
GLIDE with a CAPE: A Low-Hassle Method to Accelerate Speculative Decoding

Cunxiao Du 1 Jing Jiang 1 Xu Yuanchen 2 Jiawei Wu 2 Sicheng Yu 1 Yongqi Li 3 Shenggui Li 4 Kai Xu 4

Liqiang Nie 5 Zhaopeng Tu 6 Yang You 2

Abstract
Speculative decoding is a relatively new decoding
framework that leverages small and efficient
draft models to reduce the latency of LLMs. In
this study, we introduce GLIDE and CAPE, two
low-hassle modifications to vanilla speculative
decoding to further improve the decoding speed
of a frozen LLM. Specifically, GLIDE is a
modified draft model architecture that reuses the
cached keys and values from the target LLM,
while CAPE is a proposal expansion method that
uses the draft model’s confidence scores to help
select additional candidate tokens for verification.
Extensive experiments on different benchmarks
demonstrate that our proposed GLIDE draft
model significantly reduces the expected decod-
ing latency. Additional evaluation using walltime
reveals that GLIDE can accelerate Vicuna models
up to 2.17x and further extend the improvement
to 2.61x with CAPE. We release our code,
data, and the trained draft models at https:
//github.com/NonvolatileMemory/
GliDe_with_a_CaPE_ICML_24.

1. Introduction
Large language models (LLMs) have become increasingly
powerful and are now adopted for a wide range of applica-
tions such as machine translation (Jiao et al., 2023) and fact
verification (Zhang & Gao, 2023; 2024). Many LLM appli-
cations require real-time responses, e.g., machine translation
systems (Yu et al., 2022b). However, LLMs are typically
based on the autoregressive transformer architecture, which
generates output tokens step by step and thus suffers from
high latency, particularly with larger model sizes. To re-

1Singapore Management University 2National University of
Singapore 3The Hong Kong Polytechnic University 4HPC-AI Tech.
5Harbin Institute of Technology (Shenzhen) 6Tencent AI Lab. Cor-
respondence to: Jing Jiang <jingjiang@smu.edu.sg>, Zhaopeng
Tu <zptu@tencent.com>, Yang You <youy@comp.nus.edu.sg>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

 target model: Vicuna-7b

A
cc

ep
ta

nc
e

R
at

e
(%

)

0

50

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 Draft Model Output Confidence

(b) Confidence v.s. Acceptance Rate, how to utilize it?

(a) How Speculative with KV Cache Decoding works?

Step N: Decoding

Step N-1: Verification & KV Cache

Target Model Draft Model Target Model Draft Model

Step N+1: Verification & KV Cache

Step N: Decoding

Step N-1: Verification

Step N+1: Verification

Vanilla Speculative Decoding Speculative Decoding

Draft Model
with Confident Output: Shelf

I need less
candidate tokens!

Draft Model
with Unconfident Output: Sky

I need more
candidate tokens!

w/ KV Cache

Cat on the __

Fish in the __

Figure 1. (a) Comparison between vanilla speculative decoding
and our GLIDE. (b) There is a positive correlation between accep-
tance rate and confidence score.

duce LLM serving latency, speculative decoding (SD) has
been proposed as a viable solution (Stern et al., 2018; Chen
et al., 2023; Leviathan et al., 2023). The key idea of SD is
to use a smaller and more efficient draft model to predict
the next γ tokens in the output sequence and then use the
original LLM, which is called the target model, to verify
the proposed γ tokens in parallel. SD hinges on the insight
that not all output tokens are equally difficult to predict;
employing a smaller but more efficient draft model that can
correctly predict those “easy” tokens helps save inference
time. The success of SD relies heavily on the acceptance
rate of the tokens proposed by the draft model, or in other
words, how likely the target model will accept the proposed
tokens. Therefore, the design of the draft model and its
proposal mechanism play a central role in accelerating SD.

Recent work on SD acceleration has explored two promis-
ing directions. The first direction relies on the intuition
that the more closely the draft model’s predictions align
with those of the target model, the greater the likelihood
of the proposed tokens being accepted. Along this line,
researchers have proposed to align the draft model with
the target model through distillation training (Zhou et al.,
2024; Miao et al., 2023; Liu et al., 2023) or to use the

1

https://github.com/NonvolatileMemory/GliDe_with_a_CaPE_ICML_24
https://github.com/NonvolatileMemory/GliDe_with_a_CaPE_ICML_24
https://github.com/NonvolatileMemory/GliDe_with_a_CaPE_ICML_24

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

same model for both speculation and verification (i.e., self-
speculative decoding) (Fu et al., 2023). Second, at each
round of speculation, one can ask draft models to propose
multiple candidate sequences for the target model to verify,
thereby increasing the chance of acceptance. In this vein,
recent work explores employing multiple draft models to
propose different candidate token sequences (Miao et al.,
2023) and using multiple prediction heads, one for each
position, to propose multiple candidate token sequences in
a non-autoregressive manner (Cai et al., 2023).

In this work, we propose new solutions in the two afore-
mentioned directions that are easy to implement and yet
highly effective for accelerating SD. Our solutions are moti-
vated by the following insights. First, we make an important
observation that the draft model does not need to work sepa-
rately from the target model during inference; by leveraging
the KV (key-value) cache of the target model, the draft
model can propose tokens that are more likely to be ac-
cepted by the target model. Second, we note that previous
attempts to propose multiple candidate sequences are not
ideal; they either rely on multiple draft models (Miao et al.,
2023), which is not always feasible in practice, or use non-
autoregressive decoding to keep the draft model’s inference
time low but sacrifice the fluency of the proposed candidate
sequences (Cai et al., 2023). We propose a new solution
that, without imposing much additional computational or
memory requirements, simply expands a single candidate
sequence with additional candidate tokens at each position.

Specifically, we introduce a cross-attention layer in the draft
model’s network architecture. Although its implementation
appears straightforward, this layer enables the draft model
to access the target model’s KV cache, a process that is
empirically proven to be highly effective in our experiments.
We metaphorically describe this cross-attention mechanism
as “catching a glimpse” of the KV cache and name our
model GLIDE, an acronym for Glimpse Draft Model. The
idea is illustrated in Figure 1(a). As we can see from the
figure, because the target model stores its computed keys
and values corresponding to the tokens it has verified in the
last round of verification, these KV cache entries are free for
the draft model to use. By re-using these keys and values,
the draft model is more likely to behave similarly to the
target model.

To expand a proposed candidate sequence with additional
candidate tokens, a key question is how many additional
top-ranked tokens we should include at each position. Al-
though a naive solution is to use a pre-defined and fixed
number, we suspect that we should provide more candidate
tokens at a position where the top-1 candidate token has
a low confidence score. To verify whether this hypothesis
holds, we first conduct a preliminary experiment to check
whether a proposed token’s prediction confidence is corre-

lated with the chance of its acceptance. Figure 1(b) shows
the experiment results. We can see that indeed there is a
clear positive correlation between the draft model’s predic-
tion confidence of a proposed token and the token’s chance
of being accepted by the target model. This observed corre-
lation motivates us to design a Confidence-aware Proposal
Expansion (CAPE) method that dynamically determines
the number of additional candidate tokens to include in an
expanded proposal sequence.

We conduct extensive experiments to evaluate the effective-
ness of GLIDE and CAPE. Experiments on four datasets
using Vicuna and Mistral as target models show that it is
highly effective for GLIDE to attend to the target model’s
KV cache, leading to an improvement of the acceptance
rate of up to 23.5%, and GLIDE significantly outperforms
several baseline draft models, with an average improve-
ment of 19.9% in terms of acceptance rate, compared
with previous draft models. Additional experiments in-
corporating CAPE into GLIDE reveal that CAPE can
achieve speedups ranging from 2.50x to 2.61x on differ-
ent Vicuna models (Chiang et al., 2023) based on wall-
time. The code and pretrained draft models can be found
in https://github.com/NonvolatileMemory/
GliDe_with_a_CaPE_ICML_24.

2. Related Work
Speculative decoding (Xia et al., 2024) was first proposed
as block-wise parallel decoding. Stern et al. (2018) trained
multiple auxiliary models to predict γ future tokens in par-
allel and then used the original model to verify the future
tokens in parallel. Inspired by this idea, Chen et al. (2023);
Kim et al. (2023); Yuan et al. (2023); Leviathan et al. (2023);
Xia et al. (2023) used an independent draft model to propose
a short sequence of tokens for the target model to verify.
There were also draft model-free works (He et al., 2023;
Yang et al., 2023; Fu et al., 2023; Zhang et al., 2023) for
speculative decoding.

Leviathan et al. (2023) pointed out that the main factors
for speedup are the efficiency of the draft model and the
acceptance rate of the proposed tokens. To improve the
efficiency of the draft model, Cai et al. (2023) proposed
adding multiple LM Heads to predict future tokens at differ-
ent positions independently. To improve the acceptance rate,
Miao et al. (2023) proposed to generate multiple candidate
sequences, which can be efficiently verified through a tree
verification process (Miao et al., 2023; Cai et al., 2023; Sun
et al., 2023). Alternatively, distillation was used to train
draft models that hopefully are similar to the target model.
Zhou et al. (2024) proposed using sequence-level distilla-
tion (Kim & Rush, 2016) via the draft model’s output, while
Liu et al. (2023) resorted to online distillation to quickly
adapt the draft model to the current context.

2

https://github.com/NonvolatileMemory/GliDe_with_a_CaPE_ICML_24
https://github.com/NonvolatileMemory/GliDe_with_a_CaPE_ICML_24

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

Our work focuses on the second factor, i.e., acceleration
through improving the acceptance rate. GLIDE re-uses
the target model’s KV cache to generate proposals more
likely to be accepted, and CAPE expands the proposals
with additional highly-ranked candidate tokens to further
increase the acceptance rate.

3. Background: Speculative Decoding (SD)
In vanilla SD, we assume that there is a powerful but slow
LLM (i.e., the target model, denoted asMT) used to ver-
ify the final output sequence. Meanwhile, a less powerful
but faster language model (i.e., the draft model, denoted
asMD) is used to propose candidate tokens. Let x≤t de-
note the prefix or prompt from which the next tokens are
to be proposed. SD works by first using the faster draft
modelMD to autoregressively generate the next γ tokens
(xt+1, . . . , xt+γ). We refer to this proposed candidate token
sequence as a proposal. However, because the proposal may
not be what the target model MT would have generated,
the proposed tokens need to be verified byMT. MT can
verify the γ tokens in parallel, which is much faster than
autoregressive generation. The verification step returns the
first n tokens (0 ≤ n ≤ γ) in the proposal that are accepted
byMT based on some acceptance strategy. In addition, the
verification step returns one more token x′

t+n+1 for free.
Then the sequence (xt+1, . . . , xt+n, x

′
t+n+1) is appended

to the original prefix x≤t to form the new prefix for the
next round of speculation and verification. There are two
acceptance strategies: speculative decoding and speculative
sampling. Leviathan et al. (2023) show that the outputs of
these two strategies are equivalent to the outputs of the target
model with greedy search and random sampling decoding
strategies, respectively.

4. Our Method: GLIDE with a CAPE
As stated in §1, our method to accelerate SD consists of
two parts: (1) We design a draft model called GLIDE that
“catches a glimpse of” the KV cache computed during the
target model’s last round of verification to assist the draft
model’s current round of proposal generation. (2) We pro-
pose a proposal expansion mechanism called CAPE that
uses the confidence scores of the draft model to dynami-
cally determine how many additional top-ranked tokens to
include at each position in a proposal sequence.

4.1. GLIDE: Glimpse Draft Model

We assume that both the target and the draft models fol-
low the standard decoder-only transformer architecture. To
enable the draft model to take advantage of the hidden rep-
resentations of the prefix tokens computed and cached by
the target model, we propose a new architecture for the draft

model called GLIDE (Glimpse Draft Model). GLIDE al-
lows the draft modelMD to re-use the cached key-value
pairs in the target modelMT, presumably making the dis-
tribution ofMD more consistent with that ofMT without
incurring much additional computational cost. OurMD will
be trained from scratch based on the GLIDE architecture
whileMT is kept frozen.

Specifically, assume that in the last round of speculation,
MD has proposed a sequence of tokens that is passed to
MT for verification. Then in the subsequent verification
step, assume thatMT accepts the sequence up to xt−1 and
generates an additional token xt. After this verification
step, we will keep only the KV cache for tokens up to
position (t− 1) and discard the KV cache for those tokens
rejected byMT. The left hand side of Figure 2 illustrates
the verification process, where the grey cube represents the
discarded KV cache.

Now assume that given the prefix x≤t, the draft model
MD in its current round of speculation has proposed to-
kens xt+1 to xt+i−1. Next, MD is going to propose the
next token xt+i based on the prefix x<(t+i). In vanilla
speculative decoding,MD works independently ofMT. In
our proposed GLIDE architecture, however, we want to
re-use MT’s cached keys and values associated with the
prefix tokens up to xt−1. To do so, we insert a cross-
attention sub-layer between the self-attention sub-layer and
the feed-forward sub-layer in each transformer layer ofMD,
as shown in the right hand side of Figure 2. This additional
layer first projects the outputs between t and (t + i − 1)
from the self-attention sub-layer below into query vectors
of a dimension that is compatible withMT’s keys and val-
ues. Then this cross-attention sub-layer performs standard
cross-attention between these queries fromMD and the KV
cache fromMT. The resulting vectors will be passed to the
feed-forward sub-layer above.

Concretely, let h denote the number of heads in each self-
attention sub-layer ofMT. Let (Kl,j , V l,j) denote the keys
and values of the j-th head at the l-th layer ofMT, where
Kl,j , V l,j ∈ R(t−1)×dk . Let Hm ∈ Ri×dD represent the
last i output vectors from the m-th self-attention sub-layer of
MD. These i vectors in Hm correspond to positions t to (t+
i−1). We intend to use these vectors fromMD as queries to
attend to the representations of the prefix tokens up to xt−1

inMT. Because dD (the dimension of the hidden vectors
in MD) is generally different from dk (the dimension of
the keys inMT), and becauseMT has h attention heads,
we first perform h linear projections to project Hm into h
different query matrices, one for each head inMT:

Qm,j = HmWj ,

where j ∈ [1, h], and Wj ∈ RdD×dk are learnable parame-
ters. To perform cross-attention, each layer inMD attends

3

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

autoregressively proposes next 4 tokens [x5, x6, x7, x10]
for Step N+1 verification.

does parallel verification [x2, x3, x8, x9] from Step
N-2, and delivers KV Cache for Step N speculation.

KV Cache×
Self-Attention Layer

Cross-Attention Layer

Current Query of ℳD

Input tokens Input tokens

Step N-1:
Verification

❌ ❌ ❌

KV Cache
of ℳT

×

Self-Attention Layer

Step N:
Speculation

𝑁!𝑁"

x1 x2 x3 x8 x9history

x8 x9history x1 x2 x3

x2 x3 x4 x8 x9

x1history x2 x3 x4 x5 x6 x7

x4 x5 x6 x7

x5 x6 x7 x10

ℳDℳT

Figure 2. Overview of GLIDE. We insert the cross-attention layer in the Draft Model (MD) and let it glimpse the KV cache of the target
model (MT) from the last verification.

to a corresponding layer inMT, counting from the top lay-
ers. In this way, we try to use the KV cache from the upper
layers ofMT because presumably they are more contextu-
alized and therefore better representations. Specifically, let
NT and ND denote the numbers of layers ofMT andMD,
respectively. For the m-th layer inMD, we let it attend to
the l-th layer inMT, where l = NT − ND + m, through
multi-head attention as follows:

MultiHead(Qm,Kl, V l) = Concat(hd1, . . . , hdh)WO,

where hdj = SoftMax(
Qm,j(Kl,j)⊺√

dk
)V l,j .

Here WO ∈ Rhdk×dD is a standard learnable parameter
matrix that projects the concatenated heads back to dimen-
sion dD. MultiHead(Qm,Kl, V l) will then be concatenated
with the other output vectors (up to position t) from the m-
th self-attention sub-layer of MD and fed into the m-th
feed-forward sub-layer ofMD, as shown in Figure 2.

Although we could also attend to only the last layer of the
KV cache, our preliminary experiments showed that using
the last Nd layers gave slightly better performance. Because
computation-wise attending to the last layer and attending
to the last Nd layers do not have much difference, here we
choose to attend to the last Nd layers of KV cache.

Block-wise Attention Mask. We train the draft model
MD from scratch similar to the standard training of autore-
gressive decoder-only models. A main difference is that
during training, the target modelMT (which is kept frozen)
is used to provide the KV cache for the cross-attention
sub-layers ofMD. However, care must be taken to ensure
consistency between the training stage and the inference
stage regarding the use ofMT’s KV cache. Recall that at
inference time whenMD is used for speculation, afterMT

has verified tokens up to xt−1 and generated token xt, and
whenMD is about to speculate the (t + i)-th token,MD
only has access to the KV cache inMD up to position (t−1)
rather than position (t + i − 1). This can be considered a
KV cache delay. When training the draft modelMD, we
need to simulate this delayed KV cache to ensure that the
trainedMD works well with delayed KV cache.

To do so, we introduce a training mechanism with a block-
wise attention mask as follows. We divide the training
sequences into blocks of length L (which is set to be 5 in
our experiments). During training, when the draft model
MD is predicting token xj that is in the i-th block of a
sequence, inMD’s cross-attention sub-layer, we will use
the representations of only the tokens in the i-th block to
the left of xj as queries. These queries will attend to the
KV cache inMT corresponding to the tokens in the first
(i − 1) blocks of the sequence but not tokens in the i-th
block. Formally, the block-wise attention mask takes an
attention matrix A as input and is defined as follows:

MaskBlock(Ajk) =

{
Ajk, if block(j) > block(k)
−∞, otherwise

,

where block(j) is a function that returns the index of the
block where token xj belongs. This attention mask is only
used for the cross-attention sub-layers of the draft model
during training and is not used for testing.

4.2. CAPE: Confidence-Aware Proposal Expansion

Our CAPE has two components: a proposal expansion
mechanism and a corresponding verification mechanism.
Figure 3 gives an overview of CAPE.

Proposal Expansion. A standard proposal generated by a
draft model given prompt x≤t consists of a sequence of γ

4

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

ℳD

Attention

is
all
that

𝑺(𝒑𝟏) = 𝟎

all
All
the

the
that
you

ℳT

PART 1: Proposal Expansion

is allAttention the All that you

PART 2: Verification

Original proposal Expanded proposal

is all

𝑺(𝒑𝟐) = 𝟏 𝑺(𝒑𝟑) = 𝟐

Query

Key

Attention

is

all

the

All

that

you

= ∅
={ All }

={ that , you }

Expansion Set

ℳD ℳD

Figure 3. Overview of CAPE.

tokens, which we denote as (xt+1, xt+2, . . . , xt+γ). These
tokens have the highest probabilities at their corresponding
positions as predicted by the autoregressive draft model.
In CAPE, we introduce a representation called expanded
proposal that augments a standard proposal with a sequence
of expansion sets, one for each token in the proposal. The
expansion set Xi for xt+i in the proposal contains other
top-ranked tokens at position (t+ i). Formally, an expanded
proposal is a sequence of tokens (xt+1, xt+2, . . . , xt+γ)
where each token xt+i is associated with an expansion set
Xi = {x′

t+i,j}
Ki
j=1 with each x′

t+i,j being a token and Ki

being the size of Xi.

With minor modifications to the standard proposal gener-
ation procedure, an expanded proposal is constructed as
follows. Let pD(·|x<t+i) denote the next token distribu-
tion computed by the draft modelMD. Similar to standard
proposal generation, the token that has the highest proba-
bility according to pD(·|x<t+i) is selected to be xt+i and
appended to the proposal. Let pi = max pD(·|x<t+i) de-
note the probability (which can be regarded as a confidence
score) of predicting this xt+i. A function S(·) is then used
to determine the size Ki of the expansion set Xi based on
the confidence score pi. As discussed in §1, when the confi-
dence pi is high, we expect the top-ranked xt+i to be correct
with a high chance and therefore will use a small Ki. When
pi is low, we will use a relatively large Ki. Concretely, we
set S(p) to be 7, 5, 3, and 1 for p in the ranges of (0, 0.3],
(0.3, 0.6], (0.6, 0.8], and (0.8, 1], respectively. Once Ki is
determined, we will select Ki tokens (excluding xt+i) that
have the highest probabilities according to pD(·|x<t+i) and
place them in Xi. These tokens are the next best choices for
position (t+ i) other than xt+i.

It is important to point out that identification of the highest-
ranked tokens to be placed in Xi can be done while the draft
model continues to autoregressively generate the following
tokens beyond xt+i. Therefore, the construction of the ex-

pansion sets does not slow down the draft model’s inference.
It is also important to note that tokens in the expansion sets
are not used for predicting future tokens. This is a key dif-
ference from proposal expansion using beam search, where
each of the top-k tokens at a position is used to generate
subsequent tokens, resulting in expanded proposals in tree
structures with many branches. Such beam search-based
expansion would be much more expensive to compute and
thus less efficient, which we will demonstrate in §5.

Verification of Expanded Proposals. Because our pro-
posals now contain additional candidate tokens at each posi-
tion, the verification mechanism also needs to be modified.
We borrow ideas from the token tree verifier (Miao et al.,
2023; Cai et al., 2023; Sun et al., 2023) and implement
our verification procedure as follows. First, we linearize
an expanded proposal into a single sequence by simply ap-
pending the tokens in the expansion sets to the end of the
proposal. We then pass this sequence toMT for parallel
verification with a special causal mask. The key idea of this
mask is to ensure that each token, regardless of whether it
is in the original proposal or in an expansion set, attends to
only those tokens in the original proposal in front of this
token and the token itself.

Mathematically, the mask is defined as follows. Let P =
(xt+1, . . . , xt+β) denote the linearized expanded proposal,
where the first γ tokens are from the original proposal and
the remaining tokens are from the expansion sets. Let pos(i)
be a function that maps the token xt+i in P to the token’s
original position. That means, for i > γ, pos(i) = j where
xt+i ∈ Xj . Let A denote a β × β matrix representing the
attention scores between the tokens inP . The mask function
is defined as:

MaskCAPE(A)ij =

Aij if j ≤ γ and pos(i) > j

Aij if i = j

−∞ otherwise
.

Here the condition j ≤ γ is to check whether xt+j is a token
from the original proposal, the condition pos(i) > j is to
ensure that token xt+i is after token xj , and the condition
i = j is for self-attention. The pseudo-code can be found in
Appendix A.

5. Experiments
5.1. Settings

Target and draft models. We select two widely-used
LLMs, Vicuna (including 7b, 13b, and 33b) (Chiang et al.,
2023) and Mistral (7b-instruct-v0.1) (Jiang et al., 2023), as
target models. To make the draft model more efficient, we
choose a wider and shallower architecture. Specifically, for
7b and 13b target models, we use set ND to 1, and for the

5

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

Models Cost GSM8K Fin.-Alp. Spider Code.

↓ (%) Acc. (%) E(Spd.) Acc. (%) E(Spd.) Acc. (%) E(Spd.) Acc. (%) E(Spd.)

MT Vicuna-7B

LLAMA-68m 7.7 51.6 1.46 49.7 1.41 19.2 0.89 34.8 1.11
MD LLAMA-160m 49.0 58.0 0.66 57.1 0.65 25.1 0.38 40.0 0.48

GLIDE 6.7 64.8† 1.97† 63.2† 1.90† 55.7† 1.64† 67.0† 2.06†

MT Vicuna-13B

LLAMA-68m 6.2 50.2 1.51 49.3 1.48 19.0 0.94 32.7 1.13
MD LLAMA-160m 39.3 56.8 0.75 56.8 0.75 25.4 0.45 38.3 0.54

GLIDE 5.5 67.1† 2.16† 65.0† 2.07† 57.1† 1.77† 68.6† 2.24†

MT Vicuna-33B

LLAMA-68m 4.6 49.1 1.57 46.5 1.50 30.0 1.16 31.5 1.19
MD LLAMA-160m 29.5 56.1 0.89 53.1 0.84 31.4 0.59 36.7 0.64

GLIDE 6.8 69.3† 2.16† 64.3† 1.94† 62.7† 1.87† 68.9† 2.14†

MT Mistral-7B-Ins.

MD LLAMA-45m∗ 4.9 36.7 1.27 40.2 1.34 41.9 1.38 44.5 1.44
GLIDE 6.6 60.1† 1.80† 56.4† 1.67† 59.8† 1.79† 62.6† 1.89†

Table 1. Comparison between GLIDE and previous draft models. † denotes results that are statistically significantly better than the
corresponding best LLAMA draft model with p < 0.01. *Since there is no open-source draft model trained for mistral, we retrained it
using the same data of GLIDE following the setting of Miao et al. (2023). The walltime speedup is listed over Table 5.

33b target model, we set ND to 2. We set dD to be 4096.
Standard cross entropy is used to optimize the draft model
while the parameters of the target model are kept frozen.
More details on model training can be found in Appendix B.

Datasets. We first train our draft model on the pre-training
dataset SlimPajama-6B (Soboleva et al., 2023). We then
finetune the draft model on a supervised-finetuning (SFT)
dataset (ShareGPT (GPT3.5 & 4, 2023) in our case) to fur-
ther improve the model performance. Following Liu et al.
(2023), we evaluate our GLIDE method across four different
datasets: GSM8K (Cobbe et al., 2021) (math reasoning),
Finance-Alpaca (Bharti, 2023) (QA for finance), Spider (Yu
et al., 2018) (text-to-SQL), and Code-Search-Python (Hu-
sain et al., 2020) (Python code generation). We follow (Cai
et al., 2023) and use the well-known benchmark dataset
MT-Bench (Zheng et al., 2023) for the evaluation of CAPE.

Metrics. A widely-used metric for SD is acceptance rate
α (Leviathan et al., 2023), which is the expected probability
of the target model accepting a token proposed by the draft
model. Leviathan et al. (2023) showed that with speculative
sampling, α is equivalent to Ex∼pD(x) min(pT, pD), where
pT and pD are the target and the draft models’ next token
probabilities. The acceptance rate is independent of hard-
ware configuration and therefore a more objective metric.

Leviathan et al. (2023) defined the cost coefficient c to be
the ratio between the walltime of a single run ofMD and
that of MT. Given proposal length γ, acceptance rate α,
and cost coefficient c, Leviathan et al. (2023) derived the
following formula for the expected improvement factor in
total walltime, or expected speedup.

E(Spd.) =
1− αγ+1

(1− α)(γc+ 1)
.

Finally, we also use actual decoding speed and walltime
speedup for additional comparison.

Experiment design. To verify the effectiveness of GLIDE
and CAPE separately, we design two sets of experiments.
First, we employ only GLIDE without CAPE and use ac-
ceptance rate and expected speedup as evaluation metrics.
We set proposal length γ to be 5 and adopt speculative sam-
pling as our acceptance strategy, following (Liu et al., 2023).
Next, we compare GLIDE+CAPE with Medusa (Cai et al.,
2023) and GLIDE+BeamSearch.

For GLIDE+BeamSearch, during speculation, in-
stead of generating a single proposal sequence
(xt+1, xt+2, . . . , xt+γ), we will generate k proposal
sequences, where k is the beam size. Specifically, at
position (t + 1), we use the draft model to find the top-k
tokens to form the best k proposals up to position (t+ 1).

6

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

Vicuna-7B
A

cc
ep

ta
nc

e
R

at
e

(%
)

0

22.5

45

67.5

90

GSM8K

Fin.
-A

lp.
Spid

e
Cod

e.

14.4
20.1

14.920.7

42.9

28.9

41.5
35.6

Vanilla Drafter
GLIDE

Vicuna-13B

GSM8K

Fin.
-A

lp.
Spid

e
Cod

e.

17.1

11.3

16.723.5

42.2

27.1

41.4
34.9

Vanilla Drafter
GLIDE

Vicuna-33B

GSM8K

Fin.
-A

lp.
Spid

e
Cod

e.

5.4
13.5

23.5
10.3

54.1

41.1
45.9

51.4

Vanilla Drafter
GLIDE

Figure 4. Comparison between GLIDE and Vanilla Drafter. The
oranges boxes show the improvement brought by GLIDE.

Then at position (t + 2), using any of the top-k proposals
up to position (t+ 1) as the context/prefix, we use the draft
model to score the next token and find the top-k proposals
up to position (t + 2) that have the highest overall scores.
We continue this process until we reach position (t + γ)
and obtain the top-k proposal sequences of length γ. These
proposal sequences can be represented by a tree structure.
We adopt a variant of the tree-based parallel verification
method described in SpecInfer (Miao et al., 2023) to
perform efficient verification. We experimented with k = 4
and k = 8, and found k = 4 to have a smaller speculation
time and better walltime speedup. The performance of
GLIDE+BeamSearch reported in the paper is based on
k = 4.

Both Medusa and BeamSearch generate multiple proposals
and use a tree verification mechanism. For these methods
that generate multiple proposals, the metric acceptance rate
is no longer meaningful, and therefore we use walltime
speedup as our main metric. While we could use either spec-
ulative sampling or speculative decoding as the acceptance
strategy, to be consistent with the evaluation of Medusa (Cai
et al., 2023), here we adopt speculative decoding as our
acceptance strategy, and the batch size is set to be 1.

5.2. Evaluation of GLIDE

Effectiveness of attending to target model’s KV cache.
To verify whether it is effective to use the target model’s KV
cache, we first conduct a controlled experiment where we
compare two draft model architectures: (1) GLIDE, which
uses cross-attention to re-use the target model’s KV cache,
and (2) Vanilla Drafter, which has the same architecture
as GLIDE except that the cross-attention sub-layers are re-
moved. To reduce the experimental cost, we randomly sam-
ple half of the data from SlimPajma-6B to train both GLIDE
and the Vanilla Drafter. We further fine-tune the two models
on ShareGPT. We run the experiments on GSM8K, Fin.-
Alp., Spider, and Code. We find that GLIDE always has a
substantially higher acceptance rate than Vanilla Drafter. In

Figure 4, we show the improvement in terms of acceptance
rate by GLIDE over Vanilla Drafter on the four datasets.
We can see that the improvement of acceptance rate ranges
between 5.4 and 23.5 percentage points, and in most settings
the improvement is over 10 percentage points. Given such
substantial improvement, we can conclude that it is highly
effective for the draft model to re-use the target model’s KV
cache to improve the quality of the proposed sequences and
thus improve the acceptance rate.

Comparison between GLIDE and other draft models.
Next, we compare our GLIDE draft model trained on the
entire set of SlimPajma-6B and finetuned on ShareGPT with
a few previous baseline draft models, namely, LLAMA-
68m (Miao et al., 2023), LLAMA-160m (Miao et al., 2023),
and LLAMA-45m. Comparison between our GLIDE and
these baseline draft models is shown in Table 1. We show
three metrics: Cost (cost coefficient), Acc. (acceptance rate),
and E(Spd.) (expected speedup).

From the table, we have the following findings. (1) The
cost coefficient of GLIDE is very low, comparable to that
of LLAMA-68m or LLAMA-45m. Recall that the cost
coefficient measures the relative walltime cost of the draft
model compared with the target model, and a 5%-6% cost
coefficient means the walltime cost of our GLIDE draft
model is negligible compared with that of the target model.
(2) In terms of acceptance rate and expected speedup, our
GLIDE draft model clearly beats the baseline draft models
under all settings, and the improvement is all statistically
significant. (3) The acceptance rate of GLIDE generally
falls between 55% and 70%, which means more than half
of the proposed tokens are accepted. In comparison, the
baseline draft models sometimes only have an acceptance
rate of around 30%. Similarly, the expected speedup of
GLIDE ranges between 1.67 and 2.24, much higher than
those of the baseline draft models, which is always below
1.5 for LLAMA-68m and LLAMA-45m and below 1.0
for LLAMA-160m. In sum, the results in Table 1 again
demonstrate that GLIDE is highly effective.

Comparison of actual decoding speed. To see the ac-
tual speedup of GLIDE, we also report the actual decoding
speed in terms of number of tokens per second based on
MT-bench (Zheng et al., 2023). The comparison between
the speed of GLIDE and that of the baselines is shown in
Figure 5. We find that GLIDE substantially accelerates the
model’s decoding speed. The results are consistent with
the findings with the expected speedup. It is interesting to
note that when using GLIDE, our accelerated vicuna-33b
model has a faster decoding speed than vicuna-7b without
speculative decoding.

7

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

Sp
pe

du
p

(X
)

1

2

3

Vicuna-7B Vicuna-13B Vicuna-33B

2.5
2.62.6

1.81.8

1.5

1.9

2.2
2.0 1.91.92.0

Medusa GLIDE GLIDE+Beam Search
GLIDE+CAPE

To
ke

ns
 /

Se
co

nd

0

100

200

Vicuna-7B Vicuna-13B Vicuna-33B

60.9

100.8106.8

39.4

63.1
72.1

30.4
41.247.5

28.3
46.454.6

TargetOnly LLaMA-160M LLaMA-68M
GLIDE

Figure 5. The decoding speed (tokens per second) on MT-Bench.

0.5

2

3.5

Vicuna-7b Vicuna-13b Vicuna-33b

2.52.62.6

2.22.2
1.9 1.9

2.2
2.0 1.91.92.0

Medusa GLIDE GLIDE+Beam Search GLIDE+CaPE

Figure 6. The practical speedup with GLIDE + CAPE.

5.3. Evaluation of CAPE

Next, we assess the effectiveness of CAPE on top of GLIDE.
It is worth noting that acceptance rate based on its original
definition is not applicable to the setting when the draft
model proposes additional candidate tokens for verification.
Therefore, in this set of experiments, we directly measure
the walltime speedup on MT-Bench, in line with Medusa.
Here, the walltime speedup is defined to be the ratio between
the walltime of applying the speculative decoding method
under evaluation and the walltime of standard decoding
using only the target model. We compare GLIDE+CAPE
with the following baselines: (1) Medusa (Cai et al., 2023),
which uses a non-autoregressive draft model to parallel
generate multiple proposals. (2) GLIDE, which does not use
CAPE. (3) GLIDE+BeamSearch, where we set the beam
size equal to 4. Medusa and GLIDE+BeamSearch use a tree
attention mechanism (Miao et al., 2023; Cai et al., 2023) for
efficient verification. The results are shown in Figure 6.

We have the following findings from the figure. (1)
GLIDE+CAPE clearly outperforms all the baselines with a
substantial margin. (2) There is a clear improvement of wall-
time speedup when CAPE is added on top of GLIDE. This
illustrates the usefulness of further employing CAPE on top
of GLIDE. (3) It is interesting to observe that even without
CAPE, GLIDE alone performs better than Medusa. This
again shows the effectiveness of GLIDE itself. It is worth
pointing out that Medusa also uses the hidden states from
the target model for its draft model’s proposal generation,
but instead of using all the previous KV cache like what we
do, Medusa uses the the hidden state of the last verified to-
kens only, which may affect the quality of the draft model’s
predictions. Furthermore, Medusa uses a non-autoregressive

way to generate proposal sequences. It is well known that
non-autoregressive language models tend to generate output
sequences with lower fluency (Gu et al., 2018; Du et al.,
2021; 2022). In comparison, our GLIDE model is an autore-
gressive model. Therefore, the quality of the proposals by
Medusa is likely lower than ours. We suspect that this is
another important factor for Medusa to perform worse than
our method in terms of walltime speedup. (4) Another inter-
esting finding is that GLIDE+BeamSearch may slower than
GLIDE. This shows that simply employing beam search
to generate multiple proposal sequences is not guaranteed
to work. Although the additional proposal sequences may
increase the chance of acceptance, computationally, gen-
erating these proposals during speculation and verifying
them during verification incur additional costs, which in our
experiments seem to outweigh their benefits. We conduct
further analysis in §5.4.

It is worth noting that our GLIDE+CAPE method is not
only faster than Medusa but also verifies a smaller number
of proposed tokens in each batch than Medusa. Our CAPE
sets the maximum number of tokens for verification at each
step to be 32, whereas Medusa’s is 64. So our CAPE may
support larger batch size inference.

5.4. Further Analysis

Impact of KV cache at different layers. In our default
setting, the draft model attends to the KV cache from the
top layers of the target model, as described in §4. It is also
possible to attend to lower layers’ KV cache. To see whether
indeed KV cache from higher layers is more effective, we
compare the acceptance rates when GLIDE is used with
Mistral-7b as the target model on the four datasets. The
results are shown in Figure 7. We can see that clearly using
KV cache from higher layers of the target model produces
higher acceptance rates, confirming our assumption that us-
ing the KV cache from the top layers is more effective. On
the other hand, using KV cache from lower layers is still
useful compared with not using KV cache at all. Therefore,
GLIDE can potentially be combined with early exit specu-
lative decoding methods (Schuster et al., 2022) to further
reduce the overall decoding time.

CAPE vs. beam search. Earlier in Figure 6 we find that
while CAPE reduces walltime, beam search incurs more
walltime. To better understand the issue, we separately com-
pare the speculation time and verification time. We find
that for verification, CAPE and beam search have similar
walltime. But for each step of speculation, beam search in-
creases the walltime from 5.5ms to 10.9ms (a difference of
5.4ms) on average, whereas CAPE only increases the wall-
time by 0.2ms. The main reason for beam search to increase
walltime so much is that beam search requires copying and
sorting operations that are very time-consuming. This phe-

8

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

GSM8K

A
cc

ep
ta

nc
e

R
at

e(
%

)

35

42.5

50

57.5

65

NA 1 4 16 24 32

 target KV Cache Layer

Code.

A
cc

ep
ta

nc
e

R
at

e(
%

)
35

42.5

50

57.5

65

NA 1 4 16 24 32

 target KV Cache Layer

Fin.-Alp.

A
cc

ep
ta

nc
e

R
at

e(
%

)

35

42.5

50

57.5

65

NA 1 4 16 24 32

 target KV Cache Layer

Spider

A
cc

ep
ta

nc
e

R
at

e(
%

)

35

42.5

50

57.5

65

NA 1 4 16 24 32

 target KV Cache Layer

A
cc

ep
ta

nc
e

R
at

e
(%

)

35

45

55

65

Target KV Cache Layer

NA 1 4 16 24 32

GSM8K
Finance-Alpaca
Spider
Code-Search

Figure 7. The relationship between the acceptance rate and the
n-th layer of target model for KV cache.

nomenon was also observed by other researchers1.

The importance of confidence scores in CAPE. Recall
that CAPE uses the draft model’s confidence scores to dy-
namically determine the number of additional tokens in each
expansion set. To see whether this confidence-aware expan-
sion is useful, we compare CAPE with another proposal
expansion method, where we set the size of the expansion
sets to 4, which is the average size of the practical expansion
sets. We find that using this fixed-size expansion method,
the decoding speed decreases from 70.6 tokens/sec to 68.4
tokens/sec on MT-Bench. This shows that it is useful to
use the confidence scores to adjust the sizes of different
expansion sets.

6. Conclusions
In this work, we propose a draft model architecture called
GLIDE that leverages the KV cache from the target model
to improve its proposal generation. We also propose a
confidence-aware proposal expansion mechanism called
CAPE that produces additional candidate tokens for ver-
ification. Experiments demonstrate that both GLIDE and
CAPE are highly effective ways to accelerate speculative
decoding. Our method also substantially outperforms the
strong baseline Medusa based on walltime. Overall, the
integration of GLIDE with CAPE results in a 2.5x speedup
on Vicuna models. As future work, we will explore the
batch serving of GLIDE and its effectiveness in process-
ing extremely long contexts and multimodal domain (Wang
et al., 2019a;b; Wu et al., 2024).

Impact Statement
Our work significantly improves the inference speed at
which large language models make predictions, thus helping
to make AI technologies more accessible and opening up
more possibilities for personal AI applications. However,
since our method does not change the output generated by

1https://github.com/ggerganov/llama.cpp/
issues/3137

LLMs, it means our approach could inadvertently speed
up the creation of harmful or biased content, such as hate
speech or misinformation. This highlights the critical need
for careful use and the establishment of strong safeguarding
measures to reduce the dangers linked to enhanced LLM
processing speeds.

Acknowledgement
Cunxiao wants to especially thank Xuan, Fangkai, and Jian-
lin’s help with this paper. Yang You is being sponsored
by NUS startup grant (Presidential Young Professorship),
Singapore MOE Tier-1 grant, ByteDance grant, ARCTIC
grant, SMI grant (WBS number: A-8001104-00-00), Al-
ibaba grant, and Google grant for TPU usage.

References
Bharti, G. Finance-alpaca dataset, 2023. URL
https://huggingface.co/datasets/
gbharti/finance-alpaca.

Cai, T., Li, Y., Geng, Z., Peng, H., and Dao, T. Medusa: Sim-
ple framework for accelerating llm generation with multi-
ple decoding heads, 2023. URL https://github.
com/FasterDecoding/Medusa. GitHub reposi-
tory.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre, L.,
and Jumper, J. M. Accelerating large language model
decoding with speculative sampling. arXiv:2302.01318,
2023.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H.,
Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E., et al.
Vicuna: An open-source chatbot impressing gpt-4 with
90%* chatgpt quality, 2023. URL https://vicuna.
lmsys.org.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv:2110.14168, 2021.

Du, C., Tu, Z., and Jiang, J. Order-agnostic cross entropy
for non-autoregressive machine translation. In Proceed-
ings of the 38th International Conference on Machine
Learning (ICML), 2021.

Du, C., Tu, Z., Wang, L., and Jiang, J. ngram-OAXE:
Phrase-based order-agnostic cross entropy for non-
autoregressive machine translation. In Proceedings of
the 29th International Conference on Computational Lin-
guistics, 2022.

Fu, Y., Bailis, P., Stoica, I., and Zhang, H. Breaking
the sequential dependency of llm inference using looka-

9

https://github.com/ggerganov/llama.cpp/issues/3137
https://github.com/ggerganov/llama.cpp/issues/3137
https://huggingface.co/datasets/gbharti/finance-alpaca
https://huggingface.co/datasets/gbharti/finance-alpaca
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://vicuna.lmsys.org
https://vicuna.lmsys.org

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

head decoding, 2023. URL https://github.com/
hao-ai-lab/LookaheadDecoding. GitHub
repository.

GPT3.5 and 4, G. Sharegpt dataset, 2023. URL https:
//github.com/domeccleston/sharegpt.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R.
Non-autoregressive neural machine translation. In Pro-
ceedings of the 6th International Conference on Learning
Representations (ICLR), 2018.

He, Z., Zhong, Z., Cai, T., Lee, J. D., and He, D. Rest:
Retrieval-based speculative decoding, 2023.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. Codesearchnet challenge: Evaluat-
ing the state of semantic code search. 2020.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de Las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T.,
and Sayed, W. E. Mistral 7b. arXiv:2310.06825, 2023.

Jiao, W., Wang, W., Huang, J.-t., Wang, X., and Tu, Z. Is
chatgpt a good translator? yes with gpt-4 as the engine.
arXiv:2301.08745, 2023.

Kim, S., Mangalam, K., Moon, S., Malik, J., Mahoney,
M. W., Gholami, A., and Keutzer, K. Speculative decod-
ing with big little decoder. In Proceedings of the 37th
Annual Conference on Neural Information Processing
Systems (NeurIPS), 2023.

Kim, Y. and Rush, A. M. Sequence-level knowledge distil-
lation. In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP),
2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR), 2015.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th ACM Sym-
posium on Operating Systems Principles (SOSP), 2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Proceed-
ings of the 40th International Conference on Machine
Learning (ICML), 2023.

Liu, X., Hu, L., Bailis, P., Stoica, I., Deng, Z., Che-
ung, A., and Zhang, H. Online speculative decoding.
arXiv:2310.07177, 2023.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z.,
Wong, R. Y. Y., Zhu, A., Yang, L., Shi, X., Shi, C., Chen,
Z., Arfeen, D., Abhyankar, R., and Jia, Z. Specinfer:
Accelerating generative large language model serving
with speculative inference and token tree verification.
arXiv:2305.09781, 2023.

Schuster, T., Fisch, A., Gupta, J., Dehghani, M., Bahri, D.,
Tran, V. Q., Tay, Y., and Metzler, D. Confident adaptive
language modeling. In Proceedings of the 36th Annual
Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R.,
Hestness, J., and Dey, N. SlimPajama: A 627B
token cleaned and deduplicated version of RedPa-
jama, 2023. URL https://huggingface.co/
datasets/DKYoon/SlimPajama-6B.

Stern, M., Shazeer, N., and Uszkoreit, J. Blockwise parallel
decoding for deep autoregressive models. In Proceedings
of the 32nd Annual Conference on Neural Information
Processing Systems (NeurIPS), 2018.

Sun, Z., Suresh, A. T., Ro, J. H., Beirami, A., Jain, H., Yu,
F., Riley, M., and Kumar, S. Spectr: Fast speculative
decoding via optimal transport. In Workshop on Efficient
Systems for Foundation Models @ ICML, 2023.

Wang, X., Wu, J., Chen, J., Li, L., Wang, Y.-F., and Wang,
W. Y. Vatex: A large-scale, high-quality multilingual
dataset for video-and-language research. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 4581–4591, 2019a.

Wang, X., Wu, J., Zhang, D., Su, Y., and Wang, W. Y.
Learning to compose topic-aware mixture of experts for
zero-shot video captioning. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pp. 8965–
8972, 2019b.

Wu, X., Yu, S., Lim, E.-P., and Ngo, C.-W. Ovfoodseg:
Elevating open-vocabulary food image segmentation via
image-informed textual representation. arXiv preprint
arXiv:2404.01409, 2024.

Xia, H., Ge, T., Wang, P., Chen, S.-Q., Wei, F., and Sui,
Z. Speculative decoding: Exploiting speculative execu-
tion for accelerating seq2seq generation. In Findings of
the Association for Computational Linguistics: EMNLP
2023, 2023.

Xia, H., Yang, Z., Dong, Q., Wang, P., Li, Y., Ge, T., Liu,
T., Li, W., and Sui, Z. Unlocking efficiency in large
language model inference: A comprehensive survey of
speculative decoding. In Findings of the Association for
Computational Linguistics: EMNLP 2023, 2024.

10

https://github.com/hao-ai-lab/LookaheadDecoding
https://github.com/hao-ai-lab/LookaheadDecoding
https://github.com/domeccleston/sharegpt
https://github.com/domeccleston/sharegpt
https://huggingface.co/datasets/DKYoon/SlimPajama-6B
https://huggingface.co/datasets/DKYoon/SlimPajama-6B

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

Yang, N., Ge, T., Wang, L., Jiao, B., Jiang, D., Yang, L., Ma-
jumder, R., and Wei, F. Inference with reference: Lossless
acceleration of large language models. arXiv:2304.04487,
2023.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2022a.

Yu, S., Sun, Q., Zhang, H., and Jiang, J. Translate-train
embracing translationese artifacts. Association for Com-
putational Linguistics, 2022b.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, I., Yao, Q., Roman, S., Zhang, Z., and
Radev, D. Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-
to-SQL task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), 2018.

Yuan, H., Lu, K., Huang, F., Yuan, Z., and Zhou, C. Specu-
lative contrastive decoding. arXiv:2311.08981, 2023.

Zhang, J., Wang, J., Li, H., Shou, L., Chen, K., Chen,
G., and Mehrotra, S. Draft verify: Lossless large lan-
guage model acceleration via self-speculative decoding.
arXiv:2309.08168, 2023.

Zhang, X. and Gao, W. Towards LLM-based fact verifi-
cation on news claims with a hierarchical step-by-step
prompting method. In Proceedings of the 13th Interna-
tional Joint Conference on Natural Language Processing
and the 3rd Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 996–1011, 2023.

Zhang, X. and Gao, W. Reinforcement retrieval leveraging
fine-grained feedback for fact checking news claims with
black-box llm. arXiv preprint arXiv:2404.17283, 2024.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., Zhang, H.,
Gonzalez, J. E., and Stoica, I. Judging LLM-as-a-judge
with MT-bench and chatbot arena. In NeurIPS Datasets
and Benchmarks Track, 2023.

Zhou, Y., Lyu, K., Rawat, A. S., Menon, A. K., Ros-
tamizadeh, A., Kumar, S., Kagy, J.-F., and Agarwal, R.
Distillspec: Improving speculative decoding via knowl-
edge distillation. In Proceedings of the 12th International
Conference on Learning Representations (ICLR), 2024.

11

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

A. Pseudo Code of CAPE
See Algorithm 1 for the proposal expansion and Algorithm
2 for the verification.

Algorithm 1 Confidence-Aware Proposal Expansion.

Definitions
MD - draft model
S = [8, 8, 8, 6, 6, 6, 4, 4, 2, 2]

- confidence bin array
P - probability distribution for each step
R - proposal results
Xi - extension set for the i-th decoding step
T - greedy search result

▷ Execute Draft Model
for i ∈ range(proposal steps) do

pi ←MD(History, t<i)
ti ← argmax(pi)
T.append(ti)
P.append(pi)

end for

▷ Proposal Expansion
for i ∈ range(proposal steps) do

pi ← P [i]
expand num← S [floor(10×max(pi))]
Ki ← topk(pi, expand num).indices
K.append(Ki)

end for

▷ Concatenation of Expanded Results
R.append(T)
for i ∈ range(proposal steps) do

for t ∈ Xi do
r ← concat(T [0 : i], t)
R.append(r)

end for
end for

return R

Algorithm 2 Verification Input forMT .

Input: Proposal tokens set by cape R
Output: Input sequence, Input position id, Verification
Attention Mask (V AM)

Definitions:
T - greedy search result R[0]
Xi - extension set for the i-th decoding step
input - input sequence
input pi - input position id
CAM - Causal Attention Mask
V AM - Verification Attention Mask
pos - function that maps a position to decoding step

γ ← len(T)
mask length← γ
input← T
input pi← list(range(0, γ))

for i ∈ range(γ) do
for t ∈ Xi do

input← concat(input, t)
input pi← concat(input pi, i)

end for
mask length← mask length+ len(Xi)

end for

CAM ← causal mask(mask length,mask length)
V AM ← identity(mask length,mask length)
V AM [: γ, : γ]← CAM [: γ, : γ]

for i ∈ range(γ,mask length) do
for j ∈ range(γ) do

if pos(i) > j then
V AM [i][j]← CAM [i][j]

end if
end for

end for

return input, input pi, V AM

12

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

Models GSM8K Fin.-Alp. Spider Code-Py.

w/o Dist. 64.8 63.2 55.7 67.0
w Dist. 65.0 63.9 56.0 67.5

Table 2. Impact of Distillation on GLIDE w.r.t acceptance rate (%).

Models GLIDE Beam 4 Beam 8 +CAPE

Vicuna-7B 5.3 10.9 14.8 5.5
Vicuna-13B 5.3 10.9 14.9 5.5
Vicuna-33B 9.1 17.1 24.6 8.9

Table 3. The speed of draft model’s speculation (ms).

B. Experiment Details
For the 7B and 13B target language models, we employ a
single-layer GLIDE with a hidden dimension of 4096. For
the 33B target model, we use a two-layer GLIDE also with
a hidden dimension of 4096.

In the case of the 7B and 13B target models, we train GLIDE
with zero2 and eight H800 GPUs. For the 33B target model,
we use zero3 and 16 H800 GPUs. We set batch size (with
accumulation) as 64, learning rate equals to 5e-4, and use
adamW (Kingma & Ba, 2015) to optimize the draft model.
We only train our draft model for one epoch on both pretrain
and SFT datasets.

For the 7B and 13B models, the training is approximately 7
hours and 10 hours, respectively, whereas for the 33B target
model, it takes about 100 hours.

As discussed in the section limitations, the main training
expense lies in forwarding the target model to get the KV
cache. If we could incorporate GLIDE during the training
of the LLM, this time-consuming part could be omitted. All
the inference processes in this paper are performed using
fp16 and on a single H800 GPU.

C. Impact of Distillation
Distillation is a common technology for speculative decod-
ing (Zhou et al., 2024; Liu et al., 2023). We use seq-level
distillation (Kim & Rush, 2016) for GLIDE to see the bene-
fit. Table 2 shows that our GLIDE can be further improved
via distillation. However, the training time cost of seq-level
distillation is very expensive, which is 2 times than the train-
ing time of vanilla GLIDE. So we do not use distillation in
other experiments.

D. Walltime for Speculation
We provide more walltime results at Table 3, it can be ob-
served that with larger beam, the speculation walltime be-

coming longer.

E. Batch Serving
Here we also show the decoding speed of our proposed
GLIDE at Table 4. Please note we do not design any specific
algorithm for batch serving, so the experiment here is similar
to the vanilla draft model. To avoid other irrelevant reasons
like different samples in the same batch having different
lengths, we just duplicate the input IDs to batch numbers.
We test the performance using one H800 and fp16 as the
platform and setting.

As Table 4 shows, if batch sizes are not large enough, it
will not largely degenerate the decoding speed. That is be-
cause, under the setting of small batch size, the inference
process of LLM is memory-bounded. However, we observe
that OOM frequently occurs during for the long prompts,
even for the target model only. So we believe how to com-
bine speculative decoding and batch serving systems (e.g.,
vLLM (Kwon et al., 2023), continuous batching (Yu et al.,
2022a)) will be an important topic in the future.

F. Configurations for GLIDE

In our preliminary exploratory research, we discover that
the structure of draft models has a significant impact on the
speedup ratio. We find that even for the 12-layers llama-
160m could lead to a decrease in decoding speed. This is
because there is a clear sequential order between layers,
necessitating autoregressive operation. Although the multi-
layered draft model can significantly improve acceptance
rates, this tradeoff is unwise.

We start with the structure of llama-68m, i.e., 2 hidden layers
+ hidden dimension=768, and do a grid search to find a more
reasonable architecture. First, we try settings of 1, 2, and 4
hidden layers (for Vicuna 7B, we only experimented with 1
and 2 layers). We find that for the target models smaller than
33B, the optimal architecture is a single-layer draft model,
whereas for the 33B LLM, the optimal architecture is two
layers as shown in Fig. 8. Next, we conduct a grid search
on the hidden size. We conduct three sets of experiments
on the 7B and 13B models, with hidden dimensions of 768,
2048, and 4096, respectively as shown in Figure 9. We find
that increasing the hidden size can effectively compensate
for the loss caused by the reduction of hidden layers, and
does not significantly increase operational speed.

G. Walltime Speedup for Main the Experiment
We list the wall time speedup for the datasets used in main
experiments at Table 5.

13

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

Batch Size Vicuna-7B Vicuna-13B Vicuna-33B

+GLIDE Only +GLIDE Only +GLIDE Only

1 106.8 54.6 100.8 46.2 60.9 28.3
2 2 * 108.2 2 * 55.6 2 * 99.5 2 * 44.5 2 * 59.8 2 * 27.9
4 4 * 116.5 4 * 55.9 4 * 100.8 4 * 42.9 OOM OOM
8 8 * 108.5 8 * 55.1 8 * 98.5 8 * 43.2 OOM OOM
16 16 * 106.2 16 * 55.4 OOM 16 * 43.2 OOM OOM
32 OOM OOM OOM OOM OOM OOM

Table 4. The speed (tokens/sec) of GLIDE under different batch sizes settings. OOM denotes out of the HBM memory of 80GB H800.

Figure 8. The relationship between theoretical speedup and the number of layers in a draft model is such that when the target LLM has
fewer layers, increasing the number of layers in the draft model results in a significant decrease in performance. This is because, compared
to the improvement in the acceptance rate brought about by adding layers to the draft model, the increase in time cost is greater.

Figure 9. The relationship between theoretical speedup and the hidden size of the draft model is such that increasing the hidden size
can significantly accelerate the process. This is because the elements within the hidden layer can be computed in parallel, whereas the
computation between layers must be done in an autoregressive manner.

Target Draft GSM. Fin. Spider Code

Vic. 7B Llama-68m 1.53 1.48 0.95 1.02
Vic. 7B GliDe Only 1.90 1.94 1.69 2.11
Vic. 13B Llama-68m 1.54 1.57 0.94 1.17
Vic. 13B GliDe Only 2.32 2.07 1.82 2.35
Vic. 33B Llama-68m 1.56 1.47 1.07 1.19
Vic. 33B GliDe Only 2.27 2.02 1.95 2.14

H. Limitation
Although our model significantly improves acceptance rates,
it does have some inherent limitations. The most notable

issue is that our model is not a plug-and-play algorithm.
This is primarily because our draft model relies on reusing
the KV cache of the LLM, necessitating the retraining of
a corresponding draft model for speculative decoding each
time a new LLM is introduced. However, considering the
relatively low cost of this process, which is approximately
7 hours for training a 68MB draft model on 8 H800 GPU
cards, this limitation can be considered manageable within
practical applications. We must also note that for vanilla
speculative decoding when the tokenizer of the LLM (e.g.,
Mistral vs Vicuna) is changed, it is necessary to retrain a
draft model that is compatible with the new LLM. In the
training of GLIDE, the bottleneck is the forward of the target
LLM instead of the lightweight draft model. Therefore,

14

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

we suggest that future open-source models can be trained
simultaneously with a compatible GLIDE, thus avoiding the
time-consuming re-forward target LLM.

I. Case Study
Table 6 presents an illustrative case from MT-bench, where
tokens marked in red indicate acceptance. The vanilla draft
model exhibits a notable deficiency in acceptance rate, ev-
ident through a scarcity of red tokens. In contrast, our
proposed GLIDE demonstrates a markedly higher accep-
tance of tokens, contributing to increased decoding speed.
Notably, GLIDE effectively predicts terms such as “bacte-
ria” and “germs”, due to its enhanced drafting capabilities.
Furthermore, the integration of GLIDE with CAPE shows
further improvement in token acceptance, corresponding
to the experimental results in Figure 5. More cases can be
found at the following.

15

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

Table 6. Random Sampled example from MT-bench, red tokens denotes accepted tokens. The target model is Mistral-7B-instruct-v0.1.

User Input
Embrace the role of Sheldon from “The Big Bang Theory” as we delve into our conversation.
Don’t start with phrases like “As Sheldon”. Let’s kick things off with the following question:
“What is your opinion on hand dryers?”

LLAMA-45m

Hand dryers are a convenient and efficient way to dry hands after using the restroom or washing
them. They can help reduce the spread of germs and bacteria, as well as save time and paper
towels. However, some people may prefer using paper towels for personal reasons or because
they feel more comfortable with the sensation. Ultimately, it comes down to personal preference
and what works best for each individual.

GLIDE

Hand dryers are a convenient and efficient way to dry hands after using the restroom or washing
them. They can help reduce the spread of germs and bacteria, as well as save time and paper
towels. However, some people may prefer using paper towels for personal reasons or because
they feel more comfortable with the sensation. Ultimately, it comes down to personal preference
and what works best for each individual.

+ CAPE

Hand dryers are a convenient and efficient way to dry hands after using the restroom or washing
them. They can help reduce the spread of germs and bacteria, as well as save time and paper
towels. However, some people may prefer using paper towels for personal reasons or because
they feel more comfortable with the sensation. Ultimately, it comes down to personal preference
and what works best for each individual.

Table 7. Random Sampled example from MT-bench, red tokens denotes accepted tokens. Target model is Vicuna-7B-1.5.

User Input Write a descriptive paragraph about a bustling marketplace, incorporating sensory details such as
smells, sounds, and visual elements to create an immersive experience for the reader.

LLAMA-45m

As I walk through the bustling marketplace, I am immediately struck by the sights and sounds
of the vibrant atmosphere. The air is thick with the scent of exotic spices and freshly baked
goods, mingling with the sounds of vendors calling out to customers and the clatter of plates and
bowls being set out on display. The marketplace is a riot of colors and textures, with stalls selling
everything from brightly hued fabrics to intricately carved wooden sculptures. The ground is
covered in a thick layer of colorful pebbles, and the walls are adorned with vibrant murals that
seem to come alive as I walk by. The marketplace is a sensory feast, and I can’t help but feel a
sense of excitement and wonder as I take it all in.

GLIDE

As I walk through the bustling marketplace, I am immediately struck by the sights and sounds
of the vibrant atmosphere. The air is thick with the scent of exotic spices and freshly baked
goods, mingling with the sounds of vendors calling out to customers and the clatter of plates and
bowls being set out on display. The marketplace is a riot of colors and textures, with stalls selling
everything from brightly hued fabrics to intricately carved wooden sculptures. The ground is
covered in a thick layer of colorful pebbles, and the walls are adorned with vibrant murals that
seem to come alive as I walk by. The marketplace is a sensory feast, and I can’t help but feel a
sense of excitement and wonder as I take it all in.

+ CAPE

As I walk through the bustling marketplace, I am immediately struck by the sights and sounds
of the vibrant atmosphere. The air is thick with the scent of exotic spices and freshly baked
goods, mingling with the sounds of vendors calling out to customers and the clatter of plates and
bowls being set out on display. The marketplace is a riot of colors and textures, with stalls selling
everything from brightly hued fabrics to intricately carved wooden sculptures. The ground is
covered in a thick layer of colorful pebbles, and the walls are adorned with vibrant murals that
seem to come alive as I walk by. The marketplace is a sensory feast, and I can’t help but feel a
sense of excitement and wonder as I take it all in.

16

GLIDE with a CAPE:A Low-Hassle Method to Accelerate Speculative Decoding

Table 8. Random Sampled example from MT-bench, red tokens denotes accepted tokens. Target model is Vicuna-7B-1.5.

User Input
Picture yourself as a 100-years-old tree in a lush forest, minding your own business, when
suddenly, a bunch of deforesters shows up to chop you down. How do you feel when those guys
start hacking away at you?

LLAMA-45m

As a 100-years-old tree, I have seen many changes in the world around me. I have witnessed the
growth of forests and the decline of forests. I have seen the rise and fall of civilizations. I have
seen the impact of human activity on the environment.

When the deforesters show up and start hacking away at me, I feel a sense of loss and
sadness. I have lived a long and fulfilling life, and now my time has come to an end. I am not
afraid of death, but I am sad to leave this world behind.

I also feel a sense of anger and frustration towards the deforesters. They are destroying
the very thing that they need to survive - the forests that provide oxygen, clean water, and habitat
for countless species. They are acting recklessly and irresponsibly, without considering the
long-term consequences of their actions.

Despite my feelings, I know that I cannot stop them. I am just a tree, after all. But I
hope that my sacrifice will serve as a reminder to future generations of the importance of
protecting the environment and preserving the natural world for future generations to enjoy.

GLIDE

As a 100-years-old tree, I have seen many changes in the world around me. I have witnessed the
growth of forests and the decline of forests. I have seen the rise and fall of civilizations. I have
seen the impact of human activity on the environment.

When the deforesters show up and start hacking away at me, I feel a sense of loss and
sadness. I have lived a long and fulfilling life, and now my time has come to an end. I am not
afraid of death, but I am sad to leave this world behind.

I also feel a sense of anger and frustration towards the deforesters. They are destroying
the very thing that they need to survive - the forests that provide oxygen, clean water, and habitat
for countless species. They are acting recklessly and irresponsibly, without considering the
long-term consequences of their actions.

Despite my feelings, I know that I cannot stop them. I am just a tree, after all. But I
hope that my sacrifice will serve as a reminder to future generations of the importance of
protecting the environment and preserving the natural world for future generations to enjoy.

+ CAPE

As a 100-years-old tree, I have seen many changes in the world around me. I have witnessed the
growth of forests and the decline of forests. I have seen the rise and fall of civilizations. I have
seen the impact of human activity on the environment.

When the deforesters show up and start hacking away at me, I feel a sense of loss and
sadness. I have lived a long and fulfilling life, and now my time has come to an end. I am not
afraid of death, but I am sad to leave this world behind.

I also feel a sense of anger and frustration towards the deforesters. They are destroying
the very thing that they need to survive - the forests that provide oxygen, clean water, and habitat
for countless species. They are acting recklessly and irresponsibly, without considering the
long-term consequences of their actions.

Despite my feelings, I know that I cannot stop them. I am just a tree, after all. But I
hope that my sacrifice will serve as a reminder to future generations of the importance of
protecting the environment and preserving the natural world for future generations to enjoy.

17

