
Published as a conference paper at ICLR 2025

PROBABILISTIC GEOMETRIC PRINCIPAL COMPONENT
ANALYSIS WITH APPLICATION TO NEURAL DATA

Han-Lin Hsieh
Ming Hsieh Department of Electrical and Computer Engineering
Viterbi School of Engineering
University of Southern California
Los Angeles, CA, U.S.A
hanlinhs@usc.edu

Maryam M. Shanechi∗
Ming Hsieh Department of Electrical and Computer Engineering
Thomas Lord Department of Computer Science
Alfred E. Mann Department of Biomedical Engineering
Viterbi School of Engineering
University of Southern California
Los Angeles, CA, U.S.A
shanechi@usc.edu

ABSTRACT

Dimensionality reduction is critical across various domains of science including
neuroscience. Probabilistic Principal Component Analysis (PPCA) is a prominent
dimensionality reduction method that provides a probabilistic approach unlike the
deterministic approach of PCA and serves as a connection between PCA and Factor
Analysis (FA). Despite their power, PPCA and its extensions are mainly based
on linear models and can only describe the data in a Euclidean coordinate system
around the mean of data. However, in many neuroscience applications, data may
be distributed around a nonlinear geometry (i.e., manifold) rather than lying in the
Euclidean space around the mean. We develop Probabilistic Geometric Principal
Component Analysis (PGPCA) for such datasets as a new dimensionality reduc-
tion algorithm that can explicitly incorporate knowledge about a given nonlinear
manifold that is first fitted from these data. Further, we show how in addition to the
Euclidean coordinate system, a geometric coordinate system can be derived for the
manifold to capture the deviations of data from the manifold and noise. We also
derive a data-driven EM algorithm for learning the PGPCA model parameters. As
such, PGPCA generalizes PPCA to better describe data distributions by incorpo-
rating a nonlinear manifold geometry. In simulations and brain data analyses, we
show that PGPCA can effectively model the data distribution around various given
manifolds and outperforms PPCA for such data. Moreover, PGPCA provides the
capability to test whether the new geometric coordinate system better describes the
data than the Euclidean one. Finally, PGPCA can perform dimensionality reduction
and learn the data distribution both around and on the manifold. These capabilities
make PGPCA valuable for enhancing the efficacy of dimensionality reduction for
analysis of high-dimensional data that exhibit noise and are distributed around a
nonlinear manifold, especially for neural data.

1 INTRODUCTION

There exist numerous well-established algorithms for dimensionality reduction designed to efficiently
identify principal components that explain crucial features in high-dimensional (high-D) data in Rn.
Distinct features necessitate different algorithms. Among them, Principal Component Analysis (PCA)
(Greenacre et al., 2022) and maximum likelihood Factor Analysis (FA) (Bartholomew et al., 2011) are

∗Corresponding Author.

1

Published as a conference paper at ICLR 2025

widely recognized. PCA, grounded in a deterministic model, maximizes a critical feature—the data
variance—explained by its principal components. In contrast, FA, rooted in a probabilistic model,
efficiently captures another important feature—the correlation between elements in the data—via its
loading matrix (analogous to principal components in PCA) by maximizing the data log-likelihood.
This fundamental difference results in PCA and FA being employed in deterministic and probabilistic
analyses separately.

The gap stemming from the fundamental difference in the model assumptions of PCA and FA is
bridged by Probabilistic Principal Component Analysis (PPCA) (Tipping & Bishop, 1999b). PPCA,
a special type of FA with a uniform diagonal noise covariance, proves that this new condition renders
FA’s loading matrix equal to PCA’s principal components (Tipping & Bishop, 1999b). This insight
enhances PCA’s value both theoretically and practically. Now, PCA’s principal components maximize
not only the data variance but also the data log-likelihood given an underlying FA probabilistic model.
Moreover, these principal components (equivalent to the loading matrix in PPCA) can be computed
analytically, unlike FA’s loading matrices, which generally require numerical solutions (De Winter &
Dodou, 2012).

All of these methods are widely used in real-world applications including in neuroscience for analyses
of neural population activity. However, PCA, FA, and PPCA are all grounded in linear models
composed of a Euclidean coordinate system around the mean of data. As such, they do not capture
nonlinear structure in data. Further, this linear assumption explains why these algorithms do not
require the selection of a coordinate system, as all linear bases of Rn are equivalent under linear
transformations. However, in many applications including in neuroscience, data may be distributed
around a nonlinear manifold rather than lying in the Euclidean space around the mean. For example,
neural population activity has been shown to be distributed around a ring manifold in the head
direction system (Chaudhuri et al., 2019; Jensen et al., 2020) or around a Torus manifold in the
hippocampus (Gardner et al., 2022). Indeed, knowledge about the manifold can be provided through
various existing methods based on data. For example, the type of manifold underlying noisy data
can be identified by the topological data analysis (TDA) (Singh et al., 2008), and that manifold can
be fitted by splines (Zheng et al., 2012; He & Shi, 1996; Bojanov et al., 2013) or other graph-based
methods (Yin et al., 2008; Fefferman et al., 2018; 2023). However, incorporating such knowledge of
a nonlinear manifold that is first fitted from data within the PPCA framework remains challenging to
date.

While a few studies have explored nonlinear extensions of PPCA, they have assumed that data must
lie precisely on top of a specific manifold without deviations from it (Zhang & Fletcher, 2013; Zhang
et al., 2019; Nodehi et al., 2020). However, in many applications including in neuroscience, rather
than being on top of a manifold, data is distributed around it with some deviation and with noise.
Thus, these prior PPCA extensions have not found application for these datasets such as neural
activity. To model these datasets, we need to find a way to not only incorporate a given manifold, but
also derive a coordinate system – which we term distribution coordinates – to capture the deviation
outside of the manifold. Indeed, it may be possible to compute a coordinate systems attached to this
nonlinear manifold that is not equivalent to the Euclidean coordinate system and that better describes
the data; this is different from the case of the linear model in PPCA in which all coordinate systems
are equivalent under linear transformations.

Contributions Here we address the above challenges by introducing Probabilistic Geometric
Principal Component Analysis (PGPCA). PGPCA generalizes PPCA. Given a nonlinear manifold
that is first fitted from data, PGPCA can incorporate this manifold with distribution coordinates
that are computed for this manifold in its probabilistic model. PGPCA achieves dimensionality
reduction by maximizing the data log-likelihood. Due to the nonlinear manifold, the Singular Value
Decomposition (SVD) used in PPCA cannot be used to find the loading matrix in PGPCA. Thus, we
derive an Expectation-Maximization (EM) algorithm to compute the PGPCA loading matrix. Further,
we show how in addition to the Euclidean distribution coordinate, a geometric distribution coordinate
can be derived for the manifold to capture the deviations of data from the manifold and noise. Due to
the nonlinear manifold/geometry, the geometric and Euclidean distribution coordinates yield different
data log-likelihood values. As such, we show how we can compute this log-likelihood and use it as a
metric for distinguishing the distribution coordinates in a data-driven manner.

We structure this paper as follows. In Section 3, we first provide a detailed mathematical derivation of
PGPCA, including its probabilistic model and the corresponding EM learning algorithm. In Section

2

Published as a conference paper at ICLR 2025

4, we demonstrate the success of PGPCA with simulations of multiple manifolds and analyses on
neural population data from the mouse head direction system (Peyrache et al., 2015; Chaudhuri
et al., 2019). We also show that PGPCA outperforms the existing PPCA framework by capturing
the geometry in both simulations and real data. Finally, we illustrate PGPCA’s ability to distinguish
between geometric and Euclidean distribution coordinates in simulations and real data. In Section 5,
we present a summary and discuss limitations.

2 RELATED WORK

Various extensions have been developed based on PPCA. Ahn & Oh (2003) modifies the PPCA
EM algorithm to more efficiently compute the PCA principal components in order. To improve the
interpretation of PPCA, prior studies have made its loading matrix sparse by, for example, restricting
the domain of the probabilistic distribution in the E-step of PPCA EM (Khanna et al., 2015) or adding
penalty terms in the cost function (Park et al., 2017). Penalizing the PPCA EM cost function has
also been used in finding the efficient PPCA model dimension (Deng & Craiu, 2023). A supervised
version of PPCA (Yu et al., 2006) has also been developed for labeled data. Zhang et al. (2017) has
focused on using the mixture PPCA (Tipping & Bishop, 1999a) to integrate two monitoring statistics
in order to address a fault diagnosis problem. However, all of the above extensions are based on
the PPCA linear model lying in the Euclidean space around the mean. As such, these works cannot
incorporate the nonlinear manifold underlying the data for dimensionality reduction and modeling,
which is what we enable here.

In addition to the above, a few studies have explored extending PPCA to include specific nonlinear
manifolds. Probabilistic principal geodesic analysis (PPGA) (Zhang & Fletcher, 2013; Fletcher &
Zhang, 2016) extends principal geodesic analysis (PGA) (Fletcher et al., 2003) into a probabilistic
framework. Mixture PPGA (Zhang et al., 2019) combines multiple PPGA models. Nodehi et al.
(2020) develops the PPCA linear model within the Torus Tn space, as opposed to the Rn space,
thereby extending torus PCA (Eltzner et al., 2018) to a probabilistic context. However, all these
approaches require data to lie precisely on top of a specific manifold without any deviation from it.
This assumption is not the case in many applications such as neuroscience, where neural activity
data are distributed around manifolds with deviation and also exhibit noise. As such these prior
methods have not found application to such datasets such as neural activity. Our method PGPCA is
designed for such datasets and models observations that are probabilistically distributed around a
given manifold that is first fitted from data. Unlike the above studies, Lawrence & Hyvärinen (2005)
develops the Gaussian process latent variable model (GP-LVM), another nonlinear probabilistic
model inspired by PPCA. The nonlinearity is encoded by a kernel function between the latent states
in GP-LVM. As these latent states are treated as parameters rather than random variables, GP-LVM
is typically used for categorization tasks rather than for distribution modeling, which is our goal.
Given these disparate assumptions about the distribution of observations relative to the manifold and
the properties/roles of the latent states, PGPCA addresses a distinct application and thus serves a
complementary role compared with these prior studies.

3 METHODOLOGY

We first define the notations and the probabilistic model of PGPCA. Then we derive its log-likelihood
and evidence lower bound (ELBO) for the EM algorithm. Finally, we summarize PGPCA EM by
providing a pseudo code (Algorithm 1).

3.1 PGPCA PROBABILISTIC MODEL

We define the PGPCA model as

yt = ϕ(zt) +K(zt)×C × xt + rt (1)

where all notations are listed in Table 1. Briefly, we have T observations y1:T ∈ Rn. Each yt is
composed of three parts. The first part is the l-dimensional manifold M = {ϕ(z) | ∀z ∈ Ωz ⊂ Rl}
where zt ∼ p(z) is the manifold state and a random variable (R.V.) in set Ωz . Essentially, zt specifies
the location on top of the manifold. Conditioned on zt, the second part is a zero-mean normal
distribution K(zt)Cxt where C is the loading matrix and K(zt) is the coordinate system for the

3

Published as a conference paper at ICLR 2025

Table 1: PGPCA model notations

Notation Description Notation Description

yt ∈ Rn observation at time t ∈ [1, T] ϕ(zt) ∈ Rn a l-dim manifold ⊂ Rn

zt ∈ Ωz ⊂ Rl an iid random manifold state ∼ p(z) K(zt) ∈ Rn×n distribution coordinate at zt

xt ∈ Rm an iid normal R.V. ∼ N (0, Im) C ∈ Rn×m loading matrix
rt ∈ Rn an iid normal R.V. ∼ N (0, σ2In)

data distribution around the manifold, termed distribution coordinate, with orthonormal property (i.e.,
K(zt)

′K(zt) = K(zt)K(zt)
′ = In, an identity matrix in Rn×n). Thus, C follows the distribution

coordinate K and determines the principal directions that cover most of the y1:T distribution. The
third part, rt, with its isotropic variance σ2, captures any residual in y1:T that is not already covered.
We define the dimension of a PGPCA model m as the dimension of xt or equivalently the rank of the
loading matrix C (0 ≤ m ≤ n). When m = 0, C is set to 0. Finally, our PGPCA model covers the
PPCA model (Tipping & Bishop, 1999b) as a special case by setting ϕ(zt) = 0 and K(zt) = In. In
this case, the model (1) reduces to yt = Cxt + rt and the linear hyperplanes/subspaces are modeled
by Cxt, which is the same as in PPCA. Thus, PGPCA is a generalization of PPCA and extends it
from the case where data is assumed to lie around the mean of data – which can be considered as the
central manifold in PPCA – to the case where data can lie around nonlinear manifolds.

3.2 PGPCA EM: E-STEP

We need to learn a PGPCA model (1) that describes the data the best. We formalize this learning
problem as follows: given data y1:T , the manifold function ϕ (that is first fitted from data), and the
distribution coordinate function K (either Euclidean or geometric as we derive later in section 4), find
the model parameters C, σ2, and p(z) in (1) by maximizing the data log-likelihood L = ln p(y1:T).
Since yt’s for different t’s are iid (t = 1 : T), we can write the log-likelihood as

L =

T∑
i=1

ln p(yi) =

T∑
i=1

ln

∫
Ωz

p(yi|z)p(z) dz (2)

where p(yi|z) is a normal distribution from (1) such that

p(yi|z) = N (ϕ(z),Ψ(z)) =
1

(2π)
n
2 |Ψ(z)| 12

×e−
1
2 (yi−ϕ(z))′Ψ(z)−1(yi−ϕ(z)) (3)

Ψ(z) = K(z)CC ′K(z)′ + σ2In (4)
where ′ indicates the matrix transpose operation. To find the maximum-likelihood parameter estimates,
we need to partial differentiate L w.r.t. model parameters to maximize it; but this differentiation is
tricky because the integration in (2) is inside the ln function. We address this challenge by deriving
the ELBO LE of L following the standard EM procedure as

L =

T∑
i=1

ln

∫
Ωz

qi(z)×
p(yi|z)p(z)

qi(z)
dz

≥
T∑

i=1

∫
Ωz

qi(z)
[
ln

(
p(yi|z)p(z)

)
− ln qi(z)

]
dz := LE (5)

where qi(z) is any probability distribution on Ωz . From the standard EM procedure (Beal, 2003;
McLachlan & Krishnan, 2007), we know L = LE if and only if qi(z) = p(z|yi) for ∀i ∈ [1, T].
Therefore, given the model parameters C, σ2, and p(z), the E-step of PGPCA EM is derived as

qi(z) = p(z|yi) =
p(yi|z) p(z)∫

Ωz
p(yi|z) p(z) dz

(6)

=

{
p(yi|zs)ωs∑M

j=1 p(yi|zj)ωj
if z = zs ∈ {z1:M}

0 otherwise
(7)

Note that equation (7) follows after discretizing p(z), which is provided later in (9). This discretization
is necessary in fitting p(z) in the M-step and for numerical computations as detailed next.

4

Published as a conference paper at ICLR 2025

Algorithm 1 PGPCA EM

Input: y1:T , model dimension m, landmark z1:M , manifold ϕ(·), distribution coordinate K(·).
Output: probability ω1:M , parameters C and σ2.

Initialize ω1:M , C, and σ2 randomly.
repeat

{E-step}
Compute qi(zj) by (7) for ∀i ∈ [1, T] & ∀j ∈ [1,M].
{M-step}
Compute ωj by (11) for ∀j ∈ [1,M].
Compute Γ(q) by (14) and then eig(Γ(q)) = {γ1:n} in descending order.
Compute σ2 by (16) and then C by (15).

until ELBO LE in (5) converges.

3.3 PGPCA EM: M-STEP TO FIND p(z)

Given q1:T (z) from the E-step, the M-step finds the optimal model parameters C and σ2 in addition
to p(z) to maximize the ELBO LE . Only the first part of equation (5), qi(z) ln

(
p(yi|z)p(z)

)
, relates

to these parameters, so we define

LM :=

T∑
i=1

∫
Ωz

qi(z) ln
(
p(yi|z)p(z)

)
dz =

T∑
i=1

∫
Ωz

qi(z) ln p(yi|z) + qi(z) ln p(z) dz (8)

Parameters C and σ2 are only in the first term in (8), which is defined as LM
1 in (12), and the

distribution p(z) is only in the second term in (8), which is defined as LM
2 in (10), respectively. But

a challenge here is that we must first parameterize p(z) to learn it. To do so, we select M landmarks
{z1:M} ⊂ Ωz with nonnegative weights ω1:M such that

∑M
j=1 ωj = 1, and discretize p(z) as

p(z) ≈
M∑
j=1

ωj × δ(z − zj) (9)

where δ : Rl → {0, 1} is the Dirac delta function. This is how we discretize qi(z) in E-step by
substituting (9) into (6) to get (7). So the new M-step goal is: given q1:T (z), find parameters C, σ2,
and ω1:M to maximize LM . To find the optimized ω1:M , we define LM

2 , the second term in (8), as

LM
2 :=

T∑
i=1

∫
Ωz

qi(z) ln p(z) dz =

T∑
i=1

M∑
j=1

qi(zj) lnωj (10)

Using Lagrange multipliers (Bertsekas, 2014), the optimal ωj to maximize LM
2 is found as

ωj =
1

T

T∑
i=1

qi(zj) for ∀j ∈ [1,M] (11)

3.4 PGPCA EM: COMPUTING THE FIRST TERM IN LM TO DERIVE THE M-STEP FOR C AND
σ2

Next, we solve for parameters C and σ2 that maximize LM
1 , the first term of LM in (8). Due to

the nonlinear manifold and the distribution coordinate K(z), finding the model parameters is more
challenging than PPCA, which assumes a linear model. We first derive a formula for LM

1 (c.f. (13)),
and then optimize it to find C and σ2 in the next section. First, we expand LM

1 using (3) as follows:

LM
1 :=

T∑
i=1

∫
Ωz

qi(z) ln p(yi|z) dz

= −1

2
×

T∑
i=1

∫
Ωz

qi(z)×
[
n ln 2π + ln |Ψz|+ (yi − ϕz)

′Ψ−1
z (yi − ϕz)

]
dz (12)

5

Published as a conference paper at ICLR 2025

where we use the simplified notations ϕ(z) ≡ ϕz from (3) and Ψ(z) ≡ Ψz from (4) for ease of
exposition. The right-hand side consists of three parts that are added together. We compute these
three parts of (12) one by one in appendix A. From there, we have

LM
1 = −T

2
×
{
n ln 2π + (n−m) lnσ2 + ln |σ2Im+C ′C︸ ︷︷ ︸

define as Ω

|+ tr
[
(σ2In+CC ′︸ ︷︷ ︸

define as Λ

)−1×Γ(q)
]}

(13)

Γ(q) =
1

T

T∑
i=1

M∑
j=1

Γi,zj× qi(zj) where Γi,z = K ′
z(yi − ϕz)(yi − ϕz)

′Kz (14)

Critically, compared to (12) where we started from, our derivations (appendix A) lead to all summa-
tions and integrations being captured in Γ(q), which is interestingly independent of parameters C
and σ2. This derivation makes partial differentiating LM

1 w.r.t. C and σ2 much easier and tractable,
thus solving the major M-step challenge for learning the model parameters in the general case that
includes nonlinear manifolds. Moreover, formula (13) is the same as PPCA log-likelihood (Tipping
& Bishop, 1999a), except for the matrix Γ(q). This makes solving for C and σ2 easy. We show this
in detail in section 3.5.

3.5 PGPCA EM: M-STEP FOR C AND σ2

Now we are ready to find the optimal C and σ2 by maximizing LM
1 in (13). Critically, our derivation

showed that we can summarize all the nonlinear manifold and distribution coordinate information in
one term Γ(q) within the LM

1 . As such, interestingly, (13) becomes a generalization of the PPCA
log-likelihood in Tipping & Bishop (1999a) in that they have the same formula except that our Γ(q)
considers the manifold and the distribution coordinate on it, while PPCA’s matrix S in Tipping &
Bishop (1999a) does not. Therefore, we can solve for our optimal C and σ2using the PPCA formula,
and all the established guarantees in the PPCA theory also apply to this nonlinear manifold case.
Here we write the optimal solution of C and σ2 directly. The detailed derivation is in appendix B.

Define γ1:n as the eigenvalues of eig(Γ(q)) in descending order. The optimal C is derived as

C = UD where

{
Γ(q)ui = γi ui

di =
√
γi − σ2

∀i ∈ [1,m] (15)

where D = diag(d1:m) and ui is the ith column of U and the ith eigenvector of Γ(q). The optimal
σ2 is

σ2 =
1

n−m
×

n∑
i=m+1

γi (16)

Our pseudo code summarizes PGPCA EM in Algorithm 1. The intuitive explanation behind our
solution is that the loading matrix C captures the dominant directions in data y1:T distribution
around the manifold ϕ, and σ2 captures the residual directions with their average variance as a noise
term. Since all steps in Algorithm 1 are analytical, PGPCA EM is efficient in terms of training time
(appendix C), similar to classical EM for linear state-space models (Roweis & Ghahramani, 1999).

4 EXPERIMENTS

We show that our PGPCA model plus its EM algorithm can solve four problems: (1) Given data
y1:T , PGPCA EM can learn an m-dimensional probabilistic model that includes a given underlying
nonlinear manifold ϕ and a distribution coordinate K(z), which can be either Euclidean or computed
according to our geometric distribution coordinate. (2) It allows us to perform hypothesis testing to
select the Euclidean or geometric distribution coordinate by fitting alternative PGPCA models with
two different K(z)’s, and selecting the one with the higher data log-likelihood L in (2). (3) We can
perform dimensionality reduction by fitting a low-dimensional PGPCA model with any dimension
m ∈ [0, n] that is as low as the user desires. (4) PGPCA EM can not only learn the data distribution
around the manifold but also the distribution on the manifold; indeed, we show that the weights of

6

Published as a conference paper at ICLR 2025

K(z) = EuCOV(A)

y 2

y1

y 2y
1

y 3

y1

K(z) = GeCOV
1st distribu�on coordinate

2nd distribu�on coordinate
3rd distribu�on coordinate

1st distribu�on coordinate
2nd distribu�on coordinate

K(z) = EuCOV(B) K(z) = GeCOV

y 2y
1

y 3

Figure 1: Distribution coordinate K(z) can be Euclidean (EuCOV) or geometric (GeCOV) on a
loop and a torus. (A) When K(z) = EuCOV on a loop ⊂ R2, it always aligns with the embedding
coordinate R2 no matter where it is on the loop. In contrast, if K(z) = GeCOV, the distribution
coordinate follows the tangent vector and the normal vector. (B) Again, K(z) can always align to
the axes of R3 (EuCOV) or be composed of two tangent vectors plus another vector perpendicular to
the torus surface (GeCOV). The top-left inset figure shows the PPCA case whose manifold is the
mean of data (the black dot) with its only distribution coordinate system, which is equal to EuCOV.

Table 2: PGPCA (GeCOV/EuCOV), PPCA, and FA log-likelihood of full-rank models (m = n)

True
{

loop in R2 loop in R10 torus in R3 data analysis

GeCOV EuCOV GeCOV EuCOV GeCOV EuCOV Mouse12 Mouse28

GeCOV -2.931 -2.725 -27.921 -28.484 -5.626 -5.560 -31.758 -24.752
EuCOV -2.939 -2.698 -27.993 -28.356 -5.631 -5.523 -31.908 -25.089
PPCA -3.048 -2.991 -31.945 -31.677 -5.862 -5.907 -34.622 -29.316

FA -3.048 -2.991 -31.945 -31.677 -5.862 -5.907 -34.615 -29.310

manifold latent state distribution ω1:M (from discretizing p(z) in (9)) can be jointly learned with
parameters C and σ2 in (1) and result in a similar log-likelihood as the true model.

We show that PGPCA can solve the above four problems using neural data analyses and extensive
simulations covering various nonlinear manifolds, distribution coordinates, and manifold latent
state distributions p(z). The nonlinear manifolds include a loop (in R2 or R10) and a torus. The
distribution coordinate K(z) can be Euclidean (EuCOV) or geometric (GeCOV) (see Figure 1 and
appendix C). For the torus, its p(z) has two options: a uniform distribution on the angular space
[0, 2π]× [0, 2π] (uniAng), or a uniform distribution on the torus surface (uniTorus) (Figure 5 in the
appendix). The real dataset includes neural spike firing rates recorded from anterodorsal thalamic
nucleus (ADn) of mice, a part of the thalamo-cortical head-direction (HD) circuit, while animals were
exploring an open environment (Peyrache et al., 2015; Peyrache & Buzsáki, 2015). The firing rates
are projected to R10 following the same preprocessing as that in prior work (Chaudhuri et al., 2019).
Details of neural data analyses and simulations are in appendix C. A summary of the log-likelihoods
for each model, based on the neural data analyses and simulations, is presented in Table 2. In this
table, all models are set to full rank (m = n) to maximize their log-likelihoods, which makes PPCA
mathematically equivalent to FA. However, slight differences in the log-likelihoods between PPCA
and FA are observed since their models are learned numerically.

4.1 PGPCA FINDS THE CORRECT DISTRIBUTION COORDINATES ON A 1D LOOP

We first show that PGPCA EM can learn a nonlinear probabilistic model from data and distinguish
different distribution coordinates in hypothesis testing. To show that our method succeeds in incorpo-
rating the manifold, we compare with the widely used PPCA, which is linear. Figure 2A shows the
2D probability distribution from the true models and from the learned models by PGPCA/PPCA .
First, we see that the learned PGPCA model’s distributions are closer to the true model’s distribution
compared to PPCA’s distribution, no matter what the distribution coordinates (GeCOV/EuCOV) in
the true or learned PGPCA models are. This demonstrates the importance of modeling data proba-
bilistically with an underlying nonlinear manifold as enabled by PGPCA. Moreover, the true model’s

7

Published as a conference paper at ICLR 2025

PGPCA
(GeCOV)

PGPCA
(EuCOV)

true model (GeCOV)
y 2

-4

4

-4 4y1

EL
BO

-28.7

-27.9

lo
g-

lik
el

ih
oo

d

-28.8

-27.9
true model PGPCA (GeCOV) PGPCA (EuCOV)

0

1.5

lo
g-

lik
el

ih
oo

d

-2.942

-2.93

0 21

PPCA

pr
ob

ab
ili

ty

×10-1

PGPCA
(GeCOV)

PGPCA
(EuCOV)

true model (GeCOV)

PGPCA dimension

0

6

2

4

8

10

PG
PC

A
di

m
en

sio
n

0 84 5 6 7 91 2 3 10
PGPCA dimension

-4 4y1 -4 4y1 -4 4y1
PGPCA

(GeCOV)
PGPCA

(EuCOV)

(A) true model: GeCOV (B) PGPCA over dimensions (C) PGPCA convergence
(true model: GeCOV)

(D) PGPCA over dimensions

Manifold = a 1D loop in 2 Manifold = a 1D loop in 10

true model: EuCOV

y 2

-4

4

-4 4y1 -4 4y1 -4 4y1 -4 4y1

0

1.5

pr
ob

ab
ili

ty

×10-1true model PGPCA (GeCOV) PGPCA (EuCOV) PPCA

-2.74

-2.695

lo
g-

lik
el

ih
oo

d

lo
g-

lik
el

ih
oo

d

-29.2

-28.3

EL
BO

-29.2

-28.3

0

6

2

4

8

10

PG
PC

A
di

m
en

sio
n

0 21
PGPCA dimension

PGPCA
(GeCOV)

PGPCA
(EuCOV)

true model (EuCOV)

0 20 3010 40
#itera�on of PGPCA EM

0 84 5 6 7 91 2 3 10
PGPCA dimension

true model (EuCOV)

PGPCA (GeCOV)
PGPCA (EuCOV)

(true model: EuCOV)

Figure 2: PGPCA can recover the true model distribution, distinguish different distribution coordinates
K(z), and perform dimensionality reduction simultaneously. Across all panels (A–D), the true
model’s K(z) are GeCOV and EuCOV in the top and the bottom row, respectively. (A) The PGPCA
(GeCOV) model learned by EM recovers the true model distribution while PPCA does not. Further,
PGPCA can do so only with the correct K(z), showing that PGPCA can distinguish the correct
coordinate. (B) PGPCA with the correct K(z) always has higher trial-average log-likelihood (paired
t-test: top and bottom < 1.7 × 10−12). (C) Learned PGPCA models with different dimensions
m ∈ [0, 10] (color bar) and with different K(z) (EuCOV/GeCOV) converge within 40 EM iterations.
(D) The same conclusion in (B) also holds here when the loop ⊂ R10 (paired t-test: top and bottom
< 3.1× 10−4).

distribution is only recovered by the learned PGPCA model when their distribution coordinates match.
Figure 2B and Table 2 further confirm that the learned PGPCA model with the correct distribution
coordinate K(z) has higher log-likelihood than the learned PGPCA model with the incorrect one. As
such, fitting the two alternative PGPCA models and comparing their log-likelihood can successfully
distinguish the true distribution coordinate underlying the data. This shows PGPCA’s ability to solve
problems (1) and (2) listed at the beginning of section 4.

4.2 PGPCA CAN PERFORM DIMENSIONALITY REDUCTION.

For dimensionality reduction, we simulate a true model built on a loop embedded in R10, so we have
enough dimensions for this application. Figure 2C shows that regardless of whether the true model
is GeCOV or EuCOV, PGPCA EM can converge under any PGPCA model dimension m ∈ [0, 10].
Thus, this EM method can robustly learn a PGPCA model with any dimension. In Figure 2D, the
learned PGPCA model with the correct K(z) always has a higher log-likelihood compared to the
alternative, even when the PGPCA dimension m is selected to be low. Therefore, PGPCA can still
distinguish the correct distribution coordinate K(z) even when its dimension is chosen low. This
result shows that PGPCA can simultaneously perform both dimensionality reduction and distribution
coordinate selection, solving problem (3) stated at the beginning of section 4.

4.3 PGPCA CAN RECOVER THE TRUE MODEL’S DISTRIBUTION EVEN WHILE LEARNING p(z).

Figure 3A shows that PGPCA EM can recover the true model’s distribution when its K(z) matches
the true one, regardless of whether p(z) is given or learned. We also find that PGPCA can again
distinguish the correct coordinate system K(z) even when p(z) is being jointly learned. This shows
that PGPCA EM can learn not only the distribution around the manifold, but also the distribution
p(z) on the manifold. This solves problem (4) stated at the beginning of section 4.

Furthermore, Figure 3B shows that the learned PGPCA model with its K(z) matched to the true
one always has a higher log-likelihood than the learned PGPCA model with the unmatched K(z),
whether p(z) is learned or not. Thus, the hypothesis testing ability of PGPCA EM in distinguishing
different distribution coordinates also holds even when simultaneously learning p(z). The average
performance across uniAng/uniTorus and given/learned p(z) is provided in Table 2.

8

Published as a conference paper at ICLR 2025

true model PGPCA
(GeCOV, given p(z))

tr
ue

 p
(z

) =
 u

ni
An

g
tr

ue
 C

O
V

=
Ge

CO
V

(A) learned distribu�on (XY plane)

tr
ue

 p
(z

) =
 u

ni
An

g
tr

ue
 C

O
V

=
Eu

CO
V

lo
g-

lik
el

ih
oo

d

-5.55

-5.505

lo
g-

lik
el

ih
oo

d

-5.61

-5.602

PGPCA dimension

(B) PGPCA over dimensions

0 31 2

PPCA

y 2

-6

6

y 2

-6

6

-6 6y1
-6 6y1

-6 6y1
-6 6y1

GeCOV, given p(z)

EuCOV, given p(z)

true model

GeCOV, learn p(z)

EuCOV, learn p(z)

tr
ue

 p
(z

) =
 u

ni
To

ru
s

tr
ue

 C
O

V
=

Ge
CO

V
tr

ue
 p

(z
) =

 u
ni

To
ru

s
tr

ue
 C

O
V

=
Eu

CO
V

PGPCA
(GeCOV, learn p(z))

PGPCA
(EuCOV, given p(z))

PGPCA
(EuCOV, learn p(z))

0 31 2

0 31 2

0 31 2

-5.655

-5.647

-5.58

-5.535

lo
g-

lik
el

ih
oo

d
lo

g-
lik

el
ih

oo
d

-6

6

-6

6

-6 6 -6 6

y 2
y 2

y1 y1

0

1.2

0.8

0.4 pr
ob

ab
ili

ty

×10-2

0

1.2

0.8

0.4 pr
ob

ab
ili

ty

0

1.2

0.8

0.4 pr
ob

ab
ili

ty

0

1.2

0.8

0.4 pr
ob

ab
ili

ty

Figure 3: PGPCA EM can recover the true model’s distribution even when simultaneously learning
the manifold state probability p(z), while PPCA does not. (A) The first row shows that when
the true model’s p(z) = uniAng and K(z) = GeCOV, the learned PGPCA model’s distribution
is similar to the true one, regardless of whether p(z) is given (column 2) or learned (column 3).
Also, this is the case only if PGPCA’s K(z) is GeCOV (true coordinate), showing its ability to
identify the true coordinate. Rows 2–4 show the same conclusion for alternative true models having
different p(z) and K(z). (B) The trial-average log-likelihood of the four learned PGPCA models
(columns 2–5 in (A)). Again, the learned PGPCA model whose K(z) matches the true one always
has higher log-likelihood than the unmatched PGPCA model, regardless of whether p(z) is given
or learned, showing hypothesis testing capability. For all 4 rows with given or learned p(z), paired
t-test < 2.4× 10−7.

Mouse 12

lo
g-

lik
el

ih
oo

d

-32.5

-31.7

di
m

 3

dim 1 dim 2

-50

50 -40

40
-30

30

(A) (B) PGPCA over dimensions

0 84 5 6 7 91 2 3 10
PGPCA dimension

GeCOV, learn p(z)
EuCOV, learn p(z)
95% error bound

Manifold: a fi�ed loop in 10

neural samples
loop knots
fi�ed loop

...

di
m

 3

dim 1
dim 2

40

-40 30

-20

-20

20

lo
g-

lik
el

ih
oo

d

-25.7

-24.6

0 84 5 6 7 91 2 3 10
PGPCA dimension

GeCOV, learn p(z)
EuCOV, learn p(z)
95% error bound

(C) (D) PGPCA over dimensionsManifold: a fi�ed loop in 10

neural samples
loop knots
fi�ed loop

...

Mouse 28

Figure 4: PGPCA (GeCOV) better captures the distribution of neural firing rates in mice head
direction circuit. (A) The fitted loop manifold in R10 and the neural data distributed around it. (B)
PGPCA (GeCOV) model consistently has higher log-likelihood than PGPCA (EuCOV) model across
all dimensions. (C) and (D) are the same as (A) and (B) for a second mouse, with conclusions being
the same.

4.4 PGPCA CAN DISTINGUISH DISTRIBUTION COORDINATES ON REAL DATA

We applied PGPCA to neural firing rates recorded from the thalamo-cortical head direction circuit
of six mice, and we select two mice as examples here. First, we found that the main manifold
structure was a loop, consistent with prior work, and so fitted this loop using a cubic spline with 10
knots selected by K-means (appendix C). Figures 4A and 4C display the projected neural firing rates
along with the fitted manifolds, which are the 1D loops embedded in R10. The neural firing rates
are distributed not precisely on, but around, the manifold, indicating that the main manifold alone

9

Published as a conference paper at ICLR 2025

is insufficient for completely modeling noisy data. This observation underscores the necessity of
PGPCA, which captures the deviation outside of the manifold through distribution coordinates and
noise. So we constructed the distribution coordinate and ran PGPCA EM, and compared with PPCA
and FA.

Table 2 and Figure 6 in the appendix demonstrate that PGPCA significantly outperforms PPCA
and FA. Further and interestingly, Figures 4B and 4D show that PGPCA GeCOV more accurately
captures the firing rates than PGPCA EuCOV across both mice. This latter result suggests that the
noise not accounted for by the main loop manifold also originates from the same geometric structure
rather than being in the Euclidean space. This inference can only be made using a model with a
coordinate system around the main manifold, which is a major capability provided by PGPCA. This
again shows that PGPCA can also perform hypothesis testing about the coordinate system in which
data is distributed. These conclusions again held on the other mice (Table 3 in the appendix).

5 CONCLUSION

We developed PGPCA, a method that generalizes the widely-used PPCA for analyses of data that are
distributed around a given nonlinear manifold that is fitted from data. Unlike PPCA, which assumes
that data lies around the mean in Euclidean space, PGPCA incorporates the nonlinear manifold as well
as distribution coordinates attached to this manifold to capture deviations from it and noise. Also, in
addition to being able to use the Euclidean coordinate around the manifold, PGPCA can also compute
a geometric coordinate system around the manifold, which we derived here. Finally, PGPCA can
perform hypothesis testing to pick between the Euclidean and the geometric distribution coordinates
based on which can better describe the data distribution. In this paper, we focused on the Euclidean
(EuCOV) and our geometric (GeCOV) K(z) because they naturally arise from the linear embedding
space Rn and the underlying nonlinear manifold, respectively. If prior knowledge about the data
suggests the hypothesis that another new form of K(z) is needed (assuming it can be derived),
PGPCA can serve as a tool to validate or reject this hypothesis by comparing its log-likelihood with
that of other K(z) options, such as EuCOV and GeCOV. Our PGPCA can accommodate new K(z)
because in deriving the PGPCA EM algorithm, we did not impose any specific assumptions on K(z)
beyond the basic orthonormal property.

We demonstrated the success of PGPCA and its efficient analytical EM learning algorithm on real
neural firing rate data and over three types of simulated manifolds with different manifold state
distribution p(z) (uniAng/uniTorus) and different distribution coordinates K(z) (EuCOV/GeCOV).
Our results show that PGPCA can correctly i) fit the nonlinear probabilistic model, ii) distinguish
between Euclidean and geometric distribution coordinates, iii) perform dimensionality reduction,
and iv) learn the manifold state distribution on top and around the manifold. Further, in both
simulations and real neural data, PGPCA outperformed PPCA by capturing the manifold. One major
application of PGPCA is for modeling of neural data time-series in the fields of neuroscience and
neurotechnology given the evidence that neural data distribute around nonlinear manifolds (section
1). However, PGPCA is not limited to neural data time-series and can in principle be applied to any
time-series dataset with a data-fitted underlying manifold. A limitation of PGPCA, similarly to PPCA
and PCA, is that it is a static dimensionality reduction method and thus does not explicitly model the
auto-correlations in data. Further, similar to these methods, PGPCA assumes that the data distribution
is stable over time. Further work can extend PGPCA to enable manifold-based dynamical analyses
(Abbaspourazad et al., 2024; Sani et al., 2024) or adaptive modeling to track non-stationarity in the
data distribution (Ahmadipour et al., 2021; Yang et al., 2021; Degenhart et al., 2020). Finally, PGPCA
allows for incorporation of manifold knowledge, which should first be obtained based on data using
existing manifold identification and fitting methods (e.g., TDA and splines). As we show in our
real neural data analyses, incorporating this knowledge can substantially improve dimensionality
reduction and distribution modeling.

ACKNOWLEDGMENTS

This work was partly supported by the National Institutes of Health (NIH) grants DP2-MH126378
and RF1DA056402, and by the Army Research Office (ARO) under contract W911NF-16-1-0368 as
part of the collaboration between the US DOD, the UK MOD and the UK Engineering and Physical
Research Council (EPSRC) under the Multidisciplinary University Research Initiative (MURI).

10

Published as a conference paper at ICLR 2025

REFERENCES

Hamidreza Abbaspourazad, Eray Erturk, Bijan Pesaran, and Maryam M Shanechi. Dynamical flexible
inference of nonlinear latent factors and structures in neural population activity. Nature Biomedical
Engineering, 8(1):85–108, 2024.

Parima Ahmadipour, Yuxiao Yang, Edward F Chang, and Maryam M Shanechi. Adaptive tracking of
human ecog network dynamics. Journal of Neural Engineering, 18(1):016011, 2021.

Jong-Hoon Ahn and Jong-Hoon Oh. A constrained em algorithm for principal component analysis.
Neural Computation, 15(1):57–65, 2003.

David J Bartholomew, Martin Knott, and Irini Moustaki. Latent variable models and factor analysis:
A unified approach, volume 904. John Wiley & Sons, 2011.

Matthew James Beal. Variational algorithms for approximate Bayesian inference. University of
London, University College London (United Kingdom), 2003.

Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press,
2014.

Borislav D Bojanov, H Hakopian, and B Sahakian. Spline functions and multivariate interpolations,
volume 248. Springer Science & Business Media, 2013.

Rishidev Chaudhuri, Berk Gerçek, Biraj Pandey, Adrien Peyrache, and Ila Fiete. The intrinsic
attractor manifold and population dynamics of a canonical cognitive circuit across waking and
sleep. Nature neuroscience, 22(9):1512–1520, 2019.

Joost CF De Winter and Dimitra Dodou. Factor recovery by principal axis factoring and maximum
likelihood factor analysis as a function of factor pattern and sample size. Journal of applied
statistics, 39(4):695–710, 2012.

Alan D Degenhart, William E Bishop, Emily R Oby, Elizabeth C Tyler-Kabara, Steven M Chase,
Aaron P Batista, and Byron M Yu. Stabilization of a brain–computer interface via the alignment of
low-dimensional spaces of neural activity. Nature biomedical engineering, 4(7):672–685, 2020.

Wei Q Deng and Radu V Craiu. Exploring dimension learning via a penalized probabilistic principal
component analysis. Journal of Statistical Computation and Simulation, 93(2):266–297, 2023.

Manfredo P Do Carmo. Differential geometry of curves and surfaces: revised and updated second
edition. Courier Dover Publications, 2016.

Benjamin Eltzner, Stephan Huckemann, and Kanti V. Mardia. Torus principal component analysis
with applications to rna structure. The Annals of Applied Statistics, 12(2):1332 – 1359, 2018. doi:
10.1214/17-AOAS1115. URL https://doi.org/10.1214/17-AOAS1115.

Charles Fefferman, Sergei Ivanov, Yaroslav Kurylev, Matti Lassas, and Hariharan Narayanan. Fitting
a putative manifold to noisy data. In Conference On Learning Theory, pp. 688–720. PMLR, 2018.

Charles Fefferman, Sergei Ivanov, Matti Lassas, and Hariharan Narayanan. Fitting a manifold of
large reach to noisy data. Journal of Topology and Analysis, pp. 1–82, 2023.

P Thomas Fletcher and Miaomiao Zhang. Probabilistic geodesic models for regression and dimen-
sionality reduction on riemannian manifolds. In Riemannian Computing in Computer Vision, pp.
101–121. Springer, 2016.

P Thomas Fletcher, Conglin Lu, and Sarang Joshi. Statistics of shape via principal geodesic analysis
on lie groups. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003. Proceedings., volume 1, pp. I–I. IEEE, 2003.

Richard J Gardner, Erik Hermansen, Marius Pachitariu, Yoram Burak, Nils A Baas, Benjamin A
Dunn, May-Britt Moser, and Edvard I Moser. Toroidal topology of population activity in grid cells.
Nature, 602(7895):123–128, 2022.

11

https://doi.org/10.1214/17-AOAS1115

Published as a conference paper at ICLR 2025

Michael Greenacre, Patrick JF Groenen, Trevor Hastie, Alfonso Iodice d’Enza, Angelos Markos, and
Elena Tuzhilina. Principal component analysis. Nature Reviews Methods Primers, 2(1):100, 2022.

Michael Hahsler and Kurt Hornik. Tsp-infrastructure for the traveling salesperson problem. Journal
of Statistical Software, 23(2):1–21, 2007.

David A Harville. Matrix algebra from a statistician’s perspective. Taylor & Francis, 1998.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Xuming He and Peide Shi. Bivariate tensor-product b-splines in a partly linear model. Journal of
Multivariate Analysis, 58(2):162–181, 1996.

Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta mathematica, 30(1):175–193, 1906.

Kristopher Jensen, Ta-Chu Kao, Marco Tripodi, and Guillaume Hennequin. Manifold gplvms
for discovering non-euclidean latent structure in neural data. Advances in Neural Information
Processing Systems, 33:22580–22592, 2020.

Rajiv Khanna, Joydeep Ghosh, Russell Poldrack, and Oluwasanmi Koyejo. Sparse submodular
probabilistic pca. In Artificial Intelligence and Statistics, pp. 453–461. PMLR, 2015.

Neil Lawrence and Aapo Hyvärinen. Probabilistic non-linear principal component analysis with
gaussian process latent variable models. Journal of machine learning research, 6(11), 2005.

Steven J Leon, Åke Björck, and Walter Gander. Gram-schmidt orthogonalization: 100 years and
more. Numerical Linear Algebra with Applications, 20(3):492–532, 2013.

Geoffrey J McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions. John Wiley
& Sons, 2007.

Tristan Needham. A visual explanation of jensen’s inequality. The American mathematical monthly,
100(8):768–771, 1993.

Anahita Nodehi, Mousa Golalizadeh, Mehdi Maadooliat, and Claudio Agostinelli. Torus probabilistic
principal component analysis. arXiv preprint arXiv:2008.10725, 2020.

Chongsun Park, Morgan C Wang, and Eun Bi Mo. Probabilistic penalized principal component
analysis. Communications for Statistical Applications and Methods, 24(2):143–154, 2017.

Beresford N Parlett. The qr algorithm. Computing in science & engineering, 2(1):38–42, 2000.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University
of Denmark, 7(15):510, 2008.

Adrien Peyrache and György Buzsáki. Extracellular recordings from multi-site silicon probes in the
anterior thalamus and subicular formation of freely moving mice. CRCNS. org, 2015.

Adrien Peyrache, Marie M Lacroix, Peter C Petersen, and György Buzsáki. Internally organized
mechanisms of the head direction sense. Nature neuroscience, 18(4):569–575, 2015.

Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models. Neural
computation, 11(2):305–345, 1999.

Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York, 1964.

Omid G Sani, Bijan Pesaran, and Maryam M Shanechi. Dissociative and prioritized modeling of
behaviorally relevant neural dynamics using recurrent neural networks. Nature neuroscience, 27
(10):2033–2045, 2024.

Gurjeet Singh, Facundo Memoli, Tigran Ishkhanov, Guillermo Sapiro, Gunnar Carlsson, and Dario L
Ringach. Topological analysis of population activity in visual cortex. Journal of vision, 8(8):
11–11, 2008.

12

Published as a conference paper at ICLR 2025

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Michael E Tipping and Christopher M Bishop. Mixtures of probabilistic principal component
analyzers. Neural computation, 11(2):443–482, 1999a.

Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 61(3):611–622, 1999b.

Yuxiao Yang, Parima Ahmadipour, and Maryam M Shanechi. Adaptive latent state modeling of brain
network dynamics with real-time learning rate optimization. Journal of Neural Engineering, 18(3):
036013, 2021.

Junsong Yin, Dewen Hu, and Zongtan Zhou. Noisy manifold learning using neighborhood smoothing
embedding. Pattern Recognition Letters, 29(11):1613–1620, 2008.

Shipeng Yu, Kai Yu, Volker Tresp, Hans-Peter Kriegel, and Mingrui Wu. Supervised probabilistic
principal component analysis. In Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 464–473, 2006.

Jingxin Zhang, Hao Chen, Songhang Chen, and Xia Hong. An improved mixture of probabilistic pca
for nonlinear data-driven process monitoring. IEEE transactions on cybernetics, 49(1):198–210,
2017.

Miaomiao Zhang and Tom Fletcher. Probabilistic principal geodesic analysis. Advances in neural
information processing systems, 26, 2013.

Youshan Zhang, Jiarui Xing, and Miaomiao Zhang. Mixture probabilistic principal geodesic analysis.
In Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy:
4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Held in
Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings 4, pp. 196–208.
Springer, 2019.

Wenni Zheng, Pengbo Bo, Yang Liu, and Wenping Wang. Fast b-spline curve fitting by l-bfgs.
Computer Aided Geometric Design, 29(7):448–462, 2012.

13

Published as a conference paper at ICLR 2025

A DERIVE THE CONCISE FORM OF LM
1

In this appendix, we compute three parts of (12) one by one below to transform (12) into (13).

The first part LM
1,1. Since qi(z) is a probability distribution on Ωz and n ln 2π is a constant, we have

LM
1,1 :=

T∑
i=1

∫
Ωz

qi(z)× n ln 2π dz = T × n ln 2π (17)

The second part LM
1,2. Recall that for the coordinate system, K ′

zKz = In. Following (4) and the
matrix determinant lemma (Harville, 1998), we have

|Ψz| = |KzCC ′K ′
z + σ2In|

= |σ2In| × |Im +C ′K ′
z × (σ2In)

−1 ×KzC|
= (σ2)n × |(σ2)−1 × (σ2Im +C ′C)|
= (σ2)n−m × |σ2Im +C ′C| (18)

Interestingly, this derivation shows that |Ψz| is a constant independent of z. Therefore, the second
part simplifies to

LM
1,2 = T ×

[
(n−m) lnσ2 + ln |σ2Im +C ′C|

]
(19)

The third part LM
1,3. The key idea here is to rewrite the vector norm weighted by Ψ−1

z , i.e.,

∥yi − ϕz∥Ψ−1
z

:= (yi − ϕz)
′Ψ−1

z (yi − ϕz),

using the identity tr(AB) = tr(BA) (when AB and BA are well-defined) (Petersen et al., 2008),
which gives the following

∥yi − ϕz∥Ψ−1
z

:= (yi − ϕz)
′Ψ−1

z (yi − ϕz) = tr
[
Ψ−1

z (yi − ϕz)(yi − ϕz)
′︸ ︷︷ ︸

define as Πi,z

]
(20)

Remember KzK
′
z = In, so the inverse of Ψz in (4) is

Ψ−1
z = (KzCC ′K ′

z + σ2KzK
′
z)

−1 = Kz × (σ2In +CC ′)−1 ×K ′
z (21)

Now we transform (20) into

tr
[
Ψ−1

z Πi,z

]
= tr

[
Kz(σ

2In +CC ′)−1K ′
zΠi,z

]
= tr

[
(σ2In +CC ′)−1 K ′

zΠi,zKz︸ ︷︷ ︸
define as Γi,z

]
(22)

From (20) and (22), since the trace, summation, and integral operators are linear and can be swapped,
the third part LM

1,3 can be written as

LM
1,3 =

T∑
i=1

∫
Ωz

qi(z) tr
[
Ψ−1

z Πi,z

]
dz = T × tr

[
(σ2In +CC ′)−1 × Γ(q)

]
(23)

where,

Γ(q) =
1

T

T∑
i=1

∫
Ωz

Γi,z qi(z) dz (24)

Finally, since LM
1 = − 1

2 ×
(
LM
1,1 +LM

1,2 +LM
1,3

)
, LM

1 in (12) is equal (13) by combining the derived
forms above for the three parts in (17), (19), and (23).

The last thing to notice is that qi(z) is discretized in (7) for numerical computations. So in practice,
we can compute Γ(q) defined in (24) numerically as (14). This completes the derivation.

14

Published as a conference paper at ICLR 2025

B DERIVE OPTIMAL C AND σ2 IN PGPCA MODEL

In this appendix, we derive the optimal C and σ2 by maximizing LM
1 in (13). Our (13) and the PPCA

log-likelihood in Tipping & Bishop (1999a) have the same formula except that our Γ(q) considers the
manifold and the distribution coordinate on it, while PPCA’s matrix S in Tipping & Bishop (1999a)
does not. Therefore, we can solve for our optimal C and σ2 using the PPCA formula. We rewrite the
derivation for completeness and notation consistency below. For more details, please refer to Tipping
& Bishop (1999a).

We first optimize C. Using matrix calculus operations, we have

∂LM
1

∂C
= −T

2
×
[
2Λ−1C − 2Λ−1Γ(q)Λ−1C

]
= 0 (25)

So the optimal C satisfies the following condition

Γ(q)Λ−1C = C (26)

We define the SVD of C = UDV ′ where U ∈ Rn×m, D ∈ Rm×m is diagonal, and V ∈ Rm×m.
By Woodbury matrix identity (Petersen et al., 2008), we have

Λ−1C = (σ2In +CC ′)−1C

= C × (σ2Im +C ′C)−1

= UDV ′ ×
[
V (σ2Im +D2)V ′]−1

= UD × (σ2Im +D2)−1V ′ (27)

Substituting (27) in (26) and multiplying V (σ2Im +D2)D−1 on both sides, we have

Γ(q)U = C × V (σ2Im +D2)D−1

= UD × (σ2Im +D2)D−1

= U × (σ2Im +D2) (28)

Note that D and σ2Im+D2 can be swapped because they are diagonal. From (28) and C = UDV ′,
we conclude that

1. V can be any orthonormal matrix in Rm×m. For convenience, we set V = Im.
2. Columns of U are eigenvectors of Γ(q). Define eigenvalues eig(Γ(q)) = {γ1:n} without

order (e.g., ascending/descending). Then U = [u1| . . . |um] (ui is the ith column of U) and
D = diag(d1:m) such that ui is the eigenvector w.r.t. eigenvalue γi = σ2 + d2i from (28)

In summary, given σ2, the optimal C is

C = UD where

{
Γ(q)ui = γi ui

di =
√
γi − σ2

∀i ∈ [1,m] (29)

where ui, γi, and di are defined above.

The next step is optimizing σ2. To do so, we substitute C from (29) into (13), and then rewrite LM
1 as

LM
1 = −T

2
×
{
n ln 2π + (n−m) lnσ2 +

m∑
i=1

ln γi +
1

σ2
×

n∑
i=m+1

γi +m

}
(30)

Setting ∂LM
1

∂(σ2) = 0, the optimal σ2 is

σ2 =
1

n−m
×

n∑
i=m+1

γi (31)

The remaining challenge now is that the optimal C and σ2 in (29) and (31) do not complete the
answer yet because we also have to select γ1:m from eig(Γ(q)). The power of our derivation for LM

1

15

Published as a conference paper at ICLR 2025

formula in (13) is that because the manifold and the distribution coordinate are summarized in the
Γ(q) term, we can use the results in Tipping & Bishop (1999a) directly to select γ1:m. Briefly, to do
this γ1:m selection, we substitute (31) into (30) to rewrite LM

1 again as

LM
1 = −T

2
×
{
n ln 2π +

n∑
i=1

ln γi −
n∑

i=m+1

ln γi + n+ (n−m)× ln

(
1

n−m
×

n∑
i=m+1

γi

)}
(32)

Note that
∑n

i=1 ln γi is a constant because {γ1:n} = eig(Γ(q)). Therefore, maximizing LM
1 in (32)

is equivalent to minimizing

ln

(
1

n−m
×

n∑
i=m+1

γi

)
− 1

n−m

n∑
i=m+1

ln γi (33)

which is a Jensen’s inequality (Needham, 1993; Jensen, 1906). It’s proved in Tipping & Bishop
(1999a) that the optimal γm+1:n for (33) must be a consecutive series in eig(Γ(q)). More precisely,
defining γ1:n as the descending series of eig(Γ(q)), we have that γm+1:n is a consecutive series in
γ1:n.

Finally, from (29) and (31), we see that

∀j ∈ [1,m], γj ≥ σ2 =
1

n−m
×

n∑
i=m+1

γi (34)

Therefore, γ1:m cannot include γn, the smallest eigenvalue of Γ(q), so γn ∈ γm+1:n. Combined
with the consecutive condition on γm+1:n, we can conclude that γi = γi for ∀i = [1, n]. Then (29)
and (31) become (15) and (16), respectively. This completes the M-step of PGPCA EM.

C SETTING OF ALL SIMULATION CASES AND DATA ANALYSIS.

We describe the details of simulations and data analysis below. For simulations, we simulate 3 kinds
of manifolds: a 1D loop in R2, a 1D loop in R10, and a 2D torus in R3. First, we rewrite the PGPCA
model (1) as

yt = ϕ(zt) +K(zt)× (Cxt + rt) (35)

because K(zt)× σ2In ×K(zt)
′ = σ2In, so the covariance of K(zt) rt and rt are the same. Note

that

Cov(Cxt + rt) = CC ′ + σ2In = Λ (36)

Therefore, every simulation case is specified by the manifold function ϕ with the manifold latent state
distribution p(z) on top of it, distribution coordinate K(z), and basic covariance Λ. We describe all
simulation cases for the above three manifolds below.

A 1D loop embedded in R2. We define z ∈ [0, 2π] with p(z) = U(0, 2π) where U(a, b) is a
continuous uniform distribution within [a, b]. The nonlinear manifold is an ellipse with function
ϕ(z) = [cos(z), 2 sin(z)]. The basic covariance is taken as Λ = diag([0.1, 0.3]). The distribution
coordinate K(z) for the simulated data can be Euclidean or geometric. Euclidean means K(z) = I2,
and so the distribution coordinate system follows the embedded Euclidean coordinate at all points z
on the manifold. We refer to this scenario as the Euclidean covariance (EuCOV) since Λ follows
the Euclidean coordinate (Figure 1A, left). On the contrary, the geometric case refers to when K(z)
is composed of the tangent and normal vectors at each z along the manifold, which is an ellipse
here. We refer to this alternative scenario as the geometric covariance (GeCOV, Figure 1A, right).
For convenience, we also say that K(z) is EuCOV or GeCOV when it’s the Euclidean or geometric
coordinate, respectively. Because there are two options for K(z) corresponding to the EuCOV and
GeCOV scenarios respectively, we will fit two types of PGPCA models with PGPCA using either a
Euclidean or a geometric K(z), which we term PGPCA EuCOV and PGPCA GeCOV, respectively;
this thus leads to two simulation cases for this ellipse in R2. For both cases, we generate 5000 training
samples from the true model and learn every PGPCA model (EuCOV/GeCOV) with 500 landmarks
z1:500 in (9) using 20 EM iterations. The PGPCA model dimension can be m ∈ [0, 2].

16

Published as a conference paper at ICLR 2025

A 1D loop embedded in R10. To simulate this loop in higher dimensional space, we define the
manifold points z ∈ [0, L] with p(z) = U(0, L) where L is the length of the loop. We form
the manifold ϕ(z) as a cubic spline with 6 knots, and with length L. The basic covariance is
Λ = diag([20, 2, 18, 4, . . . , 12, 10]). The PGPCA model can be either EuCOV or GeCOV. In this
case, the K(z) in a GeCOV model is computed using the Gram-Schmidt process (Leon et al., 2013)
with the tangent vector as the first vector, and the Euclidean axes e1:10 as the other independent
vectors to be orthogonalized by the Gram-Schmidt process one by one in sequence. Again, there are
two simulation cases w.r.t. this spline in R10 corresponding to EuCOV or GeCOV being the true
distribution coordinate, respectively. For both cases, we generate 5000 samples from the true model,
and learn every PGPCA model (EuCOV/GeCOV) with 500 landmarks z1:500 using 40 EM iterations.
The dimension of PGPCA model can be m ∈ [0, 10].

A 2D torus embedded in R3. Defining z ∈ [0, 2π]×[0, 2π], the torus manifold is given by Do Carmo
(2016)

ϕ(z) = [(3 + cos z2) cos z1, (3 + cos z2) sin z1, sin z2]

Here the basic covariance Λ = diag([0.1, 0.3, 0.5]) and K(z) can be either EuCOV or GeCOV
(Figure 1B). GeCOV K(z) is composed of two tangent vectors (∂ϕ

∂z1
and ∂ϕ

∂z2
) and their cross product.

We also give p(z) two options: a uniform distribution on the angular space [0, 2π]× [0, 2π] (uniAng),
or a uniform distribution on the torus surface (uniTorus). Because we have two options for K(z)
and p(z), there are 2× 2 = 4 simulation cases w.r.t. this torus in R3. Figure 5 shows the true model
distributions under the 4 cases. For all four cases, we generate 50000 samples from the true model,
and every PGPCA model (uniAng/uniTorus × EuCOV/GeCOV) with 1000 landmarks z1:1000 is
learned using 40 EM iterations. We increase the number of training samples because we need to fit
ω1:1000 = p(z1:1000) in all four cases. The dimension of PGPCA model can be m ∈ [0, 3].

Performance measures in simulations. After learning the PGPCA model from the training samples
using the PGPCA EM algorithm with one of three manifolds above, for each simulation case, we
generate 20 test trials from the true model. Each trial includes 2000 samples. For each of the 20 trials,
we measure the performance of a learned PGPCA model with the average log-likelihood defined as
L/T with T = 2000 being the trial length. In the figures, all log-likelihoods for the learned PGPCA
models are the average of these 20 trial-average log-likelihoods, and comparisons are done with
paired t-tests between the trial-average log-likelihood groups from two different learned PGPCA
models (i.e., 20 trials in the paired t-test comparisons).

For data analysis, we utilized the neural firing rates recorded from mice’s brains. This dataset is
publicly available (Peyrache & Buzsáki, 2015), and further details can be found in Peyrache et al.
(2015). The preprocessing steps prior to applying PGPCA are primarily based on Chaudhuri et al.
(2019). These steps are summarized below for completeness.

Data. For all 6 mice, spikes were recorded from intracortical shanks implanted in the anterodorsal
thalamic nucleus (ADn), a part of the thalamo-cortical head-direction (HD) circuit, while the mice
were exploring an open environment. There are 8 shanks with 50 cells for Mouse 12 and 4 shanks
with 22 cells for Mouse 28. The sampling rate is 20 kHz. The numbers of shanks and cells of other
mice are listed in Table 3. All mouse data have the same preprocessing and PGPCA training and
testing procedures.

Preprocessing. We followed the preprocessing steps in prior work. For both mice, we first computed
the firing rates by smoothing the spike time-series with a Gaussian kernel with a standard deviation
of 100 ms. The firing rates were then down-sampled to 15000 samples with a 100 ms step size
(equivalent to data-duration of 25 minutes in total). As preprocessing following prior work, we first
applied a square root on the firing rates to stabilize the variance (Chaudhuri et al., 2019), and then
projected the data using Isomap (Tenenbaum et al., 2000) from R50 (Mouse 12) and R22 (Mouse 28)
to R10. This 10D space is the space in which PGPCA operates, as shown in Figure 4.

PGPCA training and testing. We split the 15000 samples equally into 5 trials for 5-fold cross-
validation. In each fold, we concatenated 4 trials to form a training set. Similar to what has been
observed previously (Chaudhuri et al., 2019), we found that neural data was distributed around a
loop manifold, but had both noise and deviations from it. We thus fitted a 1D loop in R10 using
K-means (Hastie et al., 2009) with 10 clusters. The means of these clusters served as the knots of
a closed cubic spline. We determined the order for connecting these knots by solving the traveling
salesman problem (Hahsler & Hornik, 2007). This resulted in a manifold model ϕ constructed by

17

Published as a conference paper at ICLR 2025

Table 3: PGPCA (GeCOV/EuCOV) and PPCA log-likelihood of full-rank models (m = n)

True
{

data analysis

Mouse12 Mouse17 Mouse20 Mouse24 Mouse25 Mouse28

shanks 8 8 8 4 4 4
cells 50 29 9 10 10 22

GeCOV -31.758 -30.407 -19.751 -18.687 -20.298 -24.752
EuCOV -31.908 -30.595 -19.768 -18.702 -20.356 -25.089
PPCA -34.622 -32.668 -21.560 -21.134 -24.977 -29.316

Table 4: PGPCA computational complexity for every iteration

computational step time complexity

E-step Compute qi(zj) for ∀i ∈ [1, T] and ∀j ∈ [1,M]. O(TM2)

M-step Compute ωj for ∀j ∈ [1,M]. O(TM)

Compute Γ(q). O(TMn2)

Compute eig(Γ(q)). O(n3) (Parlett, 2000)
Compute σ2 and C. O(n−m) and O(nm)

a closed cubic spline. We built the distribution coordinates (EuCOV/GeCOV) in the same manner
as in the simulation of a loop in R10 (appendix C). We then trained the model using the PGPCA
EM algorithm. After model training, in each cross validation fold, we assessed performance using
the 3000 samples in the test set. As our performance measure, we used the data log-likelihood.
The average performance was computed as the average of log-likelihoods over the 15000 samples
across the 5 test sets in the 5 cross-validation folds. We compared PGPCA models with two distinct
distribution coordinates, Euclidean (EuCOV) and Geometric (GeCOV). We also compared with
PPCA. Comparisons between two different learned PGPCA or PPCA models were conducted using
paired t-tests on the log-likelihoods of the 15000 test samples.

PGPCA training time. It takes about 13 minutes on a regular desktop computer to learn a 10D
PGPCA (GeCOV) model with 12000 training samples. This shows that because all steps in Algorithm
1 are analytical, PGPCA EM is efficient in terms of training time, similar to classical EM for linear
state-space models (Roweis & Ghahramani, 1999). The theoretical computational complexity of each
step in one PGPCA EM iteration (Algorithm 1) is listed in Table 4, and every PGPCA EM iteration’s
computational complexity is O(TM2) +O(TMn2). Note that PPCA is not iterative (unlike EM),
and its computational complexity is O(Tn2). Additionally, because the E-step of our PGPCA EM
can find the posterior distribution qi(zj) and our M-step can analytically find the parameters that
maximize the ELBO, together our E-step and M-step ensure a monotonic increase in ELBO LE with
each iteration. Consequently, the sequence of LE values is monotonically increasing and bounded
by L from above, ensuring PGPCA EM convergence by the completeness property of real numbers
(Rudin et al., 1964).

18

Published as a conference paper at ICLR 2025

Figure 5: Probability distribution p(y) of true models under various manifold latent state probability
distributions p(z) and various distribution coordinates K(z). For each model, we show three slices
(XY, YZ, and XZ planes) that go through the 3D probability distribution for visualization. From
the XY plane, it’s clear that EuCOV makes p(y) more directional along the Y axis, and GeCOV is
more cylindrically symmetric. Similarly, p(z) = uniAng makes p(y) much denser in the inner ring
compared to the outer ring, while p(z) = uniTorus does not.

Mouse 12

lo
g-

lik
el

ih
oo

d

-39

-31

di
m

 3

dim 1 dim 2

-50

50 -40

40
-30

30

(A) (B) PGPCA over dimensions

0 84 5 6 7 91 2 3 10
PGPCA dimension

GeCOV, learn p(z)
EuCOV, learn p(z)
PPCA

Manifold: a fi�ed loop in 10

neural samples
loop knots
fi�ed loop

...

di
m

 3

dim 1
dim 2

40

-40 30

-20

-20

20

lo
g-

lik
el

ih
oo

d

-36

-24

0 84 5 6 7 91 2 3 10
PGPCA dimension

(C) (D) PGPCA over dimensionsManifold: a fi�ed loop in 10

neural samples
loop knots
fi�ed loop

...

Mouse 28

GeCOV, learn p(z)
EuCOV, learn p(z)
PPCA

Figure 6: PGPCA (GeCOV and EuCOV) better capture the distribution of neural firing rates in mice
head direction circuit compared with PPCA. (A) and (C) are the same fitted loop manifolds as in
Figure 4A and 4C. (B) PGPCA models consistently has much higher log-likelihood than PPCA across
all dimensions. (D) is the same as (B) for a second mouse, with conclusions being the same.

19

	Introduction
	Related work
	Methodology
	PGPCA probabilistic model
	PGPCA EM: E-step
	PGPCA EM: M-step to find p(z)
	PGPCA EM: computing the first term in LM to derive the M-step for C and sigma2
	PGPCA EM: M-step for C and sigma2

	Experiments
	PGPCA finds the correct distribution coordinates on a 1D loop
	PGPCA can perform dimensionality reduction.
	PGPCA can recover the true model's distribution even while learning p(z).
	PGPCA can distinguish distribution coordinates on real data

	Conclusion
	Derive the concise form of LM1
	Derive optimal C and sigma2 in PGPCA model
	Setting of all simulation cases and data analysis.

