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Abstract

End-to-end Speech Translation (E2E ST) aims
to translate source speech into target transla-
tion without generating the intermediate tran-
script. However, existing approaches for E2E
ST degrade considerably when only limited
ST data are available. We observe that an ST
model’s performance strongly correlates with
its embedding similarity from speech and tran-
script. In this paper, we propose Word-Aligned
COntrastive learning (WACQ), a novel method
for few-shot speech-to-text translation. Our
key idea is bridging word-level representations
for both modalities via contrastive learning.
We evaluate WACO and other methods on the
MuST-C dataset, a widely used ST benchmark.
Our experiments demonstrate that WACO out-
performs the best baseline methods by 0.7-8.5
BLEU points with only 1-hour parallel data.

1 Introduction

End-to-end speech translation (E2E ST) directly
translates speech in a source language to text in a
target language, without outputting the transcript
text. E2E ST has experienced significant progress
in translation performance (Inaguma et al., 2020;
Wang et al., 2020a; Zhao et al., 2021; Zheng et al.,
2021; Tang et al., 2021a; Dong et al., 2021; Han
et al., 2021; Ye et al., 2021, 2022; Fang et al.,
2022a; Zhang et al., 2022; Ao et al., 2022; Tang
et al., 2022; Bapna et al., 2021). However, existing
E2E ST methods degrade considerably when only
a limited amount of parallel ST data are available
(Wang et al., 2021). How can we build a well-
performed ST model with no more than 10 hours
of parallel data?

On the contrary, there are orders-of-magnitude
more machine translation (MT) and automatic
speech recognition (ASR) data than direct ST data
for many languages. Plenty of recent works (Liu
etal., 2020; Han et al., 2021; Xu et al., 2021; Bapna
et al., 2021; Ye et al., 2022; Ao et al., 2022; Tang
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Figure 1: BLEU score of Transformer ST models
trained on varying amount of ST data and their cosine
similarity scores between speech and transcript word
embeddings. Performance degrades significantly with
fewer ST data. The ST performance highly correlates
with speech-text representation similarity.

et al., 2022) leverage external MT and ASR data
to improve the performance of E2E ST systems
through model pre-training. However, we observe
that the performance of the E2E ST model still
degrades dramatically even though the model is
pre-trained on a large-scale speech dataset and text
translation dataset (Figure 1 blue line).

To figure out the cause of this phenomenon, we
analyze speech and text representations from the
directly trained ST model’s encoder. We find that
the translation performance highly correlates with
the modality gap between speech and text represen-
tation. Specifically, we compute word-level aligned
cosine similarity of speech and text embeddings
(Figure 1 red line). The cross-modal similarity
drops simultaneously with the BLEU score and al-
most reaches 0 given 1-hour ST training data. This
means the model can map both modalities into a
(partially) shared semantic space given enough ST
data but fails when ST data is limited.

Based on the above analysis, we argue that re-
ducing the modality gap is a key to a better E2E ST
model in a few-shot ST setting. In this work, we
propose WACO, a word-level contrastive learning
method for few-shot speech-to-text translation. In-
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Figure 2: Schematic illustration of representations for
speech and transcript text (projected to 2D). (a): rep-
resentations learned by baseline model. (b): ideal rep-
resentations — not only the sentence representations
should be similar, but also the representations of each
word should be close to each other.

tuitively, as shown in Figure 2, we extract speech
and text representations for each word and apply
contrastive learning on them to reduce the repre-
sentational gap between corresponding speech and
transcript text segments.

Our experiments on MuST-C dataset show that
WACO outperforms all baseline methods by 0.7-8.5
BLEU points. Moreover, WACO achieves BLEU
scores of 16.2 and 21.4 with only 1 and 10 hours of
parallel ST data. Also, we demonstrate that WACO
leads to more accurate translation than baseline
methods by better speech-text alignment and fewer
tokenization issues. We will make the model and
code publicly available.

2 Related Work

End-to-end ST Due to error propagation and
high latency in cascaded ST systems, Bérard et al.
(2016); Duong et al. (2016) first proposed to trans-
late source speech into target text directly without
generating the intermediate transcript. The ma-
jor difficulty in training end-to-end ST systems
is the lack of direct ST data. Though many ST
datasets (Wang et al., 2021; Cattoni et al., 2021)
were proposed in recent years, the amount of ST
data is still much less than that of MT and ASR.
To overcome the data scarcity problem, methods
including data augmentation (Park et al., 2019),
self-training (Pino et al., 2020), multi-tasking (Le
et al., 2020; Tang et al., 2021b,a; Ye et al., 2021;
Zhang et al., 2022) and pre-training (Berard et al.,
2018; Bansal et al., 2019; Wu et al., 2020; Wang
et al., 2020b; Alinejad and Sarkar, 2020; Dong
etal., 2021; Zheng et al., 2021; Bapna et al., 2021;
Ao et al., 2022; Tang et al., 2022) have been pro-

posed. WACO is a novel approach that can be
applied in existing multi-tasking and pre-training
frameworks to improve ST performance.
Cross-modal representation learning Re-
searchers realized recently that the modality gap
between speech and text representation hinders the
knowledge transfer from external ASR and MT
data (Liu et al., 2020; Xu et al., 2021; Han et al.,
2021; Ye et al., 2022). Liu et al. (2020) shrank the
speech representation to match the length of text
representation and also closed the representational
gap by minimizing their L2 distance. Xu et al.
(2021) mapped speech representation to text repre-
sentation through both the Connectionist Temporal
Classification (CTC) (Graves et al., 2006) distri-
bution and a mapping layer. Han et al. (2021) de-
veloped a novel architecture enabling fixed-length
shared semantic space for both modalities. Ye et al.
(2022) employed sentence-level contrastive loss
to reduce the modality gap and achieved state-of-
the-art results on MuST-C. Our method, however,
works on word-level instead of sentence-level and
empirically provides both better performance and
higher data efficiency. Fang et al. (2022b) also pro-
poses to close the word-level representational gap
between speech and text, but their method heavily
relies on target translation while our method only
requires ASR data for modality reduction. Also, we
note that Tang et al. (2022) explores the possibility
of pre-training MT models with phoneme tokeniza-
tions, but it is unclear if the phoneme-based MT
model has an advantage over the traditional BPE-
based MT model and we leave the comparison to
future works.

3 Proposed Method: WACO

In this section, we describe problem formulation
(Section 3.1), our model architecture (Section 3.2),
word-aligned contrastive method (Section 3.3) and
training strategy (Section 3.4).

3.1 Problem Formulation

A typical ST corpus DST contains speech s and
its transcript = in a source language and transla-
tion y in another language. Equivalently, DST =
{(s,x,y)} and ASR corpus can be similarly de-
fined as DASR = {(s,z)}.

Given DST and DASR as training sets, the E2E
ST model needs to translate speech s into transla-
tion y accurately without generating transcript = in
the intermediate steps. Specifically, we consider
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Figure 3: Model architecture of WACO. It accepts both
speech and text input and outputs text sequence. In par-
ticular, we apply word-aligned contrastive loss to reduce
modality gap between speech and text embeddings.

two settings in this work:

* Few-shot ST: we have very limited ST data
but plenty of ASR data, i.e., |D3T| < |DASR|.
For example, we have ASR and ST data from
100-hour and 1-hour subsets of the MuST-C
training set respectively.

* Regular ST: we have full ST triplet data. For
example, DT contains the entire MuST-C
400-hour training set.

3.2 Model Architecture

Figure 3 illustrates our model architecture. WACO
consists of 3 modules: a speech encoder, a text
embedding layer and a joint Transformer. This
architecture enables multi-tasking of both speech
and text-related tasks (details of training in Section
3.3 and 3.4).

Speech Encoder extracts contextualized acoustic
embeddings from the raw waveform. It consists of
wav2vec 2.0 (Baevski et al., 2020) and 2 downsam-
pling layers. Wav2vec 2.0 is one of the state-of-the-
art self-supervised models pre-trained on unlabeled
English speech corpus to produce contextualized
speech embeddings. It has a hybrid architecture
with 7 convolutional layers as the feature extractor
and a Transformer as the contextualized encoder.
After wav2vec 2.0, we further downsample the em-
bedding sequence with 2 convolutional layers by
a factor of 4 to alleviate the length discrepancy
between speech and text embeddings.

Text Embedding embeds text tokens into a se-
quence of token embeddings. This is the text coun-
terpart of the speech encoder.

Joint Transformer accepts outputs from both the
speech encoder and the text embedding layer. We
are using the same configuration as the vanilla
Transformer (Vaswani et al., 2017). Specifically,
the encoder further extracts contextualized high-
level semantic features from both modalities and
the decoder generates a token sequence for dif-
ferent tasks. Besides, since we are using general
Transformer architecture, both the text embedding
layer and the joint Transformer can be pre-trained
on additional MT data.

3.3 Word-Aligned Contrastive Learning
(WACO)

To reduce the modality gap between speech and
text, we propose word-aligned contrastive learning
to bring speech and text embeddings closer in a
fine-grained level (Figure 4).

Suppose we have a speech-transcript pair
(s,z). The transcript is tokenized by a Byte-
Pair-Encoding (BPE) tokenizer into a sequence
of BPE tokens x = (z1,22, -+ ,2,). We group
n BPE tokens back into m whole words where

w; = x[lt ] fori=1,2,--- ,m.
Then we align whole words wy, wa, -+ ,wn
with speech s = (s1,s2,---,5|5) by a forced

aligner. This provides us time interval 1 < [{ <
rf < |s| for each of the word wj.

Now we have identified m corresponding pairs
of speech segments s[l¢ : r{] and words z[l} : r!].
The representations of them are obtained as fol-
lows,

f# = MeanPool (S-Enc(s)[I? : 7)) )
ff = MeanPool (T-Emb(z)[I! : 7f])  (2)

where S-Enc is speech encoder, T-Emb is text
embedding layer, I{ = ‘%]S—Enc(s)\ and r? =

% |S-Enc(s)| refer to the relative indices given the
audio representation length shrinkage after Speech
Encoder.

We treat f7 and f! as a positive pair and treat
/7 and other words in the same batch as negative
pairs and we apply multi-class N-pair contrastive
loss (Sohn, 2016) on them:

letr(B) =
_ & log exp(sim( f,ff)S/T)t
fegtes | g, enexp(sim(ff, f7)/7)

3)
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Figure 4: An illustration of word-aligned contrastive learning for a batch of two data points. Speech and text are
passed through speech encoder and text embedding respectively to obtain embeddings. Then we group embeddings
by word-level average pooling for both modalities. Average speech and text embeddings for the same word are
treated as the positive pair and average embeddings for different words are treated as the negative pairs.

where B is the current batch, 7 is the temperature
hyper-parameter, sim/() is used to measure the dis-
tance between two representations, and we use co-
sine similarity sim(a,b) = a'b/||al|||?|.

3.4 Training Strategy

Cross-Modal Pre-training We first train a
forced aligner on DASR, then we pre-train our
model using word-aligned contrastive loss

L= E
BCDASR

[lctr(B)] - 4)

Pre-training stage aims to map speech and text
embeddings into a shared semantic space using
ASR data. If the model is already pre-trained on
MT corpus, this stage can also be regarded as using
ASR data to distill MT knowledge.

Multi-task Fine-tuning We fine-tune our model
using the multi-task cross-entropy losses and (op-
tionally) contrastive loss.

LT = Lcg + Aot )

Lcg = E
(s5,2,y)€DST

Lcrr = E - [ler(B)]. (7
BQ'DST

[lsT + fmr + Casr]  (6)

Cross entropy losses are derived directly from

the triplet dataset DST,

) = —log P(yls) ®)
) = —log P(y|x) )
(10)

eST(sa
Iur(z,
lasr(s,z) = —log P(z]s).

< w

A is the hyper-parameter controlling the weight
of contrastive loss. When A = 0, we are only
optimizing the multi-task cross-entropy losses.

4 Experiments

4.1 Datasets

MuST-C We conduct experiments on the MuST-
C dataset (Di Gangi et al., 2019), one of the largest
ST benchmark datasets' containing translations
from English to 8 languages” collected from TED
Talks. Each language direction involves around
400 hours of audio recordings. Limited by com-
puting resources, we examine our method on three
language directions: En-De, En-Fr and En-Es.

MuST-C Few-Shot To examine few-shot ST per-
formance, we manually create ASR and ST subsets
from the MuST-C En-De training set. Specifically,
we build 10-hour, 100-hour and 370-hour ASR sub-
sets and 1-hour and 10-hour ST subsets respectively
through random sampling.

External ASR We also introduce LibriSpeech
(Panayotov et al., 2015) as the external ASR dataset.

'Released under CC BY NC ND 4.0 International
2Here we refer to MuST-C v1.0.



LibriSpeech is the de facto public English ASR
benchmark? containing 960 hours of speech data.
We build a 1330-hour ASR dataset by combining
MuST-C and LibriSpeech. We use LibriSpeech
mainly to evaluate how out-of-domain ASR corpus
can help in-domain ST performance through cross-
modal methods.

External MT Additionally, we introduce exter-
nal WMT En-De/Fr/Es datasets (Bojar et al., 2016)
for each language direction to pre-train text embed-
ding and joint Transformer. As shown in previous
works (Xu et al., 2021; Ye et al., 2021), MT pre-
training greatly improves ST performance.

The statistics of datasets above are listed in Ap-
pendix A.1.

4.2 Experimental Setups

Model Configurations In MuST-C experiments,
we use wav2vec 2.0 base model* in our S-Enc
which is solely pre-trained on 960-hour English
audio. It consists of a 7-layer convolutional feature
extractor and 12 Transformer encoder blocks with
768 hidden units. Two down-sampling convolu-
tional layers have kernel size 5, stride size 2 and
hidden size 512. Joint Transformer has 6 encoder
and decoder layers with hidden size 512, 2048 FFN
hidden units and 8 attention heads. Joint Trans-
former and text embedding are pre-trained on the
external WMT dataset (MT training details can be
found in Appendix A.4).

Preprocess We filter speech that is either too
long (>480k frames) or too short (<1k frames) out.
This results in 388/471/480 hours of speech being
retained as ST training data for En-De/Fr/Es di-
rections. We jointly tokenize the transcripts and
translations for each language direction using Sen-
tencePiece (Kudo and Richardson, 2018) with a
vocabulary size set to 10k. Before forced align-
ment, we remove punctuations and group whole
words by identifying special space token in the vo-
cabulary. We use Montreal Forced Aligner (MFA)
> to train forced aligners on DASR to align English
speech and words. Due to vocabulary mismatch be-
tween MFA and our SentencePiece model, a small
number of speeches and transcripts (e.g., 18h for

*Released under CC BY 4.0

*https://dl.fbaipublicfiles.com/fairseq/
wav2vec/wav2vec_small.pt

Shttps://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner

En-De) cannot be aligned and we simply ignore
them when doing contrastive learning.

Training The input is the raw 16-bit 16kHz
mono-channel waveform. For both cross-modal
pre-training and multi-task fine-tuning, we set con-
trastive temperature 7 = 0.05 and optimize our
model by Adam optimizer (Kingma and Ba, 2015)
(B1 = 0.9, B2 = 0.98) with learning rate 1e-4 and
25k warm-up steps. After the warm-up, the learn-
ing rate is decayed following the inverse square
root schedule. The effective batch size is 16 million
frames. We set dropout rate to 0.1. For pre-training,
we save the checkpoints with the best contrastive
loss on the validation set. For fine-tuning, we save
the checkpoints with the best BLEU on the valida-
tion set and average the last 10 saved checkpoints.
Also, we set label smoothing to 0.1 for the cross-
entropy losses, A = 0 in few-shot ST and A = 1 in
ST with full data. All models are trained on Nvidia
A6000 GPUs.

Inference and Evaluation During inference, we
run beam search with beam size 10 and length
penalty 0.6/1.0/0.1 for En-De/Fr/Es directions
respectively. For evaluation, we report case-
sensitive detokenized BLEU scores on MuST-C
tst-COMMON using sacreBLEU (Post, 2018)°.

Baselines In few-shot ST settings, we compare
our method with three baselines:

* Base: This baseline ignores DR and only
optimizes cross entropy loss in Equation 6 on
DST.

* Base+CTC: This baseline, on top of Base, ap-
plies CTC loss on D*SR to align speech and
text representations. In particular, we add a
linear layer after the speech encoder to predict
the text BPE token at each frame and fix its
weight with text embedding. We only include
CTC with BPE tokenization here since it per-
forms consistently better than its phoneme
counterpart (details in Section 5.2).

* ConST: This baseline adds a coarse-grained
contrastive loss on D*SR on top of Base to
reduce modality gap as in Ye et al. (2022),
one of the state-of-the-art ST methods. In-
stead of word-level alignment, ConST con-
ducts contrastive learning on sentence-level

®BLEU signature: nrefs:1lbs:1000lseed:12345Icase:mixed|
effinoltok:13al smooth:explversion:2.0.0


https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
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https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner

Method | Few-Shot

ASRData | 10h 100h 370h 1330h 100h 370h 1330h
ST Data | 1h 10h

Base 43 43 43 43 175 115 175
Base+CTC | 02 126 146 136 183 204 194
ConST 30 73 117 137 169 186 196
WACO 128 147 153 162 201 208 214

Table 1: Case-sensitive detokenized BLEU scores on MuST-C En-De tst-COMMON set of models pre-trained on ASR
data using different cross-modal methods and fine-tuned on ST data. All models share the same W2V2-Transformer
architecture. Base ignores ASR data and only conducts multi-task fine-tuning on ST data, while other three baselines
pre-train on ASR data using CTC, sentence-level contrastive (ConST) and word-aligned contrastive (WACOQO)

losses.

average speech and text embeddings. Hyper-
parameters are directly borrowed from Ye et al.
(2022).

In regular ST with full MuST-C data, we com-
pare our method with other existing works.

Models | En-De En-Fr En-Es
(Zhang et al., 2022) 23.0 33.5 28.0
W-Transf. (Ye et al., 2021) 23.6 34.6 284
SpeechT5 (Ao et al., 2022) 25.2 353 -
FAT-ST (Zheng et al., 2021) 25.5 - 30.8
JT-S-MT (Tang et al., 2021a) 26.8 37.4 31.0
Chimera (Han et al., 2021) 27.1 35.6 -
XSTNet (Ye et al., 2021) 27.8 38.0 30.8
SATE (Xu et al., 2021) 28.1 - -
STEMM (Fang et al., 2022b) 28.7 37.4 31.0
ConST (Ye et al., 2022) 28.3 38.3 32.0
WACO 28.1 38.1 32.0
STPT (Tang et al., 2022)* \ 29.2 39.7 33.1

Table 2: Case-sensitive detokenized BLEU scores on
MuST-C En-De tst-COMMON set of models trained on
full MuST-C training set. *Note that STPT is trained on
60k hours speech data instead of 960 hours in WACO
and contains more parameters (169M) than WACO
(151M).

4.3 Main Results

Few-Shot ST Results are shown in Table 1. The
ASR data for cross-modal pre-training varies from
10 hours to 1330 hours, and the ST data for multi-
task fine-tuning varies from 1 hour to 10 hours.
WACO consistently outperforms baseline methods
in all data configurations. In particular, our model
achieves a BLEU score of 12.8 with only 1h ST and
10h ASR data and 20.1 with only 10h ST and 100h
ASR data. With 1330h ASR data, WACO even
pushes the BLEU score to 16.2 and 21.4. More

surprisingly, we find that WACQO has a further ad-
vantage when using less ASR data. When reducing
ASR data from 388 hours to 100 hours, the BLEU
score increases (WACO vs Base+CTC, ConST)
are enlarged from +0.7,+3.6 to +2.1,47.4 in 1h ST
setting and from +0.4,+2.2 to +1.8,+3.2 in 10h ST
setting respectively. This demonstrates that WACO
is more data-efficient than the baseline methods.

Regular ST Results are shown in Table 2. Here
we are using the entire MuST-C training set as in
previous works to enable fair comparison, which
means DT has full MuST-C training data. WACO
is competitive with previous state-of-the-art models
such as STEMM and ConST in all three language
directions. Note that STPT achieves that highest
BLEU scores in all directions, but STPT trains on
60k hours of speech data instead of 960 hours in
WACO (wav2vec 2.0 base) and employs a different
model architecture with more parameters (169M)
than WACO (151M).

5 Analysis

In this section, we analyze why word-level align-
ment (WACO) is better than sentence-level one
(ConST) and why CTC learning is sub-optimal
than WACO.

5.1 Why Word-level Contrastive Loss is Better

than Sentence-level Contrastive Loss?

Intuitively, only reducing the representational gap
between speech and text at the sentence level
cannot assure that model captures the accurate
word correspondence between these two modal-
ities. Here we substantiate it both quantitatively
and qualitatively.
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Figure 5: An example showing that WACO can capture the word-level details better than ConST. The matrix
illustrates pairwise cosine similarity between word-level average embeddings of speech and transcript. WACO
aligns two modalities well while ConST fails to align word “that” and “evolve”. Though ConST still provides higher
sentence-level similarity than WACO (0.60 for ConST and 0.58 for WACO), its translation is not as accurate as our

method due to misaligned words.

Quantitatively, we compute the average cosine
similarity between speech embedding and text em-
bedding using models (ConST and WACO) pre-
trained on 370h ASR dataset and fine-tuned on 1h
ST dataset. Specifically, we produce embeddings
following Equation 1 and 2. The result is shown
in Table 3. WACO achieves more accurate word-
level alignment, which indicates WACO can handle
word-level details inside a sentence better.

We show an example in Figure 5 to further
demonstrate the importance of such details. From
the similarity matrix, we can see that WACO aligns
both modalities quite well for all words but ConST
struggles on words “that” and “evolve” as high-
lighted in blue boxes. This directly results in two
translation errors of ConST. First, it fails to re-
cover the clause structure implied by “that”. Sec-
ond, it omits “evolve” entirely in the translation.
Though ConST still provides higher sentence simi-
larity than WACO, it fails to understand the subtlety
inside the sentence. More examples are in Figure 8.

5.2 Why WACO is better than CTC?

WACO treats the word as the base unit which pre-
serves acoustic boundaries and also enables the
model to leverage knowledge from the pre-trained

Methods | Similarity

ConST 0.44
WACO 0.51

Table 3: Average cosine similarity between words from
speech and transcript.

MT model. CTC cannot benefit from word to-
kenization due to its extremely large vocabulary.
Instead, CTC usually employs BPE, phoneme or
character tokenization to learn speech-text align-
ment. Among these, BPE does not guarantee acous-
tic boundaries of each token and may lead to in-
consistent tokenization (Table 4). Phoneme and
character tokenization, however, make it hard to
exploit the existing MT model pre-trained on large
corpus since most MT methods are based on BPE
tokenization.

Word ‘ Sustainable ‘ sustainable

BPE Tokens ‘ _Su st ain able ‘ _sustainable

Table 4: BPE leads to inconsistent tokenization even for
the same word with different capitalization.
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Figure 6: Token-to-Frame embedding alignment matrix
produced by models trained with CTC and WACO re-
spectively. Each row corresponds to a word and each
column stands for a frame. Words in X-axis are placed
according to their timestamps in speech to show how
well the alignments are.

To support our claim above, we first empirically
verify the disadvantage of BPE tokenization. Ex-
cept direct BLEU scores reported in Table 1, Figure
7a illustrates CTC losses on training and dev set
during pre-training. CTC using BPE cannot gener-
alize well to unseen speech in the dev set (cannot
even reach <2). In Figure 6, we can see that CTC
indeed learns inaccurate alignment compared to
WACO.

As for other tokenizations, we evaluate phoneme
tokenization as an example. Specifically, we use
the same phoneme vocabulary and grapheme-to-
phoneme package as in (Tang et al., 2022). Differ-
ent from Base+CTC introduced in Section 4.2, we
randomly initialize the linear layer on top of the
speech encoder since text embedding is still pre-
trained using BPE tokenization. In this way, the
pre-trained MT model is only used in multi-task
fine-tuning. The results are shown in Table 5. CTC
with phoneme tokenization is consistently outper-

Tokenization ‘ 100h ASR 370h ASR

BPE 18.3 20.4
Phoneme 14.3 19.0

Table 5: Case sensitive detokenized BLEU score on
MuST-C En-De tst-COMMON of CTC models with
BPE and phoneme tokenizations. Fine-tuning ST data
is fixed at 10h.

formed by its BPE counterpart, not to mention our
method. This demonstrates the importance of lever-
aging pre-trained MT embedding in cross-modal
training.

In conclusion, CTC learning suffers from either
broken acoustic boundaries (BPE) or inefficient
knowledge transfer (phoneme), while WACO out-
performs CTC by keeping acoustic boundaries in-
tact and enabling efficient knowledge transfer in
cross-modal training.

6 Conclusion

In this work, we propose WACO to align word-
level speech and text embeddings. Experiments
demonstrate the effectiveness of our method in
both few-shot and regular ST settings. Analysis
shows that our method can achieve better speech-
text alignment and avoid tokenization issues com-
pared to baseline methods.

Limitations

There are two main limitations in this work.

First, the source language is always English,
which has more than a thousand hours of public
speech data to pre-train our speech encoder, while
other languages like Manx have no access to even
ten hours of that. As shown in previous works
(Baevski et al., 2020; Babu et al., 2021), the self-
supervised model (speech encoder in WACO) heav-
ily relies on the amount of speech data especially
when downstream tasks only have limited labeled
data. Thus, it remains a question to which extent
other languages can benefit from WACO.

Second, instead of best ST performance given
full data, our cross-modal pre-training only aims
to demonstrate the effectiveness of our method in
the few-shot ST setting. We realize that unified pre-
training for both speech and text gradually becomes
a dominant paradigm for ST and our future work is
to fuse WACO into a joint pre-training framework.



Ethics Statement

WACO has the potential to benefit speakers of low-
resource languages. For example, their published
video or speech can be better translated into other
languages, so more viewers in the world can un-
derstand them, enabling deeper communication be-
tween different cultures. Though WACO may be
beneficial to cross-language communication, we
do not encourage users to treat the translation gen-
erated by the E2E ST model as fully correct since
they are far from perfect in practice.
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A Appendix

A.1 Statistics of Datasets

We show statistics of MuST-C, LibriSpeech and
WMT datasets in Table 6,7,8 and 9.

Direction | Hours # Sentence
En-De 408 234K
En-Fr 492 280K
En-Es 504 270K

Table 6: Statistics of MuST-C.

Type | Hours # Sentence
1 0.6K
ST 10 5.8K
10 5.8K
100 58K
ASR 370 216K
1330 497K

Table 7: Statistics of ST and ASR subsets in MuST-C
En-De Few Shot.

Language ‘ Hours # Sentence # Speaker

| 960 281K 2338

En

Table 8: Statistics of LibriSpeech.

Direction Name # Sentence
En-De WMT16 4.6M
En-Fr WMT14 40.8M
En-Es WMT13 15.2M

Table 9: Statistics of WMT.
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A.2 More Examples of WACO versus ConST

We show two more examples that WACO achieves
more accurate translation than ConST by better
speech-text alignment in Figure 8.

A.3 Loss Curves for Cross-Modal
Pre-training

We present pre-training loss curves of CTC with
both BPE and phoneme tokenizations, and WACO
in Figure 7.
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(a) CTC with BPE tokenization
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(b) CTC with phoneme tokenization
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Figure 7: Loss curves of various cross-modal pre-
training method. CTC with BPE tokenization cannot
generalize well to unseen speech (cannot reach below 2
on dev set).



A4 MT Pre-training

We use the same vocabulary and SentencePiece
model described in Section 4.2 to tokenize the
WMT datasets. The model is optimized with Adam.
The learning rate starts at le-7, warmed up to 7e-4
by 4k steps and then decays following the inverse
square root schedule with a minimum learning rate
of 1e-9. The maximum number of tokens in a batch
is 8192. We select the checkpoint with the high-
est BLEU (beam size 4, length penalty 0.6) on the
WMT validation set.
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ConST WACO
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Translation: Wir arbeiten fir das Lateinamerika. Es ist etwas, was wir fiir dielantik-Olympiade tun.
: (it’s-semething-We work for Latin America.) (1t's something we do for the lantik-olympiad.)
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Translation: Wie oft ist die Sichtweise die Losung. Manchmal ist die Perspektive die Illusion.
: How often the perspective is the solution. (Sometimes the perspective is the illusion.
persp

Figure 8: Two additional examples with speech-text alignment matrices and translations of WACO and ConST.
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