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Abstract
Large-scale sequence modeling has sparked rapid
advances that now extend into biology and ge-
nomics. However, modeling genomic sequences
introduces challenges such as the need to model
long-range token interactions, the effects of up-
stream and downstream regions of the genome,
and the reverse complementarity (RC) of DNA.
Here, we propose an architecture motivated by
these challenges that builds off the long-range
Mamba block, and extends it to a BiMamba com-
ponent that supports bi-directionality, and to a
MambaDNA block that additionally supports RC
equivariance. We use MambaDNA as the ba-
sis of Caduceus, the first family of RC equiv-
ariant bi-directional long-range DNA language
models, and we introduce pre-training and fine-
tuning strategies that yield Caduceus DNA foun-
dation models. Caduceus outperforms previous
long-range models on downstream benchmarks;
on a challenging long-range variant effect pre-
diction task, Caduceus exceeds the performance
of 10x larger models that do not leverage bi-
directionality or equivariance. Code to reproduce
our experiments is available here.

1. Introduction
Large-scale sequence models have sparked rapid progress
in machine learning, bringing about advances that extend
beyond natural language processing (NLP) (Achiam et al.,
2023; Team et al., 2023) into science, biology, and medicine.
In proteomics, these models have enabled predicting protein
structures from sequences (Jumper et al., 2021; Lin et al.,
2023), deciphering the functions and interactions of amino
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acids (Rao et al., 2020; Rives et al., 2021), and crafting new
molecules (Madani et al., 2023). As compute cost decreases,
sequence modeling is poised to further impact biology.

Sequence models are also standard tools in genomics (Zhou
& Troyanskaya, 2015; Avsec et al., 2021). Unlike proteins,
genomes contain non-coding sequences, which often play
an important role in regulating cellular mechanisms, and can
thus potentially provide greater insights into cell biology.
Understanding non-coding sequences has been a key focus
of recent work, including efforts in applying large language
models (LMs) to genomes (Ji et al., 2021; Benegas et al.,
2023b; Dalla-Torre et al., 2023; Nguyen et al., 2023).

However, modeling DNA introduces challenges that are dis-
tinct from those posed by natural language or proteins. First,
cellular phenotypes are often impacted by base pairs both
upstream and downstream in the genome, which requires
sequence models to handle bi-directional context. Second,
DNA consists of two strands that are reverse complements
of each other and that carry the same information; modeling
this property can significantly improve performance (Zhou
et al., 2021; Mallet & Vert, 2021). Third, many genomics
tasks, such as predicting the effect of variants on gene ex-
pression, can entail long-range interactions, as nucleic acids
even up to 1 million base pairs away from a gene can have
significant regulatory effects (Furlong & Levine, 2018).

In this paper, we propose architectural components moti-
vated by the above challenges. Our modules build off the
long-range Mamba block (Gu & Dao, 2023) and thus natu-
rally handle long sequences of over hundreds of thousands
of nucleotides without the quadratic cost of attention-based
architectures (Vaswani et al., 2017). We extend Mamba to
BiMamba, a component that supports bi-directionality, and
to MambaDNA, which further adds reverse complement
(RC) equivariance. The MambaDNA block can be used as a
drop-in replacement in architectures for genome analysis in
both supervised and self-supervised contexts.

We then use MambaDNA as the basis of Caduceus1, a fam-
ily of bidirectional long-range DNA sequence models that
is the first to support RC equivariant language modeling.

1Caduceus ( ) is the staff carried by Hermes in Greek mythol-
ogy that is adorned by two intertwined serpents. We choose this
name to evoke imagery of the double helix structure of DNA and
to symbolize bi-directionality using a Mamba sequence operator.
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Figure 1. Mamba modules for genomic sequences. (Left) Mamba: The original left-to-right causal Mamba module proposed in Gu &
Dao (2023). (Middle) BiMamba: A parameter efficient bi-directional extension of the Mamba module. In-projection and out-projection
parameters are shared for processing the sequence and its reverse. After processing the reversed sequence, it is flipped again and added to
the forward output. (Right) Reverse complementary equivariant Mamba (MambaDNA): A module with RC equivariance inductive
bias. The input is first split into two along the channel dimension. One split has the reverse complement (RC) operation applied to it. All
the parameters of a Mamba module are shared for processing the forward and RC sequence. The reverse sequence has the RC applied
once more before being concatenated back with the forward output along the channel dimension.

We further introduce pre-training and fine-tuning strategies
that yield Caduceus foundation models for a wide range
of predictive tasks in genomics. The Caduceus models
consistently outperform previous SSM-based models of a
similar size. On many tasks, especially ones that require
long-range modeling, Caduceus also outperforms 10x larger
Transformer-based models.

We use Caduceus to perform variant effect prediction (VEP),
a task that seeks to determine whether a genetic mutation
influences a phenotype—gene expression in our case. This
task is a natural fit for Caduceus because its pre-training
implicitly learns to recognize the effects of evolutionary
pressure (e.g., conservation, co-evolution), which is a key
source of signal for VEP (e.g., a mutation in a region where
mutations are rare likely has an effect and a low probabil-
ity under the model). On a task derived from a standard
dataset of mutations with long-range effects on gene expres-
sion (Avsec et al., 2021), Caduceus outperforms existing
attention and SSM-based models that do not leverage both
bi-directionality and equivariance.

Contributions To summarize, our contributions are:

1. We introduce BiMamba, a parameter and hardware
efficient extension of the Mamba block that supports
bi-directional sequence modeling.

2. We extend BiMamba to support RC equivariance,
which yields the MambaDNA block, a general compo-
nent for deep learning architectures in genomics.

3. We use MambaDNA as the basis of Caduceus, the first
family of RC-equivariant DNA foundation models.

4. We demonstrate that on long-range tasks, Caduceus
outperforms models that are up to 10x larger but that
do not use bi-directionality or equivariance.

2. Background
2.1. DNA Terminology

Deoxyribonucleic acid (DNA) is a polymer that is made
up of two complementary strands that wind in a ladder /
double-helix manner and is comprised of four nucleotide
bases: adenine (A), cytosine (C), guanine (G) or thymine (T).
The bonds between the nucleotide bases form ‘rungs’ on the
twisted ladder, with A bonding with T and C bonding with
G. DNA contains the genetic code for forming proteins. In
complex organisms, DNA can be billions of nucleotide base
pairs (bps) long, but the long strands coil tightly around
proteins in the nucleus called histones.

Genetic mutations at individual bps, known as single nu-
cleotide polymorphisms (SNPs) can account for pheno-
typic variation across organisms. Evolutionary pressure
has forced several genomic regions to be conserved across
time and species, with deleterious mutations failing to pro-
liferate in populations. Mutations in conserved regions can
therefore have an out-sized effect on phenotype, and models
that can identify these regions will likely perform better on
variant effect prediction tasks.
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Reverse Complement Strands In the double-helix DNA
structure, each strand contains semantically equivalent infor-
mation. The ‘reverse complement’ (RC) of a given strand
is oriented in the opposite direction of its counterpart with
bps complemented relative to the ‘forward’ strand: A con-
verted to T and C to G. In many biological assays, either
strand of the DNA can be sequenced with equal probabil-
ity. However, learning to recognize non-palindromic DNA
sequence motifs can be difficult for standard models (Zhou
et al., 2021). Therefore, enforcing RC equivariance, loosely
defined as model outputs transforming in a manner com-
mensurate with RC-ing an input sequence, is an important
desiderata of DNA sequence modeling.

2.2. Structured State Space Models

A recent class of sequence models known as Structured
State Space Models (SSMs2; Gu et al. (2021a;b; 2022);
Gupta et al. (2022); Smith et al. (2022); Dao et al. (2022))
have proven to be effective at handling long-range mod-
els. At the core of all of these models is a pair of linear
differential equations that govern the mapping from input
sequences x(t) ∈ R to output sequences y(t) ∈ R through
an intermediate representation h(t) ∈ RN :

ḣ(t) = Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), (1)

where A ∈ RN×N ,B ∈ RN×1,C ∈ R1×N , and D ∈ R
are the parameters of the system. For multidimensional
sequences, x(t),y(t) ∈ RD, these dynamics are applied
independently to each component.

This differential equation can be discretized with the contin-
uous parameters converted, as follows:

ht+1 = Aht +Bxt, yt+1 = Cht +Dxt, (2)

by means of some discretization formula that is a function of
continuous parameters A,B, and an additional time scale
parameter ∆. A common discretization used in the SSM
literature is the zero-order hold, defined as:

A = exp(∆A), B = A−1(exp(∆A)− I)B. (3)

Importantly, the linear-time invariance (LTI) of Equation 1
allows us to equivalently formulate Equation 2 as a convolu-
tion by unrolling the recurrence, enabling efficient parallel
computation during training.

Selection Mechanisms However, the computational effi-
ciency of the LTI formulation comes at the cost of the model
not being able to adapt / attend to specific inputs. To alle-
viate this lack of expressivity, Gu & Dao (2023) introduce

2The acronym SSM is commonly used in machine learning
communities to refer to this class of models, while in other disci-
plines it is typically associated to the broader class of state space
models widely used in engineering.

a selective SSM that enables dependence of the parameters
B,C, and ∆ on the input x(t), with:

Bt =LinearB(xt) Ct = LinearC(xt)

∆t = softplus(Linear∆(xt)),
(4)

where Linear(·) represents a linear projection and
softplus(·) = log(1 + exp(·)).

While this formulation renders At and Bt time-dependent,
the linear recurrence in Equation 2 can be formulated as an
associative scan (Martin & Cundy, 2017), which allows us
to use an efficient parallel algorithm (Blelloch, 1990) and
reduce computation to a logarithmic in sequence length.

Mamba The Mamba block presented in Gu & Dao (2023)
is formed by combining a selective SSM sequence transfor-
mation and a gated MLP mechanism. This is depicted in
the left-most schematic in Figure 1. An incoming sequence
is copied and projected to twice the input dimension. One
copy is then passed through a causal convolution, followed
by the SiLU/Swish non-linear activation (Ramachandran
et al., 2017) and then finally through the selective SSM. The
other copy has the SiLU non-linearity applied to it and then
gates the SSM output. The gated representation is then pro-
jected back to the original dimension D. As this is a causal,
left-to-right sequence operation, the original models that use
Mamba blocks are trained with the next token prediction
(NTP) objective during pre-training.

3. Bi-Directional & RC-Equivariant Mamba
In this section, we present components that extend the
Mamba block (Gu & Dao, 2023). While these extensions
are domain-agnostic, they are relevant to modeling DNA.

3.1. BiMamba

The first extension that we apply to the standard Mamba
module is to convert it from causal (left-to-right) to bi-
directional. We achieve this by applying the Mamba module
twice: once to the original sequence and once to a copy
that is reversed along the length dimension. To combine
information, the output of the reversed sequence is flipped
along the length dimension and added to the forward one.

A naive implementation of this method would double the
number of parameters of the module. To avoid this added
memory footprint, we instead share projection weights be-
tween the ‘forward’ and ‘reverse’ Mamba. These projec-
tions account for a vast majority of the model’s parameters
compared to those in the convolution and the SSM sub-
modules (Gu & Dao, 2023). We refer to this parameter
efficient bi-directional block as BiMamba. This module is
depicted in the middle schematic of Figure 1.
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3.2. MambaDNA

To encode the RC equivariance inductive bias into our mod-
ules, we apply a Mamba (or BiMamba) block to a sequence
and its RC, with parameters shared between the two appli-
cations (Shrikumar et al., 2017; Zhou et al., 2021). Given
its relevance to genomics, we dub this block MambaDNA.

Concretely, let X1:D
1:T denote a sequence of length T with D

channels. The channel splitting operation is then defined as:

split(X1:D
1:T ) :=

[
X

1:(D/2)
1:T ,X

(D/2):D
1:T

]
.

We also define the RC operation as follows:

RC
(
X1:D

1:T

)
:= XD:1

T :1

Finally, letting concat denote the last operation of this mod-
ule that re-combines the sequences along the channel dimen-
sion, our RC equivariant Mamba module, which we denote
as MRCe,θ, can be expressed as follows:

MRCe,θ
(
X1:D

1:T

)
:=

concat
([

Mθ

(
X

1:(D/2)
1:T

)
,RC

(
Mθ

(
X

D:(D/2)
T :1

))])
,

where Mθ represents the sequence operator that is param-
eterized by either the standard Mamba or BiMamba. The
MambaDNA module is depicted in the rightmost schematic
of Figure 1, with Mθ shown as the standard Mamba.

We claim that MambaDNA satisfies the RC equivariance
property that we desire for processing DNA sequences:

Theorem 3.1. The MRCe,θ operator satisfies the following:

RC ◦MRCe,θ
(
X1:D

1:T

)
= MRCe,θ ◦ RC

(
X1:D

1:T

)
.

Proof. See Appendix A.

Similar to BiMamba modules, MambaDNA blocks do not
entail significant additional memory footprint, since the
wrapped sequence operator that processes the forward and
RC sequences is completely shared.

4. Caduceus
Below we describe Caduceus, a novel bi-directional DNA
LM architecture that enforces RC equivariance. We intro-
duce two versions of this model, each of which maintains
equivariance in a different manner: either (1) via parameter
sharing (Shrikumar et al., 2017), Caduceus-PS, or (2) via a
technique used during downstream task inference, known
as post-hoc conjoining (Zhou et al., 2021), Caduceus-Ph.

4.1. Caduceus-PS

Architecture For Caduceus-PS, we leverage both of the
architectural innovations introduced in Section 3. Namely,

Figure 2. Caduceus Architecture. Bi-directional, RC equivariant
Mamba modules are used in conjunction with equivariant word em-
beddings and language model head to form Caduceus-PS. Using
only BiMamba blocks with RC data augmentation during pretrain-
ing and post-hoc conjoining for downstream task inference yields
Caduceus-Ph. CADUCEUS IMAGE LICENSE: CREATIVE COMMONS CC0 1.0

UNIVERSAL PUBLIC DOMAIN DEDICATION.

we wrap a BiMamba module within a MambaDNA block.
Additionally, preceding the Mamba blocks of this architec-
ture is an RC equivariant token embedding module. De-
noting by Embθ the linear projection that takes one-hot
vectors X1:4

1:T and produces embeddings in RD/2, the RC
equivariant version of this embedding is defined as:

EmbRCe,θ
(
X1:4

1:T

)
:=

concat
([
Embθ

(
X1:4

1:T

)
,RC ◦ Embθ

(
RC

(
X1:4

1:T

))])
Additionally, the logits of the Caduceus model are pro-
duced by passing the output of its final MambaDNA block
through a RC equivariant language model head. To our
knowledge, Caduceus-PS is the first model to incorporate
RC equivariance into the LM pre-training paradigm. This
can be formalized by first defining a channel flip operator
flip chan

(
X1:D

1:T

)
:=

(
XD:1

1:T

)
. Then, letting LMθ be the

linear projection from sequences with D/2 channels to vec-
tors in R4, we define the equivariant version of the language
modeling head as:

LMRCe,θ
(
X1:D

1:T

)
:=

LMθ

(
X

1:(D/2)
1:T

)
+ flip chan ◦ LMθ

(
X

D:(D/2)
1:T

)
.
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Depicted in Figure 2 with the black path, Caduceus-PS
enables RC equivariant pre-training: the predictions it pro-
duces for the RC of a given sequence are equivalent to
reversing the predictions of the original sequence along the
length dimension and complementing outputs: A-T and C-G.
We formalize this claim in the following statement:

Theorem 4.1. Composing LMRCe,θ ◦ M
(n)
RCe,θ ◦ EmbRCe,θ,

where M
(n)
RCe,θ denotes n compositions of Mamba RC equiv-

ariant modules, yields an operator that is RC equivariant.

Proof. See Appendix B.

Pre-training Given the bi-directionality of this model,
we train Caduceus-PS with the masked language modeling
(MLM) objective, using the standard masking recipe pro-
posed in BERT (Devlin et al., 2018). The RC equivariant
language modeling of Caduceus-PS means that we do not
need RC data augmentation at pre-training, since predictions
are inherently symmetric with respect to this operation.

Downstream Usage For downstream tasks, since either
strand of an assayed sequence will carry the same label, we
wish to enforce RC invariance. The token embedding pa-
rameter sharing in Caduceus-PS means that its intermediate
and final hidden states are twice the (channel) dimension-
ality of a standard Mamba-based language model with an
equivalently sized token embedding matrix. To enforce
RC invariance at downstream training and inference, final
hidden states are split and the two splits are averaged.

4.2. Caduceus-Ph

Architecture The Caduceus-Ph model is depicted with
the blue path in Figure 2. The core of this model is a stack
of BiMamba blocks.

Pre-training As with Caduceus-PS, this model is pre-
trained using the same MLM objective. However, as the
model is not an RC equivariant LM, we instead rely on data
augmentation during pre-training.

Downstream Usage In order to make the downstream
task representations RC invariant, we leverage a technique
called post-hoc conjoining (Zhou et al., 2021). Namely,
for downstream task training the backbone model is un-
changed, but we employ RC data augmentation. However,
for downstream task inference, we apply the model twice,
once on the original sequence and once on a corresponding
RC sequence, and average the two, effectively performing a
version of ‘RC ensembling’ (Mallet & Vert, 2021).

5. Experiments
5.1. Pre-training

Data We limit the focus of this work to human-genome
related tasks. To that end, we perform all pre-training tasks
on the human reference genome (Consortium et al., 2009).
We use character- / base pair-level tokenization. While
other DNA FMs have explored k-mer tokenization, this
scheme suffers from the drawback that minor changes to
an input sequence can lead to drastically different tokeniza-
tion outputs (Zhou et al., 2023), which complicates training.
Character-level tokenization avoids this issue. For any non-
RC equivariant model that we train, including re-training
HyenaDNA (Nguyen et al., 2023) models, we employ RC
data augmentation during pre-training. For more informa-
tion on the pre-training dataset and recipes see Appendix C.

Mamba vs. HyenaDNA NTP Similar to the preliminary
results in Gu & Dao (2023), we find that the Mamba module
performs better than Hyena in terms of NTP. In Figure 3a,
we see that at varying sequence lengths and comparable
model sizes, a standard Mamba model attains lower cross
entropy loss compared to HyenaDNA. As reported in Gu
& Dao (2023), we also found that Mamba is more robust
to higher learning rates, a common best practice in training
LMs. These results lend support to our choice of Mamba as
the inner building block of our models.

Effect of Parameter Sharing on MLM Pre-training Pro-
jection parameter sharing in BiMamba enables deeper bi-
directional models for similar parameter counts. We com-
pare MLM pre-training loss of BiMamba models to naive
bi-directional Mamba models that do not use weight tying
and are therefore reduced to half the depth. We find that
our parameter efficient implementation of bi-directionality
leads to better pre-training loss, as seen in Figure 3b.

Effect of RC Equivariance on MLM Pre-training We
also examine the effect of using our proposed RC equiv-
ariant LM on pre-training. In Figure 3c, we find that RC
equivariant LM leads to better MLM pre-training loss. This
is significant because, as described above, performance on
the MLM task has grounding in the biology of downstream
tasks, such as variant effect prediction.

5.2. Downstream Tasks

5.2.1. GENOMICS BENCHMARK

We begin downstream evaluation with the Genomics Bench-
marks (Grešová et al., 2023), a recently proposed suite with
eight regulatory element classification tasks. Non-Mamba
baselines consist of HyenaDNA and a supervised trained
CNN model described in Grešová et al. (2023) . For Hye-
naDNA and all our Mamba-based models, we take the final

5



Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling

2000 4000 6000 8000 10000
1.08

1.10

1.12

1.14

1.16

1.18

NT
P 

Lo
ss

1k sequence length
HyenaDNA
Mamba

D=128
D=256

2000 4000 6000 8000 10000
1.04

1.06

1.08

1.10

1.12

NT
P 

Lo
ss

32k sequence length
HyenaDNA
Mamba

10000 20000 30000 40000 50000
Step

1.00

1.02

1.04

1.06

NT
P 

Lo
ss

131k sequence length
HyenaDNA
Mamba

Mamba vs. HyenaDNA

(a)

2000 4000 6000 8000 10000

0.98

1.00

1.02

1.04

1.06

M
LM

 L
os

s

1k sequence length
w/o Weight tie
w/ Weight tie

D=128
D=256

2000 4000 6000 8000 10000

0.94

0.96

0.98

1.00

M
LM

 L
os

s

32k sequence length
w/o Weight tie
w/ Weight tie

10000 20000 30000 40000 50000
Step

0.88

0.90

0.92

0.94
M

LM
 L

os
s

131k sequence length
w/o Weight tie
w/ Weight tie

Effect of Weight Tying on Pre-training

(b)

2000 4000 6000 8000 10000

0.96

0.98

1.00

1.02

1.04

M
LM

 L
os

s

1k sequence length
w/o RC Equiv.
w/ RC Equiv.

D=128
D=256

2000 4000 6000 8000 10000
0.90

0.92

0.94

0.96

0.98

M
LM

 L
os

s

32k sequence length
w/o RC Equiv.
w/ RC Equiv.

10000 20000 30000 40000 50000
Step

0.86

0.88

0.90

0.92

M
LM

 L
os

s

131k sequence length
w/o RC Equiv.
w/ RC Equiv.

Effect of RC Equiv. on Pre-training

(c)

Figure 3. Pre-training test set loss. (a) For comparable model size and sequence length, Mamba attains better cross entropy loss than
HyenaDNA during pre-training on the human genome. (b) Across sequence lengths, deeper models that use weight tying have better
pre-training loss on the human genome. (c) Across sequence lengths, RC equivariance leads to better pre-training loss on the human
genome. Note, models with a sequence length of 131k were validated less frequently to reduce overhead during pre-training. By adjusting
batch size, we hold number of tokens per batch constant across varying lengths.

Table 1. Genomic Benchmarks. Top-1 accuracy (↑) across 5-fold cross-validation (CV) for pretrained HyenaDNA, Mamba NTP, Caduceus
models, and a supervised CNN baseline (trained from scratch). Best values per task are bolded, second best are italicized. Error bars
indicate the difference between the maximum and minimum values across 5 random seeds used for CV.

CNN
(264K)

HYENADNA
(436K)

MAMBA
(468K)

CADUCEUS
W/O EQUIV.

(470K)

CADUCEUS-PH
(470K)

CADUCEUS-PS
(470K)

MOUSE ENHANCERS 0.715 ±0.087 0 .780 ±0.025 0.743 ±0.054 0.770 ±0.058 0.754 ±0.074 0.793 ±0.058

CODING VS. INTERGENOMIC 0.892 ±0.008 0.904 ±0.005 0.904 ±0.004 0.908 ±0.003 0.915 ±0.003 0 .910 ±0.003

HUMAN VS. WORM 0.942 ±0.002 0.964 ±0.002 0.967 ±0.002 0 .970 ±0.003 0.973 ±0.001 0.968 ±0.002

HUMAN ENHANCERS COHN 0.702 ±0.021 0.729 ±0.014 0.732 ±0.029 0.741 ±0.008 0.747 ±0.004 0 .745 ±0.007

HUMAN ENHANCER ENSEMBL 0.744 ±0.122 0.849 ±0.006 0.862 ±0.008 0.883 ±0.002 0 .893 ±0.008 0.900 ±0.006

HUMAN REGULATORY 0.872 ±0.005 0.869 ±0.012 0.814 ±0.211 0.871 ±0.007 0 .872 ±0.011 0.873 ±0.007

HUMAN OCR ENSEMBL 0.698 ±0.013 0.783 ±0.007 0.815 ±0.002 0.818 ±0.003 0.828 ±0.006 0 .818 ±0.006

HUMAN NONTATA PROMOTERS 0.861 ±0.009 0.944 ±0.002 0.933 ±0.007 0.933 ±0.006 0.946 ±0.007 0 .945 ±0.010

hidden state embedding and perform mean pooling on the
sequences, which vary from 200 to approximately 2,000 bps
in length. We perform 5-fold cross-validation (CV) using
different random seeds, with early stopping on validation
accuracy and report mean and ± on max/min of the 5 seeds.

As shown in Table 1, Caduceus models attain the best per-
formance across all annotations. Of note, Caduceus-Ph is
the best performing model overall for these tasks. Other
works that examine post-hoc conjoining similarly find that
this method attains competitive performance and often beats
parameter sharing models (Mallet & Vert, 2021; Zhou et al.,
2021).

5.2.2. NUCLEOTIDE TRANSFORMER TASKS

Next, we benchmark against a collection of 18 datasets
introduced in Dalla-Torre et al. (2023) and derived from
five peer-reviewed studies (Phaml et al., 2005; Oubounyt
et al., 2019; Wang et al., 2019; Scalzitti et al., 2021; Geng
et al., 2022). These datasets contain three task types, in-
cluding histone marker prediction, regulatory annotation
prediction, and splice site annotation prediction. In assess-
ing performance, we adhered to the methodology described
in Dalla-Torre et al. (2023), using different metrics for the
tasks: Matthews Correlation Coefficient (MCC) for all his-
tone marker tasks and enhancer classification, F1 score for
promoter regulatory annotations, and splice site annotation
tasks, except for the splice sites all task, where we report
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Table 2. Nucleotide Transformer Tasks. Performance (↑) across 10-fold CV for Enformer, DNABERT-2, Nucleotide Transformer v2,
HyenaDNA, Caduceus-Ph, and Caduceus-PS. Metrics vary by task: MCC for histone markers and enhancer annotation, F1-score for
promoter annotation and splice site acceptor/donor, and accuracy for splice site “all”. Best values per task are bolded, second best are
italicized. Given the disparity in model size, we also underline the best value within the SSM-based models. Error bars indicate the
difference between the maximum and minimum values across 10 random seeds used for CV.

> 100M PARAM. MODELS < 2M PARAM. MODELS
ENFORMER

(252M)
DNABERT-2

(117M)
NT-V2
(500M)

HYENADNA
(1.6M)

CADUCEUS-PH

(1.9M)
CADUCEUS-PS

(1.9M)

Histone Markers
H3 0.719±0.048 0.785±0.033 0.784±0.047 0.779±0.037 0.815±0.048 0 .799±0.029

H3K14AC 0.288±0.077 0.516±0.028 0.551±0.021 0 .612±0.065 0.631±0.026 0.541±0.212

H3K36ME3 0.344±0.055 0.591±0.020 0.625±0.013 0 .613±0.041 0.601±0.129 0.609±0.109

H3K4ME1 0.291±0.061 0.511±0.028 0.550±0.021 0.512±0.024 0 .523±0.039 0.488±0.102

H3K4ME2 0.211±0.069 0.336±0.040 0.319±0.045 0 .455±0.095 0.487±0.170 0.388±0.101

H3K4ME3 0.158±0.072 0.352±0.077 0.410±0.033 0.549±0.056 0 .544±0.045 0.440±0.202

H3K79ME3 0.496±0.042 0.613±0.030 0.626±0.026 0.672±0.048 0.697±0.077 0 .676±0.026

H3K9AC 0.420±0.063 0.542±0.029 0.562±0.040 0.581±0.061 0.622±0.030 0 .604±0.048

H4 0.732±0.076 0.796±0.027 0 .799±0.025 0.763±0.044 0.811±0.022 0.789±0.020

H4AC 0.273±0.063 0.463±0.041 0.495±0.032 0 .564±0.038 0.621±0.054 0.525±0.240

Regulatory Annotation
ENHANCER 0.451±0.108 0.516±0.098 0.548±0.144 0.517±0.117 0 .546±0.073 0.491±0.066

ENHANCER TYPES 0.309±0.134 0.423±0.051 0 .424±0.132 0.386±0.185 0.439±0.054 0.416±0.095

PROMOTER: ALL 0.954±0.006 0 .971±0.006 0.976±0.006 0.960±0.005 0.970±0.004 0.967±0.004

NONTATA 0.955±0.010 0 .972±0.005 0.976±0.005 0.959±0.008 0.969±0.011 0.968±0.006

TATA 0 .960±0.023 0.955±0.021 0.966±0.013 0.944±0.040 0.953±0.016 0.957±0.015

Splice Site Annotation
ALL 0.848±0.019 0.939±0.009 0.983±0.008 0 .956±0.011 0.940±0.027 0.927±0.021

ACCEPTOR 0.914±0.028 0 .975±0.006 0.981±0.011 0.958±0.010 0.937±0.033 0.936±0.077

DONOR 0.906±0.027 0 .963±0.006 0.985±0.022 0.949±0.024 0.948±0.025 0.874±0.289

accuracy. We additionally follow Dalla-Torre et al. (2023)
in performing 10-fold CV using different random seeds with
early stopping on the validation metric. We report mean
and ± on max/min of the 10 seeds. The results for this
benchmark suite are presented in Table 2, where we again
find that Caduceus-Ph performs competitively, even beat-
ing attention-based methods with orders of magnitude more
parameters on 8 of 18 prediction tasks. Caduceus models
outperform a similarly sized HyenaDNA model on almost
all the histone marker and regulatory annotation tasks, while
HyenaDNA performs better on splice site annotation.

5.2.3. PREDICTING THE EFFECT OF VARIANTS ON GENE
EXPRESSION

Finally, we explore the implications of long-range contexts
on the task of predicting the effect of SNPs on gene ex-
pression. There is biological evidence to suggest this task
indeed entails long-range interactions (Furlong & Levine,
2018). Additionally it aligns well to LM pre-training objec-
tives, which enable models to implicitly learn to recognize
the effects of evolutionary pressure (e.g., conservation, co-
evolution). The dataset used in this task is derived from
the Enformer paper (Avsec et al., 2021) and presented in
Trop et al. (2023). From each model, we extract embed-
dings centered around the SNP location. We stratify the data

by distance of the SNP to nearest Transcription Start Site
(TSS). For each bucket, we sample 5,000 training points
and fit an SVM classifier with an RBF kernel to predict
VEP annotations. We report test set AUCROC mean ±
standard deviation for classifiers fit on 5 random training
subsets. For more details about this experiment, please refer
to Appendix D.3. We compare Caduceus to HyenaDNA
and Nucleotide Transformer, as well as to the supervised
baseline Enformer (Avsec et al., 2021).

As shown in Figure 4, Caduceus models consistently out-
perform HyenaDNA, and Caduceus-PS exceeds the perfor-
mance of Nucleotide Transformer v2 (with 500M parame-
ters), especially as distance to the nearest TSS grows. Of
note, on sequences where distance to TSS exceeds 100k,
Caduceus even outperforms the well-regarded Enformer
baseline.

6. Related Work
6.1. DNA Language Models

Transformer-based DNA LMs, such as DNABERT, v1 (Ji
et al., 2021) and v2 (Zhou et al., 2023), and Nucleotide
Transformer (Dalla-Torre et al., 2023) have been restricted
by the quadratic scaling of Transformers, with maximum
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Figure 4. Predicting variant effects on gene expression across varying distances to the nearest Transcription Start Site (TSS). Models
compared include Enformer, NT-v2, HyenaDNA, Caduceus w/o RC Equiv, Caduceus-Ph, and Caduceus-PS, with model sizes indicated
in parentheses. SSM-based models utilize a 131k sequence length. We show performance at short (0 - 30k bps), medium (30 - 100k
bps), and long-range (>100k bps) distances to TSS. Notably, Caduceus-PS consistently demonstrates enhanced predictive accuracy for
long-range effects. Error bars represent standard deviation across five SVM classifiers, each fit on different dataset subsets.

context sizes of up to roughly 12,000 bps. BigBird (Zaheer
et al., 2020) (and GENA-LM (Fishman et al., 2023), which
uses BigBird as a backbone) use sparse attention to scale
context size up to an order of magnitude large.

Notably, GPN (Benegas et al., 2023a;b), uses dilated con-
volutional layers, which in practice scale to large receptive
fields, although a context size of only 512 bps is used when
training this model. Benegas et al. (2023b) find that DNA
LMs are powerful unsupervised variant effect predictors.

HyenaDNA Most related to our work is the HyenaDNA
model (Nguyen et al., 2023), which uses the Hyena operator
(Poli et al., 2023), derived from the SSM literature, as the
building block for a DNA LM. HyenaDNA is able to scale
to long-range sequences (up to 1 million bps), but is uni-
directional and not inherently robust to RC inputs.

6.2. Reverse Complement Training for DNA

Cao & Zhang (2019) discuss the importance of RC data
augmentation in genomics. Shrikumar et al. (2017) intro-
duce RC Parameter Sharing (RCPS) for convolution, batch
normalization, and pooling modules. Mallet & Vert (2021)
formalize RC equivariance in the language of Group repre-
sentations and cast RCPS as a particular decomposition of
such representations, exploring other as well. Our imple-
mentation of RCPS in the MambaDNA block differs from
that proposed in Shrikumar et al. (2017) in that our split
operation prevents the channel dimension from doubling
when passing a sequence through a given layer.

Zhou et al. (2021) further explore RCPS layers and compare
them to a post-hoc conjoining baseline, which serves as the
inspiration for our Caduceus-Ph model. Zhou et al. (2021)
find that post-hoc conjoining is a strong baseline that often
outperforms RCPS models on several tasks. We note that
Zhou et al. (2021) focus on supervised training regimes,
whereas we extend the post-hoc conjoining methodology to
include a LM pre-training step as well. Prediction conjoin-
ing was also explored in DeepBind (Alipanahi et al., 2015),
where max aggregation as opposed to averaging is used,
and in FactorNet (Quang & Xie, 2019), which performs
conjoining during training and inference.

Finally, Gündüz et al. (2023) also explore RC sequences
in self-supervised pre-training. However, their model uses
contrastive learning where an encoder is trained to recognize
the embeddings of the RC sequence in a given batch.

6.3. Bi-directional RNNs

Exploiting bi-directionality for pre-training on large datasets
was first realized in ELMo (Peters et al., 2017), where for-
ward and backward LSTMs (Hochreiter & Schmidhuber,
1997) were utilized simultaneously to model language con-
text. This laid the groundwork for models such as BERT
(Devlin et al., 2018) that replaced recurrent networks with a
Transformer backbone. Recently, Wang et al. (2022) ex-
plored BERT-style training using SSMs. In concurrent
work, Zhu et al. (2024) also extend the Mamba SSM to
be bi-directional, similarly combining outputs of forward
and backward sequence operators.
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7. Conclusion
In this work, we introduced architectural innovations to
the Mamba module, enabling bi-directional and RC equiv-
ariant sequence modeling. We also propose a new DNA
foundation model, Caduceus, and demonstrate its ability to
outperform comparably sized uni-directional Hyena-based
models and Transformer-based models orders of magnitude
larger in size on a range of biologically relevant tasks, most
notably predicting the effect of genetic mutations on gene
expression.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work. As with all machine learning
models, and particularly language models, our work has the
potential for societal benefits but can be subject to misuse.
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A. Proof of Theorem 3.1
We begin by reiterating the definitions of the different functions that comprise our RC equivariant Mamba module. For an
input sequence X1:D

1:T of length T , with D channels, we define:

split(X1:D
1:T ) :=

[
X

1:(D/2)
1:T ,X

(D/2):D
1:T

]
, (5)

RC
(
X1:D

1:T

)
:= XD:1

T :1 , (6)

concat
([

X
1:(D/2)
1:T ,X

(D/2):D
1:T

])
:= X1:D

1:T , (7)

MRCe,θ
(
X1:D

1:T

)
:= concat

([
Mθ

(
X

1:(D/2)
1:T

)
,RC

(
Mθ ◦ RC

(
X

(D/2):D
1:T

))])
. (8)

We also denote the application of the RC operation to a sequence that is ‘split’ along the channel dimension as:

RC
([

X
1:(D/2)
1:T ,X

(D/2):D
1:T

])
:=

[
RC

(
X

(D/2):D
1:T

)
,RC

(
X

(1:(D/2)
1:T

)]
=

[
X

D:(D/2)
T :1 ,X

(D/2):1
T :1

]
, (9)

Note that the RC operation can be ‘pulled inside’ of a concat operation:

RC ◦ concat
([

X
1:(D/2)
1:T ,X

(D/2):D
1:T

])
= RC

(
X1:D

1:T

)
= XD:1

T :1

= concat
([

X
D:(D/2)
T :1 ,X

(D/2):1
T :1

])
= concat

([
RC

(
X

1:(D/2)
1:T

)
,RC

(
X

(D/2):D
1:T

)])
= concat ◦ RC

([
X

1:(D/2)
1:T ,X

(D/2):D
1:T

])
(10)

Additionally, we have that RC−1 = RC and that

RC
([

X
1:(D/2)
1:T ,RC

(
X

(D/2):D
1:T

)])
=

[
X

(D/2):D
1:T ,RC

(
X

1:(D/2)
1:T

)]
. (11)

Following Definition 8, we have that:

RC ◦MRCe,θ
(
X1:D

1:T

)
= RC ◦ concat

([
Mθ

(
X

1:(D/2)
1:T

)
,RC

(
Mθ ◦ RC

(
X

(D/2):D
1:T

))])
(8)

= concat ◦ RC
([

Mθ

(
X

1:(D/2)
1:T

)
,RC

(
Mθ ◦ RC

(
X

(D/2):D
1:T

))])
(10)

= concat
([

Mθ ◦ RC
(
X

(D/2):D
1:T

)
,RC

(
Mθ

(
X

1:(D/2)
1:T

))])
(11)

= concat
([

Mθ

(
X

D:(D/2)
T :1

)
,RC

(
Mθ ◦ RC

(
X

(D/2):1
T :1

))])
(6)

= MRCe,θ ◦ RC
(
X1:D

1:T

)
□

B. Proof of Theorem 4.1
We begin with the following lemma,

Lemma B.1. For two RC equivariant sequence operators F and G, their composition F ◦G is also equivariant.

Proof. We have that,

F
(
G
(
RC

(
X1:D

1:T

)))
= F

(
RC

(
G
(
X1:D

1:T

)))
= RC

(
F
(
G
(
X1:D

1:T

)))
where each equality follows from the RC equivariance of the operators G and F, respectively. □

Therefore, to prove that the Caduceus-PS is RC equivariant, we need to prove that each operator in LMRCe,θ ◦M(n)
RCe,θ ◦

EmbRCe,θ satisfies this property.
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First, we show that EmbRCe,θ is RC equivariant.

RC ◦ EmbRCe,θ
(
X1:4

1:T

)
= RC ◦ concat

([
Embθ

(
X1:4

1:T

)
,RC ◦ Embθ

(
RC

(
X1:4

1:T

))])
= concat ◦ RC

([
Embθ

(
X1:4

1:T

)
,RC ◦ Embθ

(
RC

(
X1:4

1:T

))])
(10)

= concat
([
Embθ

(
RC

(
X1:4

1:T

))
,RC ◦ Embθ

(
X1:4

1:T

))]
(11)

= concat
([
Embθ

(
X4:1

T :1

)
,RC ◦ Embθ

(
X1:4

1:T

))]
= concat

([
Embθ

(
X4:1

T :1

)
,RC ◦ Embθ

(
RC

(
X4:1

T :1

)))]
= EmbRCe,θ ◦ RC

(
X1:4

1:T

)
□ (12)

Additionally, we have that M(n)
RCe,θ is equivariant by Theorem 3.1 and induction using Lemma B.1.

Finally, recall the definition of LMRCe,θ:

LMRCe,θ
(
X1:D

1:T

)
:= LMθ

(
X

1:(D/2)
1:T

)
+ flip chan ◦ LMθ

(
X

D:(D/2)
1:T

)
.

Note that LMθ is parameterized by a weight matrix Wθ and applying LMθ to a sequence X
1:(D/2)
1:T is equivalent to

multiplying each of the sequence elements x1:(D/2)
t , for t = 1, . . . , T, on the left by Wθ. Therefore if we reverse an input

to LMθ along the length dimension, the output will be reversed along the length dimension as well. We can thus focus on a
specific item at position t in a sequence:

LMRCe,θ
(
X1:D

1:T

)
t
= Wθ · x1:(D/2)

t + flip chan
(
Wθ · xD:(D/2)

t

)
,

and we need only show that it is equivariant with the flip chan operation, which we recall merely reverses the channels of
given input. We note that flip chan−1 = flip chan. Now we show that:

flip chan
(
LMRCe,θ

(
X1:D

1:T

)
t

)
= flip chan

(
Wθ · x1:(D/2)

t

)
+Wθ · xD:(D/2)

t

= LMRCe,θ
(
flip chan

(
X1:D

1:T

))
t

This completes the proof. □

C. Pre-training
We provide a more detailed description of the dataset and training methodology used in the human reference genome
pre-training task. This dataset is based on the splits used in the previous Enformer study (Avsec et al., 2021). The training
split comprises 34,021 segments that we extend to a maximum length of 1,048,576 (220), collectively covering the genome
and amounting to around 35 billion tokens, or nucleotide base pairs.

All the Mamba-based models, including Caduceus, were trained with a learning rate of 8e−3. We maintain a constant
number of tokens in each batch, using 220 tokens per batch. For example, for sequence lengths of 1,024, batch size is also
1,024 and for sequence lengths of 131k (217), batch size is 8. All our models, other than Caduceus-PS, are pre-trained with
RC data augmentation, where any given sequence is either unchanged or has the RC operation applied to it with equal
probability.

Models were trained with cosine decay and the ADAM optimization algorithm (Kingma & Ba, 2014), β1 and β2 values of
0.95 and 0.9, respectively.

For bi-directional models, we use the masking recipe presented in Devlin et al. (2018). Namely, we ‘mask’ 15% of tokens.
Of the ‘masked’ tokens, 80% are replaced with a special [MASK] token, 10% are replaced with a random token from the
vocabulary, and 10% are left unchanged.

The various Mamba/Caduceus models that were pre-trained are listed in Table 3. For Figure 3a, we re-pre-train HyenaDNA
models on sequence lengths of 1,024, 32k, and 131k. We use the corresponding hidden dimension and depth as those used
when these models were originally trained in Nguyen et al. (2023). Other than learning rate, which was set to 6e−4, all the
other pre-training details used for our models above were used for HyenaDNA pre-training as well.
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Table 3. Pre-trained Mamba-based models with corresponding sequence length, depth, hidden dimension, and number of gradient updates.

SEQ. LEN. HIDDEN DIM. NUM. LAYERS GRADIENT UPDATES UNI BI-DIRECTIONAL
BI-DIRECTIONAL

RC EQUIV.

1K 118 4 10K ✓ ✓
1K 128 4 10K ✓ ✓ ✓
1K 256 4 10K ✓ ✓ ✓

32K 256 8 10K ✓ ✓ ✓
131K 256 16 50K ✓ ✓ ✓

D. Downstream Tasks
D.1. Genomics Benchmark

For the Genomics Benchmark tasks, we deviate from the results presented in Nguyen et al. (2023) in order to maintain
‘true’ train and test splits. We therefore, elect to use 5-fold cross-validation where we split the training set into 90/10
train/validation splits and perform early stopping on the validation set. Models were fine-tuned for 10 epochs. The
HyenaDNA model consists of 2 layers and hidden dimension 128. It is fine-tuned with a learning rate of 6e−4 and batch
size of 256. Weights for this pre-trained model were downloaded from https://huggingface.co/LongSafari/
hyenadna-tiny-1k-seqlen. Following Nguyen et al. (2023), we also experiment with adding RC data augmentation
for HyenaDNA. The best result of this search is presented in Table 1. The values used for RC data augmentation in each task
are presented in Table 4.

The CNN baseline is described in Grešová et al. (2023). It is trained from scratch with a learning rate of 1e−3 and batch
size of 64. The CNN consists of an embedding layer and convolutional layers with 16, 8, and 4 channels. The first layer is
followed by a ReLU non-linearity and all layers are followed by batch normalization and 1D max-pooling. Finally there are
two fully connected layers at the end of the network.

The Caduceus and Mamba models were fine-tuned with a batch size of 256. For the learning rate, we performed hyperparam-
eter tuning, searching within {1e−3, 2e−3}, and present the best result across cross-valildation, as shown in Table 5. Mamba
models consist of 4 layers with hidden dimension 128 and Caduceus models consist of 4 layers with hidden dimension
118 (to keep parameter counts roughly equivalent). For both Caduceus-Ph and Caduceus-PS the forward and RC sequence
representations are pooled and then averaged. For Caduceus-PS, this averaging is done during both downstream training and
inference. For Caduceus-Ph, this is done only during inference.

Table 4. Hyena Hyperparameter Selection for Genomic Benchmarks. The HyenaDNA model, chosen for its top-1 accuracy averaged over
5-fold cross-validation, includes options for using or not using the RC data augmentation during pre-training.

MOUSE ENHANCERS NO RC AUGMENTATION
CODING VS. INTERGENOMIC NO RC AUGMENTATION
HUMAN VS. WORM RC AUGMENTATION
HUMAN ENHANCERS COHN RC AUGMENTATION
HUMAN ENHANCER ENSEMBL NO RC AUGMENTATION
HUMAN REGULATORY RC AUGMENTATION
HUMAN OCR ENSEMBL RC AUGMENTATION
HUMAN NONTATA PROMOTERS NO RC AUGMENTATION

D.2. Nucleotide Transformer Tasks

For the Nucleotide Transformer Task, we pull baseline results from https://huggingface.co/spaces/
InstaDeepAI/nucleotide_transformer_benchmark. For our Caduceus / Mamba-based models we follow the
same CV protocol from Dalla-Torre et al. (2023) using a 90/10 train/validation split for each fold. Our models consist of 4
layers and hidden dimension 256, roughly matching the parameter count of the reported HyenaDNA model. Models were
fine-tuned for 20 epochs. Hyperparameters for the models reported in Table 2 can be found in Table 6
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Table 5. Mamba / Caduceus Hyperparameter Selection for Genomic Benchmarks. Learning rate chosen for its top-1 accuracy averaged
over 5-fold cross-validation.

MAMBA CADUCEUS W/O EQUIV. CADUCEUS-PH CADUCEUS-PS

MOUSE ENHANCERS 2e−3 2e−3 2e−3 2e−3

CODING VS. INTERGENOMIC 2e−3 1e−3 2e−3 1e−3

HUMAN VS. WORM 2e−3 1e−3 2e−3 1e−3

HUMAN ENHANCERS COHN 1e−3 1e−3 1e−3 2e−3

HUMAN ENHANCER ENSEMBL 2e−3 1e−3 1e−3 1e−3

HUMAN REGULATORY 1e−3 2e−3 2e−3 1e−3

HUMAN OCR ENSEMBL 2e−3 2e−3 2e−3 2e−3

HUMAN NONTATA PROMOTERS 1e−3 2e−3 2e−3 2e−3

Table 6. Caduceus Hyperparameter Selection for Nucleotide Transformer Tasks. Caduceus-Ph and Caduceus-PS fine-tuning hyperparame-
ters chosen based on best performance averaged over 10-fold cross-validation.

CADUCEUS-PH CADUCEUS-PS
LR BATCH SIZE LR BATCH SIZE

HISTONE
MARKERS

H3 1e−3 128 1e−3 128
H3K14AC 1e−3 128 1e−3 128

H3K36ME3 1e−3 128 1e−3 128
H3K4ME1 1e−3 512 1e−3 128
H3K4ME2 1e−3 128 1e−3 512
H3K4ME3 1e−3 512 1e−3 512

H3K79ME3 1e−3 128 1e−3 128
H3K9AC 1e−3 128 1e−3 128

H4 1e−3 128 1e−3 128
H4AC 1e−3 128 1e−3 128

REGULATORY
ANNOTATION

ENHANCERS 1e−3 512 1e−3 512
ENHANCERS TYPES 1e−3 512 2e−3 512

PROMOTER ALL 1e−3 512 1e−3 128
PROMOTER NO TATA 1e−3 512 1e−3 128

PROMOTER TATA 1e−3 128 1e−3 512

SPLICE SITE
ANNOTATION

SPLICE SITES ACCEPTORS 1e−3 128 1e−3 128
SPLICE SITES ALL 1e−3 512 1e−3 512

SPLICE SITES DONORS 1e−3 128 1e−3 128

D.3. Predicting the Effect of Variants on Gene Expression

Labels for this task represent whether a SNP has a causal effect on gene expression. A positive label is assigned if the
causal probability, as determined by the SuSiE (Wang et al., 2020) tool, is > .9 (see Avsec et al. (2021), where this task was
originally proposed, for more details). Chromosomes 9 and 10 are used as the held out test set (see Trop et al. (2023) for
more details).

We follow the methodology presented in Trop et al. (2023) and extract embeddings for each model by taking an average of a
1536 bp window centered at the SNP location for both reference and alternative sequences and concatenating along the
channel dimension. Based on the tokenization scheme, for each model this window corresponds to a different number of
tokens. Namely, for HyenaDNA and Caduceus models, since base-pair-tokenization was used, the window consists of 1536
tokens as well. Since Nucleotide Transformer was trained using 6-mer tokenization, the window corresponds to 256 bps.
Finally, for Enformer, the final embedding has a ‘receptive field’ of 128 bps, hence a window of 12 ‘tokens’ / positions is
used. To each embedding we also concatenate the tissue from which the sequence was assayed.

We also use a different input sequence length for each model. For Caduceus and Hyena models, we use inputs of length
131k bps. For Nucleotide Transformer, we use inputs of length 12k bps, which correspond to the input length on which this
model was originally trained. For Enformer, we use inputs of 196k bps, which correspond to the input length on which this
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model was originally trained.

We then train an SVM classifier with an RBF kernel on these embeddings for each strata of the data, which is separated by
distance to nearest TSS. For each bucket of distance to TSS, we randomly select 5,000 training points, fit an SVM with RBF
kernel classifier, and record test set AUROC. We repeat this process five times and report mean and +/- of one standard
deviation across seeds.

Hyperparameter optimization was performed for each model within each distance category, focusing on the regularization
strength. We select this hyperparameter based on highest mean AUROC reported from 5 random seeds. The regularization
strength used for each model reported in Figure 4 are listed in Table 7.

Pre-trained weights for HyenaDNA were downloaded from https://huggingface.co/LongSafari/
hyenadna-medium-160k-seqlen-hf. Pre-trained weights for Nucleotide Transformer were downloaded from
https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-500m-multi-species.
Pre-trained weights for the Enformer model were downloaded from https://huggingface.co/EleutherAI/
enformer-official-rough.

Table 7. Hyperparameter Selection for SVM classifier in variant effect prediction task. Inverse of the L2 regularization weight selected
from {1, 5, 10} by evaluating average test set AUROC.

DISTANCE TO NEAREST TSS (BP)
0− 30K 30− 100K 100K+

ENFORMER 1 1 5
NTV2 1 1 10
HYENADNA 1 1 5
CADUCEUS W/O EQUIV 1 1 10
CADUCEUS-PH 1 5 10
CADUCEUS-PS 1 1 5

E. Assets
E.1. Datasets

For pre-training we use the HG38 human reference genome (Consortium et al., 2009). The Genomics Benchmark comes
from Grešová et al. (2023). The Nucleotide Transformers benchmark is introduced in Dalla-Torre et al. (2023). The variant
effect prediction task data was originally proposed in Avsec et al. (2021) and we use the modified version from Trop et al.
(2023).

E.2. Software and Libraries

In Table 8, we enumerate the relevant open-source software, and corresponding licenses, used in this work.

F. Computational resources
Model training and inference were run on GPUs with number of devices and machine type varying by model size during
pre-training and downstream tasks. We use 3090, A5000, A6000, V100, and A100 GPUs.

16

https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen-hf
https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen-hf
https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-500m-multi-species
https://huggingface.co/EleutherAI/enformer-official-rough
https://huggingface.co/EleutherAI/enformer-official-rough


Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling

Table 8. Open source libraries used in this work, with corresponding licenses.

LIBRARY LICENSE

GENOMICSBENCHMARK (GREŠOVÁ ET AL., 2023) APACHE 2.0
ENFORMER PYTORCH MIT
MAMBA (GU & DAO, 2023) APACHE 2.0
HUGGINGFACE (WOLF ET AL., 2019) APACHE 2.0
HYDRA (YADAN, 2019) MIT
HYENADNA (NGUYEN ET AL., 2023) APACHE 2.0
NUMPY (HARRIS ET AL., 2020) NUMPY LICENSE
MATPLOTLIB (HUNTER, 2007) MATPLOTIB LICENSE
ML COLLECTIONS APACHE 2.0
OMEGACONF BSD 3-CLAUSE
PANDAS (PANDAS DEVELOPMENT TEAM, 2020) BSD 3-CLAUSE “NEW” OR “REVISED”
PYTORCH (PASZKE ET AL., 2019) BSD-3 CLAUSE
PYTORCH LIGHTNING (FALCON & THE PYTORCH LIGHTNING TEAM, 2019) APACHE 2.0
SCIKIT-LEARN (PEDREGOSA ET AL., 2011) BSD 3-CLAUSE
SEABORN (WASKOM, 2021) BSD 3-CLAUSE “NEW” OR “REVISED”
TRITON (TILLET ET AL., 2019) MIT
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