
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PROBABILISTIC GEOMETRIC PRINCIPAL COMPONENT
ANALYSIS WITH APPLICATION TO NEURAL DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Dimensionality reduction is critical across various domains of science including
neuroscience. Probabilistic Principal Component Analysis (PPCA) is a prominent
dimensionality reduction method that provides a probabilistic approach unlike the
deterministic approach of PCA and serves as a connection between PCA and Factor
Analysis (FA). Despite their power, PPCA and its extensions are mainly based
on linear models and can only describe the data in a Euclidean coordinate system
around the mean of data. However, in many neuroscience applications, data may
be distributed around a nonlinear geometry (i.e., manifold) rather than lying in the
Euclidean space around the mean. We develop Probabilistic Geometric Principal
Component Analysis (PGPCA) for such datasets as a new dimensionality reduc-
tion algorithm that can explicitly incorporate knowledge about a given nonlinear
manifold that is first fitted from these data. Further, we show how in addition to the
Euclidean coordinate system, a geometric coordinate system can be derived for the
manifold to capture the deviations of data from the manifold and noise. We also
derive a data-driven EM algorithm for learning the PGPCA model parameters. As
such, PGPCA generalizes PPCA to better describe data distributions by incorpo-
rating a nonlinear manifold geometry. In simulations and brain data analyses, we
show that PGPCA can effectively model the data distribution around various given
manifolds and outperforms PPCA for such data. Moreover, PGPCA provides the
capability to test whether the new geometric coordinate system better describes the
data than the Euclidean one. Finally, PGPCA can perform dimensionality reduction
and learn the data distribution both around and on the manifold. These capabilities
make PGPCA valuable for enhancing the efficacy of dimensionality reduction for
analysis of high-dimensional data that exhibit noise and are distributed around a
nonlinear manifold, especially for neural data.

1 INTRODUCTION

There exist numerous well-established algorithms for dimensionality reduction designed to efficiently
identify principal components that explain crucial features in high-dimensional (high-D) data in Rn.
Distinct features necessitate different algorithms. Among them, Principal Component Analysis (PCA)
(Greenacre et al., 2022) and maximum likelihood Factor Analysis (FA) (Bartholomew et al., 2011) are
widely recognized. PCA, grounded in a deterministic model, maximizes a critical feature—the data
variance—explained by its principal components. In contrast, FA, rooted in a probabilistic model,
efficiently captures another important feature—the correlation between elements in the data—via its
loading matrix (analogous to principal components in PCA) by maximizing the data log-likelihood.
This fundamental difference results in PCA and FA being employed in deterministic and probabilistic
analyses separately.

The gap stemming from the fundamental difference in the model assumptions of PCA and FA is
bridged by Probabilistic Principal Component Analysis (PPCA) (Tipping & Bishop, 1999b). PPCA,
a special type of FA with a uniform diagonal noise covariance, proves that this new condition renders
FA’s loading matrix equal to PCA’s principal components (Tipping & Bishop, 1999b). This insight
enhances PCA’s value both theoretically and practically. Now, PCA’s principal components maximize
not only the data variance but also the data log-likelihood given an underlying FA probabilistic model.
Moreover, these principal components (equivalent to the loading matrix in PPCA) can be computed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

analytically, unlike FA’s loading matrices, which generally require numerical solutions (De Winter &
Dodou, 2012).

All of these methods are widely used in real-world applications including in neuroscience for analyses
of neural population activity. However, PCA, FA, and PPCA are all grounded in linear models
composed of a Euclidean coordinate system around the mean of data. As such, they do not capture
nonlinear structure in data. Further, this linear assumption explains why these algorithms do not
require the selection of a coordinate system, as all linear bases of Rn are equivalent under linear
transformations. However, in many applications including in neuroscience, data may be distributed
around a nonlinear manifold rather than lying in the Euclidean space around the mean. For example,
neural population activity has been shown to be distributed around a ring manifold in the head
direction system (Chaudhuri et al., 2019; Jensen et al., 2020) or around a Torus manifold in the
hippocampus (Gardner et al., 2022). Indeed, knowledge about the manifold can be provided through
various existing methods based on data. For example, the type of manifold underlying noisy data
can be identified by the topological data analysis (TDA) (Singh et al., 2008), and that manifold can
be fitted by splines (Zheng et al., 2012; He & Shi, 1996; Bojanov et al., 2013) or other graph-based
methods (Yin et al., 2008; Fefferman et al., 2018; 2023). However, incorporating such knowledge of
a nonlinear manifold that is first fitted from data within the PPCA framework remains challenging to
date.

While a few studies have explored nonlinear extensions of PPCA, they have assumed that data must
lie precisely on top of a specific manifold without deviations from it (Zhang & Fletcher, 2013; Zhang
et al., 2019; Nodehi et al., 2020). However, in many applications including in neuroscience, rather
than being on top of a manifold, data is distributed around it with some deviation and with noise.
Thus, these prior PPCA extensions have not found application for these datasets such as neural
activity. To model these datasets, we need to find a way to not only incorporate a given manifold, but
also derive a coordinate system – which we term distribution coordinates – to capture the deviation
outside of the manifold. Indeed, it may be possible to compute a coordinate systems attached to this
nonlinear manifold that is not equivalent to the Euclidean coordinate system and that better describes
the data; this is different from the case of the linear model in PPCA in which all coordinate systems
are equivalent under linear transformations.

Contributions Here we address the above challenges by introducing Probabilistic Geometric
Principal Component Analysis (PGPCA). PGPCA generalizes PPCA. Given a nonlinear manifold
that is first fitted from data, PGPCA can incorporate this manifold with distribution coordinates
that are computed for this manifold in its probabilistic model. PGPCA achieves dimensionality
reduction by maximizing the data log-likelihood. Due to the nonlinear manifold, the Singular Value
Decomposition (SVD) used in PPCA cannot be used to find the loading matrix in PGPCA. Thus, we
derive an Expectation-Maximization (EM) algorithm to compute the PGPCA loading matrix. Further,
we show how in addition to the Euclidean distribution coordinate, a geometric distribution coordinate
can be derived for the manifold to capture the deviations of data from the manifold and noise. Due to
the nonlinear manifold/geometry, the geometric and Euclidean distribution coordinates yield different
data log-likelihood values. As such, we show how we can compute this log-likelihood and use it as a
metric for distinguishing the distribution coordinates in a data-driven manner.

We structure this paper as follows. In Section 3, we first provide a detailed mathematical derivation of
PGPCA, including its probabilistic model and the corresponding EM learning algorithm. In Section
4, we demonstrate the success of PGPCA with simulations of multiple manifolds and analyses on
neural population data from the mouse head direction system (Peyrache et al., 2015; Chaudhuri
et al., 2019). We also show that PGPCA outperforms the existing PPCA framework by capturing
the geometry in both simulations and real data. Finally, we illustrate PGPCA’s ability to distinguish
between geometric and Euclidean distribution coordinates in simulations and real data. In Section 5,
we present a summary and discuss limitations.

2 RELATED WORK

Various extensions have been developed based on PPCA. Ahn & Oh (2003) modifies the PPCA
EM algorithm to more efficiently compute the PCA principal components in order. To improve the
interpretation of PPCA, prior studies have made its loading matrix sparse by, for example, restricting
the domain of the probabilistic distribution in the E-step of PPCA EM (Khanna et al., 2015) or adding

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: PGPCA model notations

Notation Description Notation Description

yt ∈ Rn observation at time t ∈ [1, T] ϕ(zt) ∈ Rn a l-dim manifold ⊂ Rn

zt ∈ Ωz ⊂ Rl an iid random manifold state ∼ p(z) K(zt) ∈ Rn×n local coordinate at zt

xt ∈ Rm an iid normal R.V. ∼ N (0, Im) C ∈ Rn×m loading matrix
rt ∈ Rn an iid normal R.V. ∼ N (0, σ2In)

penalty terms in the cost function (Park et al., 2017). Penalizing the PPCA EM cost function has
also been used in finding the efficient PPCA model dimension (Deng & Craiu, 2023). A supervised
version of PPCA (Yu et al., 2006) has also been developed for labeled data. Zhang et al. (2017) has
focused on using the mixture PPCA (Tipping & Bishop, 1999a) to integrate two monitoring statistics
in order to address a fault diagnosis problem. However, all of the above extensions are based on
the PPCA linear model lying in the Euclidean space around the mean. As such, these works cannot
incorporate the nonlinear manifold underlying the data for dimensionality reduction and modeling,
which is what we enable here.

In addition to the above, a few studies have explored extending PPCA to include specific nonlinear
manifolds. Probabilistic principal geodesic analysis (PPGA) (Zhang & Fletcher, 2013; Fletcher &
Zhang, 2016) extends principal geodesic analysis (PGA) (Fletcher et al., 2003) into a probabilistic
framework. Mixture PPGA (Zhang et al., 2019) combines multiple PPGA models. Nodehi et al.
(2020) develops the PPCA linear model within the Torus Tn space, as opposed to the Rn space,
thereby extending torus PCA (Eltzner et al., 2018) to a probabilistic context. However, all these
approaches require data to lie precisely on top of a specific manifold without any deviation from it.
This assumption is not the case in many applications such as neuroscience, where neural activity
data are distributed around manifolds with deviation and also exhibit noise. As such these prior
methods have not found application to such datasets such as neural activity. Our method PGPCA is
designed for such datasets and models observations that are probabilistically distributed around a
given manifold that is first fitted from data. Unlike the above studies, Lawrence & Hyvärinen (2005)
develops the Gaussian process latent variable model (GP-LVM), another nonlinear probabilistic
model inspired by PPCA. The nonlinearity is encoded by a kernel function between the latent states
in GP-LVM. As these latent states are treated as parameters rather than random variables, GP-LVM
is typically used for categorization tasks rather than for distribution modeling, which is our goal.
Given these disparate assumptions about the distribution of observations relative to the manifold and
the properties/roles of the latent states, PGPCA addresses a distinct application and thus serves a
complementary role compared with these prior studies.

3 METHODOLOGY

We first define the notations and the probabilistic model of PGPCA. Then we derive its log-likelihood
and evidence lower bound (ELBO) for the EM algorithm. Finally, we summarize PGPCA EM by
providing a pseudo code (Algorithm 1).

3.1 PGPCA PROBABILISTIC MODEL

We define the PGPCA model as

yt = ϕ(zt) +K(zt)×C × xt + rt (1)

where all notations are listed in Table 1. Briefly, we have T observations y1:T ∈ Rn. Each yt is
composed of three parts. The first part is the l-dimensional manifold M = {ϕ(z) | ∀z ∈ Ωz ⊂ Rl}
where zt ∼ p(z) is the manifold state and a random variable (R.V.) in set Ωz . Essentially, zt specifies
the location on top of the manifold. Conditioned on zt, the second part is a zero-mean normal
distribution K(zt)Cxt where C is the loading matrix and K(zt) is the coordinate system for the
data distribution around the manifold, termed distribution coordinate, with orthonormal property (i.e.,
K(zt)

′K(zt) = K(zt)K(zt)
′ = In, an identity matrix in Rn×n). Thus, C follows the distribution

coordinate K and determines the principal directions that cover most of the y1:T distribution. The

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

third part, rt, with its isotropic variance σ2, captures any residual in y1:T that is not already covered.
We define the dimension of a PGPCA model m as the dimension of xt or equivalently the rank of the
loading matrix C (0 ≤ m ≤ n). When m = 0, C is set to 0. Finally, our PGPCA model covers the
PPCA model (Tipping & Bishop, 1999b) as a special case by setting ϕ(zt) = 0 and K(zt) = In. In
this case, the model (1) reduces to yt = Cxt + rt and the linear hyperplanes/subspaces are modeled
by Cxt, which is the same as in PPCA. Thus, PGPCA is a generalization of PPCA and extends it
from the case where data is assumed to lie around the mean of data – which can be considered as the
central manifold in PPCA – to the case where data can lie around nonlinear manifolds.

3.2 PGPCA EM: E-STEP

We need to learn a PGPCA model (1) that describes the data the best. We formalize this learning
problem as follows: given data y1:T , the manifold function ϕ (that is first fitted from data), and the
distribution coordinate function K (either Euclidean or geometric as we derive later in section 4), find
the model parameters C, σ2, and p(z) in (1) by maximizing the data log-likelihood L = ln p(y1:T).
Since yt’s for different t’s are iid (t = 1 : T), we can write the log-likelihood as

L =

T∑
i=1

ln p(yi) =

T∑
i=1

ln

∫
Ωz

p(yi|z)p(z) dz (2)

where p(yi|z) is a normal distribution from (1) such that

p(yi|z) = N (ϕ(z),Ψ(z)) =
1

(2π)
n
2 |Ψ(z)| 12

×e−
1
2 (yi−ϕ(z))′Ψ(z)−1(yi−ϕ(z)) (3)

Ψ(z) = K(z)CC ′K(z)′ + σ2In (4)

where ′ indicates the matrix transpose operation. To find the maximum-likelihood parameter estimates,
we need to partial differentiate L w.r.t. model parameters to maximize it; but this differentiation is
tricky because the integration in (2) is inside the ln function. We address this challenge by deriving
the ELBO LE of L following the standard EM procedure as

L =

T∑
i=1

ln

∫
Ωz

qi(z)×
p(yi|z)p(z)

qi(z)
dz

≥
T∑

i=1

∫
Ωz

qi(z)
[
ln

(
p(yi|z)p(z)

)
− ln qi(z)

]
dz := LE (5)

where qi(z) is any probability distribution on Ωz . From the standard EM procedure (Beal, 2003;
McLachlan & Krishnan, 2007), we know L = LE if and only if qi(z) = p(z|yi) for ∀i ∈ [1, T].
Therefore, given the model parameters C, σ2, and p(z), the E-step of PGPCA EM is derived as

qi(z) = p(z|yi) =
p(yi|z) p(z)∫

Ωz
p(yi|z) p(z) dz

(6)

=

{
p(yi|zs)ωs∑M

j=1 p(yi|zj)ωj
if z = zs ∈ {z1:M}

0 otherwise
(7)

Note that equation (7) follows after discretizing p(z), which is provided later in (9). This discretization
is necessary in fitting p(z) in the M-step and for numerical computations as detailed next.

3.3 PGPCA EM: M-STEP TO FIND p(z)

Given q1:T (z) from the E-step, the M-step finds the optimal model parameters C and σ2 in addition
to p(z) to maximize the ELBO LE . Only the first part of equation (5), qi(z) ln

(
p(yi|z)p(z)

)
, relates

to these parameters, so we define

LM :=

T∑
i=1

∫
Ωz

qi(z) ln
(
p(yi|z)p(z)

)
dz =

T∑
i=1

∫
Ωz

qi(z) ln p(yi|z) + qi(z) ln p(z) dz (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 PGPCA EM

Input: y1:T , model dimension m, landmark z1:M , manifold ϕ(·), distribution coordinate K(·).
Output: probability ω1:M , parameters C and σ2.

Initialize ω1:M , C, and σ2 randomly.
repeat

{E-step}
Compute qi(zj) by (7) for ∀i ∈ [1, T] & ∀j ∈ [1,M].
{M-step}
Compute ωj by (11) for ∀j ∈ [1,M].
Compute Γ(q) by (14) and then eig(Γ(q)) = {γ1:n} in descending order.
Compute σ2 by (16) and then C by (15).

until ELBO LE in (5) converges.

Parameters C and σ2 are only in the first term in (8), which is defined as LM
1 in (12), and the

distribution p(z) is only in the second term in (8), which is defined as LM
2 in (10), respectively. But

a challenge here is that we must first parameterize p(z) to learn it. To do so, we select M landmarks
{z1:M} ⊂ Ωz with nonnegative weights ω1:M such that

∑M
j=1 ωj = 1, and discretize p(z) as

p(z) ≈
M∑
j=1

ωj × δ(z − zj) (9)

where δ : Rl → {0, 1} is the Dirac delta function. This is how we discretize qi(z) in E-step by
substituting (9) into (6) to get (7). So the new M-step goal is: given q1:T (z), find parameters C, σ2,
and ω1:M to maximize LM . To find the optimized ω1:M , we define LM

2 , the second term in (8), as

LM
2 :=

T∑
i=1

∫
Ωz

qi(z) ln p(z) dz =

T∑
i=1

M∑
j=1

qi(zj) lnωj (10)

Using Lagrange multipliers (Bertsekas, 2014), the optimal ωj to maximize LM
2 is found as

ωj =
1

T

T∑
i=1

qi(zj) for ∀j ∈ [1,M] (11)

3.4 PGPCA EM: COMPUTING THE FIRST TERM IN LM TO DERIVE THE M-STEP FOR C AND
σ2

Next, we solve for parameters C and σ2 that maximize LM
1 , the first term of LM in (8). Due to

the nonlinear manifold and the distribution coordinate K(z), finding the model parameters is more
challenging than PPCA, which assumes a linear model. We first derive a formula for LM

1 (c.f. (13)),
and then optimize it to find C and σ2 in the next section. First, we expand LM

1 using (3) as follows:

LM
1 :=

T∑
i=1

∫
Ωz

qi(z) ln p(yi|z) dz

= −1

2
×

T∑
i=1

∫
Ωz

qi(z)×
[
n ln 2π + ln |Ψz|+ (yi − ϕz)

′Ψ−1
z (yi − ϕz)

]
dz (12)

where we use the simplified notations ϕ(z) ≡ ϕz from (3) and Ψ(z) ≡ Ψz from (4) for ease of
exposition. The right-hand side consists of three parts that are added together. We compute these
three parts of (12) one by one in appendix A. From there, we have

LM
1 = −T

2
×
{
n ln 2π + (n−m) lnσ2 + ln |σ2Im+C ′C︸ ︷︷ ︸

define as Ω

|+ tr
[
(σ2In+CC ′︸ ︷︷ ︸

define as Λ

)−1×Γ(q)
]}

(13)

Γ(q) =
1

T

T∑
i=1

M∑
j=1

Γi,zj× qi(zj) where Γi,z = K ′
z(yi − ϕz)(yi − ϕz)

′Kz (14)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

K(z) = EuCOV(A)

y 2

y1

y 2y
1

y 3

y1

K(z) = GeCOV
1st distribu�on coordinate

2nd distribu�on coordinate
3rd distribu�on coordinate

1st distribu�on coordinate
2nd distribu�on coordinate

K(z) = EuCOV(B) K(z) = GeCOV

y 2y
1

y 3

Figure 1: Distribution coordinate K(z) can be Euclidean (EuCOV) or geometric (GeCOV) on a
loop and a torus. (A) When K(z) = EuCOV on a loop ⊂ R2, it always aligns with the embedding
coordinate R2 no matter where it is on the loop. In contrast, if K(z) = GeCOV, the distribution
coordinate follows the tangent vector and the normal vector. (B) Again, K(z) can always align to
the axes of R3 (EuCOV) or be composed of two tangent vectors plus another vector perpendicular to
the torus surface (GeCOV). The top-left inset figure shows the PPCA case whose manifold is the
mean of data (the black dot) with its only distribution coordinate system, which is equal to EuCOV.

Critically, compared to (12) where we started from, our derivations (appendix A) lead to all summa-
tions and integrations being captured in Γ(q), which is interestingly independent of parameters C
and σ2. This derivation makes partial differentiating LM

1 w.r.t. C and σ2 much easier and tractable,
thus solving the major M-step challenge for learning the model parameters in the general case that
includes nonlinear manifolds. Moreover, formula (13) is the same as PPCA log-likelihood (Tipping
& Bishop, 1999a), except for the matrix Γ(q). This makes solving for C and σ2 easy. We show this
in detail in section 3.5.

3.5 PGPCA EM: M-STEP FOR C AND σ2

Now we are ready to find the optimal C and σ2 by maximizing LM
1 in (13). Critically, our derivation

showed that we can summarize all the nonlinear manifold and distribution coordinate information in
one term Γ(q) within the LM

1 . As such, interestingly, (13) becomes a generalization of the PPCA
log-likelihood in Tipping & Bishop (1999a) in that they have the same formula except that our Γ(q)
considers the manifold and the distribution coordinate on it, while PPCA’s matrix S in Tipping &
Bishop (1999a) does not. Therefore, we can solve for our optimal C and σ2using the PPCA formula,
and all the established guarantees in the PPCA theory also apply to this nonlinear manifold case.
Here we write the optimal solution of C and σ2 directly. The detailed derivation is in Appendix B.

Define γ1:n as the eigenvalues of eig(Γ(q)) in descending order. The optimal C is derived as

C = UD where

{
Γ(q)ui = γi ui

di =
√
γi − σ2

∀i ∈ [1,m] (15)

where D = diag(d1:m) and ui is the ith column of U and the ith eigenvector of Γ(q). The optimal
σ2 is

σ2 =
1

n−m
×

n∑
i=m+1

γi (16)

Our pseudo code summarizes PGPCA EM in Algorithm 1. The intuitive explanation behind our
solution is that the loading matrix C captures the dominant directions in data y1:T distribution
around the manifold ϕ, and σ2 captures the residual directions with their average variance as a noise
term. Since all steps in Algorithm 1 are analytical, PGPCA EM is efficient in terms of training time
(appendix C), similar to classical EM for linear state-space models (Roweis & Ghahramani, 1999).

4 EXPERIMENTS

We show that our PGPCA model plus its EM algorithm can solve four problems: (1) Given data
y1:T , PGPCA EM can learn an m-dimensional probabilistic model that includes a given underlying

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

PGPCA
(GeCOV)

PGPCA
(EuCOV)

true model (GeCOV)
y 2

-4

4

-4 4y1

EL
BO

-28.7

-27.9

lo
g-

lik
el

ih
oo

d

-28.8

-27.9
true model PGPCA (GeCOV) PGPCA (EuCOV)

0

1.5

lo
g-

lik
el

ih
oo

d

-2.942

-2.93

0 21

PPCA

pr
ob

ab
ili

ty

×10-1

PGPCA
(GeCOV)

PGPCA
(EuCOV)

true model (GeCOV)

PGPCA dimension

0

6

2

4

8

10

PG
PC

A
di

m
en

sio
n

0 84 5 6 7 91 2 3 10
PGPCA dimension

-4 4y1 -4 4y1 -4 4y1
PGPCA

(GeCOV)
PGPCA

(EuCOV)

(A) true model: GeCOV (B) PGPCA over dimensions (C) PGPCA convergence
(true model: GeCOV)

(D) PGPCA over dimensions

Manifold = a 1D loop in 2 Manifold = a 1D loop in 10

true model: EuCOV

y 2

-4

4

-4 4y1 -4 4y1 -4 4y1 -4 4y1

0

1.5

pr
ob

ab
ili

ty

×10-1true model PGPCA (GeCOV) PGPCA (EuCOV) PPCA

-2.74

-2.695

lo
g-

lik
el

ih
oo

d

lo
g-

lik
el

ih
oo

d

-29.2

-28.3

EL
BO

-29.2

-28.3

0

6

2

4

8

10

PG
PC

A
di

m
en

sio
n

0 21
PGPCA dimension

PGPCA
(GeCOV)

PGPCA
(EuCOV)

true model (EuCOV)

0 20 3010 40
#itera�on of PGPCA EM

0 84 5 6 7 91 2 3 10
PGPCA dimension

true model (EuCOV)

PGPCA (GeCOV)
PGPCA (EuCOV)

(true model: EuCOV)

Figure 2: PGPCA can recover the true model distribution, distinguish different distribution coordinates
K(z), and perform dimensionality reduction simultaneously. Across all panels (A–D), the true
model’s K(z) are GeCOV and EuCOV in the top and the bottom row, respectively. (A) The PGPCA
(GeCOV) model learned by EM recovers the true model distribution while PPCA does not. Further,
PGPCA can do so only with the correct K(z), showing that PGPCA can distinguish the correct
coordinate. (B) PGPCA with the correct K(z) always has higher trial-average log-likelihood (paired
t-test: top and bottom < 1.7 × 10−12). (C) Learned PGPCA models with different dimensions
m ∈ [0, 10] (color bar) and with different K(z) (EuCOV/GeCOV) converge within 40 EM iterations.
(D) The same conclusion in (B) also holds here when the loop ⊂ R10 (paired t-test: top and bottom
< 3.1× 10−4).

nonlinear manifold ϕ and a distribution coordinate K(z), which can be either Euclidean or computed
according to our geometric distribution coordinate. (2) It allows us to perform hypothesis testing to
select the Euclidean or geometric distribution coordinate by fitting alternative PGPCA models with
two different K(z)’s, and selecting the one with the higher data log-likelihood L in (2). (3) We can
perform dimensionality reduction by fitting a low-dimensional PGPCA model with any dimension
m ∈ [0, n] that is as low as the user desires. (4) PGPCA EM can not only learn the data distribution
around the manifold but also the distribution on the manifold; indeed, we show that the weights of
manifold latent state distribution ω1:M (from discretizing p(z) in (9)) can be jointly learned with
parameters C and σ2 in (1) and result in a similar log-likelihood as the true model.

We show that PGPCA can solve the above four problems using neural data analyses and extensive
simulations covering various nonlinear manifolds, distribution coordinates, and manifold latent
state distributions p(z). The nonlinear manifolds include a loop (in R2 or R10) and a torus. The
distribution coordinate K(z) can be Euclidean (EuCOV) or geometric (GeCOV) (see Figure 1 and
appendix C). For the torus, its p(z) has two options: a uniform distribution on the angular space
[0, 2π]× [0, 2π] (uniAng), or a uniform distribution on the torus surface (uniTorus) (Figure 5 in the
appendix). The real dataset includes neural spike firing rates recorded from anterodorsal thalamic
nucleus (ADn) of mice, a part of the thalamo-cortical head-direction (HD) circuit, while animals were
exploring an open environment (Peyrache et al., 2015; Peyrache & Buzsáki, 2015). The firing rates
are projected to R10 following the same preprocessing as that in prior work (Chaudhuri et al., 2019).
Details of neural data analyses and simulations are in appendix C. A summary of the log-likelihoods
for each model, based on the neural data analyses and simulations, is presented in Table 2. In this
table, all models are set to full rank (m = n) to maximize their log-likelihoods, which makes PPCA
mathematically equivalent to FA. However, slight differences in the log-likelihoods between PPCA
and FA are observed since their models are learned numerically.

4.1 PGPCA FINDS THE CORRECT DISTRIBUTION COORDINATES ON A 1D LOOP

We first show that PGPCA EM can learn a nonlinear probabilistic model from data and distinguish
different distribution coordinates in hypothesis testing. To show that our method succeeds in incorpo-
rating the manifold, we compare with the widely used PPCA, which is linear. Figure 2A shows the
2D probability distribution from the true models and from the learned models by PGPCA/PPCA .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: PGPCA (GeCOV/EuCOV), PPCA, and FA log-likelihood of full-rank models (m = n)

True
{

loop in R2 loop in R10 torus in R3 data analysis

GeCOV EuCOV GeCOV EuCOV GeCOV EuCOV Mouse12 Mouse28

GeCOV -2.931 -2.725 -27.921 -28.484 -5.626 -5.560 -31.758 -24.752
EuCOV -2.939 -2.698 -27.993 -28.356 -5.631 -5.523 -31.908 -25.089
PPCA -3.048 -2.991 -31.945 -31.677 -5.862 -5.907 -34.622 -29.316

FA -3.048 -2.991 -31.945 -31.677 -5.862 -5.907 -34.615 -29.310

true model PGPCA
(GeCOV, given p(z))

tr
ue

 p
(z

) =
 u

ni
An

g
tr

ue
 C

O
V

=
Ge

CO
V

(A) learned distribu�on (XY plane)

tr
ue

 p
(z

) =
 u

ni
An

g
tr

ue
 C

O
V

=
Eu

CO
V

lo
g-

lik
el

ih
oo

d

-5.55

-5.505

lo
g-

lik
el

ih
oo

d

-5.61

-5.602

PGPCA dimension

(B) PGPCA over dimensions

0 31 2

PPCA

y 2

-6

6

y 2

-6

6

-6 6y1
-6 6y1

-6 6y1
-6 6y1

GeCOV, given p(z)

EuCOV, given p(z)

true model

GeCOV, learn p(z)

EuCOV, learn p(z)

tr
ue

 p
(z

) =
 u

ni
To

ru
s

tr
ue

 C
O

V
=

Ge
CO

V
tr

ue
 p

(z
) =

 u
ni

To
ru

s
tr

ue
 C

O
V

=
Eu

CO
V

PGPCA
(GeCOV, learn p(z))

PGPCA
(EuCOV, given p(z))

PGPCA
(EuCOV, learn p(z))

0 31 2

0 31 2

0 31 2

-5.655

-5.647

-5.58

-5.535

lo
g-

lik
el

ih
oo

d
lo

g-
lik

el
ih

oo
d

-6

6

-6

6

-6 6 -6 6

y 2
y 2

y1 y1

0

1.2

0.8

0.4 pr
ob

ab
ili

ty

×10-2

0

1.2

0.8

0.4 pr
ob

ab
ili

ty

0

1.2

0.8

0.4 pr
ob

ab
ili

ty

0

1.2

0.8

0.4 pr
ob

ab
ili

ty

Figure 3: PGPCA EM can recover the true model’s distribution even when simultaneously learning
the manifold state probability p(z), while PPCA does not. (A) The first row shows that when
the true model’s p(z) = uniAng and K(z) = GeCOV, the learned PGPCA model’s distribution
is similar to the true one, regardless of whether p(z) is given (column 2) or learned (column 3).
Also, this is the case only if PGPCA’s K(z) is GeCOV (true coordinate), showing its ability to
identify the true coordinate. Rows 2–4 show the same conclusion for alternative true models having
different p(z) and K(z). (B) The trial-average log-likelihood of the four learned PGPCA models
(columns 2–5 in (A)). Again, the learned PGPCA model whose K(z) matches the true one always
has higher log-likelihood than the unmatched PGPCA model, regardless of whether p(z) is given
or learned, showing hypothesis testing capability. For all 4 rows with given or learned p(z), paired
t-test < 2.4× 10−7.

First, we see that the learned PGPCA model’s distributions are closer to the true model’s distribution
compared to PPCA’s distribution, no matter what the distribution coordinates (GeCOV/EuCOV) in
the true or learned PGPCA models are. This demonstrates the importance of modeling data proba-
bilistically with an underlying nonlinear manifold as enabled by PGPCA. Moreover, the true model’s
distribution is only recovered by the learned PGPCA model when their distribution coordinates match.
Figure 2B and Table 2 further confirm that the learned PGPCA model with the correct distribution
coordinate K(z) has higher log-likelihood than the learned PGPCA model with the incorrect one. As
such, fitting the two alternative PGPCA models and comparing their log-likelihood can successfully
distinguish the true distribution coordinate underlying the data. This shows PGPCA’s ability to solve
problems (1) and (2) listed at the beginning of section 4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Mouse 12

lo
g-

lik
el

ih
oo

d

-32.5

-31.7
di

m
 3

dim 1 dim 2

-50

50 -40

40
-30

30

(A) (B) PGPCA over dimensions

0 84 5 6 7 91 2 3 10
PGPCA dimension

GeCOV, learn p(z)
EuCOV, learn p(z)
95% error bound

Manifold: a fi�ed loop in 10

neural samples
loop knots
fi�ed loop

...

di
m

 3

dim 1
dim 2

40

-40 30

-20

-20

20

lo
g-

lik
el

ih
oo

d

-25.7

-24.6

0 84 5 6 7 91 2 3 10
PGPCA dimension

GeCOV, learn p(z)
EuCOV, learn p(z)
95% error bound

(C) (D) PGPCA over dimensionsManifold: a fi�ed loop in 10

neural samples
loop knots
fi�ed loop

...

Mouse 28

Figure 4: PGPCA (GeCOV) better captures the distribution of neural firing rates in mice head
direction circuit. (A) The fitted loop manifold in R10 and the neural data distributed around it. (B)
PGPCA (GeCOV) model consistently has higher log-likelihood than PGPCA (EuCOV) model across
all dimensions. (C) and (D) are the same as (A) and (B) for a second mouse, with conclusions being
the same.

4.2 PGPCA CAN PERFORM DIMENSIONALITY REDUCTION.

For dimensionality reduction, we simulate a true model built on a loop embedded in R10, so we have
enough dimensions for this application. Figure 2C shows that regardless of whether the true model
is GeCOV or EuCOV, PGPCA EM can converge under any PGPCA model dimension m ∈ [0, 10].
Thus, this EM method can robustly learn a PGPCA model with any dimension. In Figure 2D, the
learned PGPCA model with the correct K(z) always has a higher log-likelihood compared to the
alternative, even when the PGPCA dimension m is selected to be low. Therefore, PGPCA can still
distinguish the correct distribution coordinate K(z) even when its dimension is chosen low. This
result shows that PGPCA can simultaneously perform both dimensionality reduction and distribution
coordinate selection, solving problem (3) stated at the beginning of section 4.

4.3 PGPCA CAN RECOVER THE TRUE MODEL’S DISTRIBUTION EVEN WHILE LEARNING p(z).

Figure 3A shows that PGPCA EM can recover the true model’s distribution when its K(z) matches
the true one, regardless of whether p(z) is given or learned. We also find that PGPCA can again
distinguish the correct coordinate system K(z) even when p(z) is being jointly learned. This shows
that PGPCA EM can learn not only the distribution around the manifold, but also the distribution
p(z) on the manifold. This solves problem (4) stated at the beginning of section 4.

Furthermore, Figure 3B shows that the learned PGPCA model with its K(z) matched to the true
one always has a higher log-likelihood than the learned PGPCA model with the unmatched K(z),
whether p(z) is learned or not. Thus, the hypothesis testing ability of PGPCA EM in distinguishing
different distribution coordinates also holds even when simultaneously learning p(z). The average
performance across uniAng/uniTorus and given/learned p(z) is provided in Table 2.

4.4 PGPCA CAN DISTINGUISH DISTRIBUTION COORDINATES ON REAL DATA

We applied PGPCA to neural firing rates recorded from the thalamo-cortical head direction circuit
of six mice, and we select two mice as examples here. First, we found that the main manifold
structure was a loop, consistent with prior work, and so fitted this loop using a cubic spline with 10
knots selected by K-means (appendix C). Figures 4A and 4C display the projected neural firing rates
along with the fitted manifolds, which are the 1D loops embedded in R10. The neural firing rates
are distributed not precisely on, but around, the manifold, indicating that the main manifold alone
is insufficient for completely modeling noisy data. This observation underscores the necessity of
PGPCA, which captures the deviation outside of the manifold through distribution coordinates and
noise. So we constructed the distribution coordinate and ran PGPCA EM, and compared with PPCA
and FA.

Table 2 and Figure 6 in the appendix demonstrate that PGPCA significantly outperforms PPCA
and FA. Further and interestingly, Figures 4B and 4D show that PGPCA GeCOV more accurately
captures the firing rates than PGPCA EuCOV across both mice. This latter result suggests that the
noise not accounted for by the main loop manifold also originates from the same geometric structure

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

rather than being in the Euclidean space. This inference can only be made using a model with a
coordinate system around the main manifold, which is a major capability provided by PGPCA. This
again shows that PGPCA can also perform hypothesis testing about the coordinate system in which
data is distributed. These conclusions again held on the other mice (Table 3 in the appendix).

5 CONCLUSION

We developed PGPCA, a method that generalizes the widely-used PPCA for analyses of data that are
distributed around a given nonlinear manifold that is fitted from data. Unlike PPCA, which assumes
that data lies around the mean in Euclidean space, PGPCA incorporates the nonlinear manifold as well
as distribution coordinates attached to this manifold to capture deviations from it and noise. Also, in
addition to being able to use the Euclidean coordinate around the manifold, PGPCA can also compute
a geometric coordinate system around the manifold, which we derived here. Finally, PGPCA can
perform hypothesis testing to pick between the Euclidean and the geometric distribution coordinates
based on which can better describe the data distribution. In this paper, we focused on the Euclidean
(EuCOV) and our geometric (GeCOV) K(z) because they naturally arise from the linear embedding
space Rn and the underlying nonlinear manifold, respectively. If prior knowledge about the data
suggests the hypothesis that another new form of K(z) is needed (assuming it can be derived),
PGPCA can serve as a tool to validate or reject this hypothesis by comparing its log-likelihood with
that of other K(z) options, such as EuCOV and GeCOV. Our PGPCA can accommodate new K(z)
because in deriving the PGPCA EM algorithm, we did not impose any specific assumptions on K(z)
beyond the basic orthonormal property.

We demonstrated the success of PGPCA and its efficient analytical EM learning algorithm on real
neural firing rate data and over three types of simulated manifolds with different manifold state
distribution p(z) (uniAng/uniTorus) and different distribution coordinates K(z) (EuCOV/GeCOV).
Our results show that PGPCA can correctly i) fit the nonlinear probabilistic model, ii) distinguish
between Euclidean and geometric distribution coordinates, iii) perform dimensionality reduction,
and iv) learn the manifold state distribution on top and around the manifold. Further, in both
simulations and real neural data, PGPCA outperformed PPCA by capturing the manifold. One major
application of PGPCA is for modeling of neural data time-series in the fields of neuroscience and
neurotechnology given the evidence that neural data distribute around nonlinear manifolds (section
1). However, PGPCA is not limited to neural data time-series and can in principle be applied to any
time-series dataset with a data-fitted underlying manifold. A limitation of PGPCA, similarly to PPCA
and PCA, is that it is a static dimensionality reduction method and thus does not explicitly model the
auto-correlations in data. Further, similar to these methods, PGPCA assumes that the data distribution
is stable over time. Further work can extend PGPCA to enable manifold-based dynamical analyses
or adaptive modeling to track non-stationarity in the data distribution. Finally, PGPCA allows for
incorporation of manifold knowledge, which should first be obtained based on data using existing
manifold identification and fitting methods (e.g., TDA and splines). As we show in our real neural
data analyses, incorporating this knowledge can substantially improve dimensionality reduction and
distribution modeling.

REFERENCES

Jong-Hoon Ahn and Jong-Hoon Oh. A constrained em algorithm for principal component analysis.
Neural Computation, 15(1):57–65, 2003.

David J Bartholomew, Martin Knott, and Irini Moustaki. Latent variable models and factor analysis:
A unified approach, volume 904. John Wiley & Sons, 2011.

Matthew James Beal. Variational algorithms for approximate Bayesian inference. University of
London, University College London (United Kingdom), 2003.

Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press,
2014.

Borislav D Bojanov, H Hakopian, and B Sahakian. Spline functions and multivariate interpolations,
volume 248. Springer Science & Business Media, 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Rishidev Chaudhuri, Berk Gerçek, Biraj Pandey, Adrien Peyrache, and Ila Fiete. The intrinsic
attractor manifold and population dynamics of a canonical cognitive circuit across waking and
sleep. Nature neuroscience, 22(9):1512–1520, 2019.

Joost CF De Winter and Dimitra Dodou. Factor recovery by principal axis factoring and maximum
likelihood factor analysis as a function of factor pattern and sample size. Journal of applied
statistics, 39(4):695–710, 2012.

Wei Q Deng and Radu V Craiu. Exploring dimension learning via a penalized probabilistic principal
component analysis. Journal of Statistical Computation and Simulation, 93(2):266–297, 2023.

Manfredo P Do Carmo. Differential geometry of curves and surfaces: revised and updated second
edition. Courier Dover Publications, 2016.

Benjamin Eltzner, Stephan Huckemann, and Kanti V. Mardia. Torus principal component analysis
with applications to rna structure. The Annals of Applied Statistics, 12(2):1332 – 1359, 2018. doi:
10.1214/17-AOAS1115. URL https://doi.org/10.1214/17-AOAS1115.

Charles Fefferman, Sergei Ivanov, Yaroslav Kurylev, Matti Lassas, and Hariharan Narayanan. Fitting
a putative manifold to noisy data. In Conference On Learning Theory, pp. 688–720. PMLR, 2018.

Charles Fefferman, Sergei Ivanov, Matti Lassas, and Hariharan Narayanan. Fitting a manifold of
large reach to noisy data. Journal of Topology and Analysis, pp. 1–82, 2023.

P Thomas Fletcher and Miaomiao Zhang. Probabilistic geodesic models for regression and dimen-
sionality reduction on riemannian manifolds. In Riemannian Computing in Computer Vision, pp.
101–121. Springer, 2016.

P Thomas Fletcher, Conglin Lu, and Sarang Joshi. Statistics of shape via principal geodesic analysis
on lie groups. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003. Proceedings., volume 1, pp. I–I. IEEE, 2003.

Richard J Gardner, Erik Hermansen, Marius Pachitariu, Yoram Burak, Nils A Baas, Benjamin A
Dunn, May-Britt Moser, and Edvard I Moser. Toroidal topology of population activity in grid cells.
Nature, 602(7895):123–128, 2022.

Michael Greenacre, Patrick JF Groenen, Trevor Hastie, Alfonso Iodice d’Enza, Angelos Markos, and
Elena Tuzhilina. Principal component analysis. Nature Reviews Methods Primers, 2(1):100, 2022.

Michael Hahsler and Kurt Hornik. Tsp-infrastructure for the traveling salesperson problem. Journal
of Statistical Software, 23(2):1–21, 2007.

David A Harville. Matrix algebra from a statistician’s perspective. Taylor & Francis, 1998.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Xuming He and Peide Shi. Bivariate tensor-product b-splines in a partly linear model. Journal of
Multivariate Analysis, 58(2):162–181, 1996.

Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta mathematica, 30(1):175–193, 1906.

Kristopher Jensen, Ta-Chu Kao, Marco Tripodi, and Guillaume Hennequin. Manifold gplvms
for discovering non-euclidean latent structure in neural data. Advances in Neural Information
Processing Systems, 33:22580–22592, 2020.

Rajiv Khanna, Joydeep Ghosh, Russell Poldrack, and Oluwasanmi Koyejo. Sparse submodular
probabilistic pca. In Artificial Intelligence and Statistics, pp. 453–461. PMLR, 2015.

Neil Lawrence and Aapo Hyvärinen. Probabilistic non-linear principal component analysis with
gaussian process latent variable models. Journal of machine learning research, 6(11), 2005.

Steven J Leon, Åke Björck, and Walter Gander. Gram-schmidt orthogonalization: 100 years and
more. Numerical Linear Algebra with Applications, 20(3):492–532, 2013.

11

https://doi.org/10.1214/17-AOAS1115

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Geoffrey J McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions. John Wiley
& Sons, 2007.

Tristan Needham. A visual explanation of jensen’s inequality. The American mathematical monthly,
100(8):768–771, 1993.

Anahita Nodehi, Mousa Golalizadeh, Mehdi Maadooliat, and Claudio Agostinelli. Torus probabilistic
principal component analysis. arXiv preprint arXiv:2008.10725, 2020.

Chongsun Park, Morgan C Wang, and Eun Bi Mo. Probabilistic penalized principal component
analysis. Communications for Statistical Applications and Methods, 24(2):143–154, 2017.

Beresford N Parlett. The qr algorithm. Computing in science & engineering, 2(1):38–42, 2000.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University
of Denmark, 7(15):510, 2008.

Adrien Peyrache and György Buzsáki. Extracellular recordings from multi-site silicon probes in the
anterior thalamus and subicular formation of freely moving mice. CRCNS. org, 2015.

Adrien Peyrache, Marie M Lacroix, Peter C Petersen, and György Buzsáki. Internally organized
mechanisms of the head direction sense. Nature neuroscience, 18(4):569–575, 2015.

Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models. Neural
computation, 11(2):305–345, 1999.

Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York, 1964.

Gurjeet Singh, Facundo Memoli, Tigran Ishkhanov, Guillermo Sapiro, Gunnar Carlsson, and Dario L
Ringach. Topological analysis of population activity in visual cortex. Journal of vision, 8(8):
11–11, 2008.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Michael E Tipping and Christopher M Bishop. Mixtures of probabilistic principal component
analyzers. Neural computation, 11(2):443–482, 1999a.

Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 61(3):611–622, 1999b.

Junsong Yin, Dewen Hu, and Zongtan Zhou. Noisy manifold learning using neighborhood smoothing
embedding. Pattern Recognition Letters, 29(11):1613–1620, 2008.

Shipeng Yu, Kai Yu, Volker Tresp, Hans-Peter Kriegel, and Mingrui Wu. Supervised probabilistic
principal component analysis. In Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 464–473, 2006.

Jingxin Zhang, Hao Chen, Songhang Chen, and Xia Hong. An improved mixture of probabilistic pca
for nonlinear data-driven process monitoring. IEEE transactions on cybernetics, 49(1):198–210,
2017.

Miaomiao Zhang and Tom Fletcher. Probabilistic principal geodesic analysis. Advances in neural
information processing systems, 26, 2013.

Youshan Zhang, Jiarui Xing, and Miaomiao Zhang. Mixture probabilistic principal geodesic analysis.
In Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy:
4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Held in
Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings 4, pp. 196–208.
Springer, 2019.

Wenni Zheng, Pengbo Bo, Yang Liu, and Wenping Wang. Fast b-spline curve fitting by l-bfgs.
Computer Aided Geometric Design, 29(7):448–462, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A DERIVE THE CONCISE FORM OF LM
1

In this appendix, we compute three parts of (12) one by one below to transform (12) into (13).

The first part LM
1,1. Since qi(z) is a probability distribution on Ωz and n ln 2π is a constant, we have

LM
1,1 :=

T∑
i=1

∫
Ωz

qi(z)× n ln 2π dz = T × n ln 2π (17)

The second part LM
1,2. Recall that for the coordinate system, K ′

zKz = In. Following (4) and the
matrix determinant lemma (Harville, 1998), we have

|Ψz| = |KzCC ′K ′
z + σ2In|

= |σ2In| × |Im +C ′K ′
z × (σ2In)

−1 ×KzC|
= (σ2)n × |(σ2)−1 × (σ2Im +C ′C)|
= (σ2)n−m × |σ2Im +C ′C| (18)

Interestingly, this derivation shows that |Ψz| is a constant independent of z. Therefore, the second
part simplifies to

LM
1,2 = T ×

[
(n−m) lnσ2 + ln |σ2Im +C ′C|

]
(19)

The third part LM
1,3. The key idea here is to rewrite the vector norm weighted by Ψ−1

z , i.e.,

∥yi − ϕz∥Ψ−1
z

:= (yi − ϕz)
′Ψ−1

z (yi − ϕz),

using the identity tr(AB) = tr(BA) (when AB and BA are well-defined) (Petersen et al., 2008),
which gives the following

∥yi − ϕz∥Ψ−1
z

:= (yi − ϕz)
′Ψ−1

z (yi − ϕz) = tr
[
Ψ−1

z (yi − ϕz)(yi − ϕz)
′︸ ︷︷ ︸

define as Πi,z

]
(20)

Remember KzK
′
z = In, so the inverse of Ψz in (4) is

Ψ−1
z = (KzCC ′K ′

z + σ2KzK
′
z)

−1 = Kz × (σ2In +CC ′)−1 ×K ′
z (21)

Now we transform (20) into

tr
[
Ψ−1

z Πi,z

]
= tr

[
Kz(σ

2In +CC ′)−1K ′
zΠi,z

]
= tr

[
(σ2In +CC ′)−1 K ′

zΠi,zKz︸ ︷︷ ︸
define as Γi,z

]
(22)

From (20) and (22), since the trace, summation, and integral operators are linear and can be swapped,
the third part LM

1,3 can be written as

LM
1,3 =

T∑
i=1

∫
Ωz

qi(z) tr
[
Ψ−1

z Πi,z

]
dz = T × tr

[
(σ2In +CC ′)−1 × Γ(q)

]
(23)

where,

Γ(q) =
1

T

T∑
i=1

∫
Ωz

Γi,z qi(z) dz (24)

Finally, since LM
1 = − 1

2 ×
(
LM
1,1 +LM

1,2 +LM
1,3

)
, LM

1 in (12) is equal (13) by combining the derived
forms above for the three parts in (17), (19), and (23).

The last thing to notice is that qi(z) is discretized in (7) for numerical computations. So in practice,
we can compute Γ(q) defined in (24) numerically as (14). This completes the derivation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

B DERIVE OPTIMAL C AND σ2 IN PGPCA MODEL

In this appendix, we derive the optimal C and σ2 by maximizing LM
1 in (13). Our (13) and the PPCA

log-likelihood in Tipping & Bishop (1999a) have the same formula except that our Γ(q) considers the
manifold and the distribution coordinate on it, while PPCA’s matrix S in Tipping & Bishop (1999a)
does not. Therefore, we can solve for our optimal C and σ2 using the PPCA formula. We rewrite the
derivation for completeness and notation consistency below. For more details, please refer to Tipping
& Bishop (1999a).

We first optimize C. Using matrix calculus operations, we have

∂LM
1

∂C
= −T

2
×
[
2Λ−1C − 2Λ−1Γ(q)Λ−1C

]
= 0 (25)

So the optimal C satisfies the following condition

Γ(q)Λ−1C = C (26)

We define the SVD of C = UDV ′ where U ∈ Rn×m, D ∈ Rm×m is diagonal, and V ∈ Rm×m.
By Woodbury matrix identity (Petersen et al., 2008), we have

Λ−1C = (σ2In +CC ′)−1C

= C × (σ2Im +C ′C)−1

= UDV ′ ×
[
V (σ2Im +D2)V ′]−1

= UD × (σ2Im +D2)−1V ′ (27)

Substituting (27) in (26) and multiplying V (σ2Im +D2)D−1 on both sides, we have

Γ(q)U = C × V (σ2Im +D2)D−1

= UD × (σ2Im +D2)D−1

= U × (σ2Im +D2) (28)

Note that D and σ2Im+D2 can be swapped because they are diagonal. From (28) and C = UDV ′,
we conclude that

1. V can be any orthonormal matrix in Rm×m. For convenience, we set V = Im.
2. Columns of U are eigenvectors of Γ(q). Define eigenvalues eig(Γ(q)) = {γ1:n} without

order (e.g., ascending/descending). Then U = [u1| . . . |um] (ui is the ith column of U) and
D = diag(d1:m) such that ui is the eigenvector w.r.t. eigenvalue γi = σ2 + d2i from (28)

In summary, given σ2, the optimal C is

C = UD where

{
Γ(q)ui = γi ui

di =
√
γi − σ2

∀i ∈ [1,m] (29)

where ui, γi, and di are defined above.

The next step is optimizing σ2. To do so, we substitute C from (29) into (13), and then rewrite LM
1 as

LM
1 = −T

2
×
{
n ln 2π + (n−m) lnσ2 +

m∑
i=1

ln γi +
1

σ2
×

n∑
i=m+1

γi +m

}
(30)

Setting ∂LM
1

∂(σ2) = 0, the optimal σ2 is

σ2 =
1

n−m
×

n∑
i=m+1

γi (31)

The remaining challenge now is that the optimal C and σ2 in (29) and (31) do not complete the
answer yet because we also have to select γ1:m from eig(Γ(q)). The power of our derivation for LM

1

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

formula in (13) is that because the manifold and the distribution coordinate are summarized in the
Γ(q) term, we can use the results in Tipping & Bishop (1999a) directly to select γ1:m. Briefly, to do
this γ1:m selection, we substitute (31) into (30) to rewrite LM

1 again as

LM
1 = −T

2
×
{
n ln 2π +

n∑
i=1

ln γi −
n∑

i=m+1

ln γi + n+ (n−m)× ln

(
1

n−m
×

n∑
i=m+1

γi

)}
(32)

Note that
∑n

i=1 ln γi is a constant because {γ1:n} = eig(Γ(q)). Therefore, maximizing LM
1 in (32)

is equivalent to minimizing

ln

(
1

n−m
×

n∑
i=m+1

γi

)
− 1

n−m

n∑
i=m+1

ln γi (33)

which is a Jensen’s inequality (Needham, 1993; Jensen, 1906). It’s proved in Tipping & Bishop
(1999a) that the optimal γm+1:n for (33) must be a consecutive series in eig(Γ(q)). More precisely,
defining γ1:n as the descending series of eig(Γ(q)), we have that γm+1:n is a consecutive series in
γ1:n.

Finally, from (29) and (31), we see that

∀j ∈ [1,m], γj ≥ σ2 =
1

n−m
×

n∑
i=m+1

γi (34)

Therefore, γ1:m cannot include γn, the smallest eigenvalue of Γ(q), so γn ∈ γm+1:n. Combined
with the consecutive condition on γm+1:n, we can conclude that γi = γi for ∀i = [1, n]. Then (29)
and (31) become (15) and (16), respectively. This completes the M-step of PGPCA EM.

C SETTING OF ALL SIMULATION CASES AND DATA ANALYSIS.

We describe the details of simulations and data analysis below. For simulations, we simulate 3 kinds
of manifolds: a 1D loop in R2, a 1D loop in R10, and a 2D torus in R3. First, we rewrite the PGPCA
model (1) as

yt = ϕ(zt) +K(zt)× (Cxt + rt) (35)

because K(zt)× σ2In ×K(zt)
′ = σ2In, so the covariance of K(zt) rt and rt are the same. Note

that

Cov(Cxt + rt) = CC ′ + σ2In = Λ (36)

Therefore, every simulation case is specified by the manifold function ϕ with the manifold latent state
distribution p(z) on top of it, distribution coordinate K(z), and basic covariance Λ. We describe all
simulation cases for the above three manifolds below.

A 1D loop embedded in R2. We define z ∈ [0, 2π] with p(z) = U(0, 2π) where U(a, b) is a
continuous uniform distribution within [a, b]. The nonlinear manifold is an ellipse with function
ϕ(z) = [cos(z), 2 sin(z)]. The basic covariance is taken as Λ = diag([0.1, 0.3]). The distribution
coordinate K(z) for the simulated data can be Euclidean or geometric. Euclidean means K(z) = I2,
and so the local coordinate system follows the embedded Euclidean coordinate at all points z on
the manifold. We refer to this scenario as the Euclidean covariance (EuCOV) since Λ follows the
Euclidean coordinate (Figure 1A, left). On the contrary, the geometric case refers to when K(z)
is composed of the tangent and normal vectors at each z along the manifold, which is an ellipse
here. We refer to this alternative scenario as the geometric covariance (GeCOV, Figure 1A, right).
For convenience, we also say that K(z) is EuCOV or GeCOV when it’s the Euclidean or geometric
coordinate, respectively. Because there are two options for K(z) corresponding to the EuCOV and
GeCOV scenarios respectively, we will fit two types of PGPCA models with PGPCA using either a
Euclidean or a geometric K(z), which we term PGPCA EuCOV and PGPCA GeCOV, respectively;
this thus leads to two simulation cases for this ellipse in R2. For both cases, we generate 5000 training
samples from the true model and learn every PGPCA model (EuCOV/GeCOV) with 500 landmarks
z1:500 in (9) using 20 EM iterations. The PGPCA model dimension can be m ∈ [0, 2].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A 1D loop embedded in R10. To simulate this loop in higher dimensional space, we define the
manifold points z ∈ [0, L] with p(z) = U(0, L) where L is the length of the loop. We form
the manifold ϕ(z) as a cubic spline with 6 knots, and with length L. The basic covariance is
Λ = diag([20, 2, 18, 4, . . . , 12, 10]). The PGPCA model can be either EuCOV or GeCOV. In this
case, the K(z) in a GeCOV model is computed using the Gram-Schmidt process (Leon et al., 2013)
with the tangent vector as the first vector, and the Euclidean axes e1:10 as the other independent
vectors to be orthogonalized by the Gram-Schmidt process one by one in sequence. Again, there are
two simulation cases w.r.t. this spline in R10 corresponding to EuCOV or GeCOV being the true
distribution coordinate, respectively. For both cases, we generate 5000 samples from the true model,
and learn every PGPCA model (EuCOV/GeCOV) with 500 landmarks z1:500 using 40 EM iterations.
The dimension of PGPCA model can be m ∈ [0, 10].

A 2D torus embedded in R3. Defining z ∈ [0, 2π]×[0, 2π], the torus manifold is given by Do Carmo
(2016)

ϕ(z) = [(3 + cos z2) cos z1, (3 + cos z2) sin z1, sin z2]

Here the basic covariance Λ = diag([0.1, 0.3, 0.5]) and K(z) can be either EuCOV or GeCOV
(Figure 1B). GeCOV K(z) is composed of two tangent vectors (∂ϕ

∂z1
and ∂ϕ

∂z2
) and their cross product.

We also give p(z) two options: a uniform distribution on the angular space [0, 2π]× [0, 2π] (uniAng),
or a uniform distribution on the torus surface (uniTorus). Because we have two options for K(z)
and p(z), there are 2× 2 = 4 simulation cases w.r.t. this torus in R3. Figure 5 shows the true model
distributions under the 4 cases. For all four cases, we generate 50000 samples from the true model,
and every PGPCA model (uniAng/uniTorus × EuCOV/GeCOV) with 1000 landmarks z1:1000 is
learned using 40 EM iterations. We increase the number of training samples because we need to fit
ω1:1000 = p(z1:1000) in all four cases. The dimension of PGPCA model can be m ∈ [0, 3].

Performance measures in simulations. After learning the PGPCA model from the training samples
using the PGPCA EM algorithm with one of three manifolds above, for each simulation case, we
generate 20 test trials from the true model. Each trial includes 2000 samples. For each of the 20 trials,
we measure the performance of a learned PGPCA model with the average log-likelihood defined as
L/T with T = 2000 being the trial length. In the figures, all log-likelihoods for the learned PGPCA
models are the average of these 20 trial-average log-likelihoods, and comparisons are done with
paired t-tests between the trial-average log-likelihood groups from two different learned PGPCA
models (i.e., 20 trials in the paired t-test comparisons).

For data analysis, we utilized the neural firing rates recorded from mice’s brains. This dataset is
publicly available (Peyrache & Buzsáki, 2015), and further details can be found in Peyrache et al.
(2015). The preprocessing steps prior to applying PGPCA are primarily based on Chaudhuri et al.
(2019). These steps are summarized below for completeness.

Data. For all 6 mice, spikes were recorded from intracortical shanks implanted in the anterodorsal
thalamic nucleus (ADn), a part of the thalamo-cortical head-direction (HD) circuit, while the mice
were exploring an open environment. There are 8 shanks with 50 cells for Mouse 12 and 4 shanks
with 22 cells for Mouse 28. The sampling rate is 20 kHz. The numbers of shanks and cells of other
mice are listed in Table 3. All mouse data have the same preprocessing and PGPCA training and
testing procedures.

Preprocessing. We followed the preprocessing steps in prior work. For both mice, we first computed
the firing rates by smoothing the spike time-series with a Gaussian kernel with a standard deviation
of 100 ms. The firing rates were then down-sampled to 15000 samples with a 100 ms step size
(equivalent to data-duration of 25 minutes in total). As preprocessing following prior work, we first
applied a square root on the firing rates to stabilize the variance (Chaudhuri et al., 2019), and then
projected the data using Isomap (Tenenbaum et al., 2000) from R50 (Mouse 12) and R22 (Mouse 28)
to R10. This 10D space is the space in which PGPCA operates, as shown in Figure 4.

PGPCA training and testing. We split the 15000 samples equally into 5 trials for 5-fold cross-
validation. In each fold, we concatenated 4 trials to form a training set. Similar to what has been
observed previously (Chaudhuri et al., 2019), we found that neural data was distributed around a
loop manifold, but had both noise and deviations from it. We thus fitted a 1D loop in R10 using
K-means (Hastie et al., 2009) with 10 clusters. The means of these clusters served as the knots of
a closed cubic spline. We determined the order for connecting these knots by solving the traveling
salesman problem (Hahsler & Hornik, 2007). This resulted in a manifold model ϕ constructed by

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 3: PGPCA (GeCOV/EuCOV) and PPCA log-likelihood of full-rank models (m = n)

True
{

data analysis

Mouse12 Mouse17 Mouse20 Mouse24 Mouse25 Mouse28

shanks 8 8 8 4 4 4
cells 50 29 9 10 10 22

GeCOV -31.758 -30.407 -19.751 -18.687 -20.298 -24.752
EuCOV -31.908 -30.595 -19.768 -18.702 -20.356 -25.089
PPCA -34.622 -32.668 -21.560 -21.134 -24.977 -29.316

Table 4: PGPCA computational complexity for every iteration

computational step time complexity

E-step Compute qi(zj) for ∀i ∈ [1, T] and ∀j ∈ [1,M]. O(TM2)

M-step Compute ωj for ∀j ∈ [1,M]. O(TM)

Compute Γ(q). O(TMn2)

Compute eig(Γ(q)). O(n3) (Parlett, 2000)
Compute σ2 and C. O(n−m) and O(nm)

a closed cubic spline. We built the distribution coordinates (EuCOV/GeCOV) in the same manner
as in the simulation of a loop in R10 (appendix C). We then trained the model using the PGPCA
EM algorithm. After model training, in each cross validation fold, we assessed performance using
the 3000 samples in the test set. As our performance measure, we used the data log-likelihood.
The average performance was computed as the average of log-likelihoods over the 15000 samples
across the 5 test sets in the 5 cross-validation folds. We compared PGPCA models with two distinct
distribution coordinates, Euclidean (EuCOV) and Geometric (GeCOV). We also compared with
PPCA. Comparisons between two different learned PGPCA or PPCA models were conducted using
paired t-tests on the log-likelihoods of the 15000 test samples.

PGPCA training time. It takes about 13 minutes on a regular desktop computer to learn a 10D
PGPCA (GeCOV) model with 12000 training samples. This shows that because all steps in Algorithm
1 are analytical, PGPCA EM is efficient in terms of training time, similar to classical EM for linear
state-space models (Roweis & Ghahramani, 1999). The theoretical computational complexity of each
step in one PGPCA EM iteration (Algorithm 1) is listed in Table 4, and every PGPCA EM iteration’s
computational complexity is O(TM2) +O(TMn2). Note that PPCA is not iterative (unlike EM),
and its computational complexity is O(Tn2). Additionally, because the E-step of our PGPCA EM
can find the posterior distribution qi(zj) and our M-step can analytically find the parameters that
maximize the ELBO, together our E-step and M-step ensure a monotonic increase in ELBO LE with
each iteration. Consequently, the sequence of LE values is monotonically increasing and bounded
by L from above, ensuring PGPCA EM convergence by the completeness property of real numbers
(Rudin et al., 1964).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 5: Probability distribution p(y) of true models under various manifold latent state probability
distributions p(z) and various distribution coordinates K(z). For each model, we show three slices
(XY, YZ, and XZ planes) that go through the 3D probability distribution for visualization. From
the XY plane, it’s clear that EuCOV makes p(y) more directional along the Y axis, and GeCOV is
more cylindrically symmetric. Similarly, p(z) = uniAng makes p(y) much denser in the inner ring
compared to the outer ring, while p(z) = uniTorus does not.

Mouse 12

lo
g-

lik
el

ih
oo

d

-39

-31

di
m

 3

dim 1 dim 2

-50

50 -40

40
-30

30

(A) (B) PGPCA over dimensions

0 84 5 6 7 91 2 3 10
PGPCA dimension

GeCOV, learn p(z)
EuCOV, learn p(z)
PPCA

Manifold: a fi�ed loop in 10

neural samples
loop knots
fi�ed loop

...

di
m

 3

dim 1
dim 2

40

-40 30

-20

-20

20

lo
g-

lik
el

ih
oo

d

-36

-24

0 84 5 6 7 91 2 3 10
PGPCA dimension

(C) (D) PGPCA over dimensionsManifold: a fi�ed loop in 10

neural samples
loop knots
fi�ed loop

...

Mouse 28

GeCOV, learn p(z)
EuCOV, learn p(z)
PPCA

Figure 6: PGPCA (GeCOV and EuCOV) better capture the distribution of neural firing rates in mice
head direction circuit compared with PPCA. (A) and (C) are the same fitted loop manifolds as in
Figure 4A and 4C. (B) PGPCA models consistently has much higher log-likelihood than PPCA across
all dimensions. (D) is the same as (B) for a second mouse, with conclusions being the same.

18

	Introduction
	Related work
	Methodology
	PGPCA probabilistic model
	PGPCA EM: E-step
	PGPCA EM: M-step to find p(z)
	PGPCA EM: computing the first term in LM to derive the M-step for C and sigma2
	PGPCA EM: M-step for C and sigma2

	Experiments
	PGPCA finds the correct distribution coordinates on a 1D loop
	PGPCA can perform dimensionality reduction.
	PGPCA can recover the true model's distribution even while learning p(z).
	PGPCA can distinguish distribution coordinates on real data

	Conclusion
	Derive the concise form of LM1
	Derive optimal C and sigma2 in PGPCA model
	Setting of all simulation cases and data analysis.

