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ABSTRACT
The rapid evolution of egocentric video analysis brings new in-
sights into understanding human activities and intentions from a
first-person perspective. Despite this progress, the fragmentation
in tasks like action recognition, procedure learning, and moment
retrieval, etc., coupled with inconsistent annotations and isolated
model development, hinders a holistic interpretation of video con-
tent. In response, we introduce the EAGLE (Egocentric AGgregated
Language-video Engine) model and the EAGLE-400K dataset to pro-
vide a unified framework that integrates various egocentric video
understanding tasks. EAGLE-400K, the first large-scale instruction-
tuning dataset tailored for egocentric video, features 400K diverse
samples to enhance a broad spectrum task from activity recogni-
tion to procedure knowledge learning. Moreover, EAGLE, a strong
video-based multimodal large language model (MLLM), is designed
to effectively capture both spatial and temporal information. In ad-
dition, we propose a set of evaluation metrics designed to facilitate a
thorough assessment of MLLM for egocentric video understanding.
Our extensive experiments demonstrate EAGLE’s superior per-
formance over existing models, highlighting its ability to balance
task-specific understanding with comprehensive video interpre-
tation. With EAGLE, we aim to pave the way for novel research
opportunities and practical applications in real-world scenarios.

CCS CONCEPTS
• Computing methodologies → Planning with abstraction
and generalization; Planning for deterministic actions; Plan-
ning under uncertainty; Neural networks; Search with partial
observations; Image and video acquisition; Natural language
generation; Information extraction; Discourse, dialogue and
pragmatics; Temporal reasoning; Spatial and physical rea-
soning; Computer vision problems; Computer vision repre-
sentations; Computer vision.

KEYWORDS
Augmented Reality, Egocentric Video Analysis, Integrated Video
Understanding Framework, Egocentric Video Dataset, Spatial and
Temporal Information Processing, Multimodal Large Language
Models (MLLMs), Comprehensive Video Interpretation, Perfor-
mance Evaluation Metrics
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1 INTRODUCTION
Understanding human activities and intentions in videos is a key
challenge for intelligent systems, requiring advanced reasoning
capacities. While there have been advancements in computer vi-

(a)

(b)

Figure 1: (a) illustrates the EAGLE, a framework designed to
unify egocentric video tasks, thereby facilitating inter/intra-
task understanding. (b) shows evaluation results of existing
methods, including our EAGLE model and BLIP-2 [43], BLIP-
1 [44], InstructBLIP [15] etc., using the newly proposed met-
rics on the EAGLE-400K benchmark.

sion, the most notable breakthroughs are seen in the evolution
of Large Language Models (LLMs) [14, 63]. These models ben-
efit from increased data and model size, resulting in enhanced

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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generalizability, which is often challenging to achieve in com-
puter vision tasks. By leveraging the pre-trained LLMs [21, 106],
MLLMs [9, 12, 15, 25, 29, 43, 44, 50, 101, 105] show superior results to
a wide spectrum of multimodal tasks [22, 34, 39, 58, 59, 77, 81]. Un-
like currentMLLMs that predominantly focus on images, EAGLE ad-
vances to capture spatial and temporal information to enable more
in-depth video analysis. To enable MLLM to achieve a more holistic
and detailed examination of human activities, our work pivots from
previous efforts focused on third-person view [10, 19, 37, 40, 82],
towards the egocentric view, offering an unfiltered and untrimmed
perspective. This perspective enhances exocentric tasks like action
recognition and localization by offering insights into individual
interactions with their surroundings and facilitates new unique
tasks like Natural Language Queries and Action Anticipation [23].
These tasks demand an in-depth view of the video content, includ-
ing activity recognition and procedure knowledge learning. Taking
sandwich preparation as an example, the task requires recognizing
actions like preparing ingredients and spreading condiments and un-
derstanding how these actions contribute to the overall process. Pi-
oneering efforts like EPIC-KITCHENS-100 (EPIC-KITCHENS) [38]
and Ego4D [23] have paved the way for tasks focused on activities
like temporally localizing and anticipating actions. Subsequent re-
search [5, 8, 74] has extended these concepts by introducing tasks
that emphasize procedure knowledge, aiming to understand actions’
intentions and contextual relevance.

While diverse tasks offer more insights, they also foster task-
specific models, similar to traditional approach in the NLP field,
where models are trained for specific tasks like sentiment anal-
ysis, translation, and question-answering, etc. This results in a
fragmented approach, where each model specializes in a specific
aspect. For instance, one model may excel in recognizing actions
timestamp (e.g., identifying a ’gra b a spoon’ from seconds 5-7),
while another pinpoints the timing of such actions. These two ex-
ample tasks, though different in focus—action recognition versus
temporal localization—essentially seek to identify the action and its
temporal occurrence. Many works [33, 35, 36, 54] have attempted to
mitigate these problems by employing a shared backbone [68, 75]
or re-scaling labels [48, 99]. These approaches are limited by their
reliance on task-specific models, highlighting the challenge in ego-
centric video understanding: balancing specialization with a holistic
grasp of video content.

Addressing the above challenges, we introduce the EAGLE-400K
dataset, the first large-scale instruction-tuning dataset tailored for
egocentric video. We provide a unified task interface that not only
integrates existing tasks but also fosters the development of new,
context-rich tasks as shown in Table 3 Compared with existing
large image-based instruction tuning (LLaVA-150K [50], VideoIn-
struct100K introduced by Video-ChatGPT [55]), our method is 3-
4× times larger to facilitate the research field. This dataset is a
comprehensive collection designed to advance the understanding
of activities and procedure knowledge in an egocentric view. It
comprises 36k video clips sourced from three different origins:
Ego4D and EPIC-KITCHENS, which are for activity recognition,
and PTA, which is crucial for procedure learning, as detailed in
Table 4. By employing instruction tuning, EAGLE-400K unified
fragmented tasks as coherent (VIDEO, INSTRUCTION, RESPONSE)
pairs, thereby serving as a high-quality, large-scale video instruction

tuning dataset, as shown in Table 3. Moreover, EAGLE-400K lever-
ages existing annotations to facilitate knowledge sharing across
datasets, which enables the creation of novel tasks, such as Tempo-
ral Reasoning and Cross-Referencing Events as shown in Table 3that
were not present in the original dataset.

Complementing the dataset, we propose EAGLE, a video-based
MLLM, we augment its capacity for spatial and temporal reason-
ing through the integration of the Adapter [28] We conducted a
systematic evaluation to demonstrate the efficacy and adaptability
of the proposed dataset and model, comparing EAGLE with lead-
ing MLLMs, including BLIP-2 [43], BLIP-1 [44], InstructBLIP [15],
LaViLa [105], LLaVA [50], ImageBind-LLM [25], Shikra [12], Video-
LLaMA [102]. The results, as illustrated in Figure 1b, EAGLE out-
performs all models on the proposed benchmark. We summarize
our main contributions as follows:
• EAGLE-400K Dataset: Our work introduces the pioneering
large-scale video instruction-tuning dataset for egocentric video
understanding [83], providing a unified task interface to alleviate
the models and task fragmentation. At 4× times the size of the
previously largest video instruction-tuning dataset, EAGLE-400K
is expected to greatly benefit the community by encouraging
further novel research and serving as a benchmark for evaluation.

• PTA dataset To fill the gap in procedural understanding within
current egocentric video datasets, we have collected and anno-
tated the Perception-driven Task Assistance (PTA) dataset.This
dataset contains 268 egocentric videos, each recorded with cer-
tain recipe scripts to provide a rich, detailed insight into specific
procedural tasks, advancing our understanding of egocentric
procedures.

• EAGLE Model.We introduced the EAGLE model, a novel video-
based MLLMs designed to excel at capturing both spatial and
temporal information with the advantage of EAGLE-400K. To
the best of our knowledge, we are the first to incorporate fine-
grained object trajectories, temporal boundaries, and scripted
procedure videos for video instruction tuning.

• Evaluation Metrics. we provide an comprehensive analysis
of current state-of-the-art MLLMs to highlight their limitations
and the challenges of applying them to egocentric video under-
standing.e proposed a novel metric designed to offer a more
comprehensive assessment, further demonstrating our model’s
superior performance on the proposed benchmark.

2 RELATEDWORK
2.1 Egocentric Video Understanding
Egocentric VideoUnderstanding beganwith pioneering datasets [17,
46, 66] that demonstrated the unique potential of first-person video
analysis. The field expanded with EPIC-KITCHENS [16], featuring
100 hours of videos, and further with Ego4D [24], which boasts an
impressive 3,000 hours of data. These expansions inspired a wide
range of research tasks, including human-object interactions [60,
97], activity recognition [38, 69, 87, 93], sounding object localiza-
tion [1, 31, 32, 56, 96, 107], pose estimation and prediction [6, 62,
89], procedure knowledge learning [5, 26], and social understand-
ing [76]. However, various tasks have resulted in specialized, frag-
mented model development. EAGLE-400K aims to consolidate these
tasks for a more holistic video understanding.
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2.2 LLMs for Multimodal Understanding
Recent advancements have extended LLMs to multimodal domains,
resulting in MLLMs [2, 15, 20, 42, 44, 47, 102, 109] that excel in
various tasks. Fine-grained multimodal Understanding involves
a detailed understanding of visual content, including spatial de-
tails [11, 12, 41, 65, 90, 94, 98, 101, 104], temporal sequences [48, 48,
64, 84, 85, 91, 92], or a combination of both [7, 51, 88]. Models like
[15, 44, 109] use a two-stage Q-former to align vision and language
models. [102] aligns video and audio modalities with LLMs by train-
ing adapters, showing its ability to integrate multiple modalities
effectively. Video-ChatGPT [55] and VideoChat [45], combining
LLMs with video foundation models, are tailored for coarse-grained
video-based conversations. However, few MLLMs are designed to
tackle both spatial and temporal video tasks [83], and our work
emphasizes interpreting 16 seconds videos, which are 2-4× longer
compared with other video MLLMs.

2.3 Fine-grained Multimodal Comprehension
Fine-grained multimodal comprehension involves a detailed under-
standing of image or video content, including spatial [11, 12, 41,
65, 90, 94, 98, 104], temporal [48, 48, 64, 79, 84, 91, 92], or both spa-
tial and temporal [7, 88] information. The multimodal models for
fine-grained spatial understanding like [12] and [98] are utilizing
LLMs trained on an instruct-tuning dataset which is produced by
the language-only GPT-4 and include the coordinates of objects’
bounding boxes. They can handle multiple location-related multi-
modal tasks like REC, PointQA, dense image captioning, and VQA.
In [65, 104], special tokens representing the regions are used, while
[11] and [3] adopt both special tokens and coordinates. [41, 90]
implemented irregular pixel-level region segmentation, generating
descriptive captions for any object within an image. The multi-
modal models for fine-grained temporal video understanding, in-
cluding [48, 64, 85], are leveraging the capabilities of LLMs. There
are seldom multimodal models designed to handle both spatial and
temporal video understanding tasks.

3 EAGLE-400K DATASET AND BENCHMARK
Egocentric video understanding [61, 67] involves two primary as-
pects: activity recognition, which identifies individual actions like
picking up objects, and procedure knowledge learning, which mod-
els sequential action relations to understand their contribution
to achieving a goal. We aim to consolidate multiple datasets with
different focuses and provide a comprehensive dataset. We start
with two popular egocentric datasets, EPIC-KITCHENS [38] and
Ego4D [23], featuring long-term, untrimmed videos of daily tasks.
These datasets are annotated with natural human actions and object
interactions without predefined procedures, focusing on solely on
identifying actions.

However, these existing datasets provide only action labels with-
out encapsulating procedure knowledge. To bridge this gap, we’ve
also gathered the PTA dataset, consisting of 268 egocentric videos
recorded in laboratory settings. This dataset is specifically designed
to enhance procedure knowledge learning through detailed visual-
ization of three distinct recipes: pinwheel, mug cake, and broil coffee.
Unlike previous approaches [5, 78] which prioritized task diversity
but lacked depth within individual tasks, our approach focuses

Table 1: The table compares vision-language instruction-
tuning datasets, including EAGLE-400K and MIMIC-IT.
MIMIC-IT generates questions from visual descriptions but
often produces questions not closely related to the visual
content due to noisy narration. VideoInstruct is generated
from ActivityNet-200 [27] and serves as popular video in-
struction tuning dataset, featuring short clips paired with
QA-style data without spatial-temporal understanding.

Dataset Video #Clip #Ins. #Ins./clip Duration
MiniGPT-4 [109] × - 5K - -
Shikra-RD [12] × - 5.9K - -
LLaVA [50] × - 345K - -
MIMIC-IT [42] ✓/× 400K 2.4M 6 4-8 frames
VideoInstruct [45] ✓ 13k 100k 7 5 s
EAGLE-400K ✓ 36K 400K 11 16-76s

on providing extensive variation and a higher number of samples
within a select few tasks. This approach enables a more compre-
hensive analysis of procedural steps, making the PTA dataset a
valuable resource. Representative examples from PTA dataset are
shown in Figure 2.

We split the data into training and validation sets according to
established splits for Ego4D and EPIC-KITCHENS. For PTA, we
used a 70/30 split, excluding videos from one lab to serve as a novel
testing environment. The remaining testing videos were randomly
sampled as detailed in Table 4.

3.1 Annotation
For EPIC-KITCHENS split, we utilized official annotations that
include action-object labels with temporal boundaries as shown
in Figure 2. Additionally, we integrated spatial annotations from
the EPIC-KITCHENS-VISOR dataset [18], an extension of EPIC-
KITCHENS, providing object segmentation trajectories covering
one-third of the original EPIC-KITCHENS dataset. In the case of
Ego4D, the initial ∼3.8 million narrations underwent refinement to
generate various subsets, as outlined in [24]. Our focus lies on the
Episodic Memory and Forecasting Benchmark, which includes tasks
such as Natural Language Queries, Moment Queries, and Long-term
Action Prediction tasks, all tailored for activity understanding. In
the PTA subset, each video depicts the process of making a recipe,
with timestamps marked for key procedure steps.

To enrich the annotation with object information, we first fine-
tuned the DINO [52] using the EgoObject dataset [108] without
its class head, significantly improving its object proposal accuracy
to over 90% on the test set. Next, we integrated this enhanced
DINO model with the latest DEVA [13] tracker, achieving reli-
able object tracking from an egocentric viewpoint. Lastly, we em-
ployed the LLaVA-13B model to interpret the semantic meanings
of the proposed object regions. As shown in Figure 2, while this
approachmay not always reach the accuracy level of human annota-
tion—occasionally mistaking a tortilla for flatbread, for instance—it
marks a considerable leap forward, especially given the scarcity
of zero-shot vision models capable of achieving high accuracy in
grounding.
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Figure 2: Left: Representative frames from the Ego4D [23], EPIC-KITCHENS [16], and PTA datasets, showcasing the intricate
capture of task-oriented activities. Right: Visualizations of trajectories and object interactions within the EAGLE-400K dataset,
emphasizing the tasks’ complexity and diversity.

Table 2: An example task on EAGLE-400K: the preparation of a dish called “Pinwheel” from PTG data. It details the dish
preparation process and featured objects. The task involves placing various ingredients on a tortilla with a knife, performed by
a participant wearing a camera. The top block presents prompts for GPT, including captions and object boxes, while the bottom
block shows question types and responses. Notably, the visual image does not prompt GPT.

Context type 1: Task Description
Pinwheels with steps 1: Place the tortilla on the cutting board., 2: Scoop nut butter and spread it on the tortilla, leaving a margin at the edge., 3: Clean the knife with a paper towel., 4: Using the knife,
scoop jelly from the jar and spread it over the nut butter., 5: Clean the knife with a paper towel., 6: Roll tortilla into a tight, 1.5-inch thick log without squeezing out the filling, 7: Secure the roll
with 5 toothpicks spaced 1 inch apart., 8: Trim tortilla roll ends, leaving a 1/2 inch margin near the last toothpick; discard the ends., 9: Place floss under the roll, halfway between two toothpicks,
perpendicular to its length, 10: Cross floss ends over the roll and pulls in opposite directions to slice., 11: Continue slicing with floss to create 5 pinwheels., 12: Place the pinwheels on a plate..
The current step, as ground truth, is: <0,16> 4: scoop jelly and spread jelly
Context type 2: Object Trajectory
A jar of ice cream is sitting on a table.: [12, 0.215, 0.57],[4, 0.17, 0.57],[10, 0.2, 0.56],[7, 0.185, 0.545],[6, 0.175, 0.47],[8, 0.175, 0.52],[13, 0.16, 0.53],[14, 0.185, 0.695] A person is using a knife to spread
peanut butter on a plate.: [12, 0.78, 0.61],[9, 0.755, 0.59],[11, 0.75, 0.59],[8, 0.735, 0.555],[6, 0.745, 0.52],[14, 0.73, 0.55],[7, 0.75, 0.57],[10, 0.755, 0.6] A bowl of peanut butter is being held by a person.:
[11, 0.765, 0.68],[0, 0.71, 0.795],[4, 0.75, 0.65],[3, 0.675, 0.645],[13, 0.755, 0.675],[8, 0.735, 0.645],[12, 0.785, 0.705],[14, 0.755, 0.66] A man is using a knife to cut a piece of cheese on a plate.: [5, 0.79,
0.825],[8, 0.855, 0.81],[6, 0.85, 0.75],[12, 0.875, 0.905],[15, 0.84, 0.94],[14, 0.83, 0.88],[11, 0.905, 0.85],[10, 0.905, 0.895] A person is holding a bowl of yellow paint.: [6, 0.76, 0.6],[1, 0.87, 0.835],[4, 0.735,
0.63],[10, 0.76, 0.67],[5, 0.725, 0.615],[7, 0.77, 0.645],[11, 0.765, 0.675],[13, 0.74, 0.645]

Response type 1: Task Verification
Question: Based on the video content, is the person in the video currently spreading something on the tortilla, and if so, what is it?
Answer: YES, the person is spreading jelly on the tortilla. This is indicated by the action of using a knife to scoop out a substance, likely jelly, from a container and then spreading it onto a flat
surface, which is consistent with step 4 of the recipe.
Response type 2: Step Verification
Question: At what moment in the video can you confirm that jelly is being spread on the tortilla, and what visual clues support this?
Answer: The action of spreading jelly on the tortilla can be confirmed throughout the video, as indicated by the trajectory of the knife moving across the frame, consistent with a spreading motion.
The presence of a container from which the substance is being scooped also supports this.
Question: How does the movement of the knife in the video align with the current step of spreading jelly?
Answer: The movement of the knife in the video aligns with the spreading action required in the current step. The trajectory data shows the knife moving across the frame in a manner consistent
with spreading a substance on a flat surface.
Response type 3: Objects Verification
Question: At what time and location in the frame does the jar of jelly appear, and how is it relevant to the task?
Answer: The jar of jelly appears throughout the video, with its location varying slightly but generally centered around the coordinates (0.2, 0.57). It is relevant to the task as it is the source of the
jelly being spread on the tortilla, which is a key step in making pinwheels.

3.2 Instruction Tuning Data Generation
As previously mentioned, diverse tasks and inconsistent annotation
standard often limit the comprehensive understanding of videos.
We adapt the instruction tuning [100] to unify these annotations
under a cohesive framework. In our dataset, videos are segmented
into 16-second clips, 3-5× longer than common video understand-
ing dataset, ensuring each contains a rich number of actions while
maintaining a manageable length, as shown in Table 4. By compari-
son, our baseline model, LaViLa [? ], which is trained specifically on
egocentric videos, typically takes a 1-sec clip. Another example is
EPIC-KITCHEN Action Anticipation task, although videos tend to

be minutes, only a 5-second segment is used for analysis. Adopting
16-second clips allows us to capture comprehensive action details
without overwhelming the model.

To determine the optimal frame rate, we draw inspiration from
recent studies [73, 95] that have shown promising results in frame-
based video understanding by analyzing videos frame-by-frame and
using feature pooling. Building on this, we sample one frame per
second, maintaining a consistent interval regardless of the video’s
frame rate. To enhance contextual understanding, we incorporate
temporal context with 30 seconds before and after each clip. We
chose a 30-second duration to balance action details and cohesive



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

EAGLE: Egocentric AGgregated Language-video Engine ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 3: The table outlines activities in a kitchen video, including opening/closing cabinets, grabbing a knife, and washing
vegetables, showcasing a person’s kitchen work. It serves as an example of instruction-following data. The top block displays
prompts like captions and boxes for GPT, while the bottom block shows response types. Notably, the visual image does not
prompt GPT and is included for reference only.

Context type 1: Temporal History
Past 30 second: take container, take tofu, close fridge, open fridge, take carrots and, open drawer, close fridge, put down vegetables, open cupboard, take cutting board, put down cutting board Current
<0,0.76> close cupboard, <3.66,5.0> open drawer,<5.5,8.0> take knife, <5.55,6.36> take knife, <6.73,7.74> put down knife, <8.1,8.6> close drawer, <9.45,10.7> put down knife,<11.05,14.3>
open tap,<13.86,16> wash courgette
Future 30 second: still washing courgette, wash carrot, still washing carrot, close tap, put down vegetables, open cupboard, take grater, take pan, put down pan, close cupboard, close cupboard, take
courgette, cut courgette
Context type 2: Object Trajectory
’right hand’: [[5.0, 0.295, 0.401], [6.0, 0.317, 0.419], [7.0, 0.294, 0.365], [8.0, 0.324, 0.406], [10.0, 0.303, 0.377], [12.0, 0.344, 0.366], [13.0, 0.336, 0.284]] ’left hand’: [[5.0, 0.186, 0.407], [6.0, 0.207, 0.427], [7.0,
0.212, 0.402], [8.0, 0.214, 0.402], [11.0, 0.293, 0.368], [12.0, 0.113, 0.324], [13.0, 0.216, 0.358]] ’drawer’: [[5.0, 0.258, 0.311], [6.0, 0.193, 0.319], [7.0, 0.227, 0.284], [8.0, 0.219, 0.31]] ’chopping board’: [[9.0,
0.266, 0.108], [10.0, 0.203, 0.348], [11.0, 0.153, 0.373], [12.0, 0.045, 0.395], [13.0, 0.035, 0.404]] ’carrot’: [[10.0, 0.218, 0.177], [11.0, 0.241, 0.233], [12.0, 0.096, 0.252], [13.0, 0.075, 0.264]]

Response type 1: Description
Question: Can you provide a concise summary of the main events occurring in the video?
Answer: Certainly. The video shows a sequence of kitchen activities, including opening and closing a cupboard and drawer, taking and putting down a knife, and washing a courgette.
Response type 2: Detailed Description
Question: Can you provide a detailed account of the sequence of events that take place between 3.66 and 8.6 seconds in the video, specifically focusing on the actions involving the kitchen drawer
and knife? Please include the timing of these actions and describe how the person’s hands interact with these objects, as indicated by the object trajectory data.
Answer: Between 3.66 and 8.6 seconds in the video, the individual engages in a sequence of actions involving a kitchen drawer and a knife. Initially, between [3.66, 5.0] seconds, the right-hand
reaches for the drawer, with its trajectory indicating a movement slightly right and above the center, coinciding with opening the drawer. Then, the person takes a knife between [5.5, 6.36] seconds,
as evidenced by the right hand moving downward and leftward towards the drawer. This action involves a brief re-adjustment, as the person takes the knife, adjusts their grip, and takes it again.
There’s a moment between [6.73, 7.74] seconds where the knife is put down, suggested by the right hand moving away from the drawer. Finally, the drawer is closed between [8.1, 8.6] seconds,
with the right hand’s trajectory returning to its original position, indicating the closing motion. Throughout this sequence, the left hand appears to provide support or stabilization, with minor
adjustments in its position.
Response type 4: Event Localization
Question: At what timestamps does the individual open and close the drawer?
Answer: The individual opens the drawer between [3.66, 5.0] seconds and closes it between [8.1, 8.6] seconds in the video.
Response type 5: Temporal Reasoning
Question: How did the previous actions of taking vegetables and opening the fridge lead to the current situation in the video?
Answer: Previous actions like taking vegetables and opening the fridge led to the current situation by indicating food preparation activities, culminating in washing the courgette.
Response type 6: Event Localization
Question: Given the ongoing event of washing vegetables, what might be a likely future action sequence in the kitchen, and why?
Answer: Based on the ongoing event of washing vegetables, future actions may include chopping the courgette, possibly using the grater and pan (as indicated in the ’future’ events list), suggesting
a continuation of food preparation.
Response type 7: Cross-Referencing Events
Question: Can you explain the connection between opening the drawer (3.66-5.0 seconds) and the subsequent use of the chopping board (after 9.0 seconds)?
Answer: The opening of the drawer (3.66-5.0 seconds) and the use of the chopping board (after 9.0 seconds) are connected as both actions are part of setting up for the food preparation process;
utensils are gathered first (from the drawer), followed by setting up the chopping board for cutting vegetables.

narration. This is based on our observation that longer durations
reduce the relevance of actions. In this way, the context helps tasks
like action anticipation and detection and encourages the develop-
ment of new tasks by extrapolating relationships between labels.
For instance, our framework enables advanced tasks such as Tem-
poral Reasoning and Cross-Referencing Events, as shown in Table 3,
enhancing the dataset’s utility without additional annotation effort.

We use two types of symbolic representations to prompt GPT4:
(i) Captions, which typically describe the visual scene from various
perspectives. (ii) Objects trajectory in the scene, and each box en-
codes the object concept and its spatial location as shown in Figure 2.
We collect 400K unique video instruction-following samples in total,
including 350K for activity recognition as shown in Table 3 and 50K
for procedure knowledge learning. We have undertaken multiple
iterations to refine our method for creating accurate instruction
data from task descriptions and object trajectories. We normalized
object bounding boxes to a scale of 0-1 and used only the center
points of objects, improving the spatial relationships in GPT-4’s
responses. Additionally, we added a post-processing step that uses

interpolation to align GPT-4 output coordinates with actual object
trajectories, ensuring high data accuracy. However, including com-
plete trajectories in responses sometimes led to errors. To counter
this, we selectively replaced faulty segments with ground truth
data, enhancing the dataset’s usability. As shown in Table 1, our
approach provides longer question-to-clip correspondence than
MIMIC-IT [42], focusing on video content comprehension. In con-
trast, MIMIC [23] often generates questions unrelated to the visual
content. Compared to EgoSchema [57], our method emphasizes fine-
grained understanding, while EgoSchema targets coarse-grained
analysis with few multiple-choice questions for 3-minute video.

4 EAGLE MODEL
Existing image-basedMLLMs such as Shikra [12] primarily focus on
spatial information, while models like VTimeLLM [30] specifically
target temporal dimensions. Given the unique aspects of our dataset,
which encompasses both spatial and temporal attributes, our goal
is to simplify the tuning process and construct a straightforward
yet strong model by leveraging the existing MLLM model.
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Figure 3: The architecture of the EAGLE model, highlighting the fine-tuned projection layer and adapter, enhances the LLM’s
ability to process time boundaries and object location tokens.EAGLE is capable of processing natural language queries to
determine the temporal boundaries of events and pinpoint the location of the desired object, as denoted by the yellow dot.

Our model, in line with common MLLMs, integrates a vision
encoder, an alignment layer, and a large language model (LLM),
specifically employing the pre-trained ViT-L/14 from CLIP [70] as
the frame encoder E and Vicuna-13B as LLM, as shown in Figure 3.
Given a video sample 𝑉𝑖 ∈ R𝑇×𝐻×𝑊 ×𝐶 with 𝑇 frames, the frame
encoder E processes each frame independently, generating video
embedding as 𝑥𝑖 ∈ R𝑇×𝐷 .

After obtaining frame embeddings, selecting an optimal method
for aggregating these features is critical. Video-LLaMA [103] em-
ploys temporal position embedding and a q-former, which typi-
cally demands a large amount of paired video-text data (rare in
video datasets). Compared with image-language datasets such as
CC3M [80] utilized by LLaVA [49], video-language datasets like
WebVid [4] contain shorter and less detailed language descriptions.
Consequently, when models are pretrained on these video datasets,
their expressiveness is often limited, which can result in a less
effective image-language alignment layer. Instead, we choose to
leverage existing alignment layers from LLAVA to obtain language
token from visual feature. We have two streteges, (i) adapt recent
advancements [73] and employ an average-pooling strategy to ag-
gregate a video-level representation 𝑣𝑖 ∈ R𝐷 , where D is 5,120 for
Vicuna-13B. We donate this model as EAGLE-pool. (ii) Instead of us-
ing pooling, we employ alignment layers to extract language tokens
directly from each visual frame and concatenate these tokens into
a long sequence. This method does not require the explicit embed-
ding of position tokens. Instead, it implicitly incorporates temporal
learning, thus leveraging the strengths of the LLAVA alignment
layer, which ensures more reliable alignment compared to Q-former
aggregation methods.

To enhance the LLM’s ability to capture both temporal and spatial
information, we integrated Adapters [28] into various self-attention
layers of Vicuna-13B, allowing the model to effectively incorpo-
rate coordinates from both time boundaries and object trajectories.
During training, the visual embedding can be inserted anywhere in
the input sequence. Regarding the frame encoder E, we decided to
keep the visual encoder frozen throughout all training phases, as

fine-tuning the visual encoder even with a small-scale dataset can
affect its image representation capabilities and yield performance
drop, as discussed in [86].

Followed by [50, 103], the model training is done in two phases.
In the first phase, we only focus on fine-tuning the projection layer
with a subset of (VIDEO, INSTRUCTION, RESPONSE) pairs that do
not include time boundary and object trajectory. During the second
phase, both the newly integrated Adapters and the projection layer
are trained with the entire dataset with 8 NVIDIA A100 GPUs.
our model establishes a strong baseline and lays the groundwork
for future research into more accurate temporal-spatial grounding
abilities and context modeling.

5 EXPERIMENTS
5.1 Evaluation Metrics.
Following the evaluation methods [53, 106] for recent LLMs, we
use GPT-4 to assess the quality of responses generated by models.
Due to the time-consuming nature of evaluating all 7,700 samples
across nine models with GPT-4, we adopt a square root sampling
strategy, selecting approximately (

√
7700 ≈ 88) 100 samples as a

representative subset. To deepen our analysis, we further sampled
200 additional responses to evaluate the top four performingmodels
and donate result as EAGLE-pool2 Shikra2 BLIP-22 and EAGLE2 as
shown in Table 5. The results from this extended dataset are pre-
sented in the subsequent table and are consistent with the findings
from our initial sample of 100 responses.

Given the nature of the egocentric dataset, which offers only
action labels, recipe steps, and corresponding timestamps, we need
to develop ground truth sentences for evaluation purposes. Our em-
pirical findings indicate that compared to using polished sentences
of ground truth labels, template-based construction reduces the oc-
currence of hallucination errors. The evaluation prompt was refined
iteratively through trial and error, aiming to improve the accuracy
in identifying event boundaries and objects, and to enhance clar-
ity. The evaluation prompt will be included in the supplementary
materials.
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Table 4: Video sources and the corresponding number of videos and average actions for training and validation sets.

Video sources Training set Validation set Total# videos # actions (avg) # videos # actions (avg)
EPIC-KITCHENS [16] 16,570 (57%) 4.78 2,901 (38%) 3.98 19,471 (53%)
Ego4D [23] 9,050 (31%) 2.30 3,669 (47%) 2.80 12,719 (35%)
PTA 3,355 (12%) 1.55 1,167 (15%) 1.53 4,522 (12%)
Total 28,975 7,737 36,712

Table 5: We evaluated existing models and our EAGLE model. The scores reflect the models’ performance in key aspects, with
EAGLE achieving the highest scores in Accuracy and Helpfulness, and competitive scores in other areas.Higher scores indicate
better performance.

Model Accuracy Helpfulness Detail Conciseness Consistency Average
Video-LLaMA [102] 1.00 1.00 1.60 1.85 1.43 1.38
LaViLa [105] 1.17 1.15 1.95 4.63 2.73 2.33
BLIP-1 [44] 1.56 1.48 1.85 4.50 3.75 2.63
LLaVA [50] 2.81 2.9 4.56 4.12 3.38 3.55
ImageBind-LLM [25] 2.96 2.97 5.45 4.64 3.71 3.95
InstructBLIP [15] 3.81 3.68 5.29 5.46 4.81 4.61
Shikra [12] 4.21 4.52 6.80 4.78 5.15 5.09
Shikra2 4.31 4.55 6.85 4.20 5.20 5.02
BLIP-2 [43] 4.62 4.78 6.14 5.51 5.53 5.32
BLIP-22 4.43 4.80 6.20 5.45 5.38 5.25
EAGLE-pool 7.13 7.32 6.52 6.45 6.10 6.70
EAGLE-pool2 7.21 7.40 6.72 6.42 6.30 6.81
EAGLE 7.32 7.51 6.90 6.75 6.65 7.03
EAGLE2 7.28 7.48 6.83 6.67 6.77 7.01

These selected responses will be scored by GPT-4 based on five
key metrics, each rated on a scale from 1 to 10, with higher scores
indicating superior performance. The evaluation metrics are

(1) Accuracy: This metric involves assessing if the response re-
flects the video’s content, focusing on activity recognition for
EPIC-KITCHENS and Ego4d samples, and the match between
predicted and ground truth procedure steps for PTA samples.

(2) Helpfulness: evaluating how much the response aids in compre-
hending the video’s content and its broader context. It involves
assessing whether the model’s output provides actionable in-
sights or clarifies complex elements within the video.

(3) Level of Detail: This involves assessing the comprehensiveness
and specificity with which the video is described. A high score
in this area indicates that the model captures essential objects
and events of the video.

(4) Conciseness: This metric measures the succinctness and clarity
of the response, focusing on delivering essential information
without superfluous content. Effective conciseness involves
distilling complex information into a clear and brief explanation,
which is critical for provide esstial information of the video.

(5) Consistency: This assesses the uniformity and reliability of the
narrative or description provided by the model across multiple
instances or parts of the video.

Details of the responses from different models will be included
in the supplementary material.

5.2 Baseline Models.
For our baseline models, we use both image-based and video-based
approaches. Image-based models include:

(1) BLIP-2 [43] trained a lightweight Q-Former for multimodal rep-
resentation alignment and vision-to-language generation, ca-
pable of following instructions without multimodal instruction
tuning.

(2) BLIP-1 [44], pre-trained with web data, using a captioner and fil-
ter for synthetic captions, excelling in zero-shot video language
tasks.

(3) InstructBLIP [15], built on BLIP-2, reformats 26 public datasets
for instruction tuning, updating only the Q-Former during train-
ing.

(4) LaViLa [105] is a video narration method that pairs a video
encoder with a GPT-2 [71] as language decoder and a T-5 [72]
to reduce overfitting and enhance natural language data.

(5) LLaVA [50] introduces visual instruction tuning, using GPT-
generated data and instructions for conversation, detailed de-
scription, and complex reasoning.

(6) ImageBind-LLM [25] is an open-source MLLM, with its algo-
rithm details pending publication.

(7) Shikra [12] encodes regions in natural language as numerical
coordinates to specify regions in user queries.

(8) Video-LLaMA [102] trains adapters for aligning video and au-
dio modalities with LLMs, sampling only eight frames from
arbitrarily long videos.
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Among baseline models, LaViLa is specifically trained on egocen-
tric videos (Ego4d, EPIC-KITCHEN) to generate narrations. Despite
this targeted training, our research reveals that in zero-shot learn-
ing scenarios, MLLM, in zero-shot setting, outperformed LaViLa
for handling egocentric data.

Additionally, to ensure a fair comparison, we chose not to fine-
tune the vision encoder in our EAGLE model for egocentric vision
adaptation. Instead, we focused on refining the model to improve its
spatial-temporal video analysis capabilities. Our findings indicate
that our dataset significantly contributes to enhancing the perfor-
mance of current MLLMs in understanding and interpreting video
content.

5.3 Results and Analysis
. To validate the performance of EAGLE, we compare it with re-
cent MLLMs [12, 50, 102], on the EAGLE-400K dataset. As Table 5
shows, Shikra and BLIP-2 demonstrate remarkable proficiency, scor-
ing highest in most categories, indicating their reliability, helpful-
ness, and detailed response capability. Although Video-LLaMA
is targeted at video analysis, it exhibits the lowest performance
when compared to image-based multimodal large language mod-
els (MLLMs), with outputs often arbitrary and failing to capture
essential visual information from videos. LLaVA and InstructBLIP
demonstrate balanced and above-average performances across all
metrics, showcasing their versatility in handling diverse tasks.

Interestingly, while LaViLa is specifically trained on egocentric
data, its performance is hindered by its relatively weaker language
backbone (GPT-2), resulting in it being outperformed by more ad-
vancedMLLMs in a zero-shot setting. This highlights the significant
impact that a robust language model can have on performance.

Moreover, ImageBind-LLM excels in providing detailed and con-
sistent responses. This suggests that superior language modeling
capabilities, coupled with a more generalized visual encoder, can
enhance overall performance significantly.

Comparing the two variants of EAGLE, which utilize different
methods for processing video content: Using concatenation of frame
features preserves the temporal order of each frame, allowing the
model to capture more detailed temporal dynamics and intricate
interactions within the video content.EAGLE-pool, on the other
hand, employs temporal pooling to aggregate features over time.
This approach helps reduce the impact of less relevant information
and noise but may also gloss over finer temporal details that are
crucial for understanding complex dynamics. Despite these trade-
offs, EAGLE-pool still benefits from the extensive EAGLE-400k
dataset and performs better than spatial grounding models like
Shikra, which focuses more on spatial rather than temporal data.

These scores provide valuable insights into eachmodel’s strengths
and weaknesses, allowing for informed decisions on their optimal
application areas based on specific needs and criteria.
Ablation Study. Ablation studies were conducted on the EAGLE-
400k dataset using varied training data splits to investigate the
impact of spatial and temporal information on egocentric video
understanding. The ablation included: removing time boundaries
(w/o time), excluding object trajectories (w/o obj), and eliminating
both (only desc). As shown in Table 6, Performance tends to de-
crease when either time or object information is excluded, with the

least effective results observed when relying solely on descriptions.
Surprisingly, PTA exhibits the most significant decline in perfor-
mance when detailed information is removed, indicating procedure
learning relies more on temporal and object details.

Table 6: Ablation study with the different split of dataset

Dataset EPIC-KITCHEN Ego4D PTA
w/o time 5.9 6.1 5.9
w/o object 6.2 6.2 5.8
only desc 5.5 5.8 5.5
all 6.8 6.4 6.5

6 CONCLUSION
In this work, we present the EAGLE-400K dataset and the EAGLE
model for holistic egocentric video understanding. The EAGLE-
400K dataset consists of 40K question-answer pairs from 36K di-
verse video clips and EAGLE offers a unified framework for diverse
visual computational tasks. We also provide an evaluation method
for egocentric vision tasks and demonstrate EAGLE’s superior per-
formance. The introduction of a new evaluation metric enhances
the understanding of video-based MLLMs. We hope our work can
pave the way for augmented reality assistants that aid in complex
physical tasks with multimodal perception.

The EAGLE system exhibits a remarkable proficiency in inter-
preting temporal information from egocentric videos. Despite its
impressive capabilities, the system’s reliance on human annotation
for defining time boundaries and the necessity of a teacher model
to generate high-quality reasoning pairs are areas that warrant
further exploration. Additionally, the system’s limited capacity to
identify and track infrequently appearing objects in the dataset is a
challenge that needs to be addressed.

Moreover, there’s an increased potential for misinformation from
model hallucination, where MLLMs might generate plausible but
entirely fictitious responses. This can be particularly concerning
when models are used to provide feedback or guidance as an AR
assistant. The risk is magnified by the model’s ability to produce
highly realistic and convincing outputs, blurring the line between
reality and fiction for users.

7 ETHICS STATEMENT
We must admit that the data collection process in our study may
inherently carry a certain degree of bias. In an attempt to mitigate
this, we have implemented several measures in our pipeline. Ini-
tially, we sourced visual data from EPIC-KITCHEN, Ego4D, and
PTA datasets, which are collected from a diverse range of sources
and are extensively utilized in various research fields. However,
we must also consider that the data annotation phase could po-
tentially introduce additional bias, given its dependence on the
prior annotations of the source datasets and GPT-4V. To counteract
this, we manually sampled and scrutinized the data quality during
the generation process from GPT-4V. In the event of identifying
any potential issues, we immediately halt the process for a more
in-depth investigation.
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