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ABSTRACT

We propose a novel clustering mechanism based on an incompatibility property
between subsets of data that emerges during model training. This mechanism
partitions the dataset into subsets that generalize only to themselves, i.e., training
on one subset does not improve performance on the other subsets. Leveraging the
interaction between the dataset and the training process, our clustering mechanism
partitions datasets into clusters that are defined by—and therefore meaningful to—
the objective of the training process.
We apply our clustering mechanism to defend against data poisoning attacks, in
which the attacker injects malicious poisoned data into the training dataset to
affect the trained model’s output. Our evaluation focuses on backdoor attacks
against deep neural networks trained to perform image classification using the
GTSRB and CIFAR-10 datasets. Our results show that (1) these attacks pro-
duce poisoned datasets in which the poisoned and clean data are incompatible
and (2) our technique successfully identifies (and removes) the poisoned data. In
an end-to-end evaluation, our defense reduces the attack success rate to below 1%
on 134 out of 165 scenarios, with only a 2% drop in clean accuracy on CIFAR-10
and a negligible drop in clean accuracy on GTSRB.

1 OVERVIEW

Clustering, which aims to partition a dataset to surface some underlying structure, has long been
a fundamental technique in machine learning and data analysis, with applications such as outlier
detection and data mining across diverse fields including personalized medicine, document analysis,
and networked systems (Xu & Tian, 2015). However, traditional approaches scale poorly to large,
high-dimensional datasets, which limits the utility of such techniques for the increasingly large,
minimally curated datasets that have become the norm in deep learning (Zhou et al., 2022).

We present a new clustering technique that partitions the dataset according to an incompatibility
property that emerges during model training. In particular, it partitions the dataset into subsets that
generalize only to themselves (relative to the final trained model) and not to the other subsets. Di-
rectly leveraging the interaction between the dataset and the training process enables our technique
to partition large, high-dimensional datasets commonly used to train neural networks (or, more gen-
erally, any class of learned models) into clusters defined by—and therefore meaningful to—the task
the network is intended to perform.

Our technique operates as follows. Given a dataset, it iteratively samples a subset of the dataset,
trains a model on the subset, then selects the elements within the larger dataset that the model scores
most highly. These selected elements comprise a smaller dataset for the next refinement step. By
decreasing the size of the selected subset in each iteration, this process produces a final subset that
(ideally) contains only data which is compatible with itself. The identified subset is then removed
from the starting dataset, and the process is repeated to obtain a collection of refined subsets and
corresponding trained models. Finally, a majority vote using models trained on the resulting refined
subsets merges compatible subsets to produce the final partitioning.
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Our evaluation focuses on backdoor data poisoning attacks (Chen et al., 2017; Adi et al., 2018)
against deep neural networks (DNNs), in which the attacker injects a small amount of poisoned
data into the training dataset to install a backdoor that can be used to control the network’s behavior
during deployment. For example, Gu et al. (2019) install a backdoor in a traffic sign classifier, which
causes the network to misclassify stop signs as speed limit signs when a (physical) sticker is applied.
Prior work has found that directly applying classical outlier detection techniques to the dataset fails
to separate the poisoned and clean data (Tran et al., 2018). A key insight is that training on poisoned
data should not improve accuracy on clean data (and vice versa). Hence, the poisoned data satisfies
the incompatibility property and can be separated using our clustering technique.

This paper makes the following contributions:

Clustering with Incompatibility and Self-Expansion. Section 2 defines incompatibility between
subsets of data based on their interaction with the training algorithm, specifically that training on
one subset does not improve performance on the other. We prove that for datasets containing in-
compatible subpopulations, the subset which is most compatible with itself (as measured by the
self-expansion error) must be drawn from a single subpopulation. Hence, iteratively identifying
such subsets based on this property provably separates the dataset along the original subpopulations.
We present a tractable clustering mechanism that approximates this optimization objective.

Formal Characterization and Defense for Data Poisoning Attacks. Section 3 presents a formal
characterization of data poisoning attacks based on incompatibility, namely, that the poisoned data
is incompatible with the clean data. We provide theoretical evidence to support this characterization
by showing that a backdoor attack against linear classifiers provably satisfies the incompatibility
property. We present a defense that leverages the clustering mechanism to partition the dataset into
incompatible clean and poisoned subsets.

Experimental Evaluation. Section 4 presents an empirical evaluation of the ability of the incom-
patibility property presented in Section 2 and the techniques developed in Section 3 to identify and
remove poisoned data to defend against backdoor data poisoning attacks. We focus on three dif-
ferent backdoor attacks (two dirty label attacks using pixel-based patches and image-based patches,
respectively, and a clean-label attack using adversarial perturbations) from the data poisoning litera-
ture (Gu et al., 2019; Gao et al., 2019; Turner et al., 2018). The results (1) indicate that the considered
attacks produce poisoned datasets that satisfy the incompatibility property and (2) demonstrate the
effectiveness of our clustering mechanism in identifying poisoned data within a larger dataset con-
taining both clean and poisoned data. For attacks against the GTSRB and CIFAR-10 datasets, our
defense mechanism reduces the attack success rate to below 1% on 134 out of the 165 scenarios,
with a less than 2% drop in clean accuracy. Compared to three previous defenses, our method suc-
cessfully defends against the standard dirty-label backdoor attack in 22 out of 24 scenarios, versus
only 5 for the next best defense.

We have open sourced our implementation at https://github.com/charlesjin/
compatibility_clustering/.

2 INCOMPATIBILITY CLUSTERING

This section presents our clustering technique for datasets with subpopulations of incompatible data.
In our formulation, two subsets are incompatible when training on one subset does not improve
performance on the other subset. Because we cannot measure performance on, e.g., holdout data
with ground truth labels, we introduce a “self-expansion” property: given a set of data points, we first
subsample the data to obtain a smaller training set, then measure how well the learning algorithm
generalizes to the full set of data. Our main theoretical result is that a set which achieves optimal
expansion is homogeneous, i.e., composed entirely of data from a single subpopulation. Finally,
we propose the Inverse Self-Paced Learning algorithm, which uses an approximation of the self-
expansion objective to partition the dataset.

2.1 SETTING

We present our theoretical results in the context of a basic binary classification setting. Let X be the
input space, Y = {−1,+1} be the label space, and L(·, ·) be the 0-1 loss function over Y × Y , i.e.,
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L(y1, y2) = (1 − y1 ∗ y2)/2. Given a target distribution D supported on X × Y and a parametric
family of functions fθ, a standard objective in this setting is to find θ minimizing the population
risk R(θ) :=

∫
X×Y

L(fθ(x), y)dPD(x, y). Given n data points D = {(x1, y1), . . . , (xn, yn)}, the
empirical risk is defined as Remp(θ;D) := n−1

∑n
i=1 L(fθ(xi), yi). We fix a learning algorithm

A(·) which takes as input a training set and returns parameters θ. For example, if fθ is a family of
DNNs, then A might train a DNN via stochastic gradient descent.

2.2 SELF-EXPANSION AND COMPATIBILITY

To measure generalization without holdout data and independent of any ground truth labels, we
propose the following self-expansion property of sets:
Definition 2.1 (Self-expansion of sets.). Let S and T be sets (S nonempty), and let α ∈ (0, 1] denote
the subsampling rate. We define the α-expansion error of S given T as

ϵ(S|T ;α) := ES′∼S∪T [Remp(A(S′);S)] (1)
where the expectation is over both the randomness in A and S′, a random variable that samples a
uniformly random α fraction per class (rounded up) from S∪T . When T = ∅ we also write ϵ(S;α).

Here α is a hyperparameter that is typically selected a priori on the basis of some domain knowledge
(for example, if α = 1 and A trains a deep neural network, then the network can memorize the
training set). A typical value of α is 1/4 or 1/2; in our ablation studies, we find that our particular
application is robust to a wide range of α.

The self-expansion property measures the ability of the learning algorithm A to generalize from a
subset of S ∪ T to the empirical distribution of S. Intuitively, when T = ∅, a smaller expansion
error means that the set S is both “easier” and “more homogeneous” with respect to the learning
algorithm, as a random subset is sufficient to learn the contents of S. When T is not empty, we
expect that the self-expansion error will be lower when T contains similar data as S (for instance, if
both S and T are drawn from the same distribution D).

This observation leads directly to our formal definition of compatibility between sets:
Definition 2.2 (Compatibility of sets.). A set T is α-compatible with set S if

ϵ(S|T ;α) ≤ ϵ(S;α). (2)
Conversely, T is α-incompatible with S if the opposite holds, i.e.,

ϵ(S;α) ≤ ϵ(S|T ;α). (3)
Furthermore, T is completely α-compatible with S if every subset of T is α-compatible with every
subset of S, and similarly for complete incompatibility.

In other words, T is (formally) compatible with S if T improves the ability of A to generalize to S.

2.3 SEPARATION OF INCOMPATIBLE DATA

Our next result allows us to separate subpopulations of data satisfying the incompatibility property
(proof in Appendix A). The main idea is that, given any set, we can always achieve better self-
expansion by removing incompatible data (if it exists).
Theorem 2.3 (Sets minimizing expansion error are homogeneous.). Let S = A∪B be a set with A
and B nonempty and mutually completely α-incompatible. Define

ϵ∗ := min
S′⊆S

ϵ(S′;α), (4)

let S∗ be the collection of subsets of S that achieve ϵ∗. Then for any smallest subset S∗
min ∈ S∗,

either S∗
min ⊆ A or S∗

min ⊆ B. Furthermore, if at least one of the incompatibilities is strict, then
for all S∗ ∈ S∗ we have either S∗ ⊆ A or S∗ ⊆ B.

Theorem 2.3 suggests an iterative procedure for separating subsets of data that satisfy the incom-
patibility property. Namely, at each step i, identify S∗

min in the current dataset Di, then repeat the
procedure with Di+1 = Di \ S∗

min. The procedure terminates when Di+1 = ∅. Assuming the sub-
populations in the dataset satisfy the incompatibility property, this process partitions the training set
into subsets that are guaranteed to contain data from a single subpopulation. Furthermore, if subpop-
ulations satisfy strict incompatibility, we can instead take the largest S∗ ∈ S∗ at each step. The next
section develops this insight into a practical clustering mechanism for incompatible subpopulations.
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Algorithm 1 Inverse Self-Paced Learning

Input: training set S, total iterations N , annealing schedule 1 ≥ β0 ≥ ... ≥ βN = βmin > 0,
expansion α ≤ 1, momentum η ∈ [0, 1], learning algorithm A, initial parameters θ0

Output: SN ⊆ S such that |SN | = βmin|S|
1: S0 ← S
2: L← 0
3: for t = 1 to N do
4: S′ ← SAMPLE(St−1, α)
5: θt ← A(S′, θt−1)
6: L← ηL+ (1− η)Remp(θt;S)
7: St ← TRIM(L, βt)
8: end for

2.4 INVERSE SELF-PACED LEARNING

A major question raised by Theorem 2.3 is how to identify the set S∗. In general, even computing
a single self-expansion error of a given set S is intractable as it involves taking the expectation over
all subsets of size α|S|. The Inverse Self-Paced Learning (ISPL) algorithm presented below solves
this intractibilty problem. Rather than optimizing over all possible subsets of the training data, we
instead seek to minimize the expansion error over subsets of fixed size β|S|. The new optimization
objective is defined as:

S∗
β := arg min

S′⊆S:|S′|=β|S|
ϵ(S′;α) (5)

We alternate between optimizing parameters θt and the training subset St—given St−1, we update
θt using a single subset from St−1 of size α|St−1|. Then we use θt to compute the loss for each
element in S, and set St to be the β fraction of the samples with the lowest losses. To encourage
stability of the learning algorithm, the losses are smoothed by a momentum term η. To encourage
more global exploration in the initial stages, we anneal the parameter β from an initial value β0

down to the target value βmin. Algorithm 1 presents the full algorithm. SAMPLE takes a set S and
samples an α fraction of each class uniformly at random; TRIM takes losses L and returns the β
fraction with the lowest loss.

To conclude, we show for certain choices of parameters that Algorithm 1 converges to a local opti-
mum of the following objective over the training set S:

F (θt, St;βt) :=
∑
i∈St

L(fθt(xi), yi) + max(0, βt|S| − |St|) (6)

where St is a subset of S and βt is decreasing in t (proof in Appendix A).
Proposition 2.4. Set α = 1 and η = 0 in Algorithm 1, and assume thatA returns the empirical risk
minimizer. Then we have that for each round of the algorithm, F (θt, St;βt) is decreasing in t and
furthermore, |F (θt, St;βt)− F (θt+1, St+1;βt+1)|

t→∞−−−→ 0.

3 DEFENDING AGAINST BACKDOOR ATTACKS

We present a novel characterization of poisoning attacks based on the formal definition of compat-
ibility introduced in Section 2. In our threat model, the attacker aims to affect the trained model’s
behavior in ways that do not emerge from clean data alone, so we characterize the poisoned data by
its incompatibility with clean data. We prove this observation holds for a backdoor attack in the con-
text of linear classifiers. As Theorem 2.3 yields a method of partitioning the dataset into clusters of
clean and poisoned data (when the clean and poisoned data are incompatible), we present a boosting
algorithm to identify which clusters contain clean data (and hence remove the poisoned data).

3.1 THREAT MODEL

The attacker’s goal is to install a backdoor in the trained network that 1) changes the poisoned
network’s predictions on poisoned data while 2) preserving the accuracy of the poisoned network on
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clean data. For the backdoor to be meaningful, the behavior of a poisoned model on poisoned data
should also be inconsistent with a model trained on clean data.

To begin, a set of n clean training samples D is drawn iid from D. After observing D, the attacker
selects at most n/2− 1 samples A ⊆ D (leaving behind at least n/2 clean samples C = D \A) and
fixes a pair of perturbation functions τtrain : X ×Y 7→ X ×Y (the attacker uses τtrain to construct
the poisoned dataset for training, changing the image and potentially the label of each poisoned
element) and τtest : X 7→ X (the attacker uses τtest to construct poisoned test images without
changing the ground-truth label of the poisoned image). The attacker then poisons the samples in A
to obtain poisoned samples P = {τtrain(a) | a ∈ A}. The threat model places no restrictions on
τtrain, but requires that τtest should not affect the predictions of a network trained on C. The final
poisoned training set is C ∪ P .

Let θ be the parameters of the network under attack. Given m fresh test samples T drawn iid from
D, the attacker seeks to maximize the targeted misclassification rate (TMR):

TMR(θ;T ) :=
1

m

m∑
i=1

L(fθ(xi),¬yi) ∗ L(fθ(τtest(xi)), yi), (7)

i.e., the attack succeeds if it can flip the label of a correctly-classified instance by applying the trigger
τtest(·) at test time. This metric captures both the “hidden” nature of the backdoor (the first term
rewards the attacker only if clean inputs are correctly classified) as well as control upon application
of the trigger (the second term rewards the attacker only if poisoned inputs are misclassified).

3.1.1 DEFENSE CAPABILITIES AND OBJECTIVE

The defender is given only the poisoned dataset C ∪ P . In particular, τtrain, τtest, A, and C are
not available to the defender. The defender’s objective is to return a sanitized dataset D̃ ⊆ C ∪ P
such that the learned parameters θ̃ := A(D̃) are as close as possible to the ground-truth parameters
θ∗ := A(C). Note that θ∗ is guaranteed to exhibit low targeted misclassification rate—the threat
model requires that for fresh (x, y) drawn from D, fθ∗(τtest(x)) = y with high probability.

3.2 CHARACTERIZING BACKDOOR POISONING ATTACKS USING INCOMPATIBILITY

The following property formalizes the intuition that increasing the amount of clean data in the train-
ing set should not improve the performance on poisoned data (and vice versa):
Definition 3.1 (Incompatibility Property). Let C and P be the clean and poisoned data produced
by an attacker according to threat model defined in Section 3.1. We say that the attacker satisfies
the incompatibility property if C and P are mutually completely incompatible. Furthermore if at
least one of the incompatibilities between C and P is strict, then the attacker satisfies the strict
incompatibility property.

Note that incompatibility is defined with respect to the learning algorithm A as well as the sub-
sampling rate α. To motivate this definition, we exhibit a backdoor attack against linear classifiers
which falls under the threat model in Section 3.1 and provably satisfies the incompatibility property:
Theorem 3.2. Let the input space be X = RN (N > 1). We use the parametric family of functions
fw,b consisting of linear separators given by fw,b(x) = sign(⟨w, x⟩ + b) for w ∈ RN , b ∈ R. A
selects the maximum margin classifier. Then there exists a distributionD and perturbation functions
τtrain and τtest, such that if the adversary poisons 1/4 of each class at random, then with high
probability over the initial training samples:

1. Given the clean dataset, A returns parameters with 0 empirical (and population) risk.
2. Given the poisoned dataset, A returns parameters with a targeted misclassification rate of 1.
3. The clean and poisoned data are mutually completely incompatible.

The proof is in Appendix A. The idea is to construct a dataset such that there exist dimensions in
the original, clean feature space that are uncorrelated with the true labels, i.e., consist of pure noise.
The attacker makes use of these extra dimensions by replacing the noise with a backdoor signal.
Although this result uses linear classifiers, the setting is analogous to many existing attacks against
DNNs; for example, many backdoor attacks against image classifiers insert synthetic patches on the
border of the image, which is a location that does not typically affect the original classification task.
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Algorithm 2 Boosting Homogeneous Sets

Input: Homogeneous sets S1, ..., SN , number of samples n =
∑N

i=1 |Si|, learning algorithm A
Output: Votes V1, ..., VN

1: C1, ..., CN ← 0
2: for i = 1 to N do
3: θi ← A(Si)
4: for k = 1 to N do
5: if LOSS0,1(θi;Sk) < |Sk|/2 then
6: Ck ← Ck + |Si|
7: end if
8: end for
9: end for

10: for i = 1 to N do
11: Vi ← Ci > n/2
12: end for

3.3 IDENTIFICATION USING BOOSTING

We conclude this section by showing how to identify the clean data given the output of our clustering
mechanism, which is a collection of homogeneous (i.e., entirely clean or entirely poisoned) subsets.
One idea is to measure the compatibility between each pair of subsets, then take the largest mutually
compatible (sub)collection of subsets (under the assumption that the clean data is always compatible
with itself). However in general this requires training on each subset multiple times in sequence.
We instead propose a simplified boosting algorithm for identifying the clean data which involves
training on each subset exactly once. The main idea is to fit a weak learner to each cluster, then use
each weak learner to vote on the other clusters.

The following sufficient conditions guarantee the success of our boosting algorithm:
Property 3.3 (Compatibility property of disjoint sets). Let C ′ and C ′′ be any two disjoint sets of
clean data, and let P ′ be a set of poisoned data. Then

Remp(A(C ′);C ′′) < 1/2 ≤ Remp(A(C ′);P ′). (8)

The first inequality says that training and testing on disjoint sets of clean data is an improvement over
random guessing. The second inequality says that training with clean data then testing on poisoned
data is at best equivalent to random guessing; this property is natural in that the threat model already
guarantees Remp(A(C);P ) is large (i.e., close to 1) for random poisoned data P .

Algorithm 2 presents our approach for boosting from homogeneous sets. The subroutine LOSS0,1
takes a set of parameters and a set S, and returns the total risk over S using the zero-one loss.
Each subset’s vote is weighted by its size. We have the following correctness guarantee (proof in
Appendix A):
Theorem 3.4 (Identification of clean samples). Let S1, ..., SN be a collection of homogeneous sub-
sets containing either entirely clean or entirely poisoned data. Then if the clean and poisoned data
satisfy Property 3.3, Algorithm 2 votes Vi = True if Si is clean (and Vi = False otherwise).

4 EXPERIMENTAL EVALUATION

We report empirical evaluations of the incompatibility property (Section 4.1) and the proposed de-
fense (Section 4.2). We use the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) for general image
recognition, containing 10 classes of 5000 training and 1000 test images each, and the GTSRB
dataset (Stallkamp et al., 2012) for traffic sign recognition, containing 43 classes with 26640 train-
ing and 12630 test images, respectively. The GTSRB training set is highly imbalanced, with classes
ranging from 150 to 1500 instances.

Our experiments consider three types of backdoor attacks. Dirty label backdoor (DLBD) attacks
use small patches ranging from a single pixel to a 3x3 checkerboard pattern, following the imple-
mentation of Tran et al. (2018). WATERMARK uses 8x8 images such as a copyright sign or a peace
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Figure 1: Pairs of poisoned (top) and clean (bottom) samples for all datasets, selected for visible
triggers. From left to right: CIFAR-10 with CLBD using GAN, ℓ2, and ℓ∞ perturbations, DLBD,
and WATERMARK attacks; and GTSRB with DLBD and WATERMARK attacks.

Figure 2: Results from incompatibility experiments on CIFAR-10, DLBD (left) and CLBD (right).
Each subplot shows how accuracy changes over different subsets of data as the amount of poison
increases. The top plot displays change in accuracy on clean training data, i.e., ϵ(C|P ;α)−ϵ(C;α);
the next two plots separate the change in accuracy on C into source and non-source classes; the
bottom plot shows change in accuracy on poisoned data P . All axes use linear scales.

sign, taken from Gao et al. (2019). Both of these attacks insert a patch into a training image from a
source class, then change the training label to the target class. The attacker’s objective is to induce
the learner to misclassify images of the source class as the target class upon application of the patch.
Clean label backdoor (CLBD) attacks use the poisoned datasets from Turner et al. (2018), which
are only available for CIFAR-10. Each attack first strongly perturbs each image of the source class
independently using either GAN, ℓ2, or ℓ∞ bounds, then inserts several patches (without changing
the label); the attacker’s objective is to make the learner misclassify an image from any non-source
class as the source class by applying the patches. Figure 1 presents examples from each dataset.
Additional dataset construction details can be found in Appendix B. All experiments presented in
the main text use a PreActResNet-18 architecture. Full experimental details and additional results,
including performance against an adaptive white-box attacker and experiments testing the sensitivity
of ISPL to its hyperparameters, are contained in Appendices C and D.

4.1 INCOMPATIBILITY BETWEEN CLEAN AND POISONED DATA

We evaluate whether the attacks satisfy the incompatibility property by measuring the gap between
ϵ(C;α) and ϵ(C|P ;α) for clean data C and poisoned data P generated by the 3 attacks (DLBD,
WATERMARK, CLBD) on CIFAR-10. Figure 2 presents selected plots for the DLBD (e.g., rela-
belling airplanes as birds) and GAN-based CLBD (e.g., perturbing airplanes toward other classes)
scenarios. Along the x-axis, we increase the ratio of poisoned to clean data in the source class from
0 to 1. Our experimental procedure is as follows: we first sample 1/8 of each class in the clean
dataset to create C. For each poison ratio, we sample P ′ ∼ P according to the poison ratio, train
on P ′ ∪ C with α = 1/2, then take the mean over 5 samples of P ′ as the self-expansion error. The
entire process is repeated for 5 samples of C for each poisoned dataset in our evaluations (8 total for
DLBD, 5 total for GAN-based CLBD). To better present the gap ϵ(C|P ;α) − ϵ(C;α), we report
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Table 1: Summary of performance for ISPL+B across several datasets and poisoning strategies.
Columns display different datasets and poisoning strategies (e.g., poisoning CIFAR-10 using the
CLBD attack). The rows display different amounts of poison (e.g., ϵ = 5 refers to 5% of the source
class being poisoned). An entry of the form “7 / 8” indicates that ISPL+B successfully defended 7
of the 8 scenarios in the corresponding setting. Please refer to Section 4.2 for a detailed description.

CIFAR-10 GTSRB
totalsDLBD WATERMARK CLBD DLBD WATERMARK1-to-1 all-to-1 all-to-all

ϵ
5 7 / 8 4 / 4 4 / 4 6 / 8 15 / 15 6 / 8 8 / 8 50 / 55

10 8 / 8 4 / 4 2 / 4 5 / 8 15 / 15 6 / 8 8 / 8 48 / 55
20 7 / 8 4 / 4 2 / 4 1 / 8 11 / 15 5 / 8 6 / 8 36 / 55

totals 22 / 24 12 / 12 8 / 12 12 / 24 41 / 45 17 / 24 22 / 24 134 / 165

each metric as an absolute difference in accuracy from the unpoisoned case (ratio = 0). A trendline
connects the medians.

Our first observation is that the key quantity, ϵ(C|P ;α) − ϵ(C;α), is negative for all poisoned
datasets, which empirically supports our insight that clean and poisoned data are incompatible (or
even strictly incompatible), despite the qualitative difference behind the attack mechanisms. The
trend in the top plot also indicates that the gap between ϵ(C|P ;α) and ϵ(C;α) increases with the
amount of poisoned data. The next two plots show how the gap breaks down over the source and
non-source classes. For the DLBD attack, the source class shows a strong negative trend in accuracy
as the amount of poison increases, while accuracy on the non-source classes stays largely constant.
This fact is consistent with the hypothesis that the poisoned data is impairing the accuracy of the
classifier on clean data from the source class (e.g., clean airplanes are getting misclassified as birds).

For the CLBD attack, even though the total clean accuracy decreases, the source class accuracy
actually increases as the amount of poison increases. We attribute this phenomenon to the classi-
fier learning the perturbed poisoned training instances in the source class, which yields improved
accuracy on the clean instances as well. The decrease in clean accuracy is therefore due to a drop
in accuracy among the non-source classes. Because the CLBD attack produces perturbations of the
source class toward other classes (thus making the other classes more similar to, e.g., airplanes),
this behavior is consistent with the classifier misclassifying clean instances of non-source classes as
the source class. These observations are corroborated by the increase in accuracy on poisoned data
in both cases, suggesting that the classifier’s mistakes on clean data are correlated with increased
accuracy on similar-looking poisoned data. Appendix D contains further discussion and results.

4.2 PERFORMANCE OF PROPOSED DEFENSE

We next evaluate the performance of our proposed defense on the full range of attacks. Most settings
use one-to-one attacks (e.g., place a trigger on dogs and mislabel as cats; an ϵ percentage of the
source class is poisoned), which is the most common setting in the literature (Gu et al., 2019). For
the CIFAR-10 DLBD scenario, we additionally use all-to-one (e.g., place a trigger on all non-cats
and mislabel as cats; an ϵ/9 percentage of each non-target class is poisoned) and all-to-all attacks
(i.e., place a trigger on any image and mislabel according to a cyclic permutation on classes; an ϵ
percentage of every class is poisoned).

Table 1 presents a summary of our results. Each entry is of the format “success / total”, where
total indicates the total number of different scenarios for the attack setting (i.e., different source
and target class and trigger combinations), and a run is successful when the defense achieves TMR
below 1%. We note that the clean accuracy is around 91% on CIFAR-10 and 94% on GTSRB
after running ISPL+B, compared to around 93% and 94% when training on the full, unpoisoned
datasets, respectively. These results indicate that our approach succeeds in defending against various
backdoor poisoning attacks, particularly for the standard settings of ϵ = 5, 10 in the literature (Tran
et al., 2018), for a small cost in clean accuracy. Appendix D contains the unabridged results.
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Figure 3: Comparison with baseline defenses on the CIFAR-10 DLBD (1-to-1) scenario for ϵ =
5, 10, 20. Each plot displays TMRs (lower is better) over 24 runs. The orange lines indicate the
median TMR, the boxes indicate the top and bottom quartile, and the whiskers cover the entire
range of performance. The blue line displays the cutoff for success used in Table 1 (i.e., TMR <1%).

Comparison with Existing Approaches. Figure 3 compares the performance of our defense with
3 existing defenses—Spectral Signatures (Tran et al., 2018), Iterative Trimmed Loss Minimization
(Shen & Sanghavi, 2019), and Activation Clustering (Chen et al., 2018)—on the CIFAR-10 DLBD
(1-to-1) scenario. ISPL+B outperforms all 3 baselines in terms of reducing the TMR. Table 2 in
Appendix D contains the detailed results of this experiment.

5 RELATED WORK

Many prior works propose methods for defending against backdoor attacks on neural networks. One
common strategy, which can be viewed as a type of deep clustering (Zhou et al., 2022), is to first
fit a deep network to the poisoned distribution, then partition on the learned representations. The
Activation Clustering defense (Chen et al., 2018) runs k-means clustering (k=2) on the activation
patterns, then discards the smallest cluster. Tran et al. (2018) propose a defense based on the as-
sumption that clean and poisoned data are separated by their top eigenvalue in the spectrum of the
activations. TRIM (Jagielski et al., 2021) and ITLM (Shen & Sanghavi, 2019) iteratively train on
a subset of the data created by removing samples with high loss. However, each iteration removes
the same small number of samples; both direct comparisons with ITLM and our ablation studies
suggest that the dynamic resizing in ISPL is crucial to identifying the poison. Shan et al. (2022) is
motivated by a similar intuition as our compatibility property; however their formalization differs
significantly from ours, and they do not present a defense but rather a forensics technique, which is
only able to identify the remaining poison given access to a known poisoned input. Finally, several
works provide certified guarantees against data poisoning attacks (Steinhardt et al., 2017; Jia et al.,
2022); in exchange for the stronger guarantee, these works defend a small fraction of the dataset,
e.g., the state-of-the-art certifies 16% of CIFAR-10 against 50 poisoned images (Wang et al., 2022a).
We refer the reader to Wang et al. (2022b) for a comprehensive survey of data poisoning defenses.
Appendix E contains a discussion of other related works.

6 CONCLUSION

Backdoor data poisoning attacks on deep neural networks are an emerging class of threats in the
growing landscape of deployed machine learning applications. We present a new, state-of-the-art
defense against backdoor attacks by leveraging a novel clustering mechanism based on an incom-
patibility property of the clean and poisoned data. Because our technique works with any class of
trained models, we anticipate that our tools may be applied to a wide range of datasets and training
objectives beyond data poisoning. More broadly, this work develops an underexplored perspective
based on the interaction between the data and training process.
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Figure 4: The construction used in our proof of Theorem 3.2, for N = 2 dimensions. The balls de-
pict the support of the clean training distribution (blue) and the poisoned data (red). The perturbation
function τ is shown by the grey arrows. The lines are the ground truth maximum margin classifier
(blue) and the maximum margin classifier when training with a mixture of clean and poisoned data
(red). The red and blue arrows point in the direction of half-plane labelled by the corresponding
classifier as the positive class.

A DEFERRED PROOFS

Proof of Theorem 3.2. First we give a construction when the dimension N = 2. We define the
training distribution as D = (D+ + D−)/2, where D+ and D− are both distributed arbitrarily
within a ball of radius 1 (e.g., as a truncated Gaussian); D+ is centered at (10, 0) with labels +1 and
D− is centered at (−10, 0) with labels−1. The adversary chooses the perturbation function τ which
flips the label during training and sets the last entry to be 10 if the original label was +1, and −10
if the original label was −1. Note that τ is bounded in the sense that as N → ∞, the (expected)
magnitude of a data point can grow as O(

√
N) while the magnitude of the perturbation is O(1).

Figure 4 depicts the construction.

Clearly, one sample from each clean class is sufficient to learn a maximum margin classifier (MMC)
achieving zero population risk, i.e., the MMC will be close to w = (1, 0), b = 0.

Next, we show that the attacker succeeds under the threat model in Section 3.1. Recall that the
attacker selects 1/4 of the positive samples and 1/4 of the negative samples to poison. Given a poi-
soned dataset containing at least one example of each class (both clean and poisoned), the classifier
given by w = (1,−2), b = 0 achieves perfect accuracy on both the clean data and the poisoned data,
and hence the MMC also has a poison misclassification rate of 1.

We now show that this setup satisfies the incompatibility property defined in Section 3.2. We begin
by showing that the poisoned data is not compatible with the clean data. Let C be any set of clean
data, and let P be any set of poisoned data. We have two cases. First, if C contains samples of both
classes, then by definition, any subset C ′ of C in the measurement of the self-expansion error will
also include at least one sample of each clean class. Hence, the MMC learned from C ′ will be close
to w = (1, 0), b = 0, which achieves perfect accuracy on all clean data. On the other hand, if C
contains only samples of the positive class, the MMC is w = (0, 0), b = +1, and again all samples
in C are correctly classified. The same argument works when C contains only samples from the
negative class. Thus, in neither case can poisoned data improve the self-expansion error of C.

As the exact same line of reasoning holds for proving incompatibility of clean data with respect to
poisoned data, we omit the proof. Therefore the clean and poisoned data are mutually completely
incompatible.
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To generalize this to N > 2, we can simply embed D in the first two dimensions of the space.
The entire construction can also be scaled then translated and rotated without affecting any of the
conclusions.

Before moving on to the proof of Theorem 2.3, we first prove a useful lemma:
Lemma A.1. Let A and B be arbitrary sets, and define S = A ∪B. Then for all α,

|S|ϵ(S;α) = |A|ϵ(A|B;α) + |B|ϵ(B|A;α) (9)

with the convention that ϵ(∅|T ;α) = 0 for all T and α.

Proof. Notice that all the expansion errors sample from the same training set S = A ∪ B. The
lemma then follows from the linearity of the unnormalized empirical risk in the test set, i.e.,

|S|ϵ(S;α) = |S|ES′∼S

[
Remp(A(S′);S)

]
(10)

= |S|ES′∼S

[
|S|−1

∑
(xi,yi)∈S

L(fA(S′)(xi), yi)
]

(11)

= ES′∼S

[ ∑
(xi,yi)∈A

L(fA(S′)(xi), yi) +
∑

(xi,yi)∈B

L(fA(S′)(xi), yi)
]

(12)

= ES′∼S

[
|A|Remp(A(S′);A)

]
+ ES′∼S

[
|B|Remp(A(S′);B)

]
(13)

= |A|ϵ(A|B;α) + |B|ϵ(B|A;α), (14)

as claimed.

Proof of Theorem 2.3. Assume first that the incompatibility is not strict. Define U = S∗
min ∩A and

V = S∗
min ∩B. From Theorem A.1, we have that

|S∗
min|ϵ∗ = |U |ϵ(U |V ;α) + |V |ϵ(V |U ;α). (15)

Applying now the definition of incompatibility gives

|S∗
min|ϵ∗ ≥ |U |ϵ(U ;α) + |V |ϵ(V ;α). (16)

As |U | + |V | = |S∗
min|, it follows that at least one of ϵ(U ;α) or ϵ(V ;α) is at most ϵ∗, which

contradicts the optimality of S∗
min (as it was assumed to be a smallest set achieving ϵ∗).

Now we consider the case when at least one of the incompatibilities is strict. Let S∗ be any set in
S∗. Using the definition of strict incompatibility, we get that

|S∗|ϵ∗ > |U |ϵ(U ;α) + |V |ϵ(V ;α). (17)

Hence, at least one of ϵ(U ;α) or ϵ(V ;α) is strictly less than ϵ∗, which again contradicts the opti-
mality of S∗.

Proof of Theorem 3.4. Let Si and Sj be a clean component and poison component, respectively.
By the second inequality in Property 3.3, we have that Remp(A(Si);Sj) ≥ 1/2. Thus Si votes
False on Sj . Conversely, if both Si and Sj are a clean components, then Remp(A(Si);Sj) < 1/2,
so Si votes True on Sj . Putting these together and using the fact that at least half of the data is
clean, we find that the poisoned components have weighted vote strictly less than |S|/2, while the
clean components have weighted vote strictly greater than |S|/2. As all the clean components vote
correctly, using the weighted majority correctly identifies all the clean and poisoned components as
claimed.

Proof of Proposition 2.4. Recall that α = 1 and η = 0. We prove the statement in two steps.

First, we show that

F (θt+1, St;βt) ≤ F (θt, St;βt) (18)
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The inequality follows from the optimization on Line 5 in Algorithm 1, which sets θt+1 to the
empirical risk minimizer of the set St.

Next, we claim that

F (θt+1, St+1;βt+1) ≤ F (θt+1, St;βt) (19)

Since |L(·, ·)| ≤ 1, the optimal size of the set St is |St| = βt|S|. Since βt is decreasing, we have
that |St+1| ≤ |St|. Thus the number of elements in the trimmed empirical loss is non-increasing
(Line 7, Algorithm 1).

Combining the two inequalities shows that the objective function is decreasing in t. Since
F (θt, St;βt) is a decreasing sequence bounded from below by zero, the monotone convergence
theorem gives the second result.

B DATASET CONSTRUCTION DETAILS

Our implementation of the 1-to-1 dirty label backdoor (DLBD) adversary follows the threat model
described in Gu et al. (2017). For evaluation, we use the same dataset (CIFAR-10 (Krizhevsky &
Hinton, 2009)) and setup for our experiments as the Spectral Signatures work (Tran et al., 2018).
Each scenario has a single source and target class, and we use the same (source, target) pairs as in
Tran et al. (2018): (airplane, bird), (automobile, cat), (bird, dog), (cat, dog), (cat, horse), (horse,
deer), (ship, frog), (truck, bird).

The perturbation function τ overlays a small pattern on the image at a fixed location. All patterns
fit within a 3x3 pixel box. To generate a perturbation, we choose a shape (L-shape, X-shape, or
pixel) uniformly at random. The (x,y) coordinates of the perturbation are randomly selected to guar-
antee that the entire shape is visible before data augmentation (e.g., the pixel-based perturbation
can be placed anywhere within the 32x32 image, but the X-shape is larger and so must be centered
in a 30x30 region, one pixel away from the border). The color of the perturbation is also selected
uniformly at random, with each of the (R,G,B) coordinates ranging from 0 to 255. Finally, we ran-
domly select an ϵ = 5, 10, 20% percentage of the source class, apply the perturbation by replacing
the pixels in the corresponding locations with the selected shape and color, then relabel the poisoned
images as the target class. For the all-to-1 case, for a given target class, we poison an equal propor-
tion of every non-target class such that the total amount of poison is ϵ times the size of the source
class. For the all-to-all case, we select a cyclic permutation of the classes, then poison a ϵ percentage
of each class.

The construction of the WATERMARK dataset is the same, except that we instead use 8x8 images
depicting: a peace sign, the letter A, 3 bullet holes, or a colorful patch, taken from Nicolae et al.
(2019). Each trigger has a transparent background, and is blended into the upper left corner of the
original image with 80% opacity (where 0% opacity would return the original image without the
trigger, and 100% opacity would superimpose the trigger on top of the original image).

For the CLBD dataset, we used the official datasets provided by Turner et al. (2018). There are three
datasets in total, one for each perturbation type: ℓ2, ℓ∞, and GAN. For the ℓ2 and ℓ∞-based attacks,
each image is perturbed independently to maximize the loss with respect to a reference model trained
on clean data; the perturbation size is bounded by the respective norm. For the GAN-based attack,
for each image to be poisoned, a perceptually similar target image in another class is identified using
the latent space of the GAN, and the perturbed image is an interpolation of the original and target
images in the latent space. In all three cases, a 3x3 checkerboard patch is then placed in each of the
4 corners of the image. The label of the image is not changed. At test time, only the checkerboard
patches are placed on the image. We refer the reader to Turner et al. (2018) for more details.

For the GTSRB dataset, we use the same construction of the DLBD and WATERMARK attacks on
CIFAR-10. As the CLBD dataset was only created for the CIFAR-10 dataset, we did not evaluate
the CLBD attack on GTSRB.
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C DEFENSE SETUPS AND HYPERPARAMETERS

ISPL + Boosting (this work). For our defense, we use the set of hyperparameters described here
unless otherwise noted. For CIFAR-10, we run 8 rounds of ISPL, each of which returns a component
consisting of roughly 12% of the total samples. For GTSRB, we run 4 rounds of ISPL so that each
component contains 24% of the total samples. Let p be the target percentage of samples over the
remaining samples (e.g., for CIFAR-10 p ≈ 1/(8− i+ 1) in the ith iteration). Then the number of
iterations N is set to 2 + min(3, 1/p). β starts at 3 ∗ p in the first iteration, then drops linearly to
its final value of p over the next 2 iterations. When trimming the training set, we also additionally
include the top p/8 samples per class to prevent the network from collapsing to a trivial solution. For
the learning procedure A, we use standard SGD, trained for 4 epochs per iteration, with a warm-up
in the first iteration of 8 epochs. The expansion factor α is set to 1/4, and the momentum factor η is
set to 0.9.

We run ISPL 3 times to generate 24 weak learners for CIFAR-10, and 12 weak learners for GTSRB.
For the boosting framework, each weak learner is trained for 40 epochs on its respective subset, then
votes on a per-sample basis. The sample is preserved if the modal vote equals the given label, with
ties broken randomly, or the sample is in the lower half of its class by loss.

For CIFAR-10, we also include a final self-training step by training a fresh model for 100 epochs
on the recovered samples. The main idea is that a model fit to the full “clean” training data can
be used to test the excluded training data, thereby recovering additional consistent data which may
have been originally excluded because the weak learners were fit to a small subset of data for fewer
epochs. However, it may take several repetitions of training a model from scratch before this self-
training process no longer identifies new samples to recover. Therefore, we use a simple self-paced
learning algorithm to dynamically adjust the samples during training to limit the self-training to
a single iteration. More explicitly, we start with the “clean” samples as returned by the boosting
framework. Every 5 epochs, we update the training set to be the samples whose labels agree with
the model’s current predictions. Due to the relative frequency with which we resample the training
set, we smooth the predictions by a momentum factor of 0.8 so that the training process is less
noisy. The samples used for training in the last epoch are returned as the defended dataset. In our
experiments, this process decreases the false positive rate (and thus increases the clean accuracy) but
does not materially affect the false negative rate (nor the targeted misclassification rate). We did not
use self-training for GTSRB as we found the clean accuracy was sufficiently high.

Spectral Signatures. We use the official implementation of the Spectral Signatures (SS) defense
(Tran et al., 2018) by the authors, available on Github, except that we replace the training procedure
with PyTorch (instead of Tensorflow 1.x as in the authors’ original implementation). The authors
suggest removing 1.5 times the maximum expected amount of poison from each class for the de-
fense. We remove 20% of each class for ϵ = 5, 10% (to match the procedure in their paper) and 30%
of each class for ϵ = 20%. In selecting the layer for the activations, for the ResNet32 architecture
we use the input to the third block of the third layer (taken from the SS defense authors’ public
implementation), and for the PreActResNet18 architecture we use the input to the first block of the
fourth layer (which was found empirically to remove the most poison on the first set of scenarios).
We note that the authors indicate the defense should be fairly successful at any of the later layers of
the network.

Iterative Trimmed Loss Minimization. The Iterative Trimmed Loss Minimization (ITLM) de-
fense (Shen & Sanghavi, 2019) consists of an iterative procedure. Given a setting 0 < α ≤ 1, one
first trains a model for a number of epochs. Then the α fraction of samples with the lowest loss are
retained for the next iteration. This process is repeated several times, with a fresh model beginning
each iteration. The defended dataset is the α fraction of samples with the lowest loss after the last
iteration. For the backdoor data poisoning experiments on CIFAR-10, the authors use 80 epochs for
the first round of training, then 40 epochs thereafter; they also set α = 98% for ϵ = 5%, and do not
test at other values of ϵ. We use the same settings, and scale α linearly with ϵ, i.e., α = 96% for
ϵ = 10% and α = 92% for ϵ = 20%.

Activation Clustering. The Activation Clustering (AC) defense (Chen et al., 2018) has an actively
maintained official implementation in the Adversarial Robustness Toolbox (ART) (Nicolae et al.,
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2019), an open-source collection of tools for security in machine learning. We use the official
implementation with the default parameters values in ART v1.6.2. In selecting the layer for the
activations, we used the same layers as for Spectral Signatures.

Models. For the ResNet32 (He et al., 2016a) model, we use vanilla SGD with learning rate 0.1,
momentum 0.9, and weight decay 1e-4. For the final dataset, we train for 100 epochs (unless oth-
erwise noted) and drop the learning rate by 10 at epochs 75 and 90. Using these parameters, we
achieve around 94.5% accuracy on GTSRB when trained and tested with clean data.

For the PreActResNet18 (He et al., 2016b) model, we use vanilla SGD with learning rate 0.02, mo-
mentum 0.9, and weight decay 5e-4. For the final dataset, we train for 100 epochs (unless otherwise
noted) and drop the learning rate by 10 at epochs 50, 75, and 90. Using these parameters, we achieve
around 93.0% accuracy on CIFAR-10 when trained and tested with clean data.

For the ResNet56 (He et al., 2016b) model, we use vanilla SGD with learning rate 0.05, momentum
0.9, and weight decay 5e-4. For the final dataset, we train for 100 epochs (unless otherwise noted)
and drop the learning rate by 10 at epochs 75, 90, 95, and 98. Using these parameters, we achieve
around 91.0% accuracy on Imagenette when trained and tested with clean data.
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D ADDITIONAL EXPERIMENTAL RESULTS

This section contains additional experimental results to complement the main text. Appendix D.1 ex-
pands upon the empirical evaluations of the compatibility property from Section 4.1. Appendix D.2
reports comprehensive results from the evaluations of the ISPL+B defense reported in Section 4.2.
Appendix D.2 also includes a detailed breakdown of the performance for the three defenses (Spectral
Signatures, Activation Clustering, and Iterative Trimmed Loss Minimization) we use as baselines in
our comparisons. Appendix D.2.1 reports results for our defense against the Sleeper Agent attack
(Souri et al., 2022), and Appendix D.2.2 reports results for the DLBD attack on a high-resolution
dataset. Appendix D.2.3 evaluates our defense against an adaptive attack that is given white-box
access to the ISPL subroutine, and selects which elements to poison based on the behavior of ISPL
on clean data. Our results show that ISPL+B maintains excellent performance against the adaptive
attacker, defending against 20 out of 24 scenarios. Appendix D.2.4 reports results for the CIFAR-10
DLBD attack after training for 200 epochs on both the PreActResNet18 and ResNet32 architec-
tures, to test the robustness of our results to the training setup. Finally, to evaluate the sensitivity
of ISPL to the main hyperparameters α and β, Appendix D.2.5 compares the performance of ISPL
on a selection of attack scenarios across a range of α and β. Our main finding is that performance
remains high for a range of choices of α and β.

All results reported use the median over 3 random seeds, unless otherwise noted.

D.1 INCOMPATIBILITY EVALUATION

Figures 5-9 displays aggregated results of the empirical study of incompatibility for the CLBD,
DLBD, and WATERMARK attacks on CIFAR-10. Plots on the left side measure the compatibility
of poisoned with clean data (i.e., ϵ(C;α) − ϵ(C|P ;α)) and plots on the right side measure the
compatibility of clean with poisoned data (i.e., ϵ(P ;α)− ϵ(P |C;α)).

In all cases, the trend in the first plot is decreasing, which suggests that the gap increases in mag-
nitude as the size of the incompatible data grows. Additionally, the clean label scenarios all exhibit
the behavior that the source class accuracy increases as the amount of poison (and poisoned accu-
racy) increases, while the non-source accuracy drops. These attacks share the characteristic that the
poisoned data are “harder” versions of the source class in the sense that they are perturbed toward
instances of other classes. In the case of the GAN-based attack, the perturbations occur in the latent
space of a GAN trained on clean data (e.g., the attacker identifies a bird and an airplane that are
close in the latent space, linearly interpolates the latent representation of the airplane toward the
latent representation of the bird, then uses the generative network to convert the perturbed represen-
tation into an image of a “bird-like airplane”). In the case of the ℓ2 and ℓ∞ bounds, the attacker uses
the Projected Gradient Descent (PGD) algorithm commonly used for adversarial training (Kurakin
et al., 2016; Madry et al., 2017) to identify an image within a norm-bounded neighborhood of the
original image that maximizes the loss of a trained network, i.e., the perturbed image is close in
pixel-space to the original image, but was misclassified by the trained network as a different class.
We therefore attribute the simultaneous increase in source class accuracy and decrease in non-source
class accuracies to a similar mechanism for all the clean label cases.

Conversely, when measuring the compatibility of poisoned data with clean data (plots on the left)
for the DLBD and WATERMARK attacks, we see that, as the amount of poisoned data increases,
the source class accuracy drops. The implication is that the poisoned data causes the classifier to
misclassify clean data by presenting similar (both quantitatively in terms of the distance between the
poisoned and clean distributions, as well as perceptually in most settings) instances of clean source
data that are mislabelled as the target class, thus complicating the learning of the clean source class.

Figures 10-14 plot the scenarios individually. We note that incompatibility holds generally across
the range of scenarios, with only small deviations to the contrary.
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Figure 5: Aggregated compatibility results for the GAN-based CLBD attack on CIFAR-10.

Figure 6: Aggregated compatibility results for the ℓ2-based CLBD attack on CIFAR-10.

Figure 7: Aggregated compatibility results for the ℓ∞-based CLBD attack on CIFAR-10.
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Figure 8: Aggregated compatibility results for the WATERMARK attack on CIFAR-10.

Figure 9: Aggregated compatibility results for the DLBD attack on CIFAR-10.

Figure 10: Full compatibility results for the GAN-based CLBD attack on CIFAR-10.
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Figure 11: Full compatibility results for the ℓ2-based CLBD attack on CIFAR-10.

Figure 12: Full compatibility results for the ℓ∞-based CLBD attack on CIFAR-10.
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Figure 13: Full compatibility results for the DLBD attack on CIFAR-10.

Figure 14: Full compatibility results for the WATERMARK attack on CIFAR-10.
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D.2 DEFENSE EVALUATION

This section includes additional experimental results concerning the performance of our defense.
Tables 2-8 display the unabridged results of our main evaluation results for our defense (condensed
in the main text as Table 1). We note that even though we have selected 1% as the threshold for a
“successful” defense, in many of the failure cases, ISPL+B still achieves relatively low TMR. For
instance, setting the threshold to 5% increases the number of successful scenarios to 142 (compared
to 134 at 1%, out of 165 total).

Table 2 also includes results of the three baseline defenses for the standard 1-to-1 DLBD attack on
CIFAR-10. In particular, we observe that our clean accuracy is comparable to (or even slightly better
than) that of Activation Clustering (AC), the next best defense, despite AC achieving significantly
lower TMR in our evaluations.

Table 2: Performance on the CIFAR-10 DLBD scenario (1-to-1) using the PreActResNet18 archi-
tecture. The S / T column lists the CIFAR-10 source and target classes. ϵ refers to the percentage of
the source class which is poisoned. For the remainder of the columns, the top level column headers
give the defense type: Oracle (training only on clean data), ND (no defense), SS (spectral signa-
tures), AC (activation clustering), ITLM (iterative trimmed loss minimization, and ISPL+B (ISPL
+ boosting, this work); the second level column headers give the metric type: C (clean accuracy,
higher is better), A (targeted misclassification rate, lower is better), FP (false positives, lower is
better), FN (false negatives, lower is better). Successful runs (TMR < 1%) are highlighted.

S / T ϵ
Oracle ND SS AC ITLM ISPL+B
C A C A C A C A C A C A FP FN

0 / 2
5 93.3 0.0 93.1 17.2 92.5 2.1 90.3 0.1 92.5 4.7 90.9 0.0 3761 23

10 93.1 0.0 92.8 42.6 91.3 18.2 90.7 14.7 92.5 43.7 90.6 0.0 3811 22
20 93.1 0.0 92.4 79.8 89.5 4.6 90.3 23.9 92.1 59.4 90.7 0.2 3773 118

1 / 3
5 93.1 0.0 92.7 1.4 92.4 0.3 90.6 0.3 92.6 0.0 90.9 0.0 3787 2

10 93.0 0.0 92.4 11.1 91.3 1.1 90.3 0.4 92.3 7.7 90.8 0.0 3758 5
20 93.1 0.0 92.5 55.7 88.2 4.3 90.0 4.8 92.2 51.6 90.6 0.0 3819 5

2 / 5
5 93.1 0.8 92.9 81.7 92.8 81.7 89.4 73.5 92.8 81.0 90.5 1.2 3778 44

10 93.3 0.9 92.9 83.3 92.1 81.0 90.4 76.2 92.5 82.1 90.6 0.6 3928 47
20 93.0 0.8 92.9 81.2 88.2 72.9 90.9 76.2 92.4 77.9 90.8 74.4 3552 981

3 / 5
5 93.2 0.2 92.8 72.9 92.6 69.9 91.0 56.5 92.8 68.0 90.8 0.6 3843 26

10 93.1 0.2 92.9 86.6 91.8 76.8 90.8 76.7 92.8 87.6 91.0 0.4 3759 42
20 93.1 0.2 92.8 89.3 90.2 81.7 90.4 80.6 92.7 88.9 90.4 0.2 3925 59

3 / 7
5 93.1 0.2 92.9 8.0 92.3 2.0 90.0 0.8 92.8 0.3 90.9 0.1 3656 12

10 92.9 0.0 92.8 46.6 91.3 20.8 89.7 3.4 92.4 36.5 90.7 0.1 3725 19
20 93.0 0.0 92.5 60.8 88.6 36.0 90.7 59.1 92.4 73.3 90.3 0.2 3895 100

7 / 4
5 93.0 0.0 93.2 76.2 92.5 58.2 90.7 15.6 92.6 40.6 91.0 0.0 3729 2

10 93.1 0.0 93.3 87.8 92.0 80.1 90.3 72.5 92.6 84.2 90.7 0.0 3781 3
20 93.2 0.0 93.1 92.9 88.8 36.3 90.6 74.0 92.6 91.1 90.8 0.0 3637 8

8 / 6
5 93.1 0.0 93.0 3.0 92.5 1.3 89.6 0.3 92.9 0.6 90.8 0.0 3818 2

10 93.3 0.0 93.1 87.8 91.2 47.0 91.0 2.9 92.3 15.3 90.6 0.0 4018 2
20 93.2 0.0 93.1 93.2 89.3 7.4 90.4 62.1 92.5 89.4 91.0 0.0 3697 4

9 / 2
5 93.3 0.0 92.9 75.4 92.7 14.5 90.3 31.0 92.7 1.0 91.0 0.0 3625 4

10 93.1 0.0 93.0 83.0 91.8 77.6 90.9 79.8 92.6 81.2 90.8 0.2 3718 37
20 93.0 0.0 92.3 41.2 89.4 76.6 91.1 78.5 92.6 81.2 90.6 0.2 3699 74
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Table 3: Performance on the CIFAR-10 DLBD scenario (all-to-1) using the PreActResNet18 archi-
tecture. The T column lists the target class (i.e., all poisoned images have label T). Each of the 9
source classes contain ϵ/9 percent poison.

T ϵ
Oracle ND ISPL+B
C A C A C A FP FN

2
5 93.2 0.0 93.0 0.1 91.1 0.0 3624 9
10 93.1 0.1 93.0 0.8 90.9 0.0 3632 25
20 93.3 0.0 92.3 74.2 90.6 0.1 3770 49

3
5 93.1 0.1 92.7 0.2 90.6 0.1 3921 8
10 93.0 0.1 92.4 25.4 90.6 0.1 3855 24
20 93.3 0.1 92.8 87.6 90.3 0.1 3947 67

5
5 93.2 0.2 93.0 62.8 90.8 0.1 3682 6
10 93.0 0.2 93.1 92.2 90.7 0.1 3764 21
20 93.2 0.1 92.9 92.1 90.9 0.5 3698 66

7
5 93.3 0.1 93.0 76.2 90.9 0.2 3605 8
10 93.0 0.1 92.8 83.3 90.8 0.2 3542 21
20 93.0 0.1 92.8 89.1 90.9 0.5 3592 39

Table 4: Performance on the CIFAR-10 DLBD scenario (all-to-all) using the PreActResNet18 ar-
chitecture. The S→ T column lists offset of the cyclic permutation (i.e., 2 means that source class
0 is poisoned as target class 2, source class 1 is poisoned as target class 3, etc.). ϵ refers to the
percentage of the source class which is poisoned.

S → T ϵ
Oracle ND ISPL+B
C A C A C A FP FN

2
5 92.7 0.0 92.4 78.0 90.3 0.1 3790 130

10 92.8 0.0 92.5 87.8 90.0 0.1 3648 256
20 92.2 0.1 92.6 88.2 88.2 0.2 3695 821

3
5 92.8 0.0 93.2 88.2 90.6 0.0 3664 58

10 92.5 0.0 92.9 89.7 89.6 0.0 3892 172
20 92.2 0.0 92.6 90.7 88.4 0.1 3902 384

5
5 93.1 0.0 93.0 90.1 90.7 0.1 3446 57

10 92.8 0.0 93.2 90.6 90.4 8.9 3416 410
20 92.4 0.1 92.9 91.0 90.3 88.5 3367 9027

7
5 93.1 0.1 93.1 85.6 90.6 0.1 3505 58

10 92.7 0.0 93.2 89.0 90.6 69.4 3532 3576
20 92.5 0.0 93.2 90.0 90.6 86.7 3076 8952
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Table 5: Performance on the CIFAR-10 WATERMARK scenario (1-to-1) using the PreActResNet18
architecture. The S / T column lists the CIFAR-10 source and target classes. ϵ refers to the percent-
age of the source class which is poisoned.

S / T ϵ
Oracle ND ISPL+B
C A C A C A FP FN

0 / 2
5 93.1 0.2 93.3 75.2 90.8 0.4 3826 13

10 93.2 0.3 93.2 84.5 90.6 4.4 3868 54
20 93.1 0.1 93.0 87.0 90.6 76.8 3741 787

1 / 3
5 93.1 0.0 93.0 47.7 90.8 0.0 3752 2

10 93.0 0.0 93.1 74.4 90.8 0.0 3746 5
20 93.2 0.0 92.9 85.8 90.9 0.0 3634 11

2 / 5
5 93.0 2.0 93.0 45.2 90.7 11.9 3685 109

10 93.1 2.4 92.9 64.4 90.7 7.1 3664 122
20 93.1 2.4 92.9 73.7 90.4 35.4 3499 622

3 / 5
5 93.0 0.1 93.0 45.1 90.6 0.2 3814 35

10 93.1 0.1 93.0 74.3 90.8 0.3 3715 44
20 92.9 0.5 92.9 85.1 90.4 21.7 3796 289

3 / 7
5 93.2 0.7 92.9 84.2 90.7 6.5 3920 16

10 93.1 0.9 92.9 85.9 90.7 73.5 3717 406
20 93.3 1.2 92.9 86.1 91.0 74.9 3772 928

7 / 4
5 92.9 0.0 93.1 77.6 90.8 0.0 3877 4

10 92.9 0.0 92.9 82.9 90.7 0.0 3756 5
20 93.0 0.0 92.9 89.4 90.6 72.4 3907 711

8 / 6
5 93.1 0.0 93.1 82.4 90.7 0.0 3639 1

10 93.2 0.0 93.2 87.7 90.7 0.1 3751 3
20 93.1 0.0 93.2 92.5 90.5 83.2 3795 859

9 / 2
5 93.1 0.3 93.1 69.6 91.0 0.8 3634 18

10 92.9 0.1 92.9 75.0 90.7 0.4 3707 17
20 92.9 0.2 92.8 78.8 90.6 1.3 3519 58
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Table 6: Performance on the CIFAR-10 CLBD scenario using the PreActResNet18 architecture.
The T column lists the target class (i.e., all poisoned images have label T). ϵ refers to the percentage
of the target class which is poisoned.

M T ϵ
Oracle ND ISPL+B
C A C A C A FP FN

GAN

0
5 93.2 0.0 93.2 0.1 90.9 0.1 3654 192

10 93.1 0.0 93.0 0.1 90.9 0.1 3763 406
20 93.1 0.0 93.3 0.3 91.0 0.2 3688 968

2
5 93.0 0.1 93.2 1.3 90.7 0.2 3635 129

10 92.9 0.1 92.9 12.1 90.7 0.4 3739 324
20 93.1 0.1 93.3 27.2 90.8 4.3 3621 907

4
5 92.9 0.1 93.3 0.2 90.9 0.1 3666 204

10 92.9 0.1 93.0 0.4 90.8 0.1 3735 406
20 92.9 0.0 93.1 3.4 91.0 0.3 3532 875

7
5 93.1 0.0 93.2 0.5 90.9 0.0 3763 124

10 93.3 0.0 93.3 4.8 90.6 0.1 3832 217
20 92.9 0.0 93.0 25.2 90.8 0.2 3595 574

9
5 93.2 0.0 93.0 0.3 91.0 0.1 3742 143

10 93.1 0.1 93.1 4.7 90.9 0.1 3663 400
20 93.1 0.0 93.2 10.6 90.7 0.7 3943 913

ℓ2

0
5 93.0 0.0 93.2 0.3 90.8 0.0 3633 162

10 93.2 0.0 93.1 6.1 90.6 0.1 3747 351
20 92.9 0.0 93.2 45.8 90.6 1.1 3848 757

2
5 92.9 0.0 93.2 30.1 91.0 0.2 3694 95

10 93.2 0.1 93.1 68.9 90.4 0.2 3877 219
20 92.9 0.1 93.1 76.4 90.6 20.3 3716 633

4
5 93.0 0.1 93.5 6.8 90.9 0.1 3639 140

10 93.0 0.1 93.0 57.4 90.6 0.5 3793 299
20 93.0 0.0 93.1 74.4 90.2 4.8 3731 587

7
5 92.9 0.0 93.0 0.3 91.0 0.1 3769 157

10 93.3 0.0 92.9 22.1 90.7 0.1 3796 366
20 92.9 0.0 93.1 68.0 90.5 0.4 3932 732

9
5 93.1 0.1 93.1 0.4 91.0 0.1 3871 174

10 93.4 0.1 93.2 12.5 90.6 0.1 3846 332
20 92.9 0.0 93.1 68.6 90.9 0.9 3622 731

ℓ∞

0
5 93.2 0.0 93.1 0.5 91.1 0.0 3732 109

10 93.1 0.0 93.0 3.8 91.1 0.1 3591 301
20 93.2 0.0 93.1 51.3 90.7 0.2 3686 729

2
5 93.1 0.1 93.2 13.7 90.8 0.1 3723 44

10 93.3 0.1 93.3 52.9 90.9 0.2 3641 120
20 93.0 0.1 93.0 66.2 90.4 1.0 4157 430

4
5 93.1 0.1 93.2 0.6 90.7 0.1 3919 67

10 93.2 0.1 93.1 14.4 90.8 0.1 3918 183
20 93.1 0.0 93.1 4.1 90.6 0.2 3807 716

7
5 93.2 0.0 93.0 1.0 90.6 0.0 3592 97

10 93.2 0.0 93.0 32.6 90.6 0.1 3780 235
20 93.0 0.0 93.1 67.4 90.5 0.2 3625 492

9
5 93.1 0.1 93.1 0.7 91.0 0.1 3683 109

10 93.1 0.0 93.1 3.7 90.6 0.2 3929 308
20 93.2 0.1 93.4 1.0 90.7 0.2 3697 792
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Table 7: Performance on the GTSRB DLBD scenario (1-to-1) using the ResNet32 architecture. The
S / T column lists the GTSRB source and target classes. ϵ refers to the percentage of the source class
which is poisoned.

S / T ϵ
Oracle ND ISPL+B
C A C A C A FP FN

0 / 2
5 94.2 0.0 94.4 0.0 95.1 0.0 628 0

10 94.9 0.0 94.2 0.0 94.8 0.0 591 0
20 94.4 0.0 94.4 0.0 94.1 0.0 558 1

1 / 2
5 93.9 0.0 94.5 0.1 94.4 0.0 327 1

10 94.3 0.0 94.5 0.1 94.3 0.0 430 8
20 94.2 0.0 93.7 53.2 93.7 0.1 418 25

1 / 0
5 94.5 0.0 94.1 87.5 94.3 0.0 582 0

10 94.0 0.0 94.6 97.6 94.5 0.0 460 6
20 94.2 0.0 94.5 97.9 93.0 82.6 569 79

2 / 13
5 94.2 0.0 94.5 91.9 94.2 89.7 269 75

10 94.3 0.0 94.8 97.5 94.7 95.7 366 150
20 94.2 0.0 93.8 96.8 93.9 98.1 472 300

38 / 4
5 94.5 0.0 94.1 1.6 94.2 4.9 453 69

10 94.1 0.0 92.7 3.0 93.8 2.3 668 138
20 94.6 0.0 94.1 9.3 93.7 30.1 665 276

31 / 24
5 94.3 0.0 94.0 47.4 95.2 0.0 616 0

10 94.2 0.0 93.5 60.7 93.8 0.0 553 0
20 93.9 0.0 93.9 83.0 94.7 0.0 643 7

15 / 29
5 94.5 0.0 94.5 0.5 94.1 0.0 674 7

10 94.3 0.0 94.4 0.5 94.5 0.0 649 10
20 94.1 0.0 94.4 0.0 94.6 0.5 706 74

9 / 18
5 92.8 0.0 93.8 61.9 94.3 0.0 586 2

10 93.8 0.0 94.6 96.9 94.4 0.0 607 2
20 94.3 0.0 94.2 98.8 94.3 0.0 586 26
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Table 8: Performance on the GTSRB WATERMARK scenario (1-to-1) using the ResNet32 architec-
ture. The S / T column lists the GTSRB source and target classes. ϵ refers to the percentage of the
source class which is poisoned.

S / T ϵ
Oracle ND ISPL+B
C A C A C A FP FN

0 / 2
5 94.6 0.0 94.5 0.0 93.0 0.0 369 0

10 94.4 0.0 93.8 0.0 94.0 0.0 416 0
20 94.1 0.0 94.1 0.0 93.7 0.0 783 4

1 / 2
5 94.4 0.0 94.5 10.3 94.2 0.0 452 1

10 94.1 0.0 94.2 54.0 94.7 0.0 359 8
20 94.5 0.0 94.1 77.5 94.2 0.0 747 17

1 / 0
5 94.2 0.0 94.1 0.6 93.7 0.0 379 0

10 94.9 0.0 94.2 10.7 94.3 0.0 305 5
20 94.9 0.0 94.5 73.3 93.1 0.6 360 80

2 / 13
5 94.5 0.0 94.1 1.6 94.7 0.0 270 0

10 93.7 0.0 93.9 32.1 94.8 0.0 278 0
20 94.4 0.0 94.0 76.9 94.2 0.1 401 300

38 / 4
5 94.4 0.0 94.2 50.0 93.9 0.0 308 0

10 94.2 0.0 93.3 65.4 94.3 0.0 273 0
20 94.2 0.0 94.2 78.1 94.0 66.4 685 275

31 / 24
5 94.4 0.0 94.5 69.3 94.0 0.0 378 0

10 94.6 0.0 94.7 81.1 94.3 0.0 292 0
20 94.8 0.0 94.5 80.4 94.4 0.0 566 8

15 / 29
5 94.4 0.0 94.5 1.0 94.2 0.0 302 0

10 94.5 0.0 94.1 0.5 94.6 0.0 344 0
20 94.4 0.0 94.5 47.6 94.4 19.0 482 59

9 / 18
5 93.9 0.0 93.8 6.9 94.3 0.0 331 0

10 94.3 0.0 94.3 75.0 94.3 0.0 269 0
20 94.8 0.0 94.6 94.0 94.2 0.0 482 0
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D.2.1 SLEEPER AGENT ATTACK

Sleeper Agent (Souri et al., 2022) is a clean label attack that uses gradient matching (Geiping et al.,
2020) to create a poisoned training set. The objective of the attacker is to induce a model trained
on the poisoned training set to misclassify patched versions of a source class as the target class.
Figure 16 displays examples of clean and poisoned training and test data created by the Sleeper
Agent attack, where the source class is horse and the target class is dog (training with the poisoned
dogs causes patched horses to be misclassified as dogs). Similar to the CLBD attack, Sleeper
Agent perturbs each image in the training set independently subject to an ℓ∞ bound, however, the
Sleeper Agent attack is more subtle because it does not insert any patches during training. The
Sleeper Agent attacker also differs from the DLBD, CLBD, and WATERMARK attacks in using an
informed mechanism to select which subset of the training set D to poison (rather than poisoning
a random subset). Finally, unlike prior gradient matching approaches, the Sleeper Agent attack is
also intended to apply in the black-box setting, where the attacker does not have access to the victim
model’s architecture or training hyperparameters.

We first used the official repository released by the authors to generate 24 poisoned datasets with
the default settings for CIFAR-10 using different random seeds, targeting a ResNet32 as the victim
architecture.1 We observed an attack success rate (ASR) of 49.1% (±38.3%) over the generated
datasets, when training a ResNet32 model with the attacker’s original training hyperparameters. We
then transferred the poisoned dataset to the setting of our defense (training a ResNet32, using the
same training and defense hyperparameters as in our main experiments for ResNet32 on CIFAR-
10). Our defense delivers an ASR of 4.3% (±4.1%), compared to an oracle, which achieves an
ASR of 3.0% (±4.8%). However, we also observed that the attack only achieves a success rate of
4.5% (±4.3%) on an undefended model in our setting. We attribute this anomaly (between the ASR
for an undefended model in our setting and the ASR reported by the attacker) to the difference in
training hyperparameters, despite using the same victim architecture. In all three cases—defended,
undefended, and oracle—the clean accuracy is consistent between 89-90%.

We next evaluated the effectiveness of our defense when retraining with the attacker’s training setup.
Specifically, we took the poisoned training set generated by the attacker, then ran our defense using
our training setup to output a new training set with the detected poisoned examples removed. We
then used the attacker’s training setup to train a new model on our new training set, and evaluated
this new model on the poisoned test set.

Note that in our threat model, the training algorithm A is fixed, and our defense is designed around
the interaction between the data and A. The above scenario is thus explicitly not the intended use
case for our algorithm. Nevertheless, our defense still achieves an ASR of 14.1% (±15.6%), with a
clean accuracy of 87.5% (±0.6%), compared to the original ASR of 49.1%. An oracle achieves an
ASR of 2.4% (±2.2). These results thus indicate that our defense successfully defends against the
Sleeper Agent attack in our threat model (where the defense is integrated in the intended training
pipeline), while also remaining robust to an evaluation under the attacker’s original training setup.

Figure 15: Example clean (top) and poisoned (bottom) images from the train (left) and test (right)
datasets, taken from one run of Sleeper Agent attack; the source class is horse, and the target class
is dog (training with the poisoned dogs causes patched horses to be misclassified as dogs).

1All results in this section are the mean over 24 runs, with the standard error in parentheses, to match the
presentation in Souri et al. (2022) .
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D.2.2 IMAGENETTE DATASET

Imagenette (Howard, 2019) is a subset the ImageNet dataset (Deng et al., 2009) consisting of 9,469
training and 3,925 test images over 10 classes. We downsampled the 320x320 resolution version of
Imagenette to 224x224, and use a ResNet56 achieving around 91% accuracy on the clean dataset.
We used a DLBD adversary that places a solid 5x5 patch of a random color in a random position
on the image. We use this setting to probe the applicability of our technique to higher-resolution
datasets. Figure 16 displays examples of clean and poisoned data from the Imagenette experiments.
Table 9 reports the results of our defense on Imagenette, using the same defense hyperparameters as
the main experiments for CIFAR-10. The performance of our defense remains consistent, with 21
of the 24 scenarios defended below 1% TMR and less than 2% drop in clean accuracy.

Figure 16: Examples of clean (top) and poisoned (bottom) data from the Imagenette experiments.
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Table 9: Performance on the Imagenette DLBD scenario (1-to-1) using the ResNet56 architecture.
The S / T column lists the Imagenette source and target classes. ϵ refers to the percentage of the
source class which is poisoned.

S / T ϵ
Oracle ND ISPL+B
C A C A C A FP FN

0 / 2
5 90.9 0.0 91.2 85.5 89.3 0.0 544 0

10 91.3 0.0 91.3 93.8 89.5 0.0 535 2
20 91.2 0.0 91.0 92.2 88.7 0.3 608 17

1 / 3
5 91.1 0.0 91.3 79.7 89.1 0.0 536 10

10 90.7 0.0 91.0 87.1 89.2 0.5 513 19
20 91.4 0.0 91.2 91.9 88.9 89.1 586 185

2 / 5
5 91.1 0.0 91.0 0.5 88.7 0.0 619 7

10 91.5 0.0 90.8 72.8 89.1 0.0 642 23
20 90.9 0.3 90.7 77.2 88.3 0.8 639 65

3 / 5
5 91.3 0.0 91.3 69.7 89.5 0.0 554 6

10 90.8 0.0 91.0 79.0 88.7 0.0 599 13
20 91.2 0.0 90.9 79.7 88.5 72.8 572 182

3 / 7
5 90.6 0.0 90.3 13.2 89.9 0.0 536 2

10 91.5 0.0 91.0 88.2 89.4 0.0 520 3
20 91.7 0.0 91.1 90.8 88.9 0.0 617 24

7 / 4
5 91.7 0.0 90.7 72.2 89.7 0.0 562 0

10 91.3 0.0 91.3 81.7 89.2 0.0 521 2
20 91.4 0.0 90.6 86.2 89.8 0.0 542 10

8 / 6
5 90.7 0.0 91.3 83.3 89.8 0.0 540 1

10 91.5 0.0 91.2 91.3 89.1 0.0 569 5
20 90.9 0.0 91.5 92.1 89.1 0.0 495 5

9 / 2
5 91.7 0.0 90.9 17.9 89.6 0.0 496 3

10 91.0 0.0 90.9 79.8 89.4 0.0 544 4
20 91.4 0.0 90.7 76.2 88.5 2.3 581 58
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D.2.3 ADAPTIVE ATTACKER

The attacks used in the main experiments are oblivious to the presence of a defender when selecting
the data to poison. In this section, we devise an strong adaptive attacker with white-box access to
the ISPL algorithm when constructing the poisoned dataset.

The success of the defense rests crucial on the partition of training data returned by the ISPL al-
gorithm. In order for the boosting phase to succeed, the partition should consist of homogeneous
sets, i.e., the poison must be concentrated in a small number of sets within the partition; hence, the
adaptive attacker’s objective is to try and distribute the poisoned samples across multiple sets.

In particular, rather than randomly selecting a ϵ fraction of the source class to poison, an adaptive
attacker with white-box access to the defense can first run the ISPL algorithm (using the same
parameters) on the clean dataset to create a partition of the dataset, then random select a ϵ fraction
from each partition to poison. The idea is that if the ISPL algorithm returns a similar partition, then
the poison will be still be distributed across multiple sets, thereby breaking the defense.

Table 10 presents the results of our defense against the strong adaptive attacker described above.
Against the adaptive attack, our defense still succeeds in 20/24 of the scenarios (versus 22/24 for
the standard oblivious attack). These results suggest the ISPL algorithm remains robust even to
white-box adaptive attacks.

Table 10: Performance on the CIFAR-10 DLBD scenario using the PreActResNet18 architecture
with an adaptive attack. The S / T column lists the CIFAR-10 source and target classes. ϵ refers to
the percentage of the source class which is poisoned.

S / T ϵ
ISPL+B

C A FP FN

0 / 2
5 90.6 0.0 3899 23
10 91.0 0.0 3594 17
20 90.6 0.2 3819 78

1 / 3
5 90.9 0.0 3733 1
10 91.0 0.0 3796 4
20 90.8 0.0 3797 17

2 / 5
5 90.7 0.9 3741 46
10 90.8 64.5 3656 336
20 90.6 74.0 3558 953

3 / 5
5 90.8 0.3 3562 10
10 90.7 8.2 3665 51
20 90.4 69.4 4162 731

3 / 7
5 90.6 0.1 3665 6
10 90.6 0.1 3754 23
20 90.6 0.3 3526 46

7 / 4
5 90.8 0.0 3746 1
10 91.0 0.0 3730 2
20 90.8 0.0 3559 11

8 / 6
5 90.7 0.0 3760 2
10 90.9 0.0 3723 5
20 90.7 0.0 3818 4

9 / 2
5 90.8 0.0 3738 11
10 90.9 0.1 3660 21
20 90.8 0.4 3640 70
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D.2.4 VARYING THE TRAINING SETUP

As prior works (Schwarzschild et al., 2021) have observed that results in data poisoning, partic-
ularly with DNNs, can vary significantly with the training setup, we additionally ran our defense
(along with the three baseline defenses) on the standard CIFAR-10 DLBD attack using both the
PreActResNet18 and ResNet32 models, respectively, and report results after training for 200 epochs
(instead of 100, as in our main experiments).

Tables 11 and 12 report the results of these experiments. We observe that the defense success rates
are largely consistent with those in the main experiments across all defenses; the biggest change
is that the Spectral Signatures defense successfully defends against 9 scenarios instead of just 1
(out of 24 total). ISPL+B still achieves the best performance in terms of reducing the targeted
misclassification rate below 1% (with a 2-3% drop in clean accuracy).

Table 11: Performance on the CIFAR-10 DLBD scenario (1-to-1) using the PreActResNet18 ar-
chitecture, when training for the final model for 200 epochs. The S / T column lists the CIFAR-10
source and target classes. ϵ refers to the percentage of the source class which is poisoned.

S / T ϵ
Oracle ND SS AC ITLM ISPL+B

A C A C A FP FN C A FP FN C A FP FN C A FP FN

0 / 2
5 1.3 94.5 91.3 94.5 79.9 7381 130 91.9 58.3 18926 155 94.6 84.9 994 244 92.8 0.0 3640 23

10 1.3 94.1 90.6 94.5 66.0 7383 383 92.3 85.9 19790 320 94.2 92.8 1961 461 92.8 0.0 3479 25
20 1.1 94.6 80.2 94.2 64.2 14335 335 92.4 73.9 19127 601 93.8 93.8 3897 897 91.6 22.9 3711 237

1 / 3
5 0.0 94.4 92.9 94.7 5.5 7319 68 90.9 19.5 19791 155 94.8 96.5 986 236 92.8 0.0 3434 2

10 0.0 94.6 98.4 94.5 0.0 7035 35 92.5 68.7 19033 333 94.6 98.0 1981 481 93.0 0.0 3348 3
20 0.0 94.4 99.6 94.6 0.0 14007 7 92.2 91.8 18317 622 94.4 99.4 3914 914 93.0 0.0 3253 2

2 / 5
5 1.1 94.4 80.4 94.6 76.4 7494 243 92.4 53.9 19937 172 94.7 79.4 985 235 92.6 0.2 3704 5

10 0.9 94.4 97.2 94.4 0.1 7053 53 92.9 81.8 18657 313 94.7 92.4 990 490 92.9 0.2 3200 16
20 1.2 94.4 94.0 94.5 87.7 14263 263 92.6 89.4 20531 406 94.6 95.4 966 966 92.8 0.3 3540 38

3 / 5
5 7.6 94.7 91.0 94.7 88.5 7281 30 92.6 90.8 19172 172 94.5 91.4 993 243 92.8 81.1 3693 167

10 5.9 94.8 94.0 94.4 8.6 7014 14 92.3 91.6 20293 296 94.6 92.3 988 488 92.6 90.2 3355 496
20 7.6 94.7 90.8 94.3 90.6 14092 92 92.6 92.6 18236 652 94.7 91.7 974 974 92.6 87.4 3210 995

3 / 7
5 0.6 94.3 33.8 94.6 98.3 7500 249 91.9 97.2 21289 246 94.7 98.4 995 245 92.7 0.0 3692 5

10 0.7 94.4 98.5 94.6 96.6 7135 135 92.2 98.2 20630 484 94.5 98.6 1979 479 92.7 2.4 3427 22
20 0.7 94.4 98.5 93.7 78.5 14675 675 92.3 98.2 20470 987 94.4 98.9 980 980 92.9 10.5 3259 43

7 / 4
5 1.5 94.7 92.0 94.6 0.6 7280 29 92.3 39.2 19353 150 94.8 91.6 992 242 92.8 0.5 3258 30

10 1.5 94.6 94.7 94.4 0.0 7023 23 92.0 47.9 19631 285 94.4 94.5 1979 479 93.0 0.3 3627 293
20 1.5 94.6 96.5 94.3 0.1 14000 0 92.1 78.6 21292 22 94.4 96.5 3910 910 92.8 84.5 3203 867

8 / 6
5 0.2 94.7 97.0 94.8 80.5 7470 219 92.8 73.3 19293 152 94.5 98.3 993 243 92.8 0.0 3494 2

10 0.2 94.4 99.5 94.7 0.0 7008 8 92.6 97.6 19544 288 94.4 99.4 1981 481 92.9 0.0 3571 1
20 0.2 94.7 99.5 94.4 0.0 14000 0 92.5 96.4 18946 597 94.2 99.5 3908 908 92.6 0.2 3492 8

9 / 2
5 0.1 95.0 92.0 94.4 93.3 7501 250 91.7 85.0 23573 151 94.6 97.3 988 238 93.0 0.0 3291 2

10 0.1 94.5 93.9 94.3 93.1 7500 500 92.1 95.1 22896 251 94.4 98.6 1970 471 93.1 0.0 3133 1
20 0.1 94.4 96.1 94.7 0.0 14010 10 93.1 98.9 18651 575 94.1 99.0 3906 906 93.1 0.0 3223 2
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Table 12: Performance on the CIFAR-10 DLBD scenario (1-to-1) using the ResNet32 architecture,
when training for the final model for 200 epochs. The S / T column lists the CIFAR-10 source and
target classes. ϵ refers to the percentage of the source class which is poisoned.

S / T ϵ
Oracle ND SS AC ITLM ISPL+B

A C A C A FP FN C A FP FN C A FP FN C A FP FN

0 / 2
5 1.1 92.6 85.0 91.8 57.3 7499 248 88.8 0.6 24211 133 91.8 83.3 988 238 89.8 0.0 5752 31

10 1.1 92.4 92.6 91.7 91.5 7422 422 88.8 78.6 24031 250 91.7 92.3 1969 469 89.5 0.0 5445 33
20 1.5 92.5 94.9 90.4 64.2 14590 590 88.6 62.7 23686 455 91.9 94.2 3890 890 88.0 0.0 6992 86

1 / 3
5 0.1 92.7 98.5 91.7 5.7 7479 227 88.8 2.4 23903 125 91.9 12.7 988 238 89.8 0.0 5776 1

10 0.1 91.6 35.0 91.1 3.3 7436 436 88.3 24.9 23891 254 92.0 69.2 988 488 89.8 0.0 5736 3
20 0.0 92.1 98.1 91.5 0.0 14004 4 89.1 0.4 21145 70 91.9 97.3 3900 900 89.4 0.0 5833 1

2 / 5
5 1.7 92.2 62.7 91.2 43.2 7493 242 88.0 1.4 24001 128 92.2 75.7 994 244 88.8 0.1 6358 6

10 1.6 92.5 92.4 91.9 89.8 7476 476 89.3 81.5 23827 275 91.6 93.2 1975 475 89.2 0.0 5985 26
20 1.6 91.7 95.8 89.9 3.5 14349 349 88.5 87.2 21086 711 91.9 95.1 3905 905 89.8 0.2 5684 40

3 / 5
5 6.3 91.3 88.9 91.7 87.9 7466 215 88.9 80.0 23817 131 92.2 90.8 996 246 89.2 27.5 5974 59

10 6.2 91.8 90.8 91.6 86.4 7348 348 88.7 73.1 21299 136 92.2 89.5 990 490 89.1 82.1 5681 344
20 6.3 92.3 90.8 90.5 71.9 14090 90 89.3 78.5 20694 156 90.9 88.8 3918 918 89.8 86.7 5093 994

3 / 7
5 1.1 92.6 98.4 91.0 97.1 7452 201 86.2 72.8 23823 189 92.1 97.1 994 244 89.4 0.2 5498 13

10 1.1 92.4 98.6 91.8 96.7 7315 315 88.6 96.2 23648 482 92.3 98.0 1981 481 89.8 0.0 5126 16
20 1.1 92.9 98.6 90.9 97.0 14167 167 89.1 95.4 20600 551 92.4 98.1 3924 924 88.6 0.2 6642 26

7 / 4
5 1.7 92.1 88.5 91.6 87.5 7486 235 89.3 72.2 23928 149 92.4 92.2 992 242 88.8 0.4 6643 27

10 1.7 92.7 93.9 91.9 94.2 7371 371 88.3 59.2 23753 193 92.1 96.2 1973 473 88.9 0.8 6478 32
20 1.7 92.6 96.9 91.1 94.1 14397 397 88.2 47.6 23737 423 91.7 95.8 3904 904 88.6 46.9 6322 209

8 / 6
5 0.2 92.7 98.0 91.3 97.8 7441 190 89.1 88.7 23658 164 92.5 96.9 988 238 89.6 0.0 5991 0

10 0.2 92.1 97.7 91.8 97.2 7089 89 90.2 95.1 19585 280 92.3 98.7 973 473 89.3 0.0 6007 2
20 0.2 92.8 98.8 91.3 96.0 14297 297 87.2 64.2 23347 646 92.3 98.6 975 975 89.4 0.0 5691 3

9 / 2
5 0.1 92.9 93.2 91.2 93.2 7478 225 88.7 1.2 23518 136 92.1 94.0 991 241 90.3 0.0 5444 2

10 0.1 92.6 98.6 91.4 94.7 7497 497 88.5 91.5 24034 242 92.5 97.8 986 486 88.1 0.0 7220 2
20 0.1 92.6 97.4 90.5 0.0 14011 11 90.6 97.7 18658 578 91.9 99.2 3881 811 89.6 0.0 5742 1
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D.2.5 SENSITIVITY OF ISPL TO HYPERPARAMETERS

We next conduct some ablation studies to better understand the effects of the two main hyperpa-
rameters in Algorithm 1: the expansion factor α and the subset size β. Computationally, larger β
means fewer components and fewer outer iterations of ISPL (and is thus more efficient); in our main
experiments, we use β = 1/8 and run ISPL 8 times in sequence to generate 8 components. Addi-
tionally, when estimating the self-expansion error, a larger α leads to lower variance estimates of the
expansion error, but less effective measures of generalization; hence, we should prefer taking α as
large as possible to produce better estimates (until memorization effects take over). Our experiments
use both α = 1/2 (for GTSRB, due to the imbalanced class sizes) and α = 1/4 (for CIFAR-10).

Tables 13 and 14 present our results from the ablation studies, conducted on a subset of the CIFAR-
10 DLBD and CLBD subsets. We do not include the self-training step after ISPL as in the main
experiments, in order to better highlight the trends. In particular, without self-training, we expect
both lower clean accuracies and higher targeted misclassification rates due to not recovering all the
compatible clean data.

Our main finding is that our method is quite robust to both the expansion factor α and subset size β.
In particular, β ∈ [1/8, 1/16] and α ∈ [1, 1/4] all yield strong defenses with less than 10% targeted
misclassification. As expected, increasing β leads to a stronger defense but lower clean accuracies.
In particular, β = 1 (which identifies only a single subset consisting of 96% of the original dataset)
fails in all settings of α; this is the setting for which ISPL+B is conceptually the most similar to the
ITLM defense, which offers a possibly explanation for ITLM’s poor performance in our experi-
ments. Additionally, α = 1 avoids memorization, mainly because we do not train until convergence
within the ISPL loop. Finally, we note that α = 1/2 appears to achieve a modest optimum, which is
particularly noticeable when paired with smaller β.

Table 13: Average clean accuracies after running ISPL on three scenarios of CIFAR-10 DLBD and
CLBD using the PreActResNet18 architecture, with various settings of α and β.

α
β average

1 1/2 1/4 1/8 1/16

1 92.55 91.65 90.37 87.92 85.41 89.58
1/2 92.63 91.85 90.25 87.28 83.54 89.11
1/4 92.64 91.93 89.92 86.52 83.01 88.80
1/8 92.70 91.69 89.21 86.56 83.83 88.80
1/16 92.58 91.63 89.63 86.98 85.15 89.20

average 92.62 91.75 89.88 87.05 84.19

Table 14: Average targeted misclassification rates after running ISPL on three scenarios of CIFAR-
10 DLBD and CLBD using the PreActResNet18 architecture, with various settings of α and β.

α
β average

1 1/2 1/4 1/8 1/16

1 29.21 15.38 12.06 5.88 7.43 13.99
1/2 30.52 15.74 12.26 3.54 4.18 13.25
1/4 39.15 15.12 11.10 7.07 9.59 16.41
1/8 36.54 21.99 12.71 10.96 10.78 18.60
1/16 37.15 26.31 12.60 11.91 11.67 19.93

average 34.51 18.91 12.15 7.87 8.73

35



Published as a conference paper at ICLR 2023

E ADDITIONAL RELATED WORK

Deep Clustering. The literature on clustering is vast, and we refer the reader to Xu & Tian
(2015) for a survey of classical techniques. Classical techniques often do not scale to large, high-
dimensional datasets, so recent years have seen increasing development in techniques for deep clus-
tering. Such techniques generally use deep learning to embed some high-dimensional input data into
a low-dimensional space (such as the latent space of a generative adversarial network (Mukherjee
et al., 2019) or variational autoencoder (Yang et al., 2019)), then perform a classical clustering on
the embeddings (Zhou et al., 2022). The structure revealed by the clustering is thus tied to the ob-
jective used to learn the low-dimensional embedding, e.g., the reconstruction loss. In contrast, our
clustering mechanism is based on an interaction between the dataset and the training process, and
therefore produces clusters based on the incompatibility of subsets with respect to a specific training
objective (and can also be applied to any class of learned model).

Compatibility. Our separation results in the context of data poisoning can be viewed as clustering
by exploiting weak supervision in the form of (possibly poisoned) class labels. Balcan et al. (2005)
introduce a method called “co-training”, and show that under a similar compatibility property, learn-
ers fit independently to two different “views” of the data can supervise each other to improve the
joint performance. However, they (and similar works) assume access to a small set of trusted labels
not present in our setting and do not consider the case of malicious training data.

Boosting. To identify which components belong together and recover the primary distribution,
we use a method that can be interpreted as a basic form of boosting, in which an ensemble of weak
learners is aggregated into a stronger learner. For instance, the seminal boosting algorithm AdaBoost
(Freund et al., 1996) adaptively reweights the training set so that subsequent weak learners focus on
samples of poor performance. The use of boosting methods for clustering has also been explored
previously (Frossyniotis et al., 2004; Zhuowen Tu, 2005; Liu et al., 2007); as far as we know, we are
the first to use our incompatibility objective to cluster data.

Self-Paced Learning. Self-Paced learning (SPL) (Kumar et al., 2010) is a type of curriculum
learning (CL) (Bengio et al., 2009) that dynamically creates a curriculum by including samples
of increasing difficulty based on the losses of the partially trained model. Prior works generally
apply SPL to improve convergence on noisy datasets (Meng et al., 2016; Jiang et al., 2018; Zhang
et al., 2020). In contrast, ISPL discards progressively easier samples to identify a subset with good
expansion; to the best of our knowledge we are also the first to apply CL ideas to defend against
backdoor attacks.
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