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Abstract

End-to-end Speech Translation (E2E ST) aims001
to translate source speech into target transla-002
tion without generating the intermediate tran-003
script. However, existing approaches for E2E004
ST degrade considerably when only limited005
ST data are available. We observe that an ST006
model’s performance strongly correlates with007
its embedding similarity from speech and tran-008
script. In this paper, we propose Word-Aligned009
COntrastive learning (WACO), a novel method010
for few-shot speech-to-text translation. Our011
key idea is bridging word-level representations012
for both modalities via contrastive learning.013
We evaluate WACO and other methods on the014
MuST-C dataset, a widely used ST benchmark.015
Our experiments demonstrate that WACO out-016
performs the best baseline methods by 0.7-8.5017
BLEU points with only 1-hour parallel data.018

1 Introduction019

End-to-end speech translation (E2E ST) directly020

translates speech in a source language to text in a021

target language, without outputting the transcript022

text. E2E ST has experienced significant progress023

in translation performance (Inaguma et al., 2020;024

Wang et al., 2020a; Zhao et al., 2021; Zheng et al.,025

2021; Tang et al., 2021a; Dong et al., 2021; Han026

et al., 2021; Ye et al., 2021, 2022; Fang et al.,027

2022a; Zhang et al., 2022; Ao et al., 2022; Tang028

et al., 2022; Bapna et al., 2021). However, existing029

E2E ST methods degrade considerably when only030

a limited amount of parallel ST data are available031

(Wang et al., 2021). How can we build a well-032

performed ST model with no more than 10 hours033

of parallel data?034

On the contrary, there are orders-of-magnitude035

more machine translation (MT) and automatic036

speech recognition (ASR) data than direct ST data037

for many languages. Plenty of recent works (Liu038

et al., 2020; Han et al., 2021; Xu et al., 2021; Bapna039

et al., 2021; Ye et al., 2022; Ao et al., 2022; Tang040
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Figure 1: BLEU score of Transformer ST models
trained on varying amount of ST data and their cosine
similarity scores between speech and transcript word
embeddings. Performance degrades significantly with
fewer ST data. The ST performance highly correlates
with speech-text representation similarity.

et al., 2022) leverage external MT and ASR data 041

to improve the performance of E2E ST systems 042

through model pre-training. However, we observe 043

that the performance of the E2E ST model still 044

degrades dramatically even though the model is 045

pre-trained on a large-scale speech dataset and text 046

translation dataset (Figure 1 blue line). 047

To figure out the cause of this phenomenon, we 048

analyze speech and text representations from the 049

directly trained ST model’s encoder. We find that 050

the translation performance highly correlates with 051

the modality gap between speech and text represen- 052

tation. Specifically, we compute word-level aligned 053

cosine similarity of speech and text embeddings 054

(Figure 1 red line). The cross-modal similarity 055

drops simultaneously with the BLEU score and al- 056

most reaches 0 given 1-hour ST training data. This 057

means the model can map both modalities into a 058

(partially) shared semantic space given enough ST 059

data but fails when ST data is limited. 060

Based on the above analysis, we argue that re- 061

ducing the modality gap is a key to a better E2E ST 062

model in a few-shot ST setting. In this work, we 063

propose WACO, a word-level contrastive learning 064

method for few-shot speech-to-text translation. In- 065
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Figure 2: Schematic illustration of representations for
speech and transcript text (projected to 2D). (a): rep-
resentations learned by baseline model. (b): ideal rep-
resentations — not only the sentence representations
should be similar, but also the representations of each
word should be close to each other.

tuitively, as shown in Figure 2, we extract speech066

and text representations for each word and apply067

contrastive learning on them to reduce the repre-068

sentational gap between corresponding speech and069

transcript text segments.070

Our experiments on MuST-C dataset show that071

WACO outperforms all baseline methods by 0.7-8.5072

BLEU points. Moreover, WACO achieves BLEU073

scores of 16.2 and 21.4 with only 1 and 10 hours of074

parallel ST data. Also, we demonstrate that WACO075

leads to more accurate translation than baseline076

methods by better speech-text alignment and fewer077

tokenization issues. We will make the model and078

code publicly available.079

2 Related Work080

End-to-end ST Due to error propagation and081

high latency in cascaded ST systems, Bérard et al.082

(2016); Duong et al. (2016) first proposed to trans-083

late source speech into target text directly without084

generating the intermediate transcript. The ma-085

jor difficulty in training end-to-end ST systems086

is the lack of direct ST data. Though many ST087

datasets (Wang et al., 2021; Cattoni et al., 2021)088

were proposed in recent years, the amount of ST089

data is still much less than that of MT and ASR.090

To overcome the data scarcity problem, methods091

including data augmentation (Park et al., 2019),092

self-training (Pino et al., 2020), multi-tasking (Le093

et al., 2020; Tang et al., 2021b,a; Ye et al., 2021;094

Zhang et al., 2022) and pre-training (Berard et al.,095

2018; Bansal et al., 2019; Wu et al., 2020; Wang096

et al., 2020b; Alinejad and Sarkar, 2020; Dong097

et al., 2021; Zheng et al., 2021; Bapna et al., 2021;098

Ao et al., 2022; Tang et al., 2022) have been pro-099

posed. WACO is a novel approach that can be 100

applied in existing multi-tasking and pre-training 101

frameworks to improve ST performance. 102

Cross-modal representation learning Re- 103

searchers realized recently that the modality gap 104

between speech and text representation hinders the 105

knowledge transfer from external ASR and MT 106

data (Liu et al., 2020; Xu et al., 2021; Han et al., 107

2021; Ye et al., 2022). Liu et al. (2020) shrank the 108

speech representation to match the length of text 109

representation and also closed the representational 110

gap by minimizing their L2 distance. Xu et al. 111

(2021) mapped speech representation to text repre- 112

sentation through both the Connectionist Temporal 113

Classification (CTC) (Graves et al., 2006) distri- 114

bution and a mapping layer. Han et al. (2021) de- 115

veloped a novel architecture enabling fixed-length 116

shared semantic space for both modalities. Ye et al. 117

(2022) employed sentence-level contrastive loss 118

to reduce the modality gap and achieved state-of- 119

the-art results on MuST-C. Our method, however, 120

works on word-level instead of sentence-level and 121

empirically provides both better performance and 122

higher data efficiency. Fang et al. (2022b) also pro- 123

poses to close the word-level representational gap 124

between speech and text, but their method heavily 125

relies on target translation while our method only 126

requires ASR data for modality reduction. Also, we 127

note that Tang et al. (2022) explores the possibility 128

of pre-training MT models with phoneme tokeniza- 129

tions, but it is unclear if the phoneme-based MT 130

model has an advantage over the traditional BPE- 131

based MT model and we leave the comparison to 132

future works. 133

3 Proposed Method: WACO 134

In this section, we describe problem formulation 135

(Section 3.1), our model architecture (Section 3.2), 136

word-aligned contrastive method (Section 3.3) and 137

training strategy (Section 3.4). 138

3.1 Problem Formulation 139

A typical ST corpus DST contains speech s and 140

its transcript x in a source language and transla- 141

tion y in another language. Equivalently, DST = 142

{(s, x, y)} and ASR corpus can be similarly de- 143

fined as DASR = {(s, x)}. 144

Given DST and DASR as training sets, the E2E 145

ST model needs to translate speech s into transla- 146

tion y accurately without generating transcript x in 147

the intermediate steps. Specifically, we consider 148
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Figure 3: Model architecture of WACO. It accepts both
speech and text input and outputs text sequence. In par-
ticular, we apply word-aligned contrastive loss to reduce
modality gap between speech and text embeddings.

two settings in this work:149

• Few-shot ST: we have very limited ST data150

but plenty of ASR data, i.e., |DST| ≪ |DASR|.151

For example, we have ASR and ST data from152

100-hour and 1-hour subsets of the MuST-C153

training set respectively.154

• Regular ST: we have full ST triplet data. For155

example, DST contains the entire MuST-C156

400-hour training set.157

3.2 Model Architecture158

Figure 3 illustrates our model architecture. WACO159

consists of 3 modules: a speech encoder, a text160

embedding layer and a joint Transformer. This161

architecture enables multi-tasking of both speech162

and text-related tasks (details of training in Section163

3.3 and 3.4).164

Speech Encoder extracts contextualized acoustic165

embeddings from the raw waveform. It consists of166

wav2vec 2.0 (Baevski et al., 2020) and 2 downsam-167

pling layers. Wav2vec 2.0 is one of the state-of-the-168

art self-supervised models pre-trained on unlabeled169

English speech corpus to produce contextualized170

speech embeddings. It has a hybrid architecture171

with 7 convolutional layers as the feature extractor172

and a Transformer as the contextualized encoder.173

After wav2vec 2.0, we further downsample the em-174

bedding sequence with 2 convolutional layers by175

a factor of 4 to alleviate the length discrepancy176

between speech and text embeddings.177

Text Embedding embeds text tokens into a se-178

quence of token embeddings. This is the text coun-179

terpart of the speech encoder.180

Joint Transformer accepts outputs from both the 181

speech encoder and the text embedding layer. We 182

are using the same configuration as the vanilla 183

Transformer (Vaswani et al., 2017). Specifically, 184

the encoder further extracts contextualized high- 185

level semantic features from both modalities and 186

the decoder generates a token sequence for dif- 187

ferent tasks. Besides, since we are using general 188

Transformer architecture, both the text embedding 189

layer and the joint Transformer can be pre-trained 190

on additional MT data. 191

3.3 Word-Aligned Contrastive Learning 192

(WACO) 193

To reduce the modality gap between speech and 194

text, we propose word-aligned contrastive learning 195

to bring speech and text embeddings closer in a 196

fine-grained level (Figure 4). 197

Suppose we have a speech-transcript pair 198

(s, x). The transcript is tokenized by a Byte- 199

Pair-Encoding (BPE) tokenizer into a sequence 200

of BPE tokens x = (x1, x2, · · · , xn). We group 201

n BPE tokens back into m whole words where 202

wi = x[lti : r
t
i ] for i = 1, 2, · · · ,m. 203

Then we align whole words w1, w2, · · · , wm 204

with speech s = (s1, s2, · · · , s|s|) by a forced 205

aligner. This provides us time interval 1 ≤ lsi ≤ 206

rsi ≤ |s| for each of the word wi. 207

Now we have identified m corresponding pairs 208

of speech segments s[lsi : rsi ] and words x[lti : r
t
i ]. 209

The representations of them are obtained as fol- 210

lows, 211

fs
i = MeanPool(S-Enc(s)[l̃si : r̃

s
i ]) (1) 212

f t
i = MeanPool(T-Emb(x)[lti : r

t
i ]) (2) 213

where S-Enc is speech encoder, T-Emb is text 214

embedding layer, l̃si =
lsi
|s| |S-Enc(s)| and r̃si = 215

rsi
|s| |S-Enc(s)| refer to the relative indices given the 216

audio representation length shrinkage after Speech 217

Encoder. 218

We treat fs
i and f t

i as a positive pair and treat 219

fs
i and other words in the same batch as negative 220

pairs and we apply multi-class N-pair contrastive 221

loss (Sohn, 2016) on them: 222

ℓCTR(B) = 223

− E
fs
i ,f

t
i∈B

[
log

exp(sim(fs
i , f

t
i )/τ)∑

f t
j ̸=i∈B

exp(sim(fs
i , f

t
j )/τ)

]
(3)

224
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Figure 4: An illustration of word-aligned contrastive learning for a batch of two data points. Speech and text are
passed through speech encoder and text embedding respectively to obtain embeddings. Then we group embeddings
by word-level average pooling for both modalities. Average speech and text embeddings for the same word are
treated as the positive pair and average embeddings for different words are treated as the negative pairs.

where B is the current batch, τ is the temperature225

hyper-parameter, sim() is used to measure the dis-226

tance between two representations, and we use co-227

sine similarity sim(a, b) = a⊤b/∥a∥∥b∥.228

3.4 Training Strategy229

Cross-Modal Pre-training We first train a230

forced aligner on DASR, then we pre-train our231

model using word-aligned contrastive loss232

LPT = E
B⊆DASR

[ℓCTR(B)] . (4)233

Pre-training stage aims to map speech and text234

embeddings into a shared semantic space using235

ASR data. If the model is already pre-trained on236

MT corpus, this stage can also be regarded as using237

ASR data to distill MT knowledge.238

Multi-task Fine-tuning We fine-tune our model239

using the multi-task cross-entropy losses and (op-240

tionally) contrastive loss.241

LFT = LCE + λLCTR (5)242

where243

LCE = E
(s,x,y)∈DST

[ℓST + ℓMT + ℓASR] (6)244

LCTR = E
B⊆DST

[ℓCTR(B)] . (7)245

Cross entropy losses are derived directly from246

the triplet dataset DST, 247

ℓST(s, y) = − logP (y|s) (8) 248

ℓMT(x, y) = − logP (y|x) (9) 249

ℓASR(s, x) = − logP (x|s). (10) 250

λ is the hyper-parameter controlling the weight 251

of contrastive loss. When λ = 0, we are only 252

optimizing the multi-task cross-entropy losses. 253

4 Experiments 254

4.1 Datasets 255

MuST-C We conduct experiments on the MuST- 256

C dataset (Di Gangi et al., 2019), one of the largest 257

ST benchmark datasets1 containing translations 258

from English to 8 languages2 collected from TED 259

Talks. Each language direction involves around 260

400 hours of audio recordings. Limited by com- 261

puting resources, we examine our method on three 262

language directions: En-De, En-Fr and En-Es. 263

MuST-C Few-Shot To examine few-shot ST per- 264

formance, we manually create ASR and ST subsets 265

from the MuST-C En-De training set. Specifically, 266

we build 10-hour, 100-hour and 370-hour ASR sub- 267

sets and 1-hour and 10-hour ST subsets respectively 268

through random sampling. 269

External ASR We also introduce LibriSpeech 270

(Panayotov et al., 2015) as the external ASR dataset. 271

1Released under CC BY NC ND 4.0 International
2Here we refer to MuST-C v1.0.
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LibriSpeech is the de facto public English ASR272

benchmark3 containing 960 hours of speech data.273

We build a 1330-hour ASR dataset by combining274

MuST-C and LibriSpeech. We use LibriSpeech275

mainly to evaluate how out-of-domain ASR corpus276

can help in-domain ST performance through cross-277

modal methods.278

External MT Additionally, we introduce exter-279

nal WMT En-De/Fr/Es datasets (Bojar et al., 2016)280

for each language direction to pre-train text embed-281

ding and joint Transformer. As shown in previous282

works (Xu et al., 2021; Ye et al., 2021), MT pre-283

training greatly improves ST performance.284

The statistics of datasets above are listed in Ap-285

pendix A.1.286

4.2 Experimental Setups287

Model Configurations In MuST-C experiments,288

we use wav2vec 2.0 base model4 in our S-Enc289

which is solely pre-trained on 960-hour English290

audio. It consists of a 7-layer convolutional feature291

extractor and 12 Transformer encoder blocks with292

768 hidden units. Two down-sampling convolu-293

tional layers have kernel size 5, stride size 2 and294

hidden size 512. Joint Transformer has 6 encoder295

and decoder layers with hidden size 512, 2048 FFN296

hidden units and 8 attention heads. Joint Trans-297

former and text embedding are pre-trained on the298

external WMT dataset (MT training details can be299

found in Appendix A.4).300

Preprocess We filter speech that is either too301

long (>480k frames) or too short (<1k frames) out.302

This results in 388/471/480 hours of speech being303

retained as ST training data for En-De/Fr/Es di-304

rections. We jointly tokenize the transcripts and305

translations for each language direction using Sen-306

tencePiece (Kudo and Richardson, 2018) with a307

vocabulary size set to 10k. Before forced align-308

ment, we remove punctuations and group whole309

words by identifying special space token in the vo-310

cabulary. We use Montreal Forced Aligner (MFA)311
5 to train forced aligners on DASR to align English312

speech and words. Due to vocabulary mismatch be-313

tween MFA and our SentencePiece model, a small314

number of speeches and transcripts (e.g., 18h for315

3Released under CC BY 4.0
4https://dl.fbaipublicfiles.com/fairseq/

wav2vec/wav2vec_small.pt
5https://github.com/MontrealCorpusTools/

Montreal-Forced-Aligner

En-De) cannot be aligned and we simply ignore 316

them when doing contrastive learning. 317

Training The input is the raw 16-bit 16kHz 318

mono-channel waveform. For both cross-modal 319

pre-training and multi-task fine-tuning, we set con- 320

trastive temperature τ = 0.05 and optimize our 321

model by Adam optimizer (Kingma and Ba, 2015) 322

(β1 = 0.9, β2 = 0.98) with learning rate 1e-4 and 323

25k warm-up steps. After the warm-up, the learn- 324

ing rate is decayed following the inverse square 325

root schedule. The effective batch size is 16 million 326

frames. We set dropout rate to 0.1. For pre-training, 327

we save the checkpoints with the best contrastive 328

loss on the validation set. For fine-tuning, we save 329

the checkpoints with the best BLEU on the valida- 330

tion set and average the last 10 saved checkpoints. 331

Also, we set label smoothing to 0.1 for the cross- 332

entropy losses, λ = 0 in few-shot ST and λ = 1 in 333

ST with full data. All models are trained on Nvidia 334

A6000 GPUs. 335

Inference and Evaluation During inference, we 336

run beam search with beam size 10 and length 337

penalty 0.6/1.0/0.1 for En-De/Fr/Es directions 338

respectively. For evaluation, we report case- 339

sensitive detokenized BLEU scores on MuST-C 340

tst-COMMON using sacreBLEU (Post, 2018)6. 341

Baselines In few-shot ST settings, we compare 342

our method with three baselines: 343

• Base: This baseline ignores DASR and only 344

optimizes cross entropy loss in Equation 6 on 345

DST. 346

• Base+CTC: This baseline, on top of Base, ap- 347

plies CTC loss on DASR to align speech and 348

text representations. In particular, we add a 349

linear layer after the speech encoder to predict 350

the text BPE token at each frame and fix its 351

weight with text embedding. We only include 352

CTC with BPE tokenization here since it per- 353

forms consistently better than its phoneme 354

counterpart (details in Section 5.2). 355

• ConST: This baseline adds a coarse-grained 356

contrastive loss on DASR on top of Base to 357

reduce modality gap as in Ye et al. (2022), 358

one of the state-of-the-art ST methods. In- 359

stead of word-level alignment, ConST con- 360

ducts contrastive learning on sentence-level 361

6BLEU signature: nrefs:1|bs:1000|seed:12345|case:mixed|
eff:no|tok:13a| smooth:exp|version:2.0.0

5

https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner


Method Few-Shot

ASR Data 10h 100h 370h 1330h 100h 370h 1330h

ST Data 1h 10h

Base 4.3 4.3 4.3 4.3 17.5 17.5 17.5
Base+CTC 0.2 12.6 14.6 13.6 18.3 20.4 19.4
ConST 3.0 7.3 11.7 13.7 16.9 18.6 19.6
WACO 12.8 14.7 15.3 16.2 20.1 20.8 21.4

Table 1: Case-sensitive detokenized BLEU scores on MuST-C En-De tst-COMMON set of models pre-trained on ASR
data using different cross-modal methods and fine-tuned on ST data. All models share the same W2V2-Transformer
architecture. Base ignores ASR data and only conducts multi-task fine-tuning on ST data, while other three baselines
pre-train on ASR data using CTC, sentence-level contrastive (ConST) and word-aligned contrastive (WACO)
losses.

average speech and text embeddings. Hyper-362

parameters are directly borrowed from Ye et al.363

(2022).364

In regular ST with full MuST-C data, we com-365

pare our method with other existing works.366

Models En-De En-Fr En-Es

(Zhang et al., 2022) 23.0 33.5 28.0
W-Transf. (Ye et al., 2021) 23.6 34.6 28.4
SpeechT5 (Ao et al., 2022) 25.2 35.3 -
FAT-ST (Zheng et al., 2021) 25.5 - 30.8
JT-S-MT (Tang et al., 2021a) 26.8 37.4 31.0
Chimera (Han et al., 2021) 27.1 35.6 -
XSTNet (Ye et al., 2021) 27.8 38.0 30.8
SATE (Xu et al., 2021) 28.1 - -
STEMM (Fang et al., 2022b) 28.7 37.4 31.0
ConST (Ye et al., 2022) 28.3 38.3 32.0
WACO 28.1 38.1 32.0

STPT (Tang et al., 2022)* 29.2 39.7 33.1

Table 2: Case-sensitive detokenized BLEU scores on
MuST-C En-De tst-COMMON set of models trained on
full MuST-C training set. *Note that STPT is trained on
60k hours speech data instead of 960 hours in WACO
and contains more parameters (169M) than WACO
(151M).

4.3 Main Results367

Few-Shot ST Results are shown in Table 1. The368

ASR data for cross-modal pre-training varies from369

10 hours to 1330 hours, and the ST data for multi-370

task fine-tuning varies from 1 hour to 10 hours.371

WACO consistently outperforms baseline methods372

in all data configurations. In particular, our model373

achieves a BLEU score of 12.8 with only 1h ST and374

10h ASR data and 20.1 with only 10h ST and 100h375

ASR data. With 1330h ASR data, WACO even376

pushes the BLEU score to 16.2 and 21.4. More377

surprisingly, we find that WACO has a further ad- 378

vantage when using less ASR data. When reducing 379

ASR data from 388 hours to 100 hours, the BLEU 380

score increases (WACO vs Base+CTC, ConST) 381

are enlarged from +0.7,+3.6 to +2.1,+7.4 in 1h ST 382

setting and from +0.4,+2.2 to +1.8,+3.2 in 10h ST 383

setting respectively. This demonstrates that WACO 384

is more data-efficient than the baseline methods. 385

Regular ST Results are shown in Table 2. Here 386

we are using the entire MuST-C training set as in 387

previous works to enable fair comparison, which 388

means DST has full MuST-C training data. WACO 389

is competitive with previous state-of-the-art models 390

such as STEMM and ConST in all three language 391

directions. Note that STPT achieves that highest 392

BLEU scores in all directions, but STPT trains on 393

60k hours of speech data instead of 960 hours in 394

WACO (wav2vec 2.0 base) and employs a different 395

model architecture with more parameters (169M) 396

than WACO (151M). 397

5 Analysis 398

In this section, we analyze why word-level align- 399

ment (WACO) is better than sentence-level one 400

(ConST) and why CTC learning is sub-optimal 401

than WACO. 402

5.1 Why Word-level Contrastive Loss is Better 403

than Sentence-level Contrastive Loss? 404

Intuitively, only reducing the representational gap 405

between speech and text at the sentence level 406

cannot assure that model captures the accurate 407

word correspondence between these two modal- 408

ities. Here we substantiate it both quantitatively 409

and qualitatively. 410
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The first                                         is       that                                      we will not evolve

Input:

Der erste ist, dass wir uns nicht entwickeln warden.
(The first is, that we will not evolve.)Translation: Zum einen sind wir da, und das warden wir nicht alles tun.

(For one we are here, and we won’t do all of that evolve.)

Speech-Text Alignment Matrix

ConST WACO

Figure 5: An example showing that WACO can capture the word-level details better than ConST. The matrix
illustrates pairwise cosine similarity between word-level average embeddings of speech and transcript. WACO
aligns two modalities well while ConST fails to align word “that” and “evolve”. Though ConST still provides higher
sentence-level similarity than WACO (0.60 for ConST and 0.58 for WACO), its translation is not as accurate as our
method due to misaligned words.

Quantitatively, we compute the average cosine411

similarity between speech embedding and text em-412

bedding using models (ConST and WACO) pre-413

trained on 370h ASR dataset and fine-tuned on 1h414

ST dataset. Specifically, we produce embeddings415

following Equation 1 and 2. The result is shown416

in Table 3. WACO achieves more accurate word-417

level alignment, which indicates WACO can handle418

word-level details inside a sentence better.419

We show an example in Figure 5 to further420

demonstrate the importance of such details. From421

the similarity matrix, we can see that WACO aligns422

both modalities quite well for all words but ConST423

struggles on words “that” and “evolve” as high-424

lighted in blue boxes. This directly results in two425

translation errors of ConST. First, it fails to re-426

cover the clause structure implied by “that”. Sec-427

ond, it omits “evolve” entirely in the translation.428

Though ConST still provides higher sentence simi-429

larity than WACO, it fails to understand the subtlety430

inside the sentence. More examples are in Figure 8.431

5.2 Why WACO is better than CTC?432

WACO treats the word as the base unit which pre-433

serves acoustic boundaries and also enables the434

model to leverage knowledge from the pre-trained435

Methods Similarity

ConST 0.44
WACO 0.51

Table 3: Average cosine similarity between words from
speech and transcript.

MT model. CTC cannot benefit from word to- 436

kenization due to its extremely large vocabulary. 437

Instead, CTC usually employs BPE, phoneme or 438

character tokenization to learn speech-text align- 439

ment. Among these, BPE does not guarantee acous- 440

tic boundaries of each token and may lead to in- 441

consistent tokenization (Table 4). Phoneme and 442

character tokenization, however, make it hard to 443

exploit the existing MT model pre-trained on large 444

corpus since most MT methods are based on BPE 445

tokenization. 446

Word Sustainable sustainable

BPE Tokens _Su st ain able _sustainable

Table 4: BPE leads to inconsistent tokenization even for
the same word with different capitalization.
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(b) WACO

Figure 6: Token-to-Frame embedding alignment matrix
produced by models trained with CTC and WACO re-
spectively. Each row corresponds to a word and each
column stands for a frame. Words in X-axis are placed
according to their timestamps in speech to show how
well the alignments are.

To support our claim above, we first empirically447

verify the disadvantage of BPE tokenization. Ex-448

cept direct BLEU scores reported in Table 1, Figure449

7a illustrates CTC losses on training and dev set450

during pre-training. CTC using BPE cannot gener-451

alize well to unseen speech in the dev set (cannot452

even reach <2). In Figure 6, we can see that CTC453

indeed learns inaccurate alignment compared to454

WACO.455

As for other tokenizations, we evaluate phoneme456

tokenization as an example. Specifically, we use457

the same phoneme vocabulary and grapheme-to-458

phoneme package as in (Tang et al., 2022). Differ-459

ent from Base+CTC introduced in Section 4.2, we460

randomly initialize the linear layer on top of the461

speech encoder since text embedding is still pre-462

trained using BPE tokenization. In this way, the463

pre-trained MT model is only used in multi-task464

fine-tuning. The results are shown in Table 5. CTC465

with phoneme tokenization is consistently outper-466

Tokenization 100h ASR 370h ASR

BPE 18.3 20.4
Phoneme 14.3 19.0

Table 5: Case sensitive detokenized BLEU score on
MuST-C En-De tst-COMMON of CTC models with
BPE and phoneme tokenizations. Fine-tuning ST data
is fixed at 10h.

formed by its BPE counterpart, not to mention our 467

method. This demonstrates the importance of lever- 468

aging pre-trained MT embedding in cross-modal 469

training. 470

In conclusion, CTC learning suffers from either 471

broken acoustic boundaries (BPE) or inefficient 472

knowledge transfer (phoneme), while WACO out- 473

performs CTC by keeping acoustic boundaries in- 474

tact and enabling efficient knowledge transfer in 475

cross-modal training. 476

6 Conclusion 477

In this work, we propose WACO to align word- 478

level speech and text embeddings. Experiments 479

demonstrate the effectiveness of our method in 480

both few-shot and regular ST settings. Analysis 481

shows that our method can achieve better speech- 482

text alignment and avoid tokenization issues com- 483

pared to baseline methods. 484

Limitations 485

There are two main limitations in this work. 486

First, the source language is always English, 487

which has more than a thousand hours of public 488

speech data to pre-train our speech encoder, while 489

other languages like Manx have no access to even 490

ten hours of that. As shown in previous works 491

(Baevski et al., 2020; Babu et al., 2021), the self- 492

supervised model (speech encoder in WACO) heav- 493

ily relies on the amount of speech data especially 494

when downstream tasks only have limited labeled 495

data. Thus, it remains a question to which extent 496

other languages can benefit from WACO. 497

Second, instead of best ST performance given 498

full data, our cross-modal pre-training only aims 499

to demonstrate the effectiveness of our method in 500

the few-shot ST setting. We realize that unified pre- 501

training for both speech and text gradually becomes 502

a dominant paradigm for ST and our future work is 503

to fuse WACO into a joint pre-training framework. 504
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Ethics Statement505

WACO has the potential to benefit speakers of low-506

resource languages. For example, their published507

video or speech can be better translated into other508

languages, so more viewers in the world can un-509

derstand them, enabling deeper communication be-510

tween different cultures. Though WACO may be511

beneficial to cross-language communication, we512

do not encourage users to treat the translation gen-513

erated by the E2E ST model as fully correct since514

they are far from perfect in practice.515
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A Appendix735

A.1 Statistics of Datasets736

We show statistics of MuST-C, LibriSpeech and737

WMT datasets in Table 6,7,8 and 9.738

Direction Hours # Sentence

En-De 408 234K
En-Fr 492 280K
En-Es 504 270K

Table 6: Statistics of MuST-C.

Type Hours # Sentence

ST
1 0.6K
10 5.8K

ASR

10 5.8K
100 58K
370 216K
1330 497K

Table 7: Statistics of ST and ASR subsets in MuST-C
En-De Few Shot.

Language Hours # Sentence # Speaker

En 960 281K 2338

Table 8: Statistics of LibriSpeech.

Direction Name # Sentence

En-De WMT16 4.6M
En-Fr WMT14 40.8M
En-Es WMT13 15.2M

Table 9: Statistics of WMT.

A.2 More Examples of WACO versus ConST 739

We show two more examples that WACO achieves 740

more accurate translation than ConST by better 741

speech-text alignment in Figure 8. 742

A.3 Loss Curves for Cross-Modal 743

Pre-training 744

We present pre-training loss curves of CTC with 745

both BPE and phoneme tokenizations, and WACO 746

in Figure 7. 747
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Figure 7: Loss curves of various cross-modal pre-
training method. CTC with BPE tokenization cannot
generalize well to unseen speech (cannot reach below 2
on dev set).
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A.4 MT Pre-training748

We use the same vocabulary and SentencePiece749

model described in Section 4.2 to tokenize the750

WMT datasets. The model is optimized with Adam.751

The learning rate starts at 1e-7, warmed up to 7e-4752

by 4k steps and then decays following the inverse753

square root schedule with a minimum learning rate754

of 1e-9. The maximum number of tokens in a batch755

is 8192. We select the checkpoint with the high-756

est BLEU (beam size 4, length penalty 0.6) on the757

WMT validation set.758
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Es ist etwas, was wir für dielantik-Olympiade tun.
(It's something we do for the lantik-olympiad.)Translation: Wir arbeiten für das Lateinamerika.

(it’s something We work for Latin America.)

ConST WACO

Manchmal ist die Perspektive die Illusion.
(Sometimes the perspective is the illusion.)Translation: Wie oft ist die Sichtweise die Lösung.

(How often the perspective is the solution.)

ConST WACO

Figure 8: Two additional examples with speech-text alignment matrices and translations of WACO and ConST.
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