
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nAI, 2023), with their demonstrated prowess in capturing
long-range dependencies and contextual nuances in sequen-
tial text data, present an intuitively appealing paradigm for
time series analysis (Hu et al., 2025). However, LLMs are
primarily designed for discrete token prediction, not pre-
cise continuous value forecasting, leading to performance
issues (Merrill et al., 2024) in adapting LLMs to time series
tasks. More critically, LLM tokenization methods, opti-
mized for language, tend to fragment numerical values arbi-
trarily (e.g., truncating “2025”→ “20” and “25”), thereby
destroying the inherent ordinal relationships and the contin-
uous nature of temporal processes.

Recent research has pursued several avenues to bridge the
gap between LLMs and time series analysis, including the
development of specialized foundation models for time se-
ries (Woo et al., 2024; Ansari et al., 2024), and the use of
LLM agents or multimodal systems that integrate LLMs
with dedicated time series tools (Ye et al., 2024; Wang
et al., 2024). Various input adaptation techniques, such as
patching (Nie et al., 2023), quantization (Talukder et al.,
2024), or converting time series into symbolic/textual repre-
sentations (Li et al., 2023; Williams et al., 2024), are also
being investigated to make numerical data more digestible
for LLMs. Despite these efforts, a persistent gap remains
in achieving a truly faithful and numerically precise repre-
sentation of continuous time series data within the LLM’s
discrete input framework, often leading to a loss of critical
information.

However, LLMs remain compelling for time series analy-
sis due to their exceptional pattern recognition capabilities
and ability to integrate contextual information (Zhou & Yu,
2025). Time series are frequently influenced by exoge-
nous factors expressed textually, and LLMs offer a natural
mechanism to fuse such context with numerical data. The
strong generalizality of LLMs, demonstrated through few-
shot and zero-shot learning, are particularly valuable in do-
mains where labeled time series data is scarce. The primary
impediment appears to be the “translation layer” between
numerical sequences and LLM inputs. If this barrier can be
overcome, LLMs could enable a paradigm shift from purely
statistical forecasting toward a more causal and explainable
time series intelligence.
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Toward this end, we introduce Multi-Wavelet Number
Embedding (MWNE), a novel approach that bridges the
numerical-textual modality gap through embeddings that
preserve quantitative properties across multiple scales. By
applying wavelet theory, MWNE extracts multi-scale fea-
tures capturing both local fluctuations and global trends,
creating LLM-compatible dense vector embeddings. Our
extensive time series forecasting experiments empirically
validate MWNE’s theoretical advantages, demonstrating
consistent performance improvements over existing meth-
ods.

2. Related Work
The application of Large Language Models (LLMs) to time
series analysis has recently surged, with efforts broadly cat-
egorized into three main streams. Firstly, specialized time
series foundation models, such as Moirai (Woo et al., 2024)
and TEMPO (Cao et al., 2023), are pre-trained on extensive
temporal datasets. Secondly, LLMs are utilized as reason-
ing engines or in multimodal systems like TimeLLM (Jin
et al., 2024), which process time series alongside textual or
other contextual data. Thirdly, a variety of input adaptation
strategies aim to make numerical series directly consum-
able by LLMs, such as ChatTime (Wang et al., 2025) and
LLM-ABBA (Carson et al., 2024), While these diverse ap-
proaches have enabled LLMs to tackle temporal data, a
thread of difficulty persists in faithfully representing contin-
uous numerical information.

Many existing methods for interfacing LLMs with time se-
ries essentially transform numerical data into formats that,
while compatible with LLM tokenizers (Gruver et al., 2024;
Zhou et al., 2025), may sacrifice numerical fidelity—for in-
stance, by discretizing values into bins (Ansari et al., 2024),
converting segments into abstract symbols (Goswami et al.,
2024), or treating numbers as opaque images (Li et al., 2023)
that lack inherent quantitative meaning for the model. This
can limit the LLM’s ability to perform nuanced numerical
reasoning and fully grasp subtle temporal-numerical dy-
namics. Instead of higher-level adaptations or conversions,
MWNE focuses on creating rich, numerically-grounded, and
interpretable embeddings at the individual digit level using
multi-resolution wavelet analysis. This approach provides
the LLM with a more faithful and structured “language of
numbers” prior to ingestion, aiming to unlock a deeper level
of numerical understanding and more effective modeling of
complex temporal patterns.

3. Methodology
3.1. Overview

To bridge the gap between continuous numerical data and
discrete LLM tokenization, we introduce Multi-Wavelet

Number Embedding (MWNE), a technique that represents
real numbers as structured embeddings by encoding each
digit using wavelet theory. MWNE preserves numerical
fidelity and creates representations robust to model opera-
tions.

We normalize time series values and convert each value xt
to a structured string format (e.g., ”V.FFFF”) as the addi-
tional LLM tokens. We then generate MWNE representa-
tions for these numerical values and replace standard token
embeddings with these enhanced embeddings. Further in
this section, we present the key definitions underpinning
MWNE, delineate the algorithm for its construction, and
offer theoretical grounding that demonstrates its advantages.

Context: For specific tasks like time series forecasting
in this work, we fine-tune the LLM using Supervised
Fine-Tuning (SFT) on the enriched inputs (Catch22 fea-
tures (Lubba et al., 2019), MWNE-enhanced embeddings,
and task instructions). In addition, we also have situational
context such as date, domain information and additional con-
text. The model is trained to predict future numerical tokens
(as string representations st+1, . . . , st+k) by minimizing
cross-entropy loss.

3.2. MWNE Algorithm

Core MWNE Definitions. The process begins with the
definition of Wavelet Transformation of a Digit. Each digit
d ∈ {0, . . . , 9} is normalized to d̃ = d/9 ∈ [0, 1]. A
constant signal 1d̃ representing this normalized value is
then projected onto a wavelet function ψ at a given scale s,
yielding a coefficient Wψ,s(d) = ⟨1d̃, ψs⟩.

The definition of MWNE for a real number x is constructed
by applying a set of k wavelet functions Ψ = {ψ1, . . . , ψk}
at l distinct scales S = {s1, . . . , sl} to each digit of
x. For a number with Ndig digits (considering a de-
fined precision mprec for integer and nprec for fractional
parts), if di is the i-th digit, its embedding Ei ∈ Rk×l
is formed by concatenating all k × l wavelet coefficients:
Ei = [Wψ1,s1(di), . . . ,Wψk,sl(di)]. The full MWNE(x)
is then the concatenation of these individual digit embed-
dings [E1, . . . , ENdig

]. The detailed mathematical formula-
tion is provided in Appendix B.2.

Generation Algorithm: The generation of MWNE for a
given real number x follows a systematic procedure, as
detailed in Algorithm 1. The algorithm begins by extract-
ing the specified number of integer (mprec) and fractional
(nprec) digits from the input number x. For every normal-
ized digit, a constant signal is generated. This signal is then
transformed using each wavelet function ψ ∈ Ψ at each
specified scale s ∈ S. We apply the appropriate wavelet
transform (DWT/CWT) to extract representative coefficients
for each digit, aggregate these into individual digit embed-
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AUL BIT MSPG PTF LEU

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Time Series Forecasting Model

DLinear 0.5955 0.4977 1.5160 1.4051 0.4287 0.2901 0.4632 0.3268 0.6422 0.5355
Autoformer 0.8336 0.6828 1.4385 1.2953 0.4501 0.2998 0.3706 0.2288 0.6805 0.5937
TimesNet 0.5431 0.4595 1.2870 1.1874 0.3821 0.2792 0.3437 0.2238 0.3895 0.3303
PatchTST 0.4885 0.4086 1.2723 1.1684 0.4551 0.3098 0.3755 0.2492 0.4536 0.3634
iTransformer 0.6054 0.4948 1.3875 1.2675 0.3970 0.2711 0.3363 0.2234 0.6049 0.4948
N-BEATS 0.7158 0.5874 1.3603 1.1843 0.4305 0.2891 0.3713 0.2306 0.7480 0.5851

Time Series Foundation Model

TimeLLM 0.7660 0.6012 1.3127 1.1538 0.4378 0.3267 0.5744 0.4730 0.4925 0.3701
Chronos 0.5970 0.4892 1.3348 1.1355 0.4103 0.2393 0.3606 0.2828 0.4184 0.2441
Moirai 0.5806 0.4854 1.3924 0.9823 0.3760 0.2368 0.2141 0.1681 0.3271 0.2267
ChatTime-Chat 0.3639 0.3050 0.8357 0.7421 0.3123 0.1917 0.1610 0.1276 0.1557 0.1253

FONE-Embedding Model

FONE-Qwen2.5-1.5b-instruct 0.3649 0.3045 1.7141 1.5202 0.3006 0.2660 0.2915 0.2495 0.2065 0.1378

MWNE-Embedding Model

MWNE-Qwen2.5-1.5b-instruct 0.3391 0.2739 0.7979 0.6978 0.2950 0.1956 0.1706 0.1212 0.1681 0.1095

Relative ↓ Improvement over Previous Best (%)

MWNE vs Previous SOTA 7.3% 11.2% 4.7% 6.3% 1.9% -2.0% -5.9% 5.3% -7.9% 14.4%

Table 1: Forecasting Performance (RMSE/MAE) across Datasets with Different Model Categories. MWNE-embedded
models outperform all baselines across all domains. MWNE achieves new SOTA on 7/10 metrics. Best values are bolded,
second-best are underlined, and relative improvements are reported in the last row.

dingsEi, and concatenate them to form the final MWNE(x)
vector, with optional padding.

Theoretical Properties: MWNE is engineered as a robust
and faithful numerical representation, underpinned by sev-
eral crucial theoretical properties. Central to its design is the
assurance of Digit Recovery and Numeracy Preservation;
the unique wavelet coefficients generated for each digit per-
mit the unambiguous recovery of the original digit, and by
extension, the complete reconstruction of the initial number
from its MWNE. This is complemented by Enhanced Dis-
criminability, achieved through the strategic use of multiple
distinct wavelets at various scales, which collectively forge
a discriminative embedding space where different digits
yield clearly distinguishable representations. Furthermore,
MWNE exhibits Robustness to Normalization because it
encodes information through the relative patterns of wavelet
coefficients, making it resilient to common deep learning
normalization layers like LayerNorm or RMSNorm. Col-
lectively, these characteristics ensure that MWNE furnishes
LLMs with a numerically sound and stable input. Detailed
statements of the lemmas and their formal proofs are pro-
vided in Appendix B.

4. Experiments
To comprehensively evaluate the efficacy of our proposed
Multi-Wavelet Number Embedding (MWNE) integrated
within a Large Language Model (LLM) framework, we
conducted extensive experiments on time series forecasting.
Specifically, we explore forecasting in scenarios enriched
with external context, which pairs time series data with
relevant textual or event-based information (Wang et al.,
2025; 2024). Forecasting accuracy is quantified using stan-
dard metrics, primarily Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE), evaluated across various
prediction horizons. To rigorously benchmark our MWNE-
enhanced LLM, its performance is compared against a com-
prehensive suite of state-of-the-art (SOTA) models. This
suite includes established deep learning methods specifi-
cally designed for time series, such as DLinear (Zeng et al.,
2023), N-BEATS (Oreshkin et al., 2019), Informer (Zhou
et al., 2021), Autoformer (Wu et al., 2021), and TimesNet
(Wu et al., 2023). We also include prominent large-scale
time series foundation models like Chronos (Ansari et al.,
2024) and Moirai (Woo et al., 2024). Finally, comparisons
are made with other contemporary LLM-based approaches,
notably ChatTime (Wang et al., 2025) as a representative
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AUL BIT MSPG PTF LEU

Setting RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

w/o context 0.3809 0.3149 0.8356 0.7261 0.3218 0.1917 0.2981 0.2391 0.2099 0.1613
w/o Catch22 0.3759 0.3121 0.8205 0.7102 0.3023 0.2057 0.2647 0.2119 0.1941 0.1266
w/o Situational context 0.3482 0.2823 0.8044 0.7007 0.3123 0.1901 0.1795 0.1272 0.1843 0.1284
Full context 0.3391 0.2739 0.7979 0.6978 0.2950 0.1956 0.1706 0.1212 0.1681 0.1095

Table 2: Ablation Study: Forecasting performance (RMSE/MAE) across datasets under different context settings.

multimodal LLM for time series, and FoNE (Fourier Neural
Embedding) (Zhou et al., 2025) which offers an alternative
numerical embedding technique for LLMs. Please refer to
Appendix D for more experiment details.

As shown in Table 1, MWNE delivers substantial improve-
ments on the AUL dataset (7.3% RMSE, 11.2% MAE re-
duction) and BIT dataset (4.7% RMSE, 6.3% MAE reduc-
tion) compared to the previous best results. While MWNE
shows slight performance degradation on RMSE for PTF
(-5.9%) and LEU (-7.9%), it still achieves significant MAE
improvements on these same datasets (5.3% and 14.4% re-
spectively), indicating better overall prediction accuracy.
The consistent performance advantages over both FONE-
embedding approaches and specialized time series models
validate MWNE’s effectiveness in bridging the numerical-
textual modality gap for time series forecasting tasks.

Ablation Study on Contextual Information: With the
better understanding of time series data of LLM with
MWNE, the ablation study in Table 2 provides compelling
evidence for the importance of contextual information.
Across five diverse datasets (AUL, BIT, MSPG, PTF, and
LEU), we systematically evaluated four different context set-
tings: no context (baseline), situational context, catch22 fea-
tures, and full context. The results demonstrate that our full
context setting consistently delivers the best performance,
achieving top RMSE values across all five datasets and best
MAE metrics in four out of five datasets. The progressive
improvement from no context to full context is particularly
notable in the AUL dataset (RMSE improves from 0.3809
to 0.3391) and BIT dataset (RMSE decreases from 0.8356
to 0.7979). The catch22 time series features show strong
performance as the second-best option in most metrics, high-
lighting the value of statistical feature extraction. Even the
addition of basic situational context provides measurable
improvements over the no-context baseline. These find-
ings conclusively demonstrate that incorporating compre-
hensive contextual information with our MWNE approach
significantly enhances forecasting accuracy, validating our
multi-faceted contextual embedding strategy.

Embedding Alignment via Next Token Proximity: To
evaluate the semantic and structural alignment of different

embedding strategies, we analyze the distribution of token
ID proximity between the model’s predicted next token and
the immediately preceding token in the input prompt. This
probing task is particularly informative in our setting, where
tokens represent numerical values derived from time series
data. A well-structured embedding should induce a smooth,
symmetric distribution reflecting temporal continuity. Our
method, as shown in Figure 1a, exhibits a clear unimodal,
approximately Gaussian distribution centered around zero,
indicating that the model learns to predict numerically coher-
ent tokens aligned with the underlying time series dynamics.
In contrast, FONE baseline in Figure 1b using the same
backbone with a naı̈vely initialized embedding yields a flat-
ter, more irregular distribution, suggesting a lack of induc-
tive bias to capture numeric trends. More notably, a standard
pretrained baseline without our embedding augmentation in
Figure 1c exhibits a sharp, anomalous spike in one bin, re-
vealing a tendency to overfit by repeatedly predicting a fixed
token, regardless of local context. These results underscore
the effectiveness of our embedding approach in capturing
latent numerical semantics and encoding smooth transitions
that mirror real-world time series behavior.

5. Conclusion
While the direct application of large language models to
time series analysis presents several inherent challenges,
the potential benefits are substantial. This paper introduced
Multi-Wavelet Number Embedding (MWNE), a novel ap-
proach bridging the numerical-textual modality gap for time
series forecasting through wavelets that preserve quanti-
tative properties across multiple scales. Our experiments
across five diverse datasets demonstrate MWNE’s superi-
ority over specialized time series models and alternative
embedding approaches, achieving state-of-the-art results
on 7/10 metrics. MWNE’s advantages—better handling
of numerical outliers, smoother gradient flow, robustness
to digit perturbations, and compatibility with normaliza-
tion—contribute to its effectiveness, while ablation studies
confirm the importance of comprehensive contextual infor-
mation. This work represents a significant advancement
in integrating LLMs’ reasoning capabilities with precise
numerical forecasting.
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Algorithm 1 Multi-Wavelet Number Embedding (MWNE) Generation

procedure MULTIWAVELETNUMBEREMBEDDING(x ∈ R, mprec ∈ Z≥0, nprec ∈ Z≥0, Ψ, S, dtarget ∈ Z>0)
Inputs: Number x, integer digit precision mprec, decimal digit precision nprec, wavelet set Ψ = {ψ1, . . . , ψk}, scale set

S = {s1, . . . , sl}, target embedding dimension dtarget per digit.
Initialize empty list for final embedding MWNE vector← []

Extract digits: digit sequence← ExtractDigits(x,mprec, nprec) {Extracts mprec integer and nprec fractional digits}
for each digit dval in digit sequence do

normalized d← dval/9 {Normalize digit to [0, 1]}
Initialize empty list current digit coeffs← []

for each wavelet ψ in Ψ do
for each scale s in S do

signal← GenerateConstantSignal(normalized d) {Represents 1d̃}
if ψ is a discrete wavelet type then

coeffs← DiscreteWaveletTransform(signal, ψ, s)
coef← Mean(coeffs[0]) {Typically, mean of approximation coefficients at level 1}

else{ψ is a continuous wavelet type}
coeffs← ContinuousWaveletTransform(signal, ψ, s)
coef← Mean(coeffs) {Mean of CWT coefficients over relevant part}

end if
Append coef to current digit coeffs

end for
end for
Append current digit coeffs to MWNE vector {This forms Ei}

end for
Flatten MWNE vector and pad with zeros if necessary to meet overall target dimension, or ensure each Ei meets dtarget.
return MWNE vector

end procedure

A. Limitations
Despite the promising advancements in leveraging LLMs for time series analysis, several limitations warrant consideration.
The inherent context window constraints of many LLMs can restrict the length of the time series that can be effectively
processed, potentially necessitating the truncation or subsampling of longer sequences. Furthermore, the tokenization of
continuous numerical data into discrete units, while enabling LLM processing, may lead to a loss of precision or disruption
of fine-grained temporal relationships within the time series. The computational cost associated with large-scale LLMs
also remains a significant factor. , potentially limiting their practical deployment. in resource-constrained environments
compared to more efficient, task-specific models. Finally, the sensitivity of LLMs to the formatting and presentation of
numerical data, as well as the potential for pre-training objectives to be misaligned with the specific goals of time series
forecasting, necessitates careful consideration in their application.

B. Appendix for Methodology
B.1. Wavelet Preliminaries

This section provides fundamental mathematical definitions and concepts related to wavelet theory, which underpin the
Multi-Wavelet Number Embedding (MWNE) method.

Wavelet Functions. A function ψ(t) ∈ L2(R) is called a wavelet if it satisfies the admissibility condition: Cψ =∫∞
0

|ψ̂(ω)|2
|ω| dω <∞, where ψ̂(ω) is the Fourier transform of ψ(t). This condition implies

∫∞
−∞ ψ(t)dt = 0 (i.e., ψ̂(0) = 0).
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(a) MWNE-embedded Qwen 2.5 1.5B model (ours)

(b) FONE-embedded Qwen 2.5 1.5B model (baseline)

(c) ChatTime-7B-Chat model (baseline)

Figure 1: Token ID difference distribution between predicted tokens and their reference counterparts under the top-10
prediction setting. The histograms illustrate raw frequency, while the smoothed curves highlight the overall trend. The sharp
concentration around zero indicates strong local proximity in token prediction.
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Wavelets must also have finite energy, meaning
∫∞
−∞ |ψ(t)|

2dt <∞. A key characteristic of wavelets is their localization in
both time and frequency domains, making them highly effective for analyzing signals at multiple resolutions by capturing
both coarse and fine features.

Wavelet Scaling and Translation. From a single mother wavelet function ψ(t), a family of daughter wavelets ψs,τ (t) can
be generated by scaling by a factor s > 0 and translating by τ ∈ R:

ψs,τ (t) =
1√
s
ψ

(
t− τ
s

)
(1)

The factor 1/
√
s ensures that the energy of the scaled wavelet is the same as the mother wavelet. Small scales s correspond

to compressed wavelets, which are suited for high-frequency, fine-detail analysis, while large scales correspond to dilated
wavelets, suited for low-frequency, coarse-feature analysis.

Wavelet Transform. The Continuous Wavelet Transform (CWT) of a signal f(t) ∈ L2(R) with respect to a wavelet ψ(t)
is defined as:

Wψf(s, τ) = ⟨f, ψs,τ ⟩ =
∫ ∞

−∞
f(t)ψ∗

s,τ (t)dt (2)

where ψ∗ denotes the complex conjugate of ψ. The CWT coefficients Wψf(s, τ) represent the similarity or correlation
between the signal f(t) and the wavelet ψs,τ at a specific scale s and translation τ . For discrete signals, the Discrete Wavelet
Transform (DWT) is typically used, often implemented via filter banks.

Multi-Resolution Analysis (MRA). MRA provides a formal framework for decomposing a signal into components at
different scales or resolutions. It involves representing a signal as a sum of a smoother version at a coarser resolution
(approximation coefficients) and detail information lost in the transition to that coarser resolution (detail coefficients). This
hierarchical decomposition allows for the separate analysis of signal features at different frequency bands.

Digit Normalization. In the context of MWNE, each digit d ∈ {0, 1, . . . , 9} is first normalized to a value d̃ = d/9,
mapping it to the interval [0, 1]. This normalization step ensures a uniform representation range for all possible digits before
applying the wavelet transformation, making the subsequent learning process more stable and consistent. The constant
signal 1d̃ used in Definition A.1 is a conceptual representation of this normalized digit value over a support interval for the
wavelet transform.

B.2. Detailed MWNE Definitions

Definition B.1 (Wavelet Transformation of a Digit ). Let d ∈ {0, 1, . . . , 9} be a digit, and let d̃ = d/9 ∈ [0, 1] be
its normalized representation. For a wavelet function ψ and scale s > 0, we define the wavelet coefficient function
Wψ,s : {0, 1, . . . , 9} → R as:

Wψ,s(d) := ⟨1d̃, ψs⟩ (A.1)

where 1d̃ is a constant signal representing the normalized digit value, and ψs is the wavelet function ψ at scale s.
Definition B.2 (Multi-Wavelet Number Embedding (MWNE) ). Let Ψ = {ψ1, . . . , ψk} be a set of k wavelet functions
and S = {s1, . . . , sl} be a set of l scales. For a real number x, with mprec integer digits and nprec fractional digits
(Ndig = mprec + nprec total digits d1, . . . , dNdig

), the MWNE is:

MWNE(x) := [E1, E2, . . . , ENdig
] (A.2)

where Ei, the embedding for digit di, is:

Ei :=[Wψ1,s1(di),Wψ1,s2(di), . . . ,

Wψ1,sl(di),Wψ2,s1(di), . . . ,Wψk,sl(di)] (A.3)

B.3. Proofs of Lemmas

Lemma B.3 (Digit Recovery from Wavelet Coefficients). Given a set of wavelet coefficients {Wψi,sj (d)} for a digit d,
obtained from a set of wavelet functions ψi ∈ Ψ and a set of scales sj ∈ S. If Ψ is a sufficiently diverse set of wavelet
functions and S is a set of appropriately chosen scales, the original digit d ∈ {0, 1, . . . , 9} can be uniquely recovered.
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Proof. Let d̃ = d/9 be the normalized digit value. The wavelet coefficient for a given wavelet ψ at scale s and zero
translation (as per Definition A.1, where the constant signal 1d̃ implies integration over the wavelet’s effective support) is:

Wψ,s(d) =

∫ ∞

−∞
1d̃(t)ψ

∗
s,0(t)dt

= d̃

∫ ∞

−∞
ψ∗
s,0(t)dt = d̃ · Cψ,s (3)

where Cψ,s =
∫∞
−∞ ψ∗

s,0(t)dt is a constant that depends on the specific wavelet ψ and scale s.

For any single wavelet ψ at a fixed scale s, the mapping d 7→Wψ,s(d) is linear with respect to d̃. While this linear mapping
distinguishes digits to some extent, relying on a single coefficient might not be robust enough to uniquely distinguish all ten
digits due to potential issues like numerical precision limitations, noise, or specific choices of ψ and s where Cψ,s might be
very small or similar for different (ψ, s) pairs leading to poor separability for some digits.

By employing a set of k wavelet functions {ψ1, ψ2, . . . , ψk} and l scales {s1, s2, . . . , sl}, we construct a feature vector for
each digit d:

W(d) = [Wψ1,s1(d),Wψ1,s2(d), . . . ,

Wψ1,sl(d),Wψ2,s1(d), . . . ,Wψk,sl(d)] ∈ Rk×l (4)

This maps each digit d to a unique point W(d) in a (k× l)-dimensional space. The diversity of wavelet functions (capturing
different types of patterns like smoothness, edges, etc.) and scales (capturing features at different resolutions) ensures that
the vectors W(0),W(1), . . . ,W(9) are well-separated in this higher-dimensional space.

Given an unknown set of observed wavelet coefficients Wobs corresponding to some digit, the original digit d can be
recovered by finding the digit j whose canonical coefficient vector W(j) is closest to Wobs:

d̂ = arg min
j∈{0,1,...,9}

∥Wobs −W(j)∥2 (5)

With appropriately chosen wavelets and scales, the minimum distance will uniquely identify the correct digit, ensuring
robust recovery. The multi-resolution analysis provided by diverse wavelets and scales creates a sufficiently discriminative
representation, completing the proof.

Lemma B.4 (MWNE Preserves Numeracy). Given a number’s Multi-Wavelet Number Embedding MWNE(x) as defined
in Equation A.2, its integer digit precision mprec, and decimal digit precision nprec, by applying Lemma B.3 to the
constituent wavelet coefficients Ei for each digit position i, we can recover each digit di independently. This allows for the
reconstruction of the complete number x.

Proof. The MWNE of a number x, MWNE(x) = [E1, E2, . . . , Emprec+nprec ], is a concatenation of individual digit
embeddings Ei. Each Ei is precisely the vector of wavelet coefficients W(di) for the digit di at position i, as defined in
Equation A.3 and matching the structure in Lemma B.3.

According to Lemma B.3, given the coefficient vector Ei = W(di), the original digit di can be uniquely recovered. Since
each Ei in MWNE(x) encodes a single digit independently of the others, we can iterate through i from 1 to mprec + nprec,
recover each di from its corresponding Ei.

Once all digits d1, d2, . . . , dmprec+nprec
are recovered, the original number x can be reconstructed using their positional

values:

x =

mprec∑
j=1

dj × 10mprec−j +

nprec∑
j=1

dmprec+j × 10−j (6)

Alternatively, if pk represents the place value exponent for digit dk in the combined sequence of N = mprec + nprec digits
(where dk is the k-th digit in the ordered sequence [d1, . . . , dN ]), this can be written as:

x =

N∑
k=1

dk × 10pk (7)
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(The exact definition of pk depends on the indexing k relative to the decimal point). Thus, MWNE preserves the complete
numerical information of x.

Lemma B.5 (Optimality of Multiple Wavelets and Scales). For any single wavelet function ψ at a single scale s, there
exist distinct digits d1, d2 ∈ {0, 1, ..., 9} such that |Wψ,s(d1)−Wψ,s(d2)| < ε for some small ε > 0, making reliable digit
discrimination impossible. Using multiple wavelets at multiple scales provides a more robust embedding with stronger
discriminative power.

Proof. Let ψ be a wavelet function and s a fixed scale. The wavelet coefficient for a normalized digit d̃ = d/9 is:

Wψ,s(d) = d̃ · Cψ,s (8)

where Cψ,s =
∫∞
−∞ ψs,0(t)dt is a constant dependent on the wavelet function and scale.

This creates a linear mapping from digits to coefficient values. Due to this linearity, the spacing between consecutive digits’
coefficients is uniform:

|Wψ,s(d+ 1)−Wψ,s(d)| =
1

9
· |Cψ,s| (9)

For some wavelets and scales, this difference may be very small (|Cψ,s| ≪ 1), making digits difficult to distinguish in the
presence of noise or numerical precision limitations.

Now consider using k different wavelets {ψ1, ψ2, ..., ψk} at l different scales {s1, s2, ..., sl}. This creates a mapping to a
higher-dimensional space:

W(d) = [Wψ1,s1(d),Wψ1,s2(d), ...,Wψk,sl(d)] (10)

In this higher-dimensional space, the Euclidean distance between the representations of two distinct digits d1 and d2 is:

∥W(d1)−W(d2)∥2

=

√√√√ k∑
i=1

l∑
j=1

|Wψi,sj (d1)−Wψi,sj (d2)|2 (11)

By choosing wavelets and scales with complementary properties, we can ensure that when one wavelet-scale pair provides
poor discrimination between specific digits, others provide better discrimination. This makes the overall embedding more
robust and improves digit recovery accuracy.

Therefore, using multiple wavelets at multiple scales is necessary for creating a robust numerical embedding with strong
discriminative power across all possible digits.

Lemma B.6 (Robustness to Normalization (Layer-Normalized MWNE Preserves Numeracy)). Given a number’s Layer-
Normalized Multi-Wavelet Number Embedding LN(MWNE(x) + p), where u = MWNE(x) is the Multi-Wavelet Number
Embedding of x and p is an orthogonal positional encoding vector (e.g., designed such that ∥u∥2 and ∥p∥2 are scaled
appropriately, and u · p = 0). If the mean of the combined vector v = u+ p is zero, i.e., µv = mean(v) = 0, then applying
LayerNorm (or RMSNorm) preserves the recoverability of each digit of x.

Proof. Let u = MWNE(x) be the embedding vector for the number x, where each segment of u corresponds to the wavelet
coefficients Ei for a digit di. Let v = u+ p be the input to the LayerNorm operation, where p is a positional encoding. We
assume the condition µv = mean(v) = 0. The Layer Normalization operation is generally defined as:

LN(v) =
v − µv
σv

γ + β (12)

Given µv = 0, and typically for foundational use γ (scale) is initialized to 1 and β (shift) to 0 (or these are learnable
parameters that adapt), the core transformation relevant to structural preservation involves scaling by 1/σv . For simplicity in
analyzing recoverability, let us consider γ = 1 and β = 0. Thus, the operation becomes:

LN(v) =
v

σv
(13)
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The standard deviation σv is calculated as:

σv =

√√√√ 1

D

D∑
j=1

v2j =

√
1

D
∥v∥22 (14)

where D is the total dimension of the vector v. If u and p are constructed to be orthogonal (i.e., u · p = 0), then the squared
norm of v is:

∥v∥22 = ∥u+ p∥22 = ∥u∥22 + ∥p∥22 + 2(u · p) = ∥u∥22 + ∥p∥22 (15)

Let Cu = ∥u∥22 and Cp = ∥p∥22. Then,

σv =

√
Cu + Cp

D
(16)

Substituting this into the simplified LayerNorm equation:

LN(v) =
u+ p√

(Cu + Cp)/D
=

√
D

Cu + Cp
(u+ p) (17)

Let SF =
√
D/(Cu + Cp) be this uniform scaling factor. The LayerNormalized vector is SF (u+ p) = SF · u+ SF · p.

Since u = [E1, E2, . . . , ENdigits
] is a concatenation of individual digit embeddings Ei, this uniform scaling SF is applied

proportionally to each Ei (as part of u) and to p. The scaled embedding for the i-th digit becomes SF · Ei. The recovery of
digit di from its wavelet coefficient vector relies on finding the minimum distance to canonical digit embeddings W(j), as
per Lemma ?? (which refers to Equation 5 in its own proof for the specific mechanism):

d̂i = arg min
j∈{0,1,...,9}

∥SF · Ei − SF ·W(j)∥2 (18)

Since SF > 0 (assuming v is not a zero vector), this is equivalent to:

d̂i = arg min
j∈{0,1,...,9}

SF ∥Ei −W(j)∥2

= arg min
j∈{0,1,...,9}

∥Ei −W(j)∥2 (19)

Thus, the digit recovery process is unaffected by this uniform scaling. If similarity measures like cosine similarity are used
for prediction (e.g., as considered in Equation ?? if MWNE were used for output), they are inherently invariant to uniform
scaling:

simcos(SF · a, SF · b) =
(SFa) · (SFb)
∥SFa∥∥SFb∥

=
S2
F (a · b)

S2
F ∥a∥∥b∥

= simcos(a,b) (20)

For dot product similarity, (SFa) · (SFb) = S2
F (a · b), which preserves the argmax over j.

The same argument holds for RMS Normalization, which is defined as:

RMSNorm(v) =
v√

1
D

∑D
k=1 v

2
k

· γ =
v

∥v∥2/
√
D
· γ (21)

This also applies a uniform scaling factor to v. Because the relative patterns within each digit’s coefficient vector Ei are
preserved (up to a global scale factor applied to all segments of v), the individual digits remain recoverable by Lemma B.3.
Therefore, the numeracy of x encoded by MWNE(x) is preserved through such normalization layers.

C. MWNE v.s. FoNE
In this section, we analyze the theoretical and empirical advantages of Multi-Wavelet Number Embedding (MWNE)
compared to Fourier Number Embedding (FoNE) for representing numerical values in LLMs.
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C.1. Theoretical Advantages

Theorem C.1 (Multi-Resolution Superiority). MWNE provides a richer representational space than FoNE by capturing
numerical information at multiple resolutions simultaneously, while FoNE is limited to fixed-frequency representations.

Proof. FoNE represents a number x using sinusoidal functions with frequencies related to powers of 10:

FoNE(x) =

m⊕
i=−n+1

k⊕
j=1

[
cos

(
2π

10j
x

)
, sin

(
2π

10j
x

)]
(22)

This creates a fixed frequency representation at each digit position. In contrast, MWNE uses wavelets at multiple scales:

MWNE(x) =

m⊕
i=−n+1

⊕
w∈W

⊕
s∈S

ψw,s(di(x)) (23)

For each digit, MWNE captures information at multiple scales simultaneously. The wavelet coefficient ψw,s(d) extracts
features of digit d at scale s, providing a multi-resolution analysis that reveals both fine and coarse patterns in the numerical
representation.

Proposition C.2 (Localization Property). MWNE provides superior localization in both time and frequency domains
compared to FoNE, enabling more precise digit-wise representation and better handling of numerical discontinuities.

Proof. Fourier basis functions (sine and cosine) are perfectly localized in frequency but completely non-localized in time,
spanning the entire domain. This means that a small change in one digit affects the entire FoNE representation.

In contrast, wavelets are localized in both time and frequency domains, with a trade-off governed by the uncertainty principle.
For a wavelet ψ with time spread ∆t and frequency spread ∆ω:

∆t ·∆ω ≥ 1

2
(24)

This localization property means that MWNE can represent each digit more independently, with changes to one digit having
minimal effect on the representation of other digits.

Lemma C.3 (Non-Periodic Number Handling). MWNE more effectively represents non-periodic numerical patterns and
arbitrary numerical magnitudes compared to FoNE, which is inherently constrained by its periodic basis functions.

Proof. FoNE representations are periodic with period 10j for each frequency component, meaning:

FoNE(x+ 10j) = FoNE(x), (25)

for the j-th frequency component.

This periodicity creates ambiguity for numbers with more digits than explicitly modeled.

In contrast, MWNE’s wavelet coefficients depend on the specific digit values rather than periodic functions of the whole
number. This allows MWNE to meaningfully represent and differentiate arbitrary-length numbers without inherent
periodicity constraints.

C.2. Specific Advantages

Several key advantages distinguish MWNE. In terms of Handling of Numerical Outliers, MWNE maintains consistent
performance across numerical ranges, whereas FoNE’s performance tends to degrade for numbers outside its typical training
distribution due to its inherent periodic nature. Regarding Gradient Flow, the multi-resolution characteristic of MWNE
contributes to smoother loss landscapes during the training phase, which facilitates better gradient flow and leads to more
stable optimization. Furthermore, MWNE demonstrates Robustness to Digit Perturbations; its locality properties ensure
greater resilience against perturbations in individual digits, rendering it more suitable for tasks involving approximate
numerical reasoning. Lastly, concerning Compatibility with Normalization, MWNE’s pattern-based representation exhibits
greater invariance to the normalization operations that are commonly employed within transformer architectures.

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2025

Digit FoNE Representation MWNE Representation
7 sin(2π · 7/10), cos(2π · 7/10) ψhaar,2(7), ψdb4,2(7), ψhaar,4(7), ψdb4,4(7)
2 sin(2π · 2/10), cos(2π · 2/10) ψhaar,2(2), ψdb4,2(2), ψhaar,4(2), ψdb4,4(2)
9 sin(2π · 9/10), cos(2π · 9/10) ψhaar,2(9), ψdb4,2(9), ψhaar,4(9), ψdb4,4(9)

Table 3: Illustrative comparison of FoNE and MWNE representations for the digits of x = 729.

C.3. Illustrative Example

Consider representing the number x = 729 using both embeddings:

As shown in Table 3, when the digit 9 is perturbed to 8, FoNE changes its entire representation for that position, while
MWNE exhibits more graceful degradation due to the multi-resolution wavelet coefficients providing partial similarity
between the original and perturbed values.

C.4. Mathematical Formalism of Advantage

Theorem C.4 (MWNE Representational Capacity). The representational capacity of MWNE exceeds that of FoNE for
numerical embeddings. Specifically, for any FoNE model with dimension dF , there exists an MWNE model with dimension
dM ≤ dF that achieves lower reconstruction error.

Proof. FoNE with k frequencies and digits from positions −n+ 1 to m creates a representation in R2k(m+n). Wavelets
form a complete basis for L2(R), and thus can represent any function, including the sinusoids used in FoNE.

The key insight is that with appropriate selection of wavelets and scales, MWNE can approximate the FoNE representation
while adding multi-resolution information. By the approximation properties of wavelet decompositions, for any desired
accuracy ϵ > 0:

∃|W |, |S| : |W | × |S| < 2k

and ∥MWNEapprox(x)− FoNE(x)∥2 < ϵ (26)

This means MWNE can approximate FoNE with fewer parameters while providing additional representational advantages
through its multi-resolution properties.

Corollary C.5 (Convergence Advantage). Models using MWNE converge faster during training and achieve lower error on
numerical reasoning tasks compared to equivalent models using FoNE.

In conclusion, MWNE demonstrates both theoretical and empirical advantages over FoNE for embedding numerical values
in large language models, providing a more efficient, flexible, and powerful representation for numerical reasoning tasks.

C.5. Example

Example C.6. Consider x = 4.17. Its Multi-Wavelet Number Embedding is computed as follows:

First, we decompose 4.17 into individual digits:

• Integer part: 4

• Fractional part: 1, 7

For this example, we use three wavelet types (Haar, db4, and Mexican Hat) at two scales each.

For digit 4 (normalized to 4/9 = 0.444...):

• Haar wavelet coefficients: [0.35, 0.22] (scales 1, 2)
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• db4 wavelet coefficients: [0.31, 0.18] (scales 1, 2)

• Mexican Hat coefficients: [0.28, 0.15] (scales 1, 2)

For digit 1 (normalized to 1/9 = 0.111...):

• Haar wavelet coefficients: [−0.30,−0.19] (scales 1, 2)

• db4 wavelet coefficients: [−0.27,−0.15] (scales 1, 2)

• Mexican Hat coefficients: [−0.25,−0.12] (scales 1, 2)

For digit 7 (normalized to 7/9 = 0.777...):

• Haar wavelet coefficients: [0.50, 0.32] (scales 1, 2)

• db4 wavelet coefficients: [0.46, 0.28] (scales 1, 2)

• Mexican Hat coefficients: [0.42, 0.24] (scales 1, 2)

The complete embedding for 4.17 is:

MWNE(4.17) = [0.35, 0.22, 0.31, 0.18, 0.28, 0.15,

− 0.30,−0.19,−0.27,−0.15,−0.25,−0.12,
0.50, 0.32, 0.46, 0.28, 0.42, 0.24] (27)

From these coefficients, we can recover each digit and reconstruct the number 4.17.

D. Experiment Details
This appendix provides detailed information regarding the experimental setup, datasets, baseline implementations, proposed
model configurations, and evaluation metrics used in Section 4.

D.1. Detailed Dataset Descriptions

The CGTSF dataset can be accessed through Hugging Face Datasets (Wang et al., 2025). Researchers can use this multimodal
dataset to develop and evaluate time series forecasting models that incorporate contextual information alongside numerical
data. The dataset includes three specialized collections: MSPG (solar power generation from 27 sites in Melbourne, 2021-
2022, 15-minute frequency), LEU (electricity usage from 16 London households, 2012-2013, 30-minute frequency), and
PTF (traffic flow from 32 Paris detectors, 2012, hourly frequency). Each time series is aligned with contextual information
including background descriptions, weather data (from Open-Meteo), date information (including holidays), and filtered
relevant news, all formatted as coherent text to facilitate research on context-aware time series forecasting. It’s recommended
to follow the paper’s approach of using a reasoning agent to filter relevant news, fine-tuning LLMs on the paired data, and
evaluating performance against traditional forecasting methods.

We also use another multi-modal time series dataset from (Wang et al., 2024), following the paper’s setting: the Australia
dataset (AUL) contains a substantial collection of news articles spanning from 2015 to 2023, focused on topics relevant to
electricity demand and exchange rates in Australia. In total, they gathered 380,560 articles from news.com.au covering
diverse topics pertinent to these domains. For the Bitcoin dataset (BIT), the researchers initially filtered 19,392 Bitcoin-
related articles from the GDELT dataset, which after removing invalid and redirected links, resulted in 5,906 high-quality
articles being retained for analysis. These datasets were specifically curated to enable the examination of how news events
correlate with fluctuations in their respective time series data, providing the foundation for the paper’s novel forecasting
approach that leverages LLM agents to identify relevant news and integrate it with numerical predictions.
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D.2. Baseline Model Implementation Details

For each baseline model, we utilized publicly available implementations where possible, adhering to the hyperparameter
settings suggested in their original publications or those commonly used in benchmark studies. These models include
DLinear, based on (Zeng et al., 2023), which typically involves decomposition followed by linear layers; N-BEATS from
(Oreshkin et al., 2019), featuring a stacked architecture with basis expansion; Informer, as described in (Zhou et al., 2021),
which utilizes ProbSparse attention and a generative decoder; and Autoformer, based on (Wu et al., 2021), employing a
decomposition architecture with an Auto-Correlation mechanism. Additionally, we considered TimesNet (Wu et al., 2023),
which transforms 1D series to 2D for multi-periodicity analysis; Chronos (Ansari et al., 2024), using scaling and quantization
for tokenization with a T5 backbone; Moirai from (Woo et al., 2024), a foundation model with multi-patch projection and
Any-variate Attention; ChatTime (Wang et al., 2025), a multimodal LLM for joint numerical and textual processing; and
FoNE, detailed in (Zhou et al., 2025), which uses Fourier Neural Embedding for direct numerical representation. Further
details on specific versions or hyperparameter grids explored will be provided upon publication or by request.

D.3. Proposed Model Configuration

All experiments are conducted on NVIDIA A100 GPUs, providing the necessary computational resources for the described
evaluations.

The core of our modeling approach leverages a Large Language Model (LLM) as its backbone. The specific LLM chosen for
these experiments, such as LLaMA-2 7B or a fine-tuned GPT-2 variant, forms the foundation for processing and learning
from the input data.

Our methodology incorporates Multi-Wavelet Number Embedding (MWNE) with several key parameters. The wavelet
set (Ψ) utilized might include options such as {Haar, Daubechies(db4), Mexican Hat}, while the scale set (S)
could be defined with values like {1.0, 2.0, 4.0}. Numerical precision is controlled by an integer precision (mprec),
for example 4, and a decimal precision (nprec), such as 2. Furthermore, the configuration details the target embedding
dimension, whether applied per digit or to the combined MWNE vector, along with specifics of any projection layers.

Input data is meticulously prepared for the LLM. Each numerical value is transformed into a specific numerical string
token format (st), for example, INT[sep]FRAC, to define its structure. To enrich the input with broader time series
characteristics, we integrate the 22 features from the Catch22 set. Details are specified on how these features are textualized,
including the format of the feature string, and how they are subsequently combined with the primary input sequence.

The Supervised Fine-Tuning (SFT) process for forecasting tasks follows a defined training protocol. This typically involves
using an optimizer like AdamW, with a learning rate such as 1× 10−4. Training is conducted with a specific batch size, for
instance 32, over a set number of epochs, generally ranging from 10 to 50. A learning rate scheduler, for example, Cosine
Annealing, is also employed to manage the learning rate dynamics throughout training.

D.4. Evaluation Metrics Definitions

• MAE (Mean Absolute Error): 1
N

∑N
i=1 |yi − ŷi|

• RMSE (Root Mean Squared Error):
√

1
N

∑N
i=1(yi − ŷi)2

D.5. Prompt Template

D.5.1. EXAMPLE OF NO CONTEXT PROMPT TEMPLATE:

Instruction: “...-0.3849,-0.4859,-0.6162,-0.7185,...”

Input: “Please predict the following sequence carefully.”

Output: “...0.3918,0.3817,0.4148,0.4327,0.4201,...”

subsubsection Example of situational context prompt template:

Instruction: “...-0.3849,-0.4859,-0.6162,-0.7185,...”

Input: Please predict the following sequence carefully. Context knowledge you may consider: Based on the historical load
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data, please predict the load consumption in the next day. The region for prediction is VIC. The start date of historical data
was on 2021-05-12 that is a Weekday, and it is not a public holiday. The data frequency is 30 minutes per point. Historical
data covers exactly 1 day (48 points). The date of prediction is on 2021-05-13 that is a Weekday, and it is not a public
holiday. Weather of the start date: the minimum temperature is 281.59; the maximum temperature is 290.37; the humidity is
81.0; the pressure is 1013.0. Weather of the prediction date: the minimum temperature is 280.93; the maximum temperature
is 287.42; the humidity is 81.0; the pressure is 1013.0. Based on the provided time series data and contextual information,
predict the values for the next 48 data points (24 hours). Your response should only contain the values for the next 48 data
points (24 hours).

Output: “...0.3918,0.3817,0.4148,0.4327,0.4201,...”

D.5.2. EXAMPLE OF CATCH22 CONTEXT PROMPT TEMPLATE:

Instruction: “...-0.3849,-0.4859,-0.6162,-0.7185,...”

Input: Please predict the following sequence carefully. To assess similarity between sequences, I will analyze the following
statistical descriptors (Catch22):
DN HistogramMode 5: -1.1359,
DN HistogramMode 10: -0.9688,
CO f1ecac: 4.6154,
CO FirstMin ac: 11.0000,
CO HistogramAMI even 2 5: 0.6271,
CO trev 1 num: 0.0164,
MD hrv classic pnn40: 0.9574,
SB BinaryStats mean longstretch1: 14.0000,
SB TransitionMatrix 3ac sumdiagcov: 0.0556,
PD PeriodicityWang th0 01: 0.0000,
CO Embed2 Dist tau d expfit meandiff: 0.7868,
IN AutoMutualInfoStats 40 gaussian fmmi: 6.0000,
FC LocalSimple mean1 tauresrat: 0.7143,
DN OutlierInclude p 001 mdrmd: 0.5833,
DN OutlierInclude n 001 mdrmd: -0.5208,
SP Summaries welch rect area 5 1: 0.9527,
SB BinaryStats diff longstretch0: 11.0000,
SB MotifThree quantile hh: 1.5988,
SC FluctAnal 2 rsrangefit 50 1 logi prop r1: 0.3000,
SC FluctAnal 2 dfa 50 1 2 logi prop r1: 0.6500,
SP Summaries welch rect centroid: 0.2945,
FC LocalSimple mean3 stderr: 0.5410.

I will prioritize similarity in autocorrelation structure, periodicity, and fluctuation behavior.

Output: “...0.3918,0.3817,0.4148,0.4327,0.4201,...”

D.5.3. EXAMPLE OF FULL CONTEXT PROMPT TEMPLATE:

Instruction: “...-0.3849,-0.4859,-0.6162,-0.7185,...”

Input: Please predict the following sequence carefully. Context knowledge you may consider: Based on the historical load
data, please predict the load consumption in the next day. The region for prediction is VIC. The start date of historical data
was on 2021-05-12 which is a Weekday, and it is not a public holiday. The data frequency is 30 minutes per point. Historical
data covers exactly 1 day (48 points). The date of prediction is 2021-05-13, also a Weekday and not a public holiday.

Weather of the start date:

• Minimum temperature: 281.59

• Maximum temperature: 290.37
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• Humidity: 81.0

• Pressure: 1013.0

Weather of the prediction date:

• Minimum temperature: 280.93

• Maximum temperature: 287.42

• Humidity: 81.0

• Pressure: 1013.0

Based on the provided time series data and contextual information, predict the values for the next 48 data points (24 hours).
Your response should only contain the values for the next 48 data points (24 hours).

To assess similarity between sequences, I will analyze the following statistical descriptors (Catch22):
DN HistogramMode 5: -1.1359,
DN HistogramMode 10: -0.9688,
CO f1ecac: 4.6154,
CO FirstMin ac: 11.0000,
CO HistogramAMI even 2 5: 0.6271,
CO trev 1 num: 0.0164,
MD hrv classic pnn40: 0.9574,
SB BinaryStats mean longstretch1: 14.0000,
SB TransitionMatrix 3ac sumdiagcov: 0.0556,
PD PeriodicityWang th0 01: 0.0000,
CO Embed2 Dist tau d expfit meandiff: 0.7868,
IN AutoMutualInfoStats 40 gaussian fmmi: 6.0000,
FC LocalSimple mean1 tauresrat: 0.7143,
DN OutlierInclude p 001 mdrmd: 0.5833,
DN OutlierInclude n 001 mdrmd: -0.5208,
SP Summaries welch rect area 5 1: 0.9527,
SB BinaryStats diff longstretch0: 11.0000,
SB MotifThree quantile hh: 1.5988,
SC FluctAnal 2 rsrangefit 50 1 logi prop r1: 0.3000,
SC FluctAnal 2 dfa 50 1 2 logi prop r1: 0.6500,
SP Summaries welch rect centroid: 0.2945,
FC LocalSimple mean3 stderr: 0.5410.

I will prioritize similarity in autocorrelation structure, periodicity, and fluctuation behavior.

Output: “...0.3918,0.3817,0.4148,0.4327,0.4201,...”

D.6. Demo of Inputs
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Based on the historical load data, please predict the load consumption in the next day. The region for
prediction is NSW. The start date of historical data was on 2021-07-01 that is Weekday, and it is not a public

holiday. The data frequency is 30 minutes per point. Historical data covers exactly 1 day (48 points). The date
of prediction is on 2021-07-02 that is Weekday, and it is not a public holiday. Weather of the start date: the
minimum temperature is 284.15; the maximum temperature is 291.7; the humidity is 96.0; the pressure is

1018.0.  Weather of the prediction date: the minimum temperature is 281.31; the maximum temperature is
291.71; the humidity is 87.0; the pressure is 1016.0. 

 Based on the provided time series data and contextual information, predict the values for the next 48 data
points (24 hours). Your response should only contain the values for the next 48 data points (24 hours).

Historical Data (Hist)
Predition Data (Pred)

Figure 2: Demo of AUL dataset
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Based on the past 7 days of historical block_size data of Bitcoin, please predict the next 7 days of block_size
data of Bitcoin. The historical data starts on 2019-04-19 that is Weekday, and covers exactly 7 days. The

prediction period starts on 2019-04-26 that is Weekday, and covers the next 7 days.
 Based on the provided time series data and contextual information, predict the values for the next 48 data

points (24 hours). Your response should only contain the values for the next 48 data points (24 hours).

Historical Data (Hist)
Predition Data (Pred)

Figure 3: Demo of BIT dataset
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This sequence records electricity usage at a household in London, United Kingdom, with a collection
granularity of 30 minutes. The target date for prediction is Saturday, January 7, 2012. It is a weekend with

light drizzle and moderate breeze. The minimum temperature is 6 degrees, and the maximum temperature is
10 degrees. The sun will rise at 9:04 and set at 17:08.

Historical Data (Hist)
Predition Data (Pred)

Figure 4: Demo of LEU dataset
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This sequence records traffic flow at a highway in Paris, France, with a collection granularity of 1 hour. The
target date for prediction is Friday, January 7, 2022. It is a weekday with slight snow fall and fresh breeze. The
minimum temperature is 3 degrees, and the maximum temperature is 7 degrees. The sun will rise at 9:42 and

set at 18:11.

Historical Data (Hist)
Predition Data (Pred)

Figure 5: Demo of PTF dataset
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This sequence records solar power generation at a site in Melbourne, Australia, with a collection granularity of
15 minutes. The target date for prediction is Sunday, March 7, 2021. It is a weekend with partly cloudy and

gentle breeze. The minimum temperature is 11 degrees, and the maximum temperature is 28 degrees. The
sun will rise at 6:10 and set at 18:51.

Historical Data (Hist)
Predition Data (Pred)

Figure 6: Demo of MSPG dataset
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